EP4133214B1 - Procédé de fonctionnement d'un ensemble de brûleur et ensemble de brûleur pour conduire le procédé - Google Patents

Procédé de fonctionnement d'un ensemble de brûleur et ensemble de brûleur pour conduire le procédé Download PDF

Info

Publication number
EP4133214B1
EP4133214B1 EP21710901.6A EP21710901A EP4133214B1 EP 4133214 B1 EP4133214 B1 EP 4133214B1 EP 21710901 A EP21710901 A EP 21710901A EP 4133214 B1 EP4133214 B1 EP 4133214B1
Authority
EP
European Patent Office
Prior art keywords
burner
power level
deviation
operating state
ionization current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21710901.6A
Other languages
German (de)
English (en)
Other versions
EP4133214A1 (fr
Inventor
Sebastian Hack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Climate Solutions SE
Original Assignee
Viessmann Climate Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viessmann Climate Solutions SE filed Critical Viessmann Climate Solutions SE
Publication of EP4133214A1 publication Critical patent/EP4133214A1/fr
Application granted granted Critical
Publication of EP4133214B1 publication Critical patent/EP4133214B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/22Flame sensors the sensor's sensitivity being variable

Definitions

  • the present invention relates to a burner assembly and a method for operating a burner assembly.
  • the present invention realizes a wind function that can prevent flameout due to pressure fluctuations caused by wind.
  • a burner arrangement generally has a burner that is connected to the atmosphere via an exhaust system. Strong gusts of wind, such as those that occur during storms, can cause rapidly changing drafts or overpressure in the exhaust system. This can cause pressure surges in the burner. Such pressure surges can lead to a flameout in the burner, which can result in toxic emissions.
  • calibration must be carried out when the burner is restarted after a flameout. Calibration is necessary in the event of a flameout in order to determine whether the burner control is functioning, as the cause of the flameout is not always clear. Calibration requires the burner to be forced to run at a high load level. In this case, a corresponding heat loss in the heating system must be ensured, which may require further control measures. From the documents EP2549187A2 , DE10058417A1 and DE101 13468A1 Methods for operating a burner arrangement are known from the prior art.
  • the present invention is based on the object of overcoming the problems known in the prior art and of providing a burner arrangement for a heating boiler that is improved compared to the prior art and of specifying a method for operating a burner arrangement.
  • flameout due to pressure surges should be prevented in order to avoid toxic emissions and mandatory calibration.
  • the measures for preventing flameout are also referred to below as the "wind function".
  • the object is achieved by a method for operating a burner arrangement according to claim 1.
  • the solution is further achieved by a burner arrangement according to claim 8.
  • a method for operating a burner arrangement with a burner that burns an air-fuel mixture comprises the method steps described below.
  • the order of the steps can be varied depending on the application. Some steps can also be carried out simultaneously.
  • a fluid i.e. gaseous or liquid fuel can be used as the fuel, for example natural gas or heating oil.
  • the burner In a first operating state, the burner is operated at a first predetermined power level. In particular, the burner is operated at partial load in the first operating state.
  • a preferred partial load range of the first power level can be, for example, between 3% and 10% of the maximum load, more preferably between 4% and 8% and particularly preferably between 5% and 7%.
  • a target value for an ionization current is specified.
  • the ionization current can be measured using an ionization electrode that is positioned so that it is immersed in the flame.
  • the measured ionization current is then compared with the specified target value and a deviation between the measured ionization current and the specified target value is determined.
  • an electronic control device of the burner arrangement can be used, which in particular has a processor and a memory.
  • the burner continues to operate in the first operating state.
  • a small deviation exists in particular if the deviation is smaller than a specified limit. If the deviation exceeds the specified limit, the burner can be transferred to a second operating state at a second power level.
  • the second power level is at a higher partial load range than the first power level.
  • the second power level is therefore also referred to as "increased partial load”.
  • a preferred partial load range of the second power level can be for example between 20% and 40% of the maximum load, more preferably between 25% and 35% and particularly preferably between 28% and 33%.
  • the second power level can be determined depending on the deviation. This can be done, for example, in such a way that the second power level is increased to a higher partial load if the deviation is greater than if the deviation is smaller.
  • the control device can store corresponding values or an algorithm according to which the second power level is determined depending on the deviation.
  • the burner arrangement can be returned to the first operating state.
  • the period of time can be determined, for example, depending on the measured deviation or can be a fixed value. This can prevent operation at an unnecessarily high power level for a long time. Since gusts of wind tend to be short-lived, a period of several seconds or a few minutes can be sufficient.
  • the burner control device will try to transfer the burner to the lowest possible load level under the conditions, whereby the conditions can be determined from the deviation between the measured ionization current and the setpoint.
  • the transition from the first to the second operating state or from the second to the first operating state can be carried out step by step over one power level or several power levels between the first and second power levels.
  • the burner arrangement can react to pressure fluctuations without immediately modulating to a high power level.
  • an ionization current can be measured again and compared with the target value. If the deviation is smaller than the limit value, there is no need to increase the power level any further or it can even be modulated back to a lower power level.
  • the following process steps can be carried out in each power level between the first and second power levels: First, the burner is operated at the current power level and the ionization current is measured. The measured ionization current is again compared with the specified target value and the deviation is determined. If the deviation exceeds the specified limit, the burner can be transferred to the next higher power level. If the deviation does not exceed the limit, the burner can continue to operate at the current power level or, after a specified period of time, be transferred to the next lower power level.
  • the setpoint value of the ionization current can be specified depending on the current power level. Since the ionization current generated in the ionization electrode depends on the properties of the flame, in particular the temperature, the setpoint value of the ionization current is generally dependent on the power level to be regulated.
  • a modulation speed of the burner can be accelerated by means of a coefficient when the burner is transferred to a higher power level. Since a flameout is to be avoided, it is advantageous to operate the burner as quickly as possible at a higher power level, particularly in the event of an external disturbance, for example due to a gust of wind. This can be achieved by increasing a control speed, which can be achieved, for example, by means of a coefficient (or a factor) to increase the modulation speed, which is described in more detail below.
  • the modulation speed of the burner is a change in the burner output over time. This can also be understood as the ability of the burner to react to changing thermal requirements. With a burner with a high modulation speed, the burner output can therefore be advantageously adapted particularly quickly to a changing thermal requirement. In other words, with a burner with a high modulation speed, the burner output can be regulated to a higher (or lower) value in a short time.
  • the amount of air supplied and the corresponding amount of fuel (or gas) supplied must be changed synchronously, i.e. essentially at the same time and to an extent proportional to one another, so that the resulting air ratio changes as little as possible (or as little as possible).
  • the amount of air supplied can be controlled, for example, by regulating the speed of a fan for supplying air to the combustion chamber.
  • combustion could result in high levels of toxic CO emissions.
  • the flame could leave an optimal range of combustion (threatened flame extinction), meaning that it could be blown out by a gust of wind, for example. This effect can be advantageously counteracted by adjusting the control speed.
  • a gust of wind can create a rapid back pressure in the burner's exhaust system.
  • a sudden, unexpected change in particular a reduction, in the amount of air available for combustion can occur.
  • Turning the fan up can primarily lead to an increase in the amount of air available for combustion and compensate for the reduction.
  • modulating the burner at the normal speed normally, low modulation speed designed for undisturbed normal operation
  • the burner's modulation speed can be increased by means of a coefficient (factor). Operation without a coefficient in this situation could mean having to make a bad compromise between saving the flame and a shift in the air ratio during modulations.
  • the modulation speed of the burner can be increased with a coefficient (factor) in the range of preferably three to eight.
  • An exemplary modulation speed in the lower load range (partial load range of the burner output up to approximately 10% of maximum output) is approximately 1% per second for burners with a modulation degree of, for example, 1:20.
  • modulation can take place with a modulation speed of 15% per second.
  • Which value is selected for the coefficient (factor) can depend in particular on the specific burner behavior, as well as on the modulation speed in the lower load range, which for some burners can be lower values instead of 1% per second, for example 0.7% per second to 0.8% per second.
  • the duration of the deviation between the measured ionization current and the setpoint can be determined, in particular in order to determine the second power level depending on the duration of the deviation.
  • a longer duration of the deviation is an indication of stronger gusts of wind, for example during storms. Since strong gusts of wind are to be expected more frequently during storms, the burner is preferably switched to a higher second power level in order to avoid flame loss.
  • the wind function described above can therefore regulate the burner's power level to a stable level if the flame is about to break off.
  • Higher power levels result in higher pressure in the combustion chamber, which makes the flame more stable against flame break-off.
  • the method according to the invention can therefore effectively prevent flame break-off.
  • Fig.1 illustrates an embodiment of a burner arrangement according to the invention, which can be used, for example, in a boiler of a heating system for a building.
  • the boiler can be, for example, a conventional gas boiler or a condensing boiler.
  • the burner arrangement has a burner 1, which is supplied with a gas-air mixture via a first control device 2 for air and a second control device 3 for gas.
  • the first control device 2 can be, for example, an air blower (e.g. a speed-controlled fan).
  • the second control device 3 can be designed as a proportional valve.
  • the burner 1 is, for example, a 35 kW gas burner.
  • the burner 1 burns the gas-air mixture.
  • the operation of the burner 1 is regulated or controlled by a control device 6 with an automatic firing system.
  • An ionization electrode 5 is arranged near the burner 1 and is designed to measure an ionization current 9 and to output it to the control device 6 or the automatic firing system via a suitable signal line. When the burner 1 is in operation, i.e. during combustion, the ionization electrode 5 extends into the flame.
  • the ionization electrode 5 is usually used for flame monitoring in gas burners, since only the presence of a flame causes the ionization current 9 to flow.
  • a lambda probe 4 can be arranged in the exhaust gas flow of the burner 1.
  • a lambda probe 4 is used to measure the residual oxygen content in the exhaust gas.
  • the burner 1 can comprise further components, such as an ignition, exhaust gas paths and temperature sensors, which are not shown here because they are not necessary for the description of the present invention.
  • the combustion control unit 6 outputs control signals 7 and 8 for air and gas to the first 2 and second 3 control devices, so that the air ratio ⁇ required for the respective application can be set during an operating phase and, if necessary, kept constant.
  • the air ratio ⁇ is a dimensionless parameter that characterizes the mass ratio of air and fuel in a combustion process.
  • the combustion air ratio is stoichiometric. This is the case when all fuel molecules react completely with the oxygen in the air, so that no oxygen remains in the exhaust gas and no unburned fuel.
  • the case ⁇ ⁇ 1 means a lack of air. This is also referred to as a rich mixture. There is more fuel in the air-gas mixture than can react with the oxygen present in the air.
  • the case ⁇ > 1 means an excess of air and is also referred to as a lean mixture.
  • Lambda probe 4 shown is not required for the present invention.
  • the method according to the invention does not evaluate the signals from lambda probe 4.
  • the method can therefore also be used for burners that do not have a lambda probe.
  • the firing control unit 6 records the output signals of the lambda probe 4 and the ionization electrode 5 and processes them further in order to regulate the combustion.
  • the firing control unit 6 therefore determines the control signals 7 and 8 for the first 2 and second 3 actuating devices depending on the signals 9 and 10.
  • the firing control unit 6 can control or deactivate a load stage using the control signals.
  • the ionization signal 9 is evaluated by the ionization electrode 5. Gusts of wind can cause large deviations of the measured value of the ionization signal 9 from the setpoint value specified by the control device 6.
  • the burner 1 In the first operating state BZ1, the burner 1 is operated in a first power level at partial load of, for example, 5.8% of the maximum load.
  • the ionization electrode 5 measures the ionization current I and outputs a corresponding ionization signal 9 to the automatic firing system 6, which simultaneously serves as a control device for regulating the combustion and carries out an evaluation of the ionization current.
  • the degree of deviation ⁇ is determined using a specified limit value ⁇ max in order to determine the required increase in the burner load level. Pressure fluctuations due to wind have a negative influence on combustion and the measured ionization current can therefore deviate from the target value.
  • burner 1 continues to operate in the first operating state BZ1 at the first power level. However, if the deviation is greater than the specified limit (yes in Fig.2 ), burner 1 is transferred to a second operating state BZ2, in which burner 1 is operated at a higher load level. This increase is intended to prevent the flame from breaking off.
  • a limit value can be specified, for example, as a deviation of 15% of the ionization current from the setpoint.
  • the power range from the first power level to the increased partial load (second power level) can, for example, be divided into five intermediate levels (in Fig.2 not shown).
  • the burner 1 can be operated at each stage for a period of, for example, (at least) one minute before a new check is carried out to determine whether the measured ionization current deviates from the setpoint.
  • the increased partial load is, for example, 30% of the maximum load.
  • the wind function according to the invention can also determine a time duration for the limit value to be exceeded in the deviation of the ionization current.
  • a range of a lower time threshold for example 0.1 seconds, up to an upper time threshold is divided linearly.
  • the upper time threshold can be determined using a process timing that is specified by the automatic firing system 6. For example, a duration of twenty cycles of the automatic firing system 6 can be specified as the upper time threshold.
  • the wind function thus raises the lower limit of the burner output. This remains active for a defined period of time, after which the burner 1 can modulate to lower load levels again.
  • the lower partial load can also be released in stages. If another wind event occurs, the control device 6 can regulate the burner 1 again to a higher load level until a level with stable combustion is reached. (deviation smaller than the limit value) is reached. This means that burner 1 can be automatically regulated to the lowest possible partial load under the influence of wind.
  • a modulation speed when starting up the stable second load level can be accelerated with a coefficient, which can be a factor of 3 to 8, for example. This allows the burner 1 to be transferred more quickly to a higher load level in order to efficiently prevent the flame from breaking off.
  • the modulation speed of the burner 1 is increased by the control device 6 (in particular for a short time) in order to operate the burner 1 at the optimum air ratio even in the event of an external disturbance (e.g. due to a gust of wind).
  • Fig.3 shows a diagram illustrating a typical course of the operating state of burner 1 under wind influence.
  • the ionization current generated and measured in the ionization electrode 5 (dotted line), the setpoint value specified for the ionization current (solid line) and the load level (dashed line) to which the burner is regulated are plotted against time.
  • the figures are in percent, whereby an ionization current of 100% is specified here for a load level of 30%.
  • a load level of 30% is specified for burner 1. Combustion is started and after about 30 seconds, burner 1 reaches an ionization current of about 100%. The specified load level is then reduced to a first load level of 8%, which corresponds to the first operating state BZ1, and after about 60 seconds, the first operating state BZ1 is reached. After about 75 seconds, a first wind event A occurs and combustion is disrupted, so that a large deviation is determined between the measured ionization current and the specified target value. As a result, the control device transfers burner 1 to the second operating state BZ2 with a load level of 17.5%.
  • the second operating state BZ2 remains active for about 90 seconds.
  • the deviation between the measured ionization current and the specified Setpoint is relatively small, so that the control device gradually reduces the load level back to the first operating state.
  • the two load levels illustrated here between the first load level of the first operating state BZ1 and the second load level of the second operating state BZ2 are each active for around 110 seconds and amount to 13% and 10.5% respectively.
  • the burner is returned to the first operating state BZ1 at a load level of 8%.
  • a second wind event B occurs and the described process of transferring burner 1 to the second operating state BZ2 is carried out again.
  • a flame break in the burner can be prevented.
  • evaluating the ionization current from the ionization electrode is sufficient. Since such an ionization electrode is present in most burners, the method according to the invention can be used in most burners without the need for retrofitting with special sensors.
  • the method according to the invention for testing and calibrating a lambda probe can also be used in other applications in which a fuel is burned.
  • the burner arrangement according to the invention is also not limited exclusively to the combustion of a gaseous fuel.
  • the invention can also be used in an analogous manner in connection with an oil burner or a heating boiler in which wood is used as fuel. By appropriate modification, the invention could also be used in an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (8)

  1. Procédé de fonctionnement d'un agencement de brûleur comprenant un brûleur (1) qui brûle un mélange air-combustible, le procédé comprenant les étapes de procédé suivantes :
    prédéfinition d'une valeur de consigne pour un courant d'ionisation ;
    fonctionnement du brûleur (1) dans un premier état de fonctionnement à un premier niveau de puissance prédéfini ;
    mesure d'un courant d'ionisation (9) au moyen d'une électrode d'ionisation (5) ;
    comparaison du courant d'ionisation mesuré (9) à la valeur de consigne prédéfinie et détermination d'un écart ; et
    si l'écart dépasse une valeur limite prédéfinie :
    passage du brûleur (1) dans un deuxième état de fonctionnement à un deuxième niveau de puissance,
    le deuxième niveau de puissance étant supérieur au premier niveau de puissance, et
    le deuxième niveau de puissance étant déterminé en fonction de l'écart.
  2. Procédé selon la revendication 1, le brûleur (1) étant ramené dans le premier état de fonctionnement après écoulement d'une période de temps prédéfinie.
  3. Procédé selon la revendication 1 ou 2, le passage du premier au deuxième état de fonctionnement ou du deuxième au premier état de fonctionnement étant réalisé par étapes sur un niveau de puissance ou plusieurs niveaux de puissance entre le premier et le deuxième niveau de puissance.
  4. Procédé selon la revendication 3, les étapes de procédé suivantes étant réalisées lors du passage du deuxième au premier état de fonctionnement dans chaque niveau de puissance entre le premier et le deuxième niveau de puissance :
    fonctionnement du brûleur (1) au niveau de puissance actuel ;
    mesure du courant d'ionisation (9) ;
    comparaison du courant d'ionisation mesuré (9) à la valeur de consigne prédéfinie et détermination de l'écart ; et
    si l'écart dépasse la valeur limite prédéfinie, passage du brûleur (1) dans le niveau de puissance immédiatement supérieur.
  5. Procédé selon l'une quelconque des revendications précédentes, la valeur de consigne étant prédéfinie en fonction du niveau de puissance actuel.
  6. Procédé selon l'une quelconque des revendications précédentes, une vitesse de modulation du brûleur (1) étant accélérée lors du passage du brûleur (1) dans un niveau de puissance supérieur au moyen d'un coefficient.
  7. Procédé selon l'une quelconque des revendications précédentes, une durée temporelle de l'écart étant déterminée et le deuxième niveau de puissance étant déterminé en fonction de la durée de l'écart.
  8. Agencement de brûleur pour une chaudière de chauffage, l'agencement de brûleur comprenant :
    un brûleur (1) pour brûler un mélange air-combustible ;
    une électrode d'ionisation (5) disposée sur le brûleur (1), qui pénètre dans une flamme lors de la combustion et délivre un courant d'ionisation (9) ;
    un dispositif de régulation (6) pour réguler le processus de combustion, le dispositif de régulation (6) étant configuré pour exécuter le procédé selon l'une quelconque des revendications 1 à 7.
EP21710901.6A 2020-04-09 2021-03-04 Procédé de fonctionnement d'un ensemble de brûleur et ensemble de brûleur pour conduire le procédé Active EP4133214B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020204647.6A DE102020204647B3 (de) 2020-04-09 2020-04-09 Brenneranordnung, verfahren zum betreiben einer brenneranordnung und windfunktion
PCT/EP2021/055480 WO2021204471A1 (fr) 2020-04-09 2021-03-04 Procédé de fonctionnement d'un ensemble de brûleur et ensemble de brûleur pour conduire le procédé

Publications (2)

Publication Number Publication Date
EP4133214A1 EP4133214A1 (fr) 2023-02-15
EP4133214B1 true EP4133214B1 (fr) 2024-05-08

Family

ID=74867508

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21710901.6A Active EP4133214B1 (fr) 2020-04-09 2021-03-04 Procédé de fonctionnement d'un ensemble de brûleur et ensemble de brûleur pour conduire le procédé

Country Status (5)

Country Link
US (1) US20230341124A1 (fr)
EP (1) EP4133214B1 (fr)
CN (1) CN115362332A (fr)
DE (1) DE102020204647B3 (fr)
WO (1) WO2021204471A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114576648B (zh) * 2021-11-18 2022-12-06 浙江菲斯曼供热技术有限公司 用于运行气体燃烧器的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549187B1 (fr) * 2011-07-18 2016-11-09 Viessmann Werke GmbH & Co KG Procédé et dispositif de régulation du facteur d'air d'un brûleur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232019A (ja) 1997-02-19 1998-09-02 Harman Co Ltd 給湯用燃焼装置
DE10113468A1 (de) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Regeleinrichtung für einen Luftzahlgeregelten Brenner
DE10058417C2 (de) * 2000-11-24 2003-04-24 Buderus Heiztechnik Gmbh Verfahren zum Betrieb eines Gasbrenners für ein Heizgerät
DE102018120377A1 (de) 2018-08-21 2020-02-27 Truma Gerätetechnik GmbH & Co. KG Heizvorrichtung und Verfahren zum Regeln eines gebläsebetriebenen Gasbrenners

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549187B1 (fr) * 2011-07-18 2016-11-09 Viessmann Werke GmbH & Co KG Procédé et dispositif de régulation du facteur d'air d'un brûleur

Also Published As

Publication number Publication date
EP4133214A1 (fr) 2023-02-15
WO2021204471A1 (fr) 2021-10-14
CN115362332A (zh) 2022-11-18
US20230341124A1 (en) 2023-10-26
DE102020204647B3 (de) 2021-07-29

Similar Documents

Publication Publication Date Title
DE102020008001B4 (de) Brenneranordnung, verfahren zum betreiben einer brenneranordnung und windfunktion
EP1085267B1 (fr) Régulation des mesures primaires pour la réduction des oxydes d'azote dans des turbines à gaz
EP1472447B1 (fr) Procede d'utilisation d'un groupe de turbines a gaz
DE102010055567B4 (de) Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
EP1621811A1 (fr) Procédé de fonctionnement pour un dispositif de combustion
EP3690318B1 (fr) Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage
EP1331444B1 (fr) Méthode de régulation d'un brûleur à gaz
EP4133214B1 (fr) Procédé de fonctionnement d'un ensemble de brûleur et ensemble de brûleur pour conduire le procédé
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP2017531B1 (fr) Procédé de vérification d'un signal issu d'électrodes d'ionisation pour brûleurs
EP0833106A2 (fr) Procédé et dispositif d'optimisation du fonctionnement d'un brûleur à gaz
EP3978805A1 (fr) Procédé de fonctionnement d'un dispositif de combustion, dispositif de combustion, ainsi qu'appareil de chauffage
EP0331918A2 (fr) Méthode pour actionner un dispositif de chauffage et dispositif de chauffage
EP4043793A1 (fr) Procédé et agencement de détection d'un retour de flamme dans un brûleur à prémelange
DE3830687A1 (de) Kalibrierverfahren fuer einen regler zur regelung des luftverhaeltnisses von gasmotoren
EP3182007B1 (fr) Système d'appareil de chauffage et procédé faisant appel à un système d'appareil de chauffage
EP1971804B1 (fr) Procédé de fonctionnement d'un foyer
EP1533569B1 (fr) Méthode de fonctionnement d'un appareil de combustion
EP3969812B1 (fr) Procédé de surveillance d'un brûleur et/ou d'un comportement de combustion d'un brûleur ainsi qu'ensemble de brûleur
DE102020128045A1 (de) Verfahren und Vorrichtung zur Verhinderung eines Flammenrückschlags bei einer Brenneranordnung für ein vorgemischtes Brennstoff-Luft-Gemisch
EP0655583B1 (fr) Procédé pour le réglage et la surveillance de combustion
DE102022210234A1 (de) Verfahren zum Betrieb einer modulationsfähigen Verbrennungsvorrichtung, Regelvorrichtung und Verbrennungsvorrichtung
DE4331048A1 (de) Verfahren und Vorrichtung zum Betreiben eines überstöchiometrisch vormischenden Gasbrenners
EP4071408A1 (fr) Procédé et agencement de surveillance des flammes dans une chambre de combustion d'un chauffage pouvant fonctionner sur hydrogène ou sur gaz de combustion contenant de l'hydrogène
EP3933267A1 (fr) Procédé de surveillance d'une flamme dans une chambre de combustion de brûleur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240301

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003663

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN