EP4122615B1 - Verfahren und vorrichtung zum herstellen eines metallischen bandes - Google Patents

Verfahren und vorrichtung zum herstellen eines metallischen bandes Download PDF

Info

Publication number
EP4122615B1
EP4122615B1 EP22184469.9A EP22184469A EP4122615B1 EP 4122615 B1 EP4122615 B1 EP 4122615B1 EP 22184469 A EP22184469 A EP 22184469A EP 4122615 B1 EP4122615 B1 EP 4122615B1
Authority
EP
European Patent Office
Prior art keywords
slab
rolling
separation point
slabs
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22184469.9A
Other languages
English (en)
French (fr)
Other versions
EP4122615A1 (de
EP4122615C0 (de
Inventor
Olaf Norman Jepsen
Joachim Ohlert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP4122615A1 publication Critical patent/EP4122615A1/de
Application granted granted Critical
Publication of EP4122615B1 publication Critical patent/EP4122615B1/de
Publication of EP4122615C0 publication Critical patent/EP4122615C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0085Joining ends of material to continuous strip, bar or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0007Cutting or shearing the product
    • B21B2015/0014Cutting or shearing the product transversely to the rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/14Front end or leading end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/16Tail or rear end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/20Track of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product

Definitions

  • the invention relates to a method for producing a metallic strip, wherein the strip is rolled out of a slab in a rolling train by means of a number of rolling stands, the slab to be rolled being assembled from individual partial slabs, the individual partial slabs being assembled in a slab connecting device, in which a section of the partial slab lying at the front in the rolling direction and a section of the partial slab lying at the rear in the rolling direction are separated and the two partial slabs are joined together at the separation points, with at least one of the two partial slabs being measured at the after the separation and before the joining of the two partial slabs Separation point takes place.
  • the invention further relates to a device for producing a metallic strip.
  • a procedure of the generic type is from the WO 2019/030392 A1 known.
  • the surface temperature is measured at the separation point of the slab in order to minimize the heating time during friction welding.
  • WO 2017/140886 A1 It is known to produce steel strips in a casting-rolling plant in semi-endless rolling operation or in endless rolling operation by producing slabs in one or more casting machines, which are connected to one another in front of the rolling train.
  • the document mentioned describes a slab connecting device with which two slabs arranged one behind the other can be connected to one another. This is done here by a friction welding process in which the two slabs to be connected oscillate relative to one another and are thereby pressed against one another.
  • this basically also means pre-strips that are connected to one another in order to be able to roll them out in a continuous rolling process.
  • the invention is based on the object of developing a method of the type mentioned at the outset and of providing a corresponding device with which it is possible to enable improved monitoring of the manufacturing process of the strip and to detect errors in the preliminary product (slab or opening act). This is intended to increase the quality of the tape produced.
  • the solution to this problem by the invention is characterized in that the data obtained from the measurement is fed to a control which generates control data for the rolling process from the measurement data and outputs it to the rolling train.
  • Rolling in the rolling train is preferably carried out in a continuous process.
  • the measurement of the partial slab can include recording geometric sizes of the partial slab at the separation point, in particular the recording of the cross-sectional profile and/or the wedgeness of the partial slab.
  • the measurement of the partial slab can alternatively or additionally also include recording the properties of the surface of the partial slab at the separation point, in particular the detection of surface defects and/or the microstructure and/or the presence of scale.
  • the measurement of the partial slab can alternatively or additionally include recording the temperature and/or the temperature distribution of the partial slab at the separation point.
  • the measurement of the partial slab can alternatively or additionally also include recording the chemical composition of the partial slab at the separation point, in particular the solution state or precipitation state of elements.
  • control data output to the rolling train is that which relates to heating elements or cooling elements in front of, in and/or behind the rolling train.
  • control data output to the rolling train may be those relating to the rolling speed.
  • control data output to the rolling train can also be data relating to the size of the passes (i.e. the size of the rolling gap) in the individual rolling stands.
  • control data output to the rolling train can alternatively or additionally also be those which concern the settings of the actuators influencing the geometry of the strip, such as sliding positions of the rolls, bending forces on the rolls and relative positions of the work rolls to one another (geometry of the roll gap).
  • Comparison data can be stored in the control, with the control data being generated by taking the comparison data into account.
  • artificial intelligence methods are particularly important here. Examples of such artificial intelligence methods are neural ones Networks, adaptive algorithms, evolutionary algorithms, genetic algorithms, or similar. Known for this purpose, and therefore need not be described further here, are, for example, Bayesian belief networks, decision trees, hidden Markov models, case-based reasoning, k-nearest neighbors, etc self-organizing maps, instance-based learning, support vector machines, artificial neural networks (ANN: artificial neural network), recurrent neural networks (RNN: recurrent neural network), deep neural Networks (DNN: deep neural network) or convolutional neural networks (CNN: convolutional neural network). Combinations of these methods can also be used.
  • ANN artificial neural network
  • RNN recurrent neural network
  • DNN deep neural network
  • CNN convolutional neural networks
  • the device for producing a metallic strip comprising a rolling train in which the strip can be rolled out of a slab by means of a number of rolling stands, and a slab connecting device with which the slab to be rolled can be assembled from individual partial slabs, the slab connecting device comprising cutting means , with which a section of the partial slab lying at the front in the rolling direction and a section of the partial slab lying at the back in the rolling direction can be separated, as well as connecting means for joining the two partial slabs together at the separation point, is characterized according to the invention by measuring means with which a measurement of at least one of the two partial slabs the separation point can be done, the measuring means being connected to a control, the control being designed to generate control data for the rolling process from the measurement data of the measuring means and to output these to the rolling train.
  • the measuring means can include at least one tactile measuring element, with which geometric variables of the partial slab can be recorded at the separation point.
  • the measuring means can also include at least one non-contact measuring element, in particular a laser measuring means, with which geometric variables of the partial slab can be recorded at the separation point.
  • the measuring means are temperature measuring means with which the temperature and/or the temperature distribution of the partial slab at the separation point can be recorded.
  • control is connected to at least one heating element, to at least one cooling element, to a means for adjusting the rolling speed and/or to at least one means for adjusting the roll gap of a roll stand.
  • At least one cutting device in particular a pair of scissors, can be arranged between the rolling train and a subsequent reel in the rolling direction, with the at least one cutting device being used to cut off those sections of the rolled strip that are scrap or that contain material that does not meet a predetermined specification.
  • the cutting device mentioned (scissors) a cut can be made in front of the reel can be carried out to minimize rejects or remove non-specification material.
  • the measurement mentioned in the area of the separation point of the partial slab can be carried out directly on the exposed (through the cut) cross section of the partial slab, which is present due to the cutting process before welding together; In the same way, a further section of the partial slab that follows in the rolling direction can also be considered (for example when it comes to recording the temperature of the top and bottom of the partial slab).
  • measuring instruments are installed in the area of the slab connecting device and there preferably in the immediate vicinity of the separating device and the joining device.
  • the proposed concept takes advantage of the possibility of acquiring measured values that would not be available without using the slab connecting device; Rather, said surface only becomes accessible for measurement because of the separating cut.
  • an endless rolling process is made possible in which a slab connecting device is used, with the proposed procedure allowing homogeneous product properties to be achieved in the finished strip.
  • Friction welding devices such as those mentioned above, are used in particular as the slab connecting device WO 2017/140886 A1 are described.
  • pre-strips or thin slabs can be connected and then rolled together.
  • FIG. 1 A system is shown schematically with which a steel strip can be produced.
  • a slab that has a certain length is produced in two casting machines 10.
  • the slabs enter a tunnel furnace 11, in which they are kept at a defined temperature.
  • Downstream in the rolling direction R is a rolling train 1 which has a number of rolling stands 2.
  • the slab connecting device In general, the following three production modes are possible when using the slab connecting device: Initially, you can run in batch mode (single slab rollers, individual slabs from one or more casting machines).
  • rolling of welded slabs is referred to as an endless rolling mode.
  • endless rolling mode Depending on the number of welded strips or slabs, only the length of the endless sequence changes. This is longer the more the amount of the quotient of the total casting speed and rolling speed approaches the value "1".
  • the aim is for the strip to be produced to have the most homogeneous properties possible, both over its length, width and thickness.
  • Constant process conditions during hot rolling and therefore constant properties after hot rolling are characteristic features of endless processes and fundamentally lead to increased process stability in the subsequent processing steps and to higher product quality afterwards. This affects, among other things, geometry, surface quality and material properties. All of these properties are almost constant across the tape length, bandwidth and tape thickness, which also means that the usual large deviations at the tape head and tape end are avoided.
  • Figure 2 is shown schematically how two slabs 3, namely a partial slab 3a lying at the front in the rolling direction R and a partial slab 3b lying at the back in the rolling direction, are connected to one another in the slab connecting device 4 in order to be fed to the continuous rolling process in the rolling train 1.
  • cutting means 8 are provided in the slab connecting device 4, in particular designed as punching shears, with which the rear end of the partial slab 3a and the front end of the partial slab 3b can be trimmed.
  • a section 5 is shown for the front partial slab 3a, which was separated by means of the cutting means 8.
  • the cutting means 8 there is now a smooth end face 12 of the front partial slab 3a at the separation point 6.
  • the partial slab 3b which, however, is in Figure 2 is not shown.
  • the measuring means in a similar way, it is also possible for the measuring means to be designed as temperature measuring means, which record the course of the temperature over the width and height of the partial slab 3a.
  • This temperature profile is also characteristic of the area of the partial slab 3a located further forward, especially before the welding process that is yet to take place.
  • the measuring means 9 deliver information to a controller 7, which in turn can influence the rolling train 1, as shown in Figure 1 is indicated.
  • the combination of high-resolution measurement methods and special calculation methods based on physical models and/or artificial intelligence offer the possibility of detecting, analyzing and eliminating deviations from the specified process conditions as part of a real-time analysis, i.e. unexpected continuous or discontinuous, regular or sporadic process disruptions to react immediately, so that the specified product properties can be set safely, reproducibly and consistently despite deviations during the previous process stages through targeted process changes based on powerful controls and regulations.
  • measuring means 9 The geometry of the thin slab or the pre-strip can be determined, in particular the profile and the wedgeness.
  • the surface quality of the thin slab or the pre-strip can be recorded, in particular surface defects, the nature and uniformity of scale.
  • the temperature distribution on the top and bottom of the thin slab or the pre-strip can be recorded.
  • the temperature distribution on the top and bottom of the thin slab or pre-strip can be recorded after the surface has been descaled.
  • the temperature distribution in the cutting plane (end face) of the thin slab or the pre-strip can be recorded.
  • the chemical composition on the top and bottom and/or in the cutting plane (end face) of the thin slab or pre-strip can be recorded.
  • the microstructure on the top and bottom and/or in the cutting plane (end face) of the thin slab or pre-strip can be recorded.
  • the state of solution or precipitation of certain elements on the top and bottom and/or in the cutting plane (end face) of the thin slab or pre-strip can be recorded.
  • a measuring probe can be used to examine the area near the weld seam or at the separation point; it is also possible to use a laser, which is projected onto the surface and the cut surface. This allows differences to a reference state to be determined, particularly with regard to possible deformations.
  • the location at the time of a measurement can be determined using tracking when unwinding the coil. Based on the analysis of the measurement, statements can be made about the origin or time of origin of the defect. This may only be possible after the analysis of numerous similar or related processes, so that at this point, in particular, suitable methods and algorithms from the field of artificial intelligence are used, which enable the derivation of suitable measures and interventions, provided that there are sufficiently large quantities of measured values exist and therefore increasingly recurring patterns can be recognized.
  • the recorded measured values are passed from the measuring device 9 to the controller 7 and processed here.
  • the following interventions in particular can then be carried out: Heating elements (such as inductive heaters or radiant pipes) or cooling elements such as intermediate stand cooling can be used to compensate for temperature differences over the strip length and thus keep the rolling conditions as constant as possible.
  • Heating elements such as inductive heaters or radiant pipes
  • cooling elements such as interstand cooling can be used to compensate for temperature deviations resulting from an incorrect or accurate setup.
  • Heating elements such as inductive heaters or radiant pipes
  • cooling elements such as interstand cooling can be used to compensate for or mitigate temperature deviations resulting from process deviations or process disturbances (e.g. oven temperature, residence time in the oven) or general process deviations (e.g. chemical composition, geometry).
  • process deviations or process disturbances e.g. oven temperature, residence time in the oven
  • general process deviations e.g. chemical composition, geometry
  • Heating elements such as inductive heaters or radiant pipes
  • cooling elements such as intermediate stand cooling can be used to compensate for regular or sporadic temperature discontinuities that result from the upstream process steps (e.g. clamping during cutting and welding of the two partial slabs 3a, 3b; support areas in the reheating furnace) or to mitigate.
  • Heating elements such as inductive heaters or radiant pipes
  • cooling elements such as interstand cooling
  • Increasing or reducing the rolling speed can compensate for temperature differences along the strip length and thus keep the rolling conditions as constant as possible or increase or decrease the overall temperature level.
  • this measurement result can be processed by the controller 7 after being fed to it that the rolling speed is increased in order to prevent the slab being rolled from cooling too much. In the opposite case (temperature too high), the rolling speed can be reduced.
  • a change in the acceptance distribution in the finishing train can be carried out in order to influence the solidification and softening behavior and thus to compensate for or mitigate the influence of deviations in temperature, chemical composition, microstructure and solution state or precipitation state of certain elements.
  • Actuators such as sliding positions of the rolls, bending forces on the rolls and relative positions of the work rolls to one another (geometry of the roll gap) can be used to control the geometry of the strip in the roll gap and the mass flow conditions in the roll gap and, as a result, the stability of the Influencing the rolling process in order to compensate for or mitigate deviations, for example with regard to profile and flatness.
  • the cutting means integrated into the slab connecting device can also be used to cut material that either comes from process-related transition areas (e.g. change of geometry or material, start-up processes, etc.) or does not meet the requirements and specifications for other reasons (i.e. scrap). , to be removed before rolling.
  • process-related transition areas e.g. change of geometry or material, start-up processes, etc.
  • scrap i.e. scrap
  • the cutting means (scissors) in front of the reel which divides the finished strip into individual pieces after endless rolling in rolling train 1 and thus initiates a discontinuous process again, can be used in such a way that the area of the strip that is as a result of the welding process has the greatest deviations from the required properties, is located in that part of the coil that is later removed and not used, i.e. usually the outer turns.
  • these and the scissors located further forward can remove material that does not meet the respective requirements or cannot be used sensibly in the subsequent processes.
  • the rolling speed can be increased or decreased if this is necessary to achieve the required product properties. Endless rolling is also possible if the rolling speed is higher or lower than the total casting speed.
  • slab is usually used for the material in front of the roughing stand, after which it is called roughing strips. In and after the finishing train we then speak of belts. In a CSP system, thin slabs are turned into strips. In this case, this primarily refers to the material in front of the finishing train. However, slabs in the actual sense can also be treated using the method according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines metallischen Bandes, wobei das Band in einer Walzstraße mittels einer Anzahl an Walzgerüsten aus einer Bramme ausgewalzt wird, wobei die zu walzende Bramme aus einzelnen Teilbrammen zusammengesetzt wird, wobei das Zusammensetzen der einzelnen Teilbrammen in einer Brammenverbindungsvorrichtung erfolgt, in der ein Abschnitt der in Walzrichtung vorne liegenden Teilbramme sowie ein Abschnitt der in Walzrichtung hinten liegenden Teilbramme abgetrennt und die beiden Teilbrammen an den Trennstellen zusammengefügt werden, wobei nach dem Abtrennen und vor dem Zusammenfügen der beiden Teilbrammen eine Vermessung zumindest einer der beiden Teilbrammen an der Trennstelle erfolgt. Des weiteren betrifft die Erfindung eine Vorrichtung zum Herstellen eines metallischen Bandes.
  • Ein Verfahren der gattungsgemäßen Art ist aus der WO 2019/030392 A1 bekannt. Hier wird an der Trennstelle der Bramme die Oberflächentemperatur gemessen, um die Erwärmungsdauer beim Reibschweißen zu minimieren. Beispielsweise aus der WO 2017/140886 A1 ist es bekannt, in einer Gieß-Walz-Anlage Stahlbänder dadurch im Semi-Endlos-Walzbetrieb oder im Endlos-Walzbetrieb herzustellen, dass in einer oder in mehreren Gießmaschinen Brammen hergestellt werden, die vor der Walzstraße miteinander verbunden werden. In dem genannten Dokument wird hierzu eine Brammenverbindungsvorrichtung beschrieben, mit der zwei hintereinander angeordnete Brammen miteinander verbunden werden können. Dies erfolgt hier durch einen Reibschweißvorgang, bei dem die beiden zu verbindenden Brammen relativ zueinander oszillieren und dabei aneinander gepresst werden.
  • Wenn hier und nachfolgend von Brammen gesprochen wird, sind hierunter grundsätzlich auch Vorbänder zu verstehen, die entsprechend miteinander verbunden werden, um sie in einem kontinuierlich arbeitenden Walzprozess auswalzen zu können.
  • Beim Walzen eines Bandes kommt es generell stets darauf an, dass definierte Prozessbedingungen aufrechterhalten werden, so dass ein hohes Maß an Prozesssicherheit sichergestellt werden kann. Gleichermaßen kann hierdurch die Qualität des zu walzenden Bandes gewährleistet werden. Dabei ist es mitunter schwierig, die maßgeblichen Daten zu erfassen, um bevorzugt in einem geregelten Prozess den Walzprozess entsprechend zu beeinflussen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so fortzubilden und eine entsprechende Vorrichtung bereitzustellen, mit dem bzw. mit der es möglich ist, eine verbesserte Überwachung des Herstellungsprozesses des Bandes zu ermöglichen und möglichst frühzeitig auf Fehler beim Vorprodukt (Bramme oder Vorband) zu reagieren. Damit soll die Qualität des hergestellten Bandes erhöht werden können.
  • Die Lösung dieser Aufgabe durch die Erfindung ist dadurch gekennzeichnet, dass die aus der Vermessung gewonnenen Daten einer Steuerung zugeführt werden, die aus den Messdaten Steuerungsdaten für den Walzprozess generiert und an die Walzstraße ausgibt.
  • Bevorzugt erfolgt das Walzen in der Walzstraße in einem kontinuierlichen Prozess.
  • Die Vermessung der Teilbramme kann eine Erfassung geometrischer Größen der Teilbramme an der Trennstelle umfassen, insbesondere die Erfassung des Querschnittprofils und/oder der Keiligkeit der Teilbramme.
  • Die Vermessung der Teilbramme kann alternativ oder additiv auch eine Erfassung von Eigenschaften der Oberfläche der Teilbramme an der Trennstelle umfassen, insbesondere die Erfassung von Oberflächendefekten und/oder der Mikrostruktur und/oder des Vorhandenseins von Zunder.
  • Weiterhin kann die Vermessung der Teilbramme alternativ oder additiv eine Erfassung der Temperatur und/oder der Temperaturverteilung der Teilbramme an der Trennstelle umfassen.
  • Schließlich kann die Vermessung der Teilbramme alternativ oder additiv auch eine Erfassung der chemischen Zusammensetzung der Teilbramme an der Trennstelle umfassen, insbesondere des Lösungszustands oder Ausscheidungszustands von Elementen.
  • Betreffend die Steuerungsdaten ist bevorzugt vorgesehen, dass die an die Walzstraße ausgegebenen Steuerungsdaten solche sind, die Heizelemente oder Kühlelemente vor, in und/oder hinter der Walzstraße betreffen.
  • Alternativ oder additiv können die an die Walzstraße ausgegebenen Steuerungsdaten solche sein, die die Walzgeschwindigkeit betreffen.
  • Alternativ oder additiv können die an die Walzstraße ausgegebenen Steuerungsdaten auch solche sein, die die Größe der Stiche (d. h. die Größe des Walzspalts) in den einzelnen Walzgerüsten betreffen.
  • Schließlich können die an die Walzstraße ausgegebenen Steuerungsdaten alternativ oder additiv auch solche sein, die die Einstellungen der die Geometrie des Bands beeinflussenden Stellglieder, wie Schiebepositionen der Walzen, Biegekräfte auf die Walzen und relative Positionen der Arbeitswalzen zueinander (Geometrie des Walzspalts), betreffen.
  • In der Steuerung können Vergleichsdaten gespeichert sein, wobei die Steuerungsdaten generiert werden, indem eine Berücksichtigung der Vergleichsdaten erfolgt. Hierbei ist insbesondere an die Nutzung von Methoden der Künstlichen Intelligenz gedacht. Beispiele für derartige Methoden der künstlichen Intelligenz sind neuronale Netzwerke, adaptive Algorithmen, evolutionäre Algorithmen, genetische Algorithmen, oder Ähnliches. Bekannt sind hierzu, und müssen daher hier nicht weiter beschrieben werden, beispielsweise Bayes'sche Zuverlässigkeitsnetzwerke (Bayesian belief network), Entscheidungsbäume (decision tree), hidden Markov-Modelle, fallorientierte Überlegung (case-based reasoning), k-nächste Nachbarn, sich selbst organisierende Karten (self-organizing maps), fallorientiertes Lernen (instance-based learning), Stützvektormaschinen (Support Vector Machine), künstliche Neuronale Netzwerke (ANN: Artificial Neural Network), rekurrente neuronale Netze (RNN: recurrent neural network), tiefe neurale Netze (DNN: deep neural network) oder faltende neuronale Netze (CNN: convolutional neural network). Auch Kombinationen dieser Methoden können zum Einsatz kommen.
  • Die Vorrichtung zum Herstellen eines metallischen Bandes, umfassend eine Walzstraße, in der das Band mittels einer Anzahl an Walzgerüsten aus einer Bramme ausgewalzt werden kann, sowie eine Brammenverbindungsvorrichtung, mit der die zu walzende Bramme aus einzelnen Teilbrammen zusammengesetzt werden kann, wobei die Brammenverbindungsvorrichtung Schneidmittel umfasst, mit denen ein Abschnitt der in Walzrichtung vorne liegenden Teilbramme sowie ein Abschnitt der in Walzrichtung hinten liegenden Teilbramme abgetrennt werden kann, sowie Verbindungsmittel zum Zusammenfügen der beiden Teilbrammen an der Trennstelle ist erfindungsgemäß gekennzeichnet durch Messmittel, mit denen eine Vermessung zumindest einer der beiden Teilbrammen an der Trennstelle erfolgen kann, wobei die Messmittel mit einer Steuerung in Verbindung stehen, wobei die Steuerung ausgebildet ist, aus den Messdaten der Messmittel Steuerungsdaten für den Walzprozess zu generieren und diese an die Walzstraße auszugeben.
  • Die Messmittel können mindestens ein taktiles Messelement umfassen, mit dem eine Erfassung geometrischer Größen der Teilbramme an der Trennstelle erfolgen kann. Alternativ oder additiv können die Messmittel auch mindestens ein berührungsloses Messelement, insbesondere ein Lasermessmittel, umfassen, mit dem eine Erfassung geometrischer Größen der Teilbramme an der Trennstelle erfolgen kann.
  • Weiterhin kann vorgesehen sein, dass die Messmittel Temperaturmessmittel sind, mit denen eine Erfassung der Temperatur und/oder der Temperaturverteilung der Teilbramme an der Trennstelle erfolgen kann.
  • Bevorzugt ist vorgesehen, dass die Steuerung mit mindestens einem Heizelement, mit mindestens einem Kühlelement, mit einem Mittel zur Einstellung der Walzgeschwindigkeit und/oder mit mindestens einem Mittel zur Einstellung des Walzspalts eines Walzgerüsts in Verbindung steht.
  • Zwischen der Walzstraße und einem in Walzrichtung nachfolgenden Haspel kann mindestens eine Schneidvorrichtung, insbesondere eine Schere, angeordnet sein, wobei mit der mindestens einen Schneidvorrichtung solche Abschnitte des gewalzten Bandes abgeschnitten werden, die Ausschuss sind oder die Material enthalten, welches nicht einer vorgegebenen Spezifikation genügt. Mit der genannten Schneidvorrichtung (Schere) kann vor dem Haspel ein Schnitt
    vorgenommen werden, mit dem Ausschuss minimiert bzw. nicht spezifikationsgemäßes Material entfernt werden kann.
  • Die erwähnte Messung im Bereich der Trennstelle der Teilbramme kann dabei direkt am (durch den Schnitt) freigelegten Querschnitt der Teilbramme erfolgen, der durch den Schneidvorgang vor dem Zusammenschweißen vorliegt; genauso kann aber darüber hinaus auch ein weiterer, sich in Walzrichtung anschließender Abschnitt der Teilbramme betrachtet werden (beispielsweise wenn es um die Erfassung der Temperatur der Oberseite und der Unterseite der Teilbramme geht).
  • Gemäß dem vorliegenden Konzept werden somit Messinstrumente im Bereich der Brammenverbindungsvorrichtung und dort vorzugsweise in unmittelbarer Nähe zu der Trenneinrichtung und der Fügeeinrichtung installiert. Damit kann insbesondere der nicht von der Fügung (Schweißung) beeinflussten Bereich der Bramme, insbesondere der Dünnbramme oder des Vorbandes, betrachtet werden. Wird im Bereich der Trennstelle beispielsweise auf der Oberfläche der Schnittebene die Temperaturverteilung gemessen, so hat diese auch eine wesentliche Aussagekraft für die Bereiche, die nicht in unmittelbarer Nähe der Trennstelle liegen. Somit nutzt das vorgeschlagene Konzept die Möglichkeit der Erfassung von Messwerten, die ohne Verwendung der Brammenverbindungsvorrichtung nicht vorliegen würden; vielmehr wird besagte Oberfläche erst aufgrund des Trennschnitts für eine Messung zugänglich.
  • Gemäß dem vorliegenden Vorschlag wird also ein Endlos-Walzverfahren ermöglicht, bei dem eine Brammenverbindungsvorrichtung zum Einsatz kommt, wobei durch die vorgeschlagene Vorgehensweise homogene Produkteigenschaften im fertigen Band erzielt werden können.
  • Vorgesehen ist somit ein Verbinden von (Dünn-)Teilbrammen oder Vorbändern mittels der Brammenverbindungsvorrichtung, wobei unter Einsatz zusätzlicher Messeinrichtungen eine besonders vorteilhafte Datenerfassung erfolgen kann und dann gegebenenfalls direkt auf Stellglieder der Walzstraße Einfluss genommen wird, um die technische Anforderung für ausreichend homogene Produkteigenschaften zu erfüllen. Das Verfahren kann in konventionellen Warmbandstraßen oder in Gieß-Walz-Anlagen (CSP-Anlagen) angewendet werden.
  • Hierbei wird es möglich, einerseits einen Endlos-Walzprozess mit den bekannten Vorteilen (wie erhöhter Gleichmäßigkeit, Reproduzierbarkeit und Stabilität) zu gewährleisten und andererseits mittels der genannten Messungen und sich anschließenden Berechnungen, Steuerungen bzw. Regelungen auf Prozessstörungen zu reagieren, so dass durch gezielte Prozessänderungen die gewünschten und spezifizierten Produkteigenschaften trotz Abweichungen während der zurückliegenden Prozessstufen sicher und reproduzierbar eingestellt oder übertroffen werden können.
  • Als Brammenverbindungsvorrichtung kommen insbesondere Reibschweißvorrichtungen zum Einsatz, wie sie in der oben genannten WO 2017/140886 A1 beschrieben sind.
  • Mit der Brammenverbindungsvorrichtung in einer konventionellen Warmbandstraße oder einer Gieß-Walz-Anlage können also Vorbänder oder Dünnbrammen verbunden und anschließend gemeinsam gewalzt werden.
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:
  • Fig. 1
    schematisch eine Anlage zur Herstellung eines metallischen Bandes, wobei hinter zweier Tunnelöfen eine Brammenverbindungsvorrichtung angeordnet ist sowie hinter derselben eine Walzstraße, und
    Fig. 2
    schematisch zwei Teilbrammen, die sich in der Brammenverbindungsvorrichtung befinden, wobei von der vorderen Teilbramme ein Abschnitt abgeschnitten wurde und an dieser Teilbramme ein Messvorgang vorgenommen wird.
  • In Figur 1 ist eine Anlage schematisch dargestellt, mit der ein Stahlband produziert werden kann.
  • Zunächst wird in zwei Gießmaschinen 10 jeweils eine Bramme hergestellt, die eine gewisse Länge aufweist. Die Brammen gelangen in einen Tunnelofen 11, in dem sie auf einer definierten Temperatur gehalten werden. In Walzrichtung R nachgelagert ist eine Walzstraße 1, die eine Anzahl Walzgerüste 2 aufweist. Zwischen dem Ende des Tunnelofens 11 und der Walzstraße 2 befindet sich eine Brammenverbindungsvorrichtung 4. Diese dient dazu, die Brammen aus den Tunnelöfen 11 miteinander zu verbinden und sie in die Walzstraße 1 zu leiten, so dass in der Walzstraße ein kontinuierlicher Walzprozess stattfinden kann, der generell vorteilhaft mit Blick auf die Prozessstabilität und die Qualität des herzustellenden Bandes ist.
  • Generell gilt, dass beim Einsatz der Brammenverbindungsvorrichtung folgende drei Produktionsmodi ermöglicht sind:
    Zunächst kann im Batch-Modus gefahren werden (Einzelbrammenwalzen, einzelne Brammen aus einer oder mehreren Gießmaschinen).
  • Weiterhin kann im Semi-Endlos-Modus gefahren werden (Mehrfachbrammenwalzen, Mehrfach-Brammen aus einer oder mehreren Gießmaschinen).
  • Schließlich kann im Modus des Endlos-Walzens gefahren werden (verschweißte Brammen aus zwei oder mehreren Gießmaschinen).
  • Unabhängig vom Verhältnis Summengeschwindigkeit der vorhandenen Stränge und Walzgeschwindigkeit spricht man beim Walzen von verschweißten Brammen von einem Endlos-Walzmodus. Es ändert sich je nach Anzahl der verschweißten Bänder oder Brammen lediglich die Länge der Endlos-Sequenz. Diese ist umso länger, je mehr der Betrag des Quotienten aus Summengießgeschwindigkeit und Walzgeschwindigkeit sich dem Wert "1" nähert.
  • Hier kann die Massenflussbedingung herangezogen werden: i ENDLOS = i MAX i MIN 1 i G V G V W
    Figure imgb0001
    mit:
  • iENDLOS:
    Anzahl der möglichen Brammen in einer Sequenz beim Endlos-Walzen
    iMAX:
    Maximale Anzahl von Brammen im Tunnelofen (Start der Endlos-Walzsequenz)
    iMIN:
    Minimale Anzahl von Brammen im Tunnelofen (Ende der Endlos-Walzsequenz)
    ic:
    Anzahl der Gießmaschinen
    vG:
    Gießgeschwindigkeit
    vw:
    Walzgeschwindigkeit
  • In Abgrenzung zu den Gieß-Walz-Konzepten besteht also beim Endlos-Walzen keine feste Kopplung zwischen den Prozessstufen Gießen und Walzen. Es kann somit endlos gewalzt werden, ohne dass ein darüberhinausgehender Endlos-Prozess existiert, bei dem das gewalzte Band mit der Bramme der Gießmaschine verbunden ist.
  • Aus Sicht der gesamten Gieß-Walz-Anlage sind also nur zwei Betriebsmodi in Gebrauch, nämlich der Batch-Modus und der Semi-Endlos-Modus.
  • Im Unterschied zum Semi-Endlos-Modus, wie er von CSP-Anlagen bekannt ist, kommt es beim Endlos-Walzen nach Verschweißen der Brammen allerdings nicht zu einer Minderung der Produktionsmenge, weil beide Gießstränge mit hoher bzw. unverändert hoher Gießgeschwindigkeit betrieben werden können.
  • Angestrebt wird generell eine möglichst homogene Eigenschaft des herzustellenden Bandes, sowohl über dessen Länge, dessen Breite und dessen Dicke.
  • Konstante Prozessbedingungen beim Warmwalzen und dadurch konstante Eigenschaften nach dem Warmwalzen sind charakteristische Merkmale von Endlos-Prozessen und führen grundsätzlich zu erhöhter Prozessstabilität in den darauffolgenden Verarbeitungsschritten und zu höherer Produktqualität danach. Das betrifft u.a. Geometrie, Oberflächenqualität und Materialeigenschaften. Alle diese Eigenschaften sind über Bandlänge, Bandbreite und Banddicke nahezu konstant, was auch beinhaltet, dass die sonst üblichen großen Abweichungen an Bandkopf und Bandende vermieden werden.
  • Um dies erfindungsgemäß zu gewährleisten, ist folgendes vorgesehen:
    In Figur 2 ist schematisch dargestellt, wie in der Brammenverbindungsvorrichtung 4 zwei Brammen 3, nämlich eine in Walzrichtung R vorne liegende Teilbramme 3a und eine in Walzrichtung hinten liegende Teilbramme 3b, miteinander verbunden werden, um dem kontinuierlichen Walzprozess in der Walzstraße 1 zugeführt zu werden.
  • In der Brammenverbindungsvorrichtung 4 sind hierzu Schneidmittel 8 vorgesehen, insbesondere ausgeführt als Stanzschere, mit dem das hintere Ende der Teilbramme 3a sowie das vordere Ende der Teilbramme 3b beschnitten werden kann. Für die vorne liegende Teilbramme 3a ist ein Abschnitt 5 dargestellt, der mittels der Schneidmittel 8 abgetrennt wurde. Hierdurch liegt nunmehr an der Trennstelle 6 eine glatte Stirnfläche 12 der vorderen Teilbramme 3a vor. Analoges gilt für die Teilbramme 3b, was allerdings in Figur 2 nicht dargestellt ist.
  • Erfindungswesentlich ist, dass nach dem Abtrennen und vor dem Zusammenfügen der beiden Teilbrammen 3a, 3b, wie in Figur 2 dargestellt, eine Vermessung zumindest einer der beiden Teilbrammen 3a, 3b an der Trennstelle 6 erfolgt. Hierzu wird auf die schematisch angedeuteten Messmittel 9 Bezug genommen, die beispielsweise die Stirnfläche 12 geometrisch vermessen können.
  • In ähnlicher Weise ist es aber auch möglich, dass die Messmittel, als Temperaturmessmittel ausgebildet, die den Verlauf der Temperatur über der Breite und der Höhe der Teilbramme 3a erfassen. Dieses Temperaturprofil ist insbesondere vor dem erst noch stattfindenden Verschweißvorgang charakteristisch auch für den weiter vorne liegenden Bereich der Teilbramme 3a.
  • Wie in den Figuren dargestellt, liefern die Messmittel 9 Informationen an eine Steuerung 7, die ihrerseits wiederum auf die Walzstraße 1 Einfluss nehmen kann, wie es in Figur 1 angedeutet ist.
  • Die Kombination hochauflösender Messverfahren und spezieller Berechnungsverfahren auf der Basis physikalischer Modelle und/oder künstlicher Intelligenz bieten die Möglichkeit, Abweichungen von den vorgegebenen Prozessbedingungen im Rahmen einer Echtzeitanalyse zu detektieren, zu analysieren und zu beheben, also auf unerwartete kontinuierliche oder diskontinuierliche, regelmäßige oder sporadische Prozessstörungen unmittelbar zu reagieren, so dass durch gezielte Prozessänderungen auf der Basis leistungsfähiger Steuerungen und Regelungen die spezifizierten Produkteigenschaften trotz Abweichungen während der zurückliegenden Prozessstufen sicher, reproduzierbar und konstant eingestellt können.
  • Im Einzelnen können insbesondere die folgenden Messgrößen, die Einfluss auf die Walzstabilität einerseits und die Produktqualität andererseits haben, per Messmittel 9 erfasst werden:
    Es kann die Geometrie der Dünnbramme oder des Vorbandes ermittelt werden, insbesondere das Profil und die Keiligkeit.
  • Es kann die Oberflächenbeschaffenheit der Dünnbramme oder des Vorbandes erfasst werden, insbesondere Oberflächendefekte, die Beschaffenheit und die Gleichmäßigkeit von Zunder.
  • Es kann die Temperaturverteilung auf der Ober- und Unterseite der Dünnbramme oder des Vorbandes erfasst werden.
  • Es kann die Temperaturverteilung auf der Ober- und Unterseite der Dünnbramme oder des Vorbandes nach der Entzunderung der Oberfläche erfasst werden.
  • Es kann die Temperaturverteilung in der Schnittebene (Stirnfläche) der Dünnbramme oder des Vorbandes erfasst werden.
  • Es kann die chemische Zusammensetzung auf der Ober- und Unterseite und/oder in der Schnittebene (Stirnfläche) der Dünnbramme oder des Vorbandes erfasst werden.
  • Es kann die Mikrostruktur auf der Ober- und Unterseite und/oder in der Schnittebene (Stirnfläche) der Dünnbramme oder des Vorbandes erfasst werden.
  • Es kann der Lösungszustand bzw. Ausscheidungszustand bestimmter Elemente auf der Ober- und Unterseite und/oder in der Schnittebene (Stirnfläche) der Dünnbramme oder des Vorbandes erfasst werden.
  • Für die Untersuchung des Bereichs nahe der Schweißnaht bzw. an der Trennstelle kann ein Messtaster eingesetzt werden, möglich ist auch der Einsatz eines Lasers, der auf die Oberfläche und die Schnittfläche projiziert wird. Damit können Unterschiede zu einem Referenzzustand ermittelt werden, insbesondere hinsichtlich möglicher Verformungen.
  • Im Rahmen einer detaillierten Analyse der so gewonnenen Messwerte können insbesondere unter Verwendung physikalischer Modelle und/oder verschiedenartiger Methoden künstlicher Intelligenz Rückschlüsse auf den Prozess gezogen werden; es können auch die Auswirkungen auf die Bandeigenschaften und soweit möglich auf die späteren Produkteigenschaften prognostiziert und die Notwendigkeit von Interventionen bewertet werden.
  • Insbesondere können Antworten auf folgende Fragen abgeleitet werden:
    Betreffend die Geometrie: Wie wirken sich die gemessenen Anomalien hinsichtlich Profil und Keiligkeit und die daraus mittels Berechnungen abgeleiteten relevanten Größen, mit deren Hilfe der Zustand des Bands im Hinblick auf Profil und Planheit und teilweise auch Bandlauf und Walzstabilität umfassend charakterisiert werden kann, auf das Verhalten während der folgenden Prozessschritte und die Eigenschaften von Zwischen- und Endprodukt aus?
  • Betreffend die Temperatur: Wie wirken sich die gemessenen Temperaturverteilungen und die daraus mittels Berechnungen abgeleiteten relevanten Größen, mit deren Hilfe der Zustand des Bands im Hinblick auf Profil und Planheit und teilweise auch Bandlauf und Walzstabilität umfassend charakterisiert werden kann, auf das Verhalten während der folgenden Prozessschritte und die Eigenschaften von Zwischen- und Endprodukt aus?
  • Betreffend die Werkstoffeigenschaften: Wie wirken sich die gemessenen Abweichungen der Werkstoffeigenschaften und die daraus mittels Berechnungen abgeleiteten relevanten Größen, mit deren Hilfe der Zustand des Bands im Hinblick auf Umformfestigkeit und Verformbarkeit, auf Verfestigungs- und Entfestigungsverhalten und teilweise auch auf Bandlauf und Walzstabilität umfassend charakterisiert werden kann, auf das Verhalten während der folgenden Prozessschritte und die Eigenschaften von Zwischen- und Endprodukt aus?
  • Im Falle der Detektion eines Oberflächenfehlers kann beim Abwickeln des Coils die Stelle zum Zeitpunkt einer Messung mittels Tracking ermittelt werden. Aufgrund der Analyse der Messung können gegebenenfalls Aussagen zum Ursprung bzw. Entstehungszeitpunkt des Defekts getroffen werden. Dies ist gegebenenfalls erst nach der Analyse zahlreicher ähnlicher bzw. verwandter Vorgänge möglich, so dass an dieser Stelle insbesondere geeignete Methoden und Algorithmen aus dem Bereich der künstlichen Intelligenz zum Einsatz kommen, die die Ableitung geeigneter Maßnahmen und Eingriffe ermöglichen, sofern ausreichend große Mengen an Messwerten vorliegen und demzufolge zunehmend wiederkehrende Muster erkannt werden können.
  • Wie bereits erläutert, werden die erfassten Messwerte vom Messmittel 9 zur Steuerung 7 geleitet und hier verarbeitet. Mit Hilfe der verfügbaren Stellglieder, auf die die Steuerung 7 einwirkt, können dann insbesondere die folgenden Interventionen vorgenommen werden:
    Heizelemente (wie beispielsweise induktive Heizungen oder Strahlrohre) oder Kühlelemente wie beispielsweise Zwischengerüstkühlungen können dazu verwendet werden, Temperaturunterschiede über der Bandlänge auszugleichen und damit die Walzbedingungen möglichst konstant zu halten.
  • Heizelemente (wie beispielsweise induktive Heizungen oder Strahlrohre) oder Kühlelemente wie beispielsweise Zwischengerüstkühlungen können dazu verwendet werden, Temperaturabweichungen infolge eines nicht korrekten bzw. genauen Setups auszugleichen.
  • Heizelemente (wie beispielsweise induktive Heizungen oder Strahlrohre) oder Kühlelemente wie beispielsweise Zwischengerüstkühlungen können dazu verwendet werden, Temperaturabweichungen infolge Prozessabweichungen oder Prozessstörungen (z.B. Ofentemperatur, Verweildauer im Ofen) oder allgemein Prozessabweichungen (z.B. chemische Zusammensetzung, Geometrie) auszugleichen oder abzumildern.
  • Heizelemente (wie beispielsweise induktive Heizungen oder Strahlrohre) oder Kühlelemente wie beispielsweise Zwischengerüstkühlungen können dazu verwendet werden, regelmäßige oder sporadische Temperaturdiskontinuitäten, die aus den vorgelagerten Prozessschritten resultieren (z.B. Einspannungen beim Schneiden und Schweißen der beiden Teilbrammen 3a, 3b; Auflagebereiche im Wiedererwärmofen) auszugleichen oder abzumildern.
  • Heizelemente (wie beispielsweise induktive Heizungen oder Strahlrohre) oder Kühlelemente wie beispielsweise Zwischengerüstkühlungen können dazu verwendet werden, Abweichungen hinsichtlich der Menge und/oder der Beschaffenheit des gebildeten Zunders auszugleichen oder abzumildern.
  • Eine Erhöhung oder eine Reduzierung der Walzgeschwindigkeit können Temperaturunterschiede über der Bandlänge ausgleichen und damit die Walzbedingungen möglichst konstant halten oder das Temperaturniveau insgesamt erhöhen oder absenken.
  • Wenn also beispielsweise an der Trennstelle eine zu geringe Temperatur an der Oberseite und/oder Unterseite der Teilbramme festgestellt wird oder eine zu geringe Temperatur gemittelt über den vermessenen Querschnitt der Stirnfläche der Teilbramme, kann dieses Messergebnis nach Zuleitung zu der Steuerung 7 von dieser dahingehend verarbeitet werden, dass die Walzgeschwindigkeit erhöht wird, um ein zu starkes Abkühlen der zu walzenden Bramme zu verhindern. Im umgekehrten Fall (zu hohe Temperatur) kann die Walzgeschwindigkeit herabgesetzt werden.
  • Eine Veränderung der Abnahmeverteilung in der Fertigstraße kann durchgeführt werden, um das Verfestigungs- und Entfestigungsverhalten zu beeinflussen und damit den Einfluss von Abweichungen von Temperatur, chemischer Zusammensetzung, Mikrostruktur und Lösungszustand bzw. Ausscheidungszustand bestimmter Elemente auszugleichen oder abzumildern.
  • Stellglieder wie Schiebepositionen der Walzen, Biegekräfte auf die Walzen und relative Positionen der Arbeitswalzen zueinander (Geometrie des Walzspalts) können dazu verwendet werden, die Geometrie des Bandes im Walzspalt und die Massenflussverhältnisse im Walzspalt und in der Folge die Stabilität des Walzprozesses zu beeinflussen, um Abweichungen beispielsweise im Hinblick auf Profil und Planheit auszugleichen oder abzumildern.
  • Die in die Brammenverbindungsvorrichtung integrierte Schneidmittel können auch genutzt werden, um Material, das entweder aus prozessbedingten Übergangsbereichen stammt (z.B. Wechsel von Geometrie oder Werkstoff, Prozesse des Anfahrens o.ä.) oder aus anderweitigen Gründen nicht den Anforderungen und Spezifikationen entspricht (d.h. Ausschuss), vor dem Walzen zu entfernen.
  • Die Schneidmittel (Schere) vor dem Haspel, die nach dem Endlos-Walzen in der Walzstraße 1 das fertige Band in Einzelstücke teilt und so wieder einen diskontinuierlichen Prozess einleitet, kann so eingesetzt werden, dass sich der Bereich des Bandes, der in Folge des Schweißprozesses die größten Abweichungen von den geforderten Eigenschaften aufweist, in demjenigen Teil des Coils befindet, der später entfernt und nicht verwendet wird, d.h. in der Regel die äußeren Windungen. Darüber hinaus kann Material durch diese wie auch durch die weiter vorne angeordneten Scheren entfernt werden, welches die jeweiligen Anforderungen nicht erfüllt bzw. in den Folgeprozessen nicht sinnvoll verwendet werden kann.
  • Nachdem das Gießen und Walzen bei dem vorliegenden Konzept nicht fest gekoppelt sind, kann die Walzgeschwindigkeit erhöht oder abgesenkt werden, falls dies zum Erreichen der geforderten Produkteigenschaften notwendig sein sollte. Endlos-Walzen ist also auch möglich, wenn die Walzgeschwindigkeit höher oder niedriger liegt als die Summengießgeschwindigkeit.
  • Zur Nomenklatur sei bezüglich des verwendeten Begriffs der Bramme noch folgendes angemerkt: Dieser Begriff ist hier allgemein zu verstehen.
  • Meist wird der Begriff "Bramme" für das Material vor dem Vorgerüst verwendet, danach sind es Vorbänder. In und nach der Fertigstraße wird dann von Bändern gesprochen. In einer CSP-Anlage werden aus Dünnbrammen Bänder. Im vorliegenden Falle ist vornehmlich das Material vor der Fertigstraße gemeint. Allerdings können auch Brammen im eigentlichen Sinne durch das erfindungsgemässe Verfahren behandelt werden.
  • Bezugszeichenliste:
  • 1
    Walzstraße
    2
    Walzgerüst
    3
    Bramme oder Vorband
    3a
    Teilbramme
    3b
    Teilbramme
    4
    Brammenverbindungsvorrichtung
    5
    Abschnitt der vorne liegenden Teilbramme
    6
    Trennstelle
    7
    Steuerung
    8
    Schneidmittel (Stanzschere)
    9
    Messmittel
    10
    Gießmaschine
    11
    Tunnelofen
    12
    Stirnfläche
    R
    Walzrichtung

Claims (16)

  1. Verfahren zum Herstellen eines metallischen Bandes, wobei das Band in einer Walzstraße (1) mittels einer Anzahl an Walzgerüsten (2) aus einer Bramme (3) ausgewalzt wird, wobei die zu walzende Bramme (3) aus einzelnen Teilbrammen (3a, 3b) zusammengesetzt wird, wobei das Zusammensetzen der einzelnen Teilbrammen (3a, 3b) in einer Brammenverbindungsvorrichtung (4) erfolgt, in der ein Abschnitt (5) der in Walzrichtung (R) vorne liegenden Teilbramme (3a) sowie ein Abschnitt der in Walzrichtung (R) hinten liegenden Teilbramme (3b) abgetrennt und die beiden Teilbrammen (3a, 3b) an der Trennstelle (6) zusammengefügt werden, wobei nach dem Abtrennen und vor dem Zusammenfügen der beiden Teilbrammen (3a, 3b) eine Vermessung zumindest einer der beiden Teilbrammen (3a, 3b) an der Trennstelle (6) erfolgt,
    dadurch gekennzeichnet,
    dass die aus der Vermessung gewonnenen Daten einer Steuerung (7) zugeführt werden, die aus den Messdaten Steuerungsdaten für den Walzprozess generiert und an die Walzstraße (1) ausgibt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Walzen in der Walzstraße (1) in einem kontinuierlichen Prozess erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vermessung der Teilbramme (3a, 3b) eine Erfassung geometrischer Größen der Teilbramme (3a, 3b) an der Trennstelle (6) umfasst, insbesondere die Erfassung des Querschnittprofils und/oder der Keiligkeit der Teilbramme (3a, 3b).
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vermessung der Teilbramme (3a, 3b) eine Erfassung von Eigenschaften der Oberfläche der Teilbramme (3a, 3b) an der Trennstelle (6) umfasst, insbesondere die Erfassung von Oberflächendefekten und/oder der Mikrostruktur und/oder des Vorhandenseins von Zunder.
  5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vermessung der Teilbramme (3a, 3b) eine Erfassung der Temperatur und/oder der Temperaturverteilung der Teilbramme (3a, 3b) an der Trennstelle (6) umfasst.
  6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vermessung der Teilbramme (3a, 3b) eine Erfassung der chemischen Zusammensetzung der Teilbramme (3a, 3b) an der Trennstelle (6) umfasst, insbesondere des Lösungszustands oder Ausscheidungszustands von Elementen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die an die Walzstraße (1) ausgegebenen Steuerungsdaten solche sind, die Heizelemente oder Kühlelemente vor, in und/oder hinter der Walzstraße (1) betreffen.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die an die Walzstraße (1) ausgegebenen Steuerungsdaten solche sind, die die Walzgeschwindigkeit betreffen.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die an die Walzstraße (1) ausgegebenen Steuerungsdaten solche sind, die die Größe der Stiche in den einzelnen Walzgerüsten (2) betreffen.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in der Steuerung (7) Vergleichsdaten gespeichert sind und dass die Steuerungsdaten generiert werden, indem eine Berücksichtigung der Vergleichsdaten erfolgt, insbesondere unter Nutzung von Methoden der Künstlichen Intelligenz.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zwischen der Walzstraße (1) und einem in Walzrichtung (R) nachfolgenden Haspel mindestens eine Schneidvorrichtung, insbesondere eine Schere, angeordnet ist, wobei mit der mindestens einen Schneidvorrichtung solche Abschnitte des gewalzten Bandes abgeschnitten werden, die Ausschuss sind oder die Material enthalten, welches nicht einer vorgegebenen Spezifikation genügt.
  12. Vorrichtung zum Herstellen eines metallischen Bandes, umfassend eine Walzstraße (1), in der das Band mittels einer Anzahl an Walzgerüsten (2) aus einer Bramme (3) ausgewalzt werden kann, sowie eine Brammenverbindungsvorrichtung (4), mit der die zu walzende Bramme (3) aus einzelnen Teilbrammen (3a, 3b) zusammengesetzt werden kann, wobei die Brammenverbindungsvorrichtung (4) Schneidmittel (8) umfasst, mit denen ein Abschnitt (5) der in Walzrichtung (R) vorne liegenden Teilbramme (3a) sowie ein Abschnitt der in Walzrichtung (R) hinten liegenden Teilbramme (3b) abgetrennt werden kann, sowie Verbindungsmittel zum Zusammenfügen der beiden Teilbrammen (3a, 3b) an der Trennstelle (6), insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 11,
    gekennzeichnet durch
    Messmittel (9), mit denen eine Vermessung zumindest einer der beiden Teilbrammen (3a, 3b) an der Trennstelle (6) erfolgen kann, wobei die Messmittel (9) mit einer Steuerung (7) in Verbindung stehen, wobei die Steuerung (7) ausgebildet ist, aus den Messdaten der Messmittel (9) Steuerungsdaten für den Walzprozess zu generieren und diese an die Walzstraße (1) auszugeben.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Messmittel (9) mindestens ein taktiles Messelement umfasst, mit dem eine Erfassung geometrischer Größen der Teilbramme (3a, 3b) an der Trennstelle (6) erfolgen kann.
  14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Messmittel (9) mindestens ein berührungsloses Messelement, insbesondere ein Lasermessmittel, umfasst, mit dem eine Erfassung geometrischer Größen der Teilbramme (3a, 3b) an der Trennstelle (6) erfolgen kann.
  15. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Messmittel (9) Temperaturmessmittel sind, mit denen eine Erfassung der Temperatur und/oder der Temperaturverteilung der Teilbramme (3a, 3b) an der Trennstelle (6) erfolgen kann.
  16. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Steuerung (7) mit mindestens einem Heizelement, mit mindestens einem Kühlelement, mit einem Mittel zur Einstellung der Walzgeschwindigkeit und/oder mit mindestens einem Mittel zur Einstellung des Walzspalts eines Walzgerüsts (2) in Verbindung stehen.
EP22184469.9A 2021-07-23 2022-07-12 Verfahren und vorrichtung zum herstellen eines metallischen bandes Active EP4122615B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021207947.4A DE102021207947A1 (de) 2021-07-23 2021-07-23 Verfahren und Vorrichtung zum Herstellen eines metallischen Bandes

Publications (3)

Publication Number Publication Date
EP4122615A1 EP4122615A1 (de) 2023-01-25
EP4122615B1 true EP4122615B1 (de) 2023-12-13
EP4122615C0 EP4122615C0 (de) 2023-12-13

Family

ID=82458771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22184469.9A Active EP4122615B1 (de) 2021-07-23 2022-07-12 Verfahren und vorrichtung zum herstellen eines metallischen bandes

Country Status (3)

Country Link
EP (1) EP4122615B1 (de)
JP (1) JP7440576B2 (de)
DE (1) DE102021207947A1 (de)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124250A (ja) * 1988-10-31 1990-05-11 Kawasaki Steel Corp 鋳片のトーチダレ付着判定方法
JP2975053B2 (ja) * 1990-05-21 1999-11-10 川崎製鉄株式会社 連続圧延における溶接点の検出方法
JPH0747469A (ja) * 1993-08-09 1995-02-21 Nippon Steel Corp スラブのノロ取り検査装置
JPH0957450A (ja) * 1995-08-25 1997-03-04 Nkk Corp スケール除去装置及びこれを有するフラッシュ溶接装置
JPH106017A (ja) * 1996-06-27 1998-01-13 Kawasaki Steel Corp ストリップのフラッシュバット溶接工程における溶接異常監視方法
DE19649295A1 (de) * 1996-11-28 1998-06-04 Schloemann Siemag Ag Warmwalzanlage
JPH10244301A (ja) * 1997-03-04 1998-09-14 Nkk Corp 熱間圧延設備及び熱間圧延方法
JP2000197966A (ja) * 1998-12-28 2000-07-18 Nippon Steel Corp スラブ切断面の整形装置
CA2337168C (en) * 1999-06-22 2005-11-29 Kawasaki Steel Corporation Hot rolling method and equipment
JP2002263704A (ja) * 2001-03-09 2002-09-17 Daiwa Steel Corp 金属材の連続圧延方法およびその設備
JP4241137B2 (ja) * 2003-03-31 2009-03-18 Jfeスチール株式会社 連続鋳造鋳片の品質判定方法
JP4935129B2 (ja) * 2006-03-15 2012-05-23 Jfeスチール株式会社 鋼片切断方法及び鋼片切断システム
JP2007278916A (ja) * 2006-04-10 2007-10-25 Jfe Steel Kk 鋳片欠陥検査方法及び装置
KR101360562B1 (ko) * 2011-12-23 2014-02-10 주식회사 포스코 용접장치 및 그의 동작 방법
WO2017140886A1 (de) 2016-02-17 2017-08-24 Sms Group Gmbh Vorrichtung und verfahren zum reibverschweissen warmer metallischer produkte
CN206415418U (zh) * 2017-01-19 2017-08-18 中冶赛迪工程技术股份有限公司 一种中间坯连接装置及系统
DE102017213986A1 (de) * 2017-08-10 2019-02-14 Sms Group Gmbh Vorrichtung und Verfahren zum Reibschweißen warmer metallischer Produkte

Also Published As

Publication number Publication date
JP2023016726A (ja) 2023-02-02
JP7440576B2 (ja) 2024-02-28
DE102021207947A1 (de) 2023-01-26
EP4122615A1 (de) 2023-01-25
EP4122615C0 (de) 2023-12-13

Similar Documents

Publication Publication Date Title
DE60307496T2 (de) Prozess- und produktionslinie zur herstellung von ultradünnen heissgewalzten streifen auf grundlage der dünnbrammentechnik
EP2170535B1 (de) Verfahren zur einstellung eines zustands eines walzguts, insbesondere eines vorbands
WO2018091571A1 (de) Verfahren und vorrichtung zur herstellung eines kontinuierlichen bandförmigen verbundmaterials
EP3535069B1 (de) Verfahren zum betreiben einer giesswalzverbundanlage
WO2010149192A9 (de) Verfahren und vorrichtung zum bearbeiten einer bramme
EP3107666A1 (de) Einfache vorsteuerung einer keilanstellung eines vorgerüsts
EP2790846B1 (de) Verfahren zur bearbeitung von walzgut in einem warmwalzwerk
DE112007000641B4 (de) Kontinuierliche Kaltwalzanlage
EP3177412B1 (de) Einstellen eines gezielten temperaturprofiles an bandkopf und bandfuss vor dem querteilen eines metallbands
EP3720623B1 (de) Streck-biege-richtanlage und verfahren zu deren betätigung
EP4122615B1 (de) Verfahren und vorrichtung zum herstellen eines metallischen bandes
EP2906369B1 (de) Breitenbeeinflussung eines bandförmigen walzguts
EP2209573B1 (de) Verfahren zum kontinuierlichen austenitischen walzen eines in einem kontinuierlichen giessprozess hergestellten vorbandes
EP2121209B1 (de) Verfahren zur unterstützung einer wenigstens teilweise manuellen steuerung einer metallbearbeitungsstrasse
DE102015223600A1 (de) Verfahren zum Herstellen eines metallischen Bandes durch Endloswalzen
DE102017219289A1 (de) Verfahren zum Trennen eines Gießstranges oder Zwischenbandes mittels einer Schere
EP3138639B1 (de) Verfahren zum herstellen eines metallischen bandes durch endloswalzen
EP3535071B1 (de) Verfahren und anlage zur herstellung eines metallischen bandes
EP4101553B1 (de) Kühlen eines walzguts vor einer fertigstrasse einer warmwalzanlage
EP3934822B1 (de) Verfahren zur herstellung eines metallischen bandes oder blechs
EP4100177B1 (de) Verfahren zur kalibrierung von vertikalrollen eines vertikalwalzgerüsts sowie walzstrasse mit einer kalibrieranordnung zur durchführung des verfahrens
EP4122613A1 (de) Verfahren zum herstellen eines metallischen bandes
DE102021212881A1 (de) Vorrichtung und Verfahren zur Herstellung eines gewalzten Metallbandes
EP4311606A1 (de) Verfahren zur regelung einer walzstrasse sowie walzstrasse
EP4122616A1 (de) Verfahren und vorrichtung zum herstellen eines metallischen bandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20220712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20230110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 37/00 20060101ALI20230619BHEP

Ipc: B21B 38/00 20060101ALI20230619BHEP

Ipc: B21B 15/00 20060101AFI20230619BHEP

INTG Intention to grant announced

Effective date: 20230710

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000322

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240109

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240115

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213