EP4077596A1 - Katalysator zur hydrierung aromatischer verbindungen aus geschmolzenen salzen und organisches additiv - Google Patents

Katalysator zur hydrierung aromatischer verbindungen aus geschmolzenen salzen und organisches additiv

Info

Publication number
EP4077596A1
EP4077596A1 EP20816493.9A EP20816493A EP4077596A1 EP 4077596 A1 EP4077596 A1 EP 4077596A1 EP 20816493 A EP20816493 A EP 20816493A EP 4077596 A1 EP4077596 A1 EP 4077596A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
nickel
metal salt
organic additive
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20816493.9A
Other languages
English (en)
French (fr)
Inventor
Malika Boualleg
Laetitia Jothie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4077596A1 publication Critical patent/EP4077596A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, for the hydrogenation of aromatic compounds.
  • the most active catalysts in hydrogenation reactions are conventionally based on noble metals such as palladium or platinum. These catalysts are used industrially in refining and in petrochemicals for the purification of certain petroleum fractions by hydrogenation, in particular in reactions of selective hydrogenation of polyunsaturated molecules such as diolefins, acetylenics or alkenylaromatics, or in hydrogenation reactions of 'aromatics. It is often proposed to replace palladium with nickel, a less active metal than palladium which it is therefore necessary to have in a larger quantity in the catalyst. Thus, nickel-based catalysts generally have a metal content of between 5 and 60% by weight of nickel relative to the catalyst.
  • the rate of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reactants on the surface of the catalyst (external diffusional limitations), the diffusion of the reactants in the porosity of the support towards the active sites (internal diffusional limitations) and the intrinsic properties of the active phase such as the size of the metal particles and the distribution of the active phase within the support.
  • the porous distribution of the macropores and mesopores is adapted to the desired reaction in order to ensure the diffusion of the reagents in the porosity of the support towards the active sites as well as the diffusion of the products formed. outwards.
  • the aromatic hydrogenation catalysts are generally based on metals from group VIII of the periodic table, preferably palladium or nickel.
  • the metal is in the form of metal particles deposited on a support.
  • the metal content, the size of the metal particles and the distribution of the active phase in the support are among the criteria which have an importance on the activity and the selectivity of the catalysts.
  • the size of the metal particles it is generally accepted that the more active the catalyst is, the smaller the size of the metal particles is.
  • the most conventional way of preparing these catalysts is the impregnation of the support with an aqueous solution of a nickel precursor, generally followed by drying and calcination. Before their use in hydrogenation reactions, these catalysts are generally reduced in order to obtain the active phase which is in metallic form (that is to say in the state of zero valence).
  • the catalysts based on nickel on alumina prepared by a single impregnation step generally make it possible to achieve nickel contents of between 12 and 15% by weight of nickel approximately, depending on the pore volume of the alumina used.
  • several successive impregnations are often necessary to obtain the desired nickel content, followed by at least one drying step, then optionally by a calcination step between each impregnation. .
  • document WO2011 / 080515 describes a catalyst based on nickel on alumina which is active in hydrogenation, in particular aromatics, said catalyst having a nickel content greater than 35% by weight relative to the total weight of the catalyst, and a large dispersion of metallic nickel. on the surface of an alumina with very open porosity and high specific surface.
  • the catalyst is prepared by at least four successive impregnations. The preparation of nickel catalysts having a high nickel content by the impregnation route thus involves a sequence of numerous steps which increases the associated manufacturing costs.
  • Co-precipitation generally consists of a simultaneous casting in a batch reactor of both an aluminum salt (aluminum nitrate for example) and a nickel salt (nickel nitrate for example). Both salts precipitate simultaneously. Then a high temperature calcination is necessary to make the transition from the alumina gel (boehmite for example) to alumina. By this method of preparation, contents of up to 70% by weight of nickel are reached. Catalysts prepared by coprecipitation are for example described in documents US 4,273,680, US 8518851 and US 2010/0116717.
  • Co-mixing generally consists of a mixture of a nickel salt with an alumina gel such as boehmite, said mixture being subsequently shaped, generally by extrusion, then dried and calcined.
  • Document US Pat. No. 5,478,791 describes a catalyst based on nickel on alumina having a nickel content of between 10 and 60% by weight and a nickel particle size of between 15 and 60 nm, prepared by co-mixing a nickel compound with an alumina gel, followed by shaping, drying and reduction.
  • application FR2984761 discloses a process for preparing a selective hydrogenation catalyst comprising a support and an active phase comprising a metal from group VIII, said catalyst being prepared by a process comprising a step of impregnating a solution containing a precursor of the metal from group VIII and an organic additive, more particularly an organic compound having one to three carboxylic acid functions, a step of drying the impregnated support, and a step of calcining the dried support in order to obtain the catalyst.
  • Document US2006 / 0149097 discloses a process for the hydrogenation of aromatic compounds of benzenepolycarboxylic acid type in the presence of a catalyst comprising an active phase comprising at least one metal from group VIII, which catalyst being prepared by a process comprising an impregnation step a solution containing a precursor of the metal from group VIII and a step of impregnating an organic additive of amine or amino acid type.
  • the step of impregnating the organic additive can be carried out before or after the step of impregnating the active phase, or even simultaneously.
  • molten salts as precursors of the active phase of a catalyst or of a capture mass is also known from the literature.
  • document US Pat. No. 5,036,032 discloses a method for preparing a supported cobalt-based catalyst by bringing it into contact (of the order of a few tens of seconds) of a support in a bath of molten salt of cobalt nitrate, followed by a drying and reduction step without intermediate calcination.
  • This method allows the preferential localization of the cobalt phase on the periphery of the support.
  • the method does not allow precise control of the amount of active phase (here cobalt) deposited due to the very short contact time.
  • the absence of a calcination step is risky since the reaction between the reduction element and the nitrates in the solid is very exothermic.
  • this method requires handling large quantities of cobalt nitrate (toxic) in liquid form and at temperature, with ratios of approximately 4 grams of active phase precursors per 1 gram of support.
  • the catalysts obtained by this preparation route are used for the synthesis of Fischer-Tropsch hydrocarbons.
  • the reaction mixture contains a metal precursor salt (in particular Ni (N0 3 ) 2 or Co (No 3 ) 2 ), a source of phosphorus (NH 4 HP0 4 ), and an alkali metal nitrate (Na or K). These preparations are carried out at elevated temperatures of the order of 400 to 450 ° C.
  • a metal precursor salt in particular Ni (N0 3 ) 2 or Co (No 3 ) 2
  • NH 4 HP0 4 a source of phosphorus
  • Na or K alkali metal nitrate
  • Mixed phosphate type solids are obtained, for example Na 3 Ni 2 (P 2 0 7 ) P0 4 , K 2 Ni 4 (P0 4 ) 2 P 2 0 7 or Na 9 Co 3 (P0 4 ) 5 .
  • These solids can find applications in ion exchange, ionic conduction at high temperature or in catalysis.
  • Document GB 191308864 discloses a method for synthesizing a mass catalyst based on nickel or cobalt for the production of hydrogen by steam reforming ("steam-reforming" according to English terminology). These catalysts can be obtained by liquefying metal salts at moderate temperature and then pouring into a mold before thermal calcination treatment.
  • the present invention thus relates to a new type of catalyst which, by virtue of its specific preparation process, makes it possible to obtain a catalyst comprising performance that is at least as good, or even better, in terms of activity in the context of hydrogenation reactions. of aromatic compounds, while using an amount of active phase based on nickel equal to, or even less, than that typically used in the state of the art.
  • this preparation process results in a catalyst having a nickel particle size of less than 18 nm, conferring significant intrinsic activity of the active nickel phase.
  • This preparation process allows without adding solvent, and therefore in a very limited number of steps and above all less than the conventional preparation process (by impregnation), to obtain a catalyst whose catalytic performance are superior to conventional catalysts (in particular no preparation upstream of a solution with Ni and / or additive, and no intermediate drying).
  • An object according to the invention relates to a catalyst for the hydrogenation of aromatic or polyaromatic compounds comprising an active phase based on nickel and an alumina support, said active phase does not comprise a metal from group VIB, said catalyst comprising between 20 and 60% by weight of elemental nickel relative to the total weight of the catalyst, the size of the nickel particles in the catalyst, measured in oxide form, is less than 18 nm, said catalyst being capable of being obtained by the process comprising at least the following steps: a) the alumina support is brought into contact with at least one organic additive comprising oxygen and / or nitrogen, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol; b) the alumina support is brought into contact with at least one metal salt of nickel, at a temperature below the melting point of said metal salt of nickel, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, steps a) and b) being carried out either successively in this order, or simultaneously;
  • the size of the nickel particles in the catalyst is between 0.5 and 12 nm, more preferably between 1 and 5 nm.
  • Another object according to the invention relates to a process for preparing a catalyst for the hydrogenation of aromatic or polyaromatic compounds comprising an active phase based on nickel and an alumina support, said active phase does not comprise a metal from group VIB.
  • said catalyst comprising between 20 and 60% by weight of elemental nickel relative to the total weight of the catalyst, the size of the nickel particles in the catalyst, measured in oxide form, is less than 18 nm
  • said process comprising the following steps: a ) the alumina support is brought into contact with at least one organic additive comprising oxygen and / or nitrogen, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol; b) the alumina support is brought into contact with at least one metal salt of nickel, at a temperature below the melting point of said metal salt of nickel, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, steps a) and b) being carried out either successively in this order, or simultaneously;
  • the melting point of said metal salt is between 20 ° C and 150 ° C.
  • a step e) of heat treatment of the dried catalyst precursor obtained in step d) is carried out at a temperature between 250 ° C and 1000 ° C.
  • the molar ratio between said organic additive introduced in step a) and the element nickel introduced in step b) is between 0.1 and 5.0 mol / mol.
  • steps a) and b) are carried out simultaneously.
  • the organic additive is chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule. , alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, or a combination of the various functional groups above.
  • said organic additive of step a) is chosen from formic acid, formaldehyde, acetic acid, citric acid, oxalic acid, glycolic acid, malonic acid, levulinic acid, ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose and sorbitol.
  • the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
  • step c) is carried out by means of a drum operating at a speed of between 4 and 70 revolutions per minute.
  • the mass ratio between said metal salt and the alumina support is between 0.2 and 2.
  • Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, said process being carried out in phase gas or in liquid phase, at a temperature between 30 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume speed VVH of between 0.05 and 50 h-1, in the presence of a catalyst according to the invention or prepared according to the preparation process according to the invention.
  • a catalyst according to the invention or prepared according to the preparation process according to the invention.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the specific surface B.E.T. determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society", 60, 309, (1938).
  • macropores we mean pores with an opening greater than 50 nm.
  • pores are meant pores with an opening between 2 nm and 50 nm, limits included.
  • micropores we mean pores with an opening of less than 2 nm.
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the wetting angle was taken equal to 140 ° by following the recommendations of the book “Engineering techniques, analysis and characterization treaty”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (approximately 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the value from which the mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond this the mercury penetrates into the pores of the sample.
  • the macroporous volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is defined as being the cumulative volume of mercury introduced at a pressure between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores of diameter apparent greater than 50 nm.
  • the mesoporous volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is defined as being the cumulative volume of mercury introduced at a pressure between 30 MPa and 400 MPa, corresponding to the volume contained in the pores of apparent diameter included between 2 and 50 nm.
  • the volume of the micropores is measured by nitrogen porosimetry.
  • the quantitative analysis of the microporosity is carried out using the "t" method (method of Lippens-De Boer, 1965) which corresponds to a transform of the starting adsorption isotherm as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications ”written by F. Rouquérol, J. Rouquérol and K. Sing, Academy Press, 1999.
  • the mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion with a mercury porosimeter.
  • the macroporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the macroporous volume, of size less than this diameter constitute 50% of the total macroporous volume determined by intrusion with a mercury porosimeter.
  • size of the nickel particles is understood to mean the diameter of the crystallites of nickel in oxide form.
  • This method used in X-ray diffraction on powders or polycrystalline samples which relates the width at mid-height of the diffraction peaks to the size of the particles, is described in detail in the reference: Appl. Cryst. (1978), 11, 102-113 “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, JI Langford and AJC Wilson.
  • the nickel content is measured by X-ray fluorescence.
  • the nickel content in said catalyst according to the invention is advantageously between 20 and 60% by weight of nickel element relative to the total weight of the catalyst, more preferably between 20 and 50% by weight and even more preferably between 20 and 45% by weight per relative to the total weight of the catalyst.
  • the active phase of the catalyst does not contain a group VIB metal. In particular, it does not include molybdenum or tungsten.
  • the catalyst consists of an active phase consisting only of nickel and an alumina support.
  • the size of the nickel particles in the catalyst, measured in oxide form, is less than 18 nm, preferably less than 15 nm, more preferably between 0.5 and 12 nm, more preferably between 1 and 8 nm, from even more preferably between 1 and 6 nm, and even more preferably between 1 and 5 nm.
  • Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of balls (generally having a diameter of between 1 and 8 mm), of extrudates, of tablets, of hollow cylinders. Preferably, it consists of extrudates with a diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm.
  • the term “average diameter” of the extrudates is understood to mean the average diameter of the circle circumscribing the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all the methods known from the prior art.
  • the specific surface of the catalyst is generally greater than or equal to 30 m 2 / g, preferably greater than or equal to 50 m 2 / g, more preferably between 60 m 2 / g and 500 m 2 / g, and even more preferably between between 70 m 2 / g and 400 m 2 / g.
  • the total pore volume of the catalyst is generally between 0.1 and 1.5 cm 3 / g, preferably between 0.35 and 1.2 cm 3 / g, and even more preferably between 0.4 and 1, 0 cm 3 / g, and even more preferably between 0.45 and 0.9 cm 3 / g.
  • the catalyst advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 mL / g, and even more preferably less than or equal to equal to 0.3 mL / g.
  • the mesoporous volume of the catalyst is generally at least 0.10 mL / g, preferably at least 0.20 mL / g, preferably between 0.25 mL / g and 0.80 mL / g, more preferably between 0.30 and 0.65 mL / g.
  • the mesoporous median diameter of the catalyst is advantageously between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm.
  • the catalyst advantageously has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
  • the catalyst has a low microporosity, very preferably it does not have any microporosity.
  • the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and particularly preferably at least 99% by weight of alumina relative to the weight support.
  • Alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or as a mixture.
  • the alumina support may comprise impurities such as oxides of metals from groups I IA, II IB, IVB, MB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide. , zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, of preferably magnesium, calcium, strontium or barium or else sulfur.
  • impurities such as oxides of metals from groups I IA, II IB, IVB, MB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide. , zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, of preferably magnesium, calcium, strontium or barium or else sulfur.
  • the specific surface of the support is generally greater than or equal to 30 m 2 / g, preferably greater than or equal to 50 m 2 / g, more preferably between 60 m 2 / g and 500 m 2 / g, and even more preferably between between 70 m 2 / g and 400 m 2 / g.
  • the total pore volume of the support is generally between 0.1 and 1.5 cm 3 / g, preferably between 0.35 and 1.2 cm 3 / g, and even more preferably between 0.4 and 1, 0 cm 3 / g, and even more preferably between 0.45 and 0.9 cm 3 / g.
  • the support advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 mL / g, and even more preferably less than or equal to 0.3 mL / g.
  • the mesoporous volume of the support is generally at least 0.10 mL / g, preferably at least 0.20 mL / g, preferably between 0.25 mL / g and 0.80 mL / g, more preferably between 0.30 and 0.65 mL / g.
  • the mesoporous median diameter of the support is advantageously between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm.
  • the support advantageously has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
  • the support has a low microporosity, very preferably it does not have any microporosity. of preparation of the catalyst are described in detail below.
  • the support is brought into contact with at least one organic additive comprising oxygen and / or nitrogen, preferably chosen from aldehydes containing from 1 to 14 carbon atoms per molecule (preferably from 2 to 12), ketones or polyketones containing from 3 to 18 (preferably from 3 to 12) carbon atoms per molecule, ethers or esters containing from 2 to 14 (from preferably from 3 to 12) carbon atoms per molecule, alcohols or polyalcohols containing from 1 to 14 (preferably from 2 to 12) carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing from 1 to 14 (preferably from 1 to 12) carbon atoms per molecule.
  • the organic additive can be composed of a combination of the various functional groups mentioned above.
  • the organic additive is chosen from formic acid HCOOH, formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH 2 - OH), malonic acid (HOOC-CH 2 -COOH), levulinic acid (CH 3 CCH 2 CH 2 C0 2 H), ethanol, methanol, ethyl formate HCOOC 2 H 5 , methyl formate HCOOCH 3 , paraldehyde (CH 3 -CHO) 3 , acetaldehyde C 2 H 4 0, gamma-valerolactone acid (C 5 H 8 0 2 ), glucose and sorbitol.
  • formic acid HCOOH formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH 2 - OH), malonic acid (HOOC-CH 2 -COOH), levulinic acid (CH 3 CCH 2 CH 2
  • the organic additive is chosen from citric acid, formic acid, glycolic acid, levulinic acid and oxalic acid.
  • said step a) is carried out by bringing the support into contact with at least one organic additive in the form of a powder.
  • said step a) is carried out by bringing the support into contact with at least one organic additive in the form of a powder dissolved in a minimum amount of water.
  • minimum quantity of water is understood to mean the quantity of water allowing at least partial dissolution of said organic additive in water. This minimum quantity of water cannot be assimilated to a solvent.
  • steps a) and b) are carried out separately) each contacting step of the support with the organic additive is advantageously followed by drying at a temperature below 250 ° C, preferably between 15 and 240 ° C, more preferably between 30 and 220 ° C.
  • the contacting is generally carried out at a temperature between 0 and 70 ° C, preferably between 10 and 60 ° C, and particularly preferably at room temperature.
  • the placing in contact of said porous support and of the organic additive can be carried out by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • Step a) is advantageously carried out for a period of between 5 minutes to 5 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours.
  • the molar ratio between the organic additive and the nickel is greater than 0.05 mol / mol, preferably between 0.1 and 5 mol / mol, more preferably between 0.12 and 3 mol / mol, and even more preferably between 0.15 and 2.5 mol / mol.
  • the alumina support is brought into contact with at least one metal salt of nickel, the melting point of said metal salt of which is between 20 ° C and 150 ° C for a period advantageously between 5 minutes to 5 hours, to form a solid mixture, the mass ratio between said metal salt and the alumina support being between 0.1 and 2.3, preferably between 0.2 and 2.
  • the metal salt is hydrated.
  • step b) the contacting of said porous oxide support and the nickel metal salt can be done by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • Step b) is advantageously carried out for a period of between 5 minutes to 5 hours depending on the type of mixer used, preferably between 10 minutes and 4 hours.
  • step b) of the process according to the invention allows:
  • Steps a) and b) are performed successively in this order, or steps a) and b) are performed simultaneously.
  • step a) is carried out before performing step b).
  • step c) the mixture obtained at the end of steps a) and b) is heated with stirring to a temperature between the melting point of the metal salt and 200 ° C., and advantageously at atmospheric pressure.
  • the temperature is between 50 and 180 ° C, and even more preferably between 60 and 160 ° C.
  • step c) is carried out for a period of between 5 minutes and 12 hours, preferably between 5 minutes and 4 hours.
  • step c) the mechanical homogenization of the mixture can be carried out by any method known to those skilled in the art.
  • convective mixers, drum mixers or static mixers can be used.
  • step c) is carried out by means of a drum mixer whose speed of rotation is between 4 and 70 revolutions / minute, preferably between 10 and 60 revolutions / minute. In fact, if the rotation of the drum is too high, the active phase of the catalyst will not be distributed in a crust on the periphery of the support, but will be distributed homogeneously throughout the support, which is not desirable.
  • Step d) of drying the catalyst precursor obtained at the end of step c) is carried out at a temperature below 250 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, typically for a period of between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying temperature of step d) is generally higher than the heating temperature of step c).
  • the drying temperature of step d) is at least 10 ° C higher than the heating temperature of step c).
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the dried catalyst precursor undergoes an additional heat treatment step, before the optional reduction step f), at a temperature between 250 and 1000 ° C and preferably between 250 and 750 ° C, typically for a period of between 15 minutes and 10 hours, under an inert atmosphere or under an oxygen-containing atmosphere, in the presence of water or not. Longer durations of treatment are not excluded, but do not require improvement.
  • the term “heat treatment” is understood to mean treatment at temperature respectively without the presence or in the presence of water. In the latter case, the contact with the water vapor can take place at atmospheric pressure or at autogenous pressure. Several combined cycles without the presence or with the presence of water can be carried out.
  • the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably, between 250 and 650 grams per kilogram of dry air.
  • At least one reducing treatment step f) is advantageously carried out in the presence of a reducing gas after step e) of so as to obtain a catalyst comprising nickel at least partially in metallic form.
  • This treatment makes it possible to activate said catalyst and to form metal particles, in particular nickel in the zero valent state.
  • Said reducing treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (for example a mixture of hydrogen / nitrogen, or hydrogen / argon, or hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
  • Said reducing treatment is carried out at a temperature between 120 and 500 ° C, preferably between 150 and 450 ° C.
  • the reducing treatment is carried out at a temperature between 180 and 500 ° C, preferably between 200 and 450 ° C, and even more preferably between 350 and 450 ° C.
  • the reducing treatment is generally carried out at a temperature of between 120 and 350 ° C, preferably between 150 and 350 ° C.
  • the duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours.
  • the temperature rise to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst, again more preferably between 0.1 and 5 L / hour / gram of catalyst.
  • the catalyst prepared according to the process according to the invention can advantageously undergo a passivation step with a sulfur compound which makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways during the start-up of new catalysts ("run-away" according to Anglo-Saxon terminology).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by implementing methods known to those skilled in the art.
  • the passivation step with a sulfur compound is generally carried out at a temperature between 20 and 350 ° C, preferably between 40 and 200 ° C, for 10 to 240 minutes.
  • the sulfur compound is for example chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulfide or else an organic disulfide of formula HO-R SSR 2 -OH such as di-thio-di-ethanol of formula HO-C2H4-SS-C2H4-OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the total weight of the catalyst.
  • a subject of the present invention is also a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C. , and preferably between 20 and 450 ° C.
  • Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical cuts: reformate from catalytic reforming, kerosene, light gas oil, heavy gas oil, cracked distillates, such as fluidized bed catalytic cracking recycling oil (FCC, “Fluid Catalytic Cracking”), coking unit gas oil, hydrocracking distillates.
  • FCC fluidized bed catalytic cracking recycling oil
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon feed treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed.
  • the aromatic compounds present in said hydrocarbon feed are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, Go-xylene, m-xylene, or p-xylene, or else aromatics having several aromatic rings. (polyaromatics) such as naphthalene.
  • the sulfur or chlorine content of the feed is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in an ascending or descending current, of the hydrocarbon feed and of the hydrogen into at least one fixed bed reactor.
  • Said reactor may be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon feed can advantageously be diluted by one or more re-injection (s) of the effluent, coming from said reactor where the aromatics hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the aromatics hydrogenation process according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a reactor in which the catalyst is in suspension ("slurry" according to Anglo-Saxon terminology).
  • the hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature between 30 and 350 ° C, preferably between 50 and 325 ° C, at a pressure between 0.1 and 20 MPa, from preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume speed VVH of between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon feed containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C .
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all of the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatics contained in the hydrocarbon feed.
  • the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed.
  • a process is carried out for the hydrogenation of benzene from a hydrocarbon feed, such as the reformate obtained from a catalytic reforming unit.
  • the benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon charge.
  • the sulfur or chlorine content of the feed is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane, octane.
  • the hydrogenation of benzene is carried out at a temperature between 30 and 250 ° C, preferably between 50 and 200 ° C, and more preferably between 80 and 180 ° C, at a pressure of between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at an hourly volume speed VVH of between 0.05 and 50 h 1 , preferably between 0.5 and 10 h 1 .
  • the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
  • the support is an AL-1 alumina having a specific surface area of 80 m 2 / g, a pore volume of 0.7 mL / g and a mesoporous median diameter of 12 nm. .
  • the support is contacted with 9.47 g of hydrated hexa nickel nitrate in a drum at 25 ° C which rotates at a speed of 40 to 50 revolutions per minute.
  • the drum is then heated to 62 ° C and rotates at a speed of 40 to 50 rpm for 15 minutes.
  • the molar ratio by weight of citric acid to nickel is 0.2.
  • the nickel content targeted in this step is 25% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Catalyst A is obtained containing 25% by weight of the element nickel relative to the total weight of the catalyst.
  • the characteristics of catalyst A thus obtained are reported in Table 1 below.
  • Example 2 (compliant)
  • the nickel content targeted in this step is 25% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Catalyst B is obtained containing 25% by weight of the element nickel relative to the total weight of the catalyst.
  • the characteristics of catalyst B thus obtained are reported in Table 1 below.
  • the support is contacted with 9.47 g of hydrated hexa nickel nitrate in a drum at 25 ° C which rotates at a speed of 40 to 50 revolutions per minute.
  • the drum is then heated to 62 ° C and rotates at a speed of 40 to 50 rpm for 15 minutes.
  • the glycolic acid to Ni molar ratio is 0.2.
  • the Ni content targeted in this step is 25% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Catalyst C is obtained containing 25% by weight of the element nickel relative to the total weight of the catalyst.
  • the characteristics of catalyst C thus obtained are reported in Table 1 below.
  • Example 4 non-compliant
  • the Ni content targeted in this step is 25% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Catalyst D is obtained containing 25% by weight of the element nickel relative to the total weight of the catalyst.
  • the characteristics of catalyst D thus obtained are reported in Table 1 below.
  • All the catalysts contain the contents targeted during the impregnation, that is to say 25% (characterized by fluorescence X) relative to the total weight of the catalyst.
  • the NiO particle sizes obtained after the calcination step were determined by X-ray diffraction analysis (XRD) on samples of the catalyst in powder form.
  • XRD X-ray diffraction analysis
  • Example 6 The catalysts A to D described in the examples above are tested against the reaction of hydrogenation of toluene.
  • the toluene hydrogenation reaction is carried out in a 500 mL stainless steel autoclave, fitted with a magnetic drive mechanical stirrer and capable of operating at a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C. and 200 ° C.
  • a quantity of 2 mL of catalyst Prior to its introduction into the autoclave, a quantity of 2 mL of catalyst is reduced ex situ under a hydrogen flow of 1 L / h / g of catalyst, at 400 ° C for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from air.
  • n-heptane supplied VWR®, purity> 99% chromanorm HPLC
  • the progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the toluene is completely hydrogenated to methylcyclohexane.
  • the hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • Catalytic activities measured for catalysts A to D are reported in Table 2 below. They are related to the catalytic activity measured for catalyst D (AHYD) Catalysts A, B and C according to the invention lead to very high selective hydrogenation activities.
  • AHYD catalyst D
  • Catalysts A, B and C according to the invention lead to very high selective hydrogenation activities.
  • the additive was not added which leads to catalyst D with a very low activity due to the size of the nickel particles of 20 nm, ie 10 times greater than for the catalysts according to invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Dispersion Chemistry (AREA)
EP20816493.9A 2019-12-17 2020-12-04 Katalysator zur hydrierung aromatischer verbindungen aus geschmolzenen salzen und organisches additiv Pending EP4077596A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914602A FR3104462B1 (fr) 2019-12-17 2019-12-17 Catalyseur pour l’hydrogenation de composes aromatiques obtenu a partir de sels fondus et d’un additif organique
PCT/EP2020/084661 WO2021122060A1 (fr) 2019-12-17 2020-12-04 Catalyseur pour l'hydrogenation de composes aromatiques obtenu a partir de sels fondus et d'un additif organique

Publications (1)

Publication Number Publication Date
EP4077596A1 true EP4077596A1 (de) 2022-10-26

Family

ID=69903458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20816493.9A Pending EP4077596A1 (de) 2019-12-17 2020-12-04 Katalysator zur hydrierung aromatischer verbindungen aus geschmolzenen salzen und organisches additiv

Country Status (6)

Country Link
US (1) US20230129143A1 (de)
EP (1) EP4077596A1 (de)
JP (1) JP2023506850A (de)
CN (1) CN114829554A (de)
FR (1) FR3104462B1 (de)
WO (1) WO2021122060A1 (de)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191227955A (en) 1912-12-04 1913-11-13 James Yate Johnson Improvements in, or connected with, the Manufacture of Hydrogen.
US4273680A (en) 1979-11-06 1981-06-16 Exxon Research & Engineering Co. Supported non-ferrous group VIII aluminate coprecipitated hydrogenation catalysts and process for their preparation
US5036032A (en) 1988-03-25 1991-07-30 Exxon Research And Engineering Company Selective catalysts and their preparation for catalytic hydrocarbon synthesis
DE4310971A1 (de) 1993-04-03 1994-10-06 Huels Chemische Werke Ag Nickel/Aluminiumoxid-Katalysator, Verfahren zu seiner Herstellung, seine Verwendung sowie Verfahren zur Hydrierung von aromatischen Kohlenwasserstoffen mit Hilfe des Katalysators
GB0227086D0 (en) 2002-11-20 2002-12-24 Exxonmobil Res & Eng Co Hydrogenation processes
DE102007012812A1 (de) 2007-03-16 2008-09-18 Süd-Chemie AG Verfahren zur Entschwefelung von Kraftstoffen und dafür geeigneter hochaktiver Nickel-Trägerkatalysator auf der Basis von Aluminiumoxid
EP2203250B1 (de) 2007-10-19 2015-04-08 Shell Internationale Research Maatschappij B.V. Katalysator zur hydrierung von ungesättigten kohlenwasserstoffen und herstellungsverfahren dafür
GB201000045D0 (en) 2010-01-04 2010-02-17 Johnson Matthey Plc Catalyst and method of catalyst manufacture
DK2776157T3 (da) * 2011-11-08 2021-03-29 Basf Se Fremgangsmåde til fremstilling af en reformeringskatalysator og reformering af methan
FR2984761B1 (fr) 2011-12-21 2014-12-26 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un additif organique et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
KR101634946B1 (ko) * 2015-06-30 2016-07-01 한국에너지기술연구원 니켈/알루미나 나노복합 촉매 또는 니켈/실리카-알루미나 혼성 나노복합 촉매를 이용한 메탄의 수증기 개질 방법
FR3061198B1 (fr) * 2016-12-22 2019-07-26 IFP Energies Nouvelles Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur a base de nickel
FR3061197A1 (fr) * 2016-12-22 2018-06-29 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
FR3076746B1 (fr) * 2018-01-15 2022-07-01 Ifp Energies Now Procede de preparation d'un catalyseur particulier d'hydrogenation selective par malaxage et impregnation
FR3076747B1 (fr) * 2018-01-15 2022-06-10 Ifp Energies Now Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage

Also Published As

Publication number Publication date
FR3104462B1 (fr) 2022-06-10
FR3104462A1 (fr) 2021-06-18
CN114829554A (zh) 2022-07-29
JP2023506850A (ja) 2023-02-20
WO2021122060A1 (fr) 2021-06-24
US20230129143A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
EP3740309B1 (de) Verfahren zur herstellung eines spezifischen katalysators zur selektiven hydrierung und hydrierung aromatischer verbindungen durch kneten
WO2015189191A1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel obtenu par comalaxage et ayant un diametre median macroporeux superieur a 300 nm et son utilisation en hydrogenation d'hydrocarbures
EP3154684B1 (de) Mesoporöser und makroporöser nickel-haltiger katalysator mit mittelerem makroporendurchmesser grösser als 20 nm und dessen verwendung hydrierung zur hydrierung von kohlenwasserstoffen
EP3154676A1 (de) Mesoporöser und makroporöser katalysator mit einer durch co-rühren hergestellten aktiven phase aus nickel mit einem makroporösen mittleren durchmesser zwischen 50 und 300 nm und dessen verwendung in der hydrierung von kohlenwasserstoffen
EP3781311B1 (de) Verfahren zur herstellung eines bimetallischen katalysators auf nickel- und kupferbasis zur hydrierung aromatischer verbindungen
WO2021018601A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2020148132A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
EP4003591A1 (de) Katalysator mit einer aktiven nickelphase in form von kleinen teilchen und nickel-kupfer-legierung
WO2021018604A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute
WO2020148131A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation
WO2022002674A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation de composes aromatiques obtenu a partir de sels fondus et un alliage nickel cuivre
FR3068984A1 (fr) Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique.
EP4077597A1 (de) Selektiver hydrierungskatalysator, der aus geschmolzenen salzen und einem organischen additiv erhalten ist
EP4077596A1 (de) Katalysator zur hydrierung aromatischer verbindungen aus geschmolzenen salzen und organisches additiv
WO2020148134A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
FR3104463A1 (fr) Catalyseur d’hydrogenolyse obtenu a partir de sels fondus et d’un additif organique
WO2022002675A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre
WO2020148133A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation
WO2023001639A1 (fr) Procede de preparation d'un catalyseur a partir de sels fondus et d'un support particulier
FR3068985A1 (fr) Procede d’hydrogenation des aromatiques mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique
WO2024017703A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
FR3110863A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus et un alliage nickel cuivre
FR3110867A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus
WO2019011566A1 (fr) Procede d'hydrogenation selective mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)