EP4076743A1 - Support catalytique comprenant des microsphères creuses - Google Patents

Support catalytique comprenant des microsphères creuses

Info

Publication number
EP4076743A1
EP4076743A1 EP20819772.3A EP20819772A EP4076743A1 EP 4076743 A1 EP4076743 A1 EP 4076743A1 EP 20819772 A EP20819772 A EP 20819772A EP 4076743 A1 EP4076743 A1 EP 4076743A1
Authority
EP
European Patent Office
Prior art keywords
support
hollow microspheres
microspheres
support according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20819772.3A
Other languages
German (de)
English (en)
Inventor
Robin CHAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axens SA
Original Assignee
Axens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axens SA filed Critical Axens SA
Publication of EP4076743A1 publication Critical patent/EP4076743A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/165Preparation from sulfides, oxysulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to supports, of the catalyst type, catalyst support or else absorbent mass, or adsorbent mass of the capture mass type, used in the petroleum or petrochemical industry, including natural gas, or even in the field of conversion. biomass. It also concerns their production methods, and all their uses.
  • the catalysts usually employed for the synthesis, conversion or treatment of hydrocarbons, natural gas, or petrochemical intermediates are composed of a support on which are optionally deposited one or more compounds chosen in particular from oxides.
  • metallic such as for example oxides of cobalt, nickel, molybdenum, iron, ruthenium etc., among hetero-polyanions, or among noble metals such as palladium, platinum, rhodium, etc.
  • Said compounds deposited constitute, after a possible sulfurization and / or reduction step, the active phase of the catalyst.
  • the support is, in general, based on porous oxides (alumina, silica, titanium oxide, magnesia), clays and mixtures of 'at least two of these materials.
  • the support is chosen so as to have a porosity profile / distribution suited to the type of reactions carried out. It can be shaped in the form of balls, pellets, granules or extrudates in particular (we will speak hereinafter of "grain” to define them generically, and we will keep this term for the grain once provided with the catalytic active phase, for brevity).
  • the weight of the catalytic supports In order to fill a given reactor volume, it is generally based on the weight of catalyst. It is generally sought to lighten the weight of the catalytic supports. In fact, the lightening of the supports makes it possible to reduce the mass of catalyst loaded into a given reactor volume, which is advantageous in several ways (economic, but also in terms of industrial implementation, with a lower mass to be loaded into the reactor. the reactor, and in terms of the service life of the supports, with less crushing of the supports located, for example, in a fixed catalyst bed, in the lower part of said bed.
  • the density of the support depends on its morphology: both external, that is to say by the shape and size of the grain, and internal, by its pore volume.
  • the weight of the catalytic support can be reduced by increasing its pore volume.
  • the number and / or the size of the pores that is to say the pore volume of the grains, is generally increased, which tends to negatively impact the mechanical strength of the grains, to weaken them.
  • mechanical strength is an important property of grains, in particular because it conditions their resistance to crushing, as well as to an attrition phenomenon, for example when the support is part of a moving bed.
  • a modification of the porous texture (pore volume, pore distribution) is likely to have an unfavorable impact on the catalytic performance, in particular because this modification of the porosity can lead to a modification in the diffusion of the reactants and the products of the reaction. reaction which takes place in a given reactor, for example, with a possible modification of the access of the reactants to the active sites of the support.
  • pore-forming compounds when mixing the various compounds or precursors of the compounds of the supports, before shaping and calcination: these pore-forming agents will burn / disappear during calcination, thus creating the desired porosity, and can in particular create additional porosity within the grains once calcined, which makes it possible to lighten the support.
  • patent EP 3 090 986 which relates to catalysts for catalytic reforming from alumina supports, and which describes the use of pore-forming agents added during the preparation of spheroidal particles of alumina, in particular solid pore-forming agents of the starch type, or liquids of the oil type, before their calcination.
  • hollow glass spheres of between 50 and 175 micrometers are added during the preparation of catalytic supports in the form of alumina or aluminosilicate beads. and playing the role of pore-forming agent: the hollow spheres, by melting during the final calcination, create porosity in the beads. It is also known from US Pat. No. 4,637,990 catalytic supports based on porous hollow microspheres: here the hollow microspheres constitute the support, and are intended to be impregnated with active catalytic phase, which at least partially fills the central cavity of the microspheres. .
  • the aim of the invention is therefore to improve media as defined above. It aims in particular to lighten them while maintaining their mechanical properties. It aims, more particularly still, to also maintain the pore distribution of the supports, and in particular also to maintain the catalytic performance of the supports once the catalytic phase has been added.
  • the subject of the invention is first of all a calcined support, in particular in the form of extrudates, pellets, granules or beads, said support comprising a porous matrix based on carbonates, clays, zeolites, of oxides, or of metal and / or silicon hydroxides, such that the matrix incorporates hollow mineral microspheres of a different composition and in a content of between 0.3 and 50% by weight, in particular between 0.5 and 20% by weight of the matrix.
  • the maximum hollow microsphere content is such as chosen to make it possible to maintain the catalytic and mechanical performance of the support obtained.
  • the content is less than or equal to 15% by weight, in particular between 0.5 and 10% by weight of the matrix. It is more particularly between 0.5 and 4.5% by weight of the matrix, even more particularly between 1 and 4.5% or between 1 and 4% by weight.
  • the term “support” is understood to mean a support which itself has catalytic properties, or a catalytic support intended to receive an active catalytic phase, the catalyst obtained possibly having variable proportions between support and active phase, or another adsorbent or absorbent mass, and which is used in the petroleum or petrochemical industry, in particular for the treatment or conversion of hydrocarbons, petroleum or even natural gas (but also for the treatment or conversion of biomass into clean fuels), as well as for the production and purification of the main petrochemical intermediates.
  • a calcined support containing hollow microspheres in this content is lighter than a similar support devoid of such hollow microspheres, thanks to the closed porosity that they provide to the support.
  • the microspheres are integral in the calcined support, they always have their closed cavity, they were not destroyed during the preparation of the support.
  • their outer walls do not have sufficient porosity for the active phase to be deposited there or to be significantly impregnated on their surface.
  • the content of hollow microspheres is at most 15%, in particular at least 1% by weight, and in particular between 0.5 and 20% by weight or between 1.5 and 5. % by weight of the matrix.
  • the content is between 0.5 and 4.5% by weight of the matrix, even more particularly between 1 and 45% or between 1 and 4% by weight of the matrix.
  • This minimum content makes it possible to obtain a reduction which is sufficiently significant to be really advantageous on an industrial scale.
  • the maximum content guarantees the cohesion of the support and the maintenance of its mechanical properties.
  • the maximum content proposed minimizes the modification of the pore texture (pore volume, pore distribution) by compared to the same support but which would be without microspheres.
  • the catalytic performance of a catalyst based on the calcined support according to the invention or on the support used directly as a catalyst or as an adsorbent is maintained.
  • the ratio of the smallest dimension of the pellets or granules or extrudates or balls relative to the (external) diameter of the hollow microspheres is at least 5/1, in particular at least 8/1, in particular at least 20 / 1 and in some cases can go up to at least 100/1, and at most 2000/1.
  • the support grains are therefore preferably of larger dimensions than that of the hollow microspheres, which guarantees the maintenance of the properties of the support with microsphere compared to the support without microsphere.
  • microspheres in the form of aluminum-silicate cenospheres (fillites) with a diameter of 100 micrometers to make, with a matrix, grains, extrudates in particular, extrudates in particular, of 1, 6 mm in diameter. It is also possible to use, for grains of the same size, hollow glass microspheres with a diameter of 20 micrometers.
  • the hollow microspheres have a median diameter D 50 less than or equal to 150 micrometers, in particular less than or equal to 110, 100, 80 or 50 micrometers, preferably of at least 1, or at least 5, or at least 10 , micrometers. These ranges are chosen so as to resist extrusion, while sufficiently lightening the support obtained and guaranteeing the maintenance of the properties of the support with microsphere compared to the support without microsphere.
  • the smallest dimension of the support of the pastilles, granules or beads or granules type is at least 0.3 mm, in particular between 0.5 and 6 mm.
  • the wall thickness of the hollow microspheres is at least 5% of the diameter, especially at least 10% of said diameter.
  • a sufficient thickness of their walls makes them sufficiently resistant mechanically, as long as their density is low enough to allow the targeted reduction
  • the support according to the invention has a porous texture similar to that of a support devoid of hollow microspheres.
  • the absolute density of the hollow microspheres is between 0.1 and 1.3 g / cm 3 , in particular between 0.25 and 0.85 g / cm 3 .
  • the melting point of the microspheres is at least 500 ° C, in particular at least 600 ° C, in particular at least 800 ° C or at least 1000 ° C and preferably at most 1500 ° C, in particular at most 1450 ° C.
  • these high melting temperatures their integrity can be preserved during the calcination of the support which incorporates them, the usual calcination temperature of the catalytic supports being generally lower than these values.
  • the wall of the hollow microspheres is not porous, that is to say it is full, devoid of porosity: the active catalytic phase will not be able to settle there and will not be able to impregnate these smooth walls. (this term being to be understood in comparison with the rest of the support, which is porous with porous / rough walls).
  • the gases contained inside the hollow microspheres are nitrogen or C0 2 or any gas, which may or may not be inert, and which may in particular be sulfur.
  • the hollow microspheres are for example made of glass, of the borosilicate glass type, or of ceramic.
  • This type of material has many advantages in the context of the invention: it is largely chemically inert, it withstands very high temperatures without melting, which means that it is able to withstand without deterioration (while preserving its closed porosity therefore) of the usual calcination temperatures.
  • the metal oxides or hydroxides of the matrix are chosen from at least one of the following compounds: carbonates / oxides / hydroxides of titanium, aluminum, copper, zirconium, zinc or silicon, alone or as a mixture.
  • the support according to the invention is chosen from alumina, silica, titanium dioxide, zeolites, copper oxides, zirconium oxides and oxides of metals or a mixture of at least two of these materials. It can also be carbonate (s) or clay (s).
  • the calcined support according to the invention comprises a porous matrix consisting essentially of zeolites or oxides, or aluminum and / or silicon hydroxides or titanium oxide, alone or as a mixture, in particular a silica mixture. -alumina.
  • the subject of the invention is also a catalyst which comprises the support described above and at least one element or compound which is active with respect to catalysis (also referred to above as active phase) and which impregnates and / or deposited on the matrix, in particular chosen by at least one element of group VIII B or IB or MB, in particular from one of the following elements: cobalt, molybdenum, nickel, palladium, platinum, rhodium, ruthenium, iron, tin.
  • Another subject of the invention is the use of the support described above as a catalyst. Indeed, for certain types of process, the support itself can serve as a catalyst.
  • a non-limiting example thus consists of a titanium-based support for the recovery of sulfur in an hydrocarbon stream of the Claus process type.
  • Another subject of the invention is the use of the support described above as an adsorption / absorption mass. Indeed, for certain types of impurities, the support itself can serve as an adsorbent.
  • a subject of the invention is also the use of the catalyst described above as a catalyst for a process for the synthesis, treatment or conversion of hydrocarbons, natural gas, vegetable oils, and / or biomass, in particular a hydrotreatment, hydroconversion, selective hydrogenation, hydrocracking, reforming, isomerization, NOx treatment, selective catalytic reduction, dehydrocyclization.
  • a subject of the invention is also a process for the production by extrusion of the support described above, which comprises a step of preparing a paste comprising on the one hand the hollow microspheres and on the other hand the clays, and / or zeolites or also carbonates / oxides and / or hydroxides of metal and / or silicon, a step of extruding said paste into extrudates, a step of drying the extrudates, a step of calcining the extrudates at a temperature below the melting point of the hollow microspheres, and optionally (then) a hydrothermal treatment step.
  • a subject of the invention is also a process for producing by coagulation in beads (a technique also called “oil-drop” according to the English terminology) of the support described above, which comprises a step of preparing a suspension in liquid phase. comprising on the one hand clays, and / or zeolites or also carbonates / oxides and / or hydroxides of metal and / or silicon, and on the other hand the hollow microspheres, then a step of coagulation into beads of said suspension , a step of drying the beads, then a step of calcining the beads at a temperature below the melting point of the hollow microspheres, and optionally (then) a step of hydrothermal treatment.
  • a subject of the invention is also a process for the production by granulation of the support described above, which comprises a step of preparing a paste comprising on the one hand the hollow microspheres, and on the other hand the clays, and / or zeolites. or also carbonates / oxides and / or hydroxides of metal and / or silicon, a step of granulating the paste into granules, a step of drying the granules, then a step of calcining the granules at a temperature below the temperature of melting of the hollow microspheres, and optionally (then) a hydrothermal treatment step.
  • the material of the microspheres is preferably chosen so that it has a higher melting point of at least 20 ° C, in particular at least 50 ° C, than the calcination temperature. pellets, extrudates or beads or granules: this ensures their integrity during calcination in order to maintain closed porosity.
  • micropores all the pores with diameters strictly less than 2 nm;
  • pores all the pores with diameters between 2 and 50 nm;
  • “hollow microsphere” a particle of substantially spherical geometry with a diameter of the order of a micrometer (between 1 ⁇ m and 1 mm) which is hollow and whose cavity (s) is / are filled with gas;
  • “median porous diameter Dp by volume” the diameter of the pores for which half of the pore volume V Hg measured by mercury porosimetry intrusion is in larger pores and the other half is in smaller pores;
  • the textural and structural properties of the support and of the catalyst described below are determined by the characterization methods known to those skilled in the art.
  • the total pore volume and the pore distribution are determined in the present invention by mercury porosimetry (cf. Rouquerol F .; Rouquerol J .; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Académie Press, 1999). More particularly, the pore volume by mercury intrusion V Hg is measured by mercury porosimetry according to standard ASTM D4284-12, for example using a model device Autopore III TM from Micromeritics TM.
  • the total pore volume VPT (that is to say the pore volume of the pores between 1A and 8 ⁇ m) is deduced from the measurements of the pore volume by mercury intrusion V Hg and of the volume accessible by helium pycnometry.
  • the specific surface area is determined in the present invention by the BET method, a method described in the same reference book as mercury porosimetry, and more particularly according to the ASTM D3663-03 standard.
  • the value of grain-to-grain crushing is obtained via a standardized test (standard ASTM D4179-01) which consists in submitting a millimeter object, such as a support in extruded form, or in the form of a ball or pellet, in in the case of the present invention, to a compressive force generating the rupture.
  • This test is used to indirectly measure the resistance of the material. The analysis is repeated on a certain number of particles taken individually and typically on a number of particles comprised between 50 and 200, preferably comprised between 100 and 200.
  • the average of the lateral forces of rupture on crushing measured constitutes the EGG. mean which is expressed in the case of spheroidal particles in unit of force (N).
  • the hollow microspheres contained in the support according to the invention are chosen from the hollow microspheres obtained as by-products of another process, in particular the combustion by-products, or from the hollow microspheres manufactured industrially, in particular. glass.
  • they can be by-products of the combustion of coal, in particular in coal-fired power stations, they are sometimes referred to under the term of “cenospheres”, (“cenospheres” according to the English terminology ).
  • cementospheres Made up of hollow microspheres of aluminum silicate, a material similar to glass, their cavities are filled with a mixture of nitrogen, oxygen and carbon dioxide. These are the lightest particles contained in fly ash.
  • they may be hollow microspheres manufactured industrially, in particular of glass, for example hollow glass microspheres marketed by the company 3M under the name “3M TM Glass Bubbles” for example. They are made of soda lime borosilicate glass ("soda-lime-borosilicate glass" according to English terminology).
  • the matrix of the support of the catalytic support according to the invention comprises at least one of the following carbonates / oxides / hydroxides: aluminum oxide, titanium, silicon, zirconium, zinc, magnesium, copper, nickel, iron, cerium.
  • it is produced from the corresponding oxides or hydroxides.
  • the support of the catalytic support according to the invention is produced essentially from clays and / or zeolites, alone or in mixtures with the preceding ones.
  • the support of the catalytic support according to the invention is made essentially from alumina and / or silica, alone or in mixtures with the preceding ones.
  • the support for the catalytic support according to the invention is made essentially from titanium oxide, alone or as a mixture with the preceding ones.
  • the support for the catalytic support according to the invention can also be made from carbonates, such as copper, zinc or nickel carbonates, alone or in mixtures with the preceding ones.
  • the support of the catalytic support according to the invention can also comprise doping compounds such as, for example, oxides chosen from the group consisting of boron oxide, zirconia, titanium oxide, phosphorus pentoxide. , with contents between 0.1% by weight and 3% by weight.
  • doping compounds such as, for example, oxides chosen from the group consisting of boron oxide, zirconia, titanium oxide, phosphorus pentoxide. , with contents between 0.1% by weight and 3% by weight.
  • the alumina-based supports are prepared for example:
  • Flash alumina or alumina resulting from the rapid dehydration of hydrargillite results from the rapid dehydration of Bayer's hydrate (hydrargillite) using a stream of hot gases, the inlet temperature of the gases in the Apparatus generally varying from 400 to 1200 ° C approximately, the contact time of the alumina with the hot gases being generally between a fraction of a second and 4-5 seconds.
  • Pseudo-boehmite gel or alumina gel can be obtained by precipitation of aluminum salts such as aluminum chloride, aluminum sulfate, aluminum nitrate, aluminum acetate with a base or by hydrolysis of aluminum oxides such as aluminum triethoxide.
  • the alumina gel can be used as it is, or can undergo a treatment prior to the dough preparation step to adjust the alkali content in the dough.
  • An Na 2 0 content of less than 0.5% by weight may be preferred.
  • the catalytic support according to the invention also retains a pore distribution substantially identical / analogous to the pore distribution of a support devoid of hollow microspheres
  • the catalytic support according to the invention with a matrix incorporating hollow microspheres, has a pore distribution substantially identical / analogous to the pore distribution of the support with the same matrix but without hollow microspheres and which would have been manufactured according to an identical process.
  • the matrix retains the same properties linked to this porosity, in particular its capacity for impregnation by the active catalytic phase in the case of a support intended to receive an active catalytic phase, and ability to obtain the desired catalytic / adsorbent performance.
  • the catalytic support devoid of hollow microspheres when the catalytic support devoid of hollow microspheres (only composed of a matrix, therefore according to the terminology of the invention) does not include macropores, the catalytic support comprising porous microspheres is also devoid of macroporous pores.
  • the catalytic support devoid of hollow microspheres has a monomodal or bimodal pore distribution, the catalytic support comprising hollow microspheres retains this respectively monomodal or bimodal distribution.
  • the catalytic support according to the invention mainly contains, in particular essentially, alumina
  • the catalytic support according to the invention has a total pore volume (VPT) greater than or equal to 0.60 cm 3 / g, preferably greater than or equal to 0.65 cm 3 / g.
  • the catalytic support according to the invention mainly contains, in particular essentially titanium dioxide
  • the catalytic support according to the invention has a total pore volume VPT greater than or equal to 0.25 cm 3 / g, preferably greater than or equal to at 0.35 cm 3 / g, in particular when the support contains titanium dioxide alone.
  • the catalytic support according to the invention has a specific surface area of at least 10 m 2 / g, of at least 50 m 2 / g, of at least 120 m 2 / g, preferably 150 m 2 / g.
  • the specific surface is at most 1000 m 2 / g.
  • the catalytic support according to the invention has a specific surface area of at least 20 m 2 / g and of more than 1000 m 2 / g, preferably of 'at most 450 m 2 / g.
  • the support according to the invention is manufactured by an extrusion process, that is to say a process comprising an extrusion step.
  • the process for preparing the support according to the invention comprises the following steps:
  • Step i of preparing the dough comprising hollow microspheres can then comprise different steps according to different embodiments, in particular three embodiments described below.
  • step i of preparing the dough comprises the following steps: a1. we start with a powder suitable for use in the manufacture of a catalytic support, b1. said powder is rehydrated, c1. said rehydrated powder is kneaded in the presence of the hollow microspheres.
  • the powder is chosen from alumina resulting from the rapid dehydration of hydrargillite, alumina gels, alumina hydroxides, carbonates, titanium dioxide, clays, silica, zeolites, copper oxides, zirconium oxides, alone or as a mixture.
  • the powder rehydration step b1 suitable for use in the manufacture of a catalytic support, comprises: a step b11 of bringing the powder and water into contact. This step is preferably carried out in equipment of the mixer type in which the powder is placed in the presence of water. Optionally, a complexing and / or peptizing agent can be used. Preferably, the temperature during this step is between 50 and 100 ° C, and its duration is between 3 hours and 72 hours. a step b12 of filtering the suspension obtained at the end of step b11. This step is carried out in a filter and a cake is recovered which can optionally be washed with water.
  • the cake can for example be dried at a temperature between 60 and 150 ° C.
  • the cake is dried so that the rehydrated dried powder, for example the dried alumina powder, exhibits a loss on ignition measured by calcination at 1000 ° C. of between 20 and 40%.
  • Step c1 of kneading the rehydrated powder, optionally dried, resulting from step b1 is carried out, preferably directly, in the presence of hollow microspheres, and optionally in the presence of a pseudo-boehmite gel and / or in presence of an acid.
  • the mixing step is carried out by any manner known to those skilled in the art, and in particular using a Z-arm mixer or a twin-screw mixer.
  • the mixing step c1 is carried out in the presence of additives which make it possible to improve the efficiency of the mixing, such as plasticizers and binders, known to those skilled in the art.
  • step c1 of kneading the rehydrated powder is carried out in the presence of a pseudo-boehmite gel in a content preferably between 1 and 30% by weight relative to the rehydrated powder, for example. rehydrated alumina.
  • step c1 of mixing the rehydrated powder is carried out in an acidic medium.
  • the acid content used is in the range of 0.1 to 15% by weight based on the oxide content.
  • the base content used is in the range of 0.1 to 10% by weight based on the oxide content.
  • the powder capable of being used for the manufacture of a support is alumina.
  • the dough preparation step then comprises the following steps: a1. we start with an alumina powder, resulting from the rapid dehydration of hydrargillite, b1. the starting alumina is rehydrated, c1. the rehydrated alumina is kneaded in the presence of the hollow microspheres
  • step i for preparing the paste comprises the following steps: a2.
  • a pseudo-boehmite b2 gel said pseudo-boehmite gel is kneaded in the presence of water and hollow microspheres
  • the pseudo-boehmite gel contains aluminum hydrates, and is therefore already partially hydrated.
  • Step b2 of mixing the pseudo-boehmite gel is carried out in the presence of water and in the presence of hollow microspheres, and optionally in the presence of a blowing agent and / or in the presence of an acid.
  • the mixing step is carried out by any manner known to those skilled in the art, and in particular using a Z-arm mixer or a twin-screw mixer.
  • the mixing step b2 is carried out in the presence of additives making it possible to improve the efficiency of the mixing, such as plasticizers, binders, known to those skilled in the art.
  • Step b2 of kneading the rehydrated powder is preferably carried out with a water content necessary to obtain a paste with a rheology compatible with subsequent extrusion.
  • the acid content is in the range of 0.1 to 15% by weight based on the oxide content.
  • step b2 of kneading the rehydrated powder is carried out in an acidic medium.
  • This neutralization can be carried out using a base.
  • the neutralizer is usually introduced at the end of mixing in the mixer.
  • the acid content is in the range of 0.1 to 15% by weight based on the oxide content.
  • the base content used is in the range of 0.1 to 10% by weight based on the oxide content.
  • a third embodiment of the paste comprising hollow microspheres comprises the following steps: a3. one starts from a powder, in particular an alumina powder resulting from the rapid dehydration of hydrargillite, b3. said powder is shaped in the form of beads in the presence of a porogen, c3. the said balls are matured, d3. said beads are kneaded after ripening in the presence of hollow microspheres.
  • the shaping step b3 in the form of beads can be carried out by any technique known to those skilled in the art. It is carried out directly on the powder, in particular the alumina powder, by rotating technology.
  • the term “rotating technology” is understood to mean any device in which the agglomeration is carried out by contacting and rotating the product to be granulated on itself. As an apparatus of this type, mention may be made of the rotating bezel, the rotating drum.
  • the size of the beads obtained is not critical. It is generally between 1 and 5 mm.
  • Step c3 of maturing the beads from step b3 is carried out by maintaining the alumina beads in an atmosphere with controlled humidity.
  • the temperature is preferably between 30 and 100 ° C, preferably between 80 and 100 ° C.
  • the duration of the ripening can vary between a few hours and a few tens of hours, preferably between 6 and 24 hours.
  • One practical embodiment of the ripening is to inject water vapor onto the alumina beads.
  • Step d3 of mixing the beads from maturing step b3 is carried out in the presence of water and acid, so as to break them up and obtain a homogeneous paste capable of being extruded.
  • the acid used can be a strong acid or a weak acid.
  • the amount of acid relative to the alumina is generally between 0.1 to 15% by weight relative to the oxide content, more preferably between 0.5 and 10% by weight.
  • the mixing can be carried out by any manner known to those skilled in the art, and in particular using a Z-arm mixer or a twin-screw mixer.
  • the mixing step is carried out in the presence of one (or more) pore-forming agent.
  • pore-forming compounds used there may be mentioned, by way of example, wood flour, charcoal, sulfur, tars, plastics or emulsions of plastics such as polyvinyl chloride, polyvinyl alcohols, mothballs or the like, and in general any organic compounds capable of being removed by calcination.
  • the amount of pore-forming compounds added is not critical, their size not more. In general, the amount of porogens is between 1 and 30% by weight relative to the rehydrated powder considered, for example rehydrated alumina.
  • Step ii of extruding the paste resulting from preparation step i is carried out in an extrusion die, for example using a piston or an extrusion screw, preferably without intermediate step, and produces the catalytic support according to the invention in the form of extrudates.
  • This extrusion step can be carried out by any method known to those skilled in the art.
  • the extrusion step is preferably carried out in a temperature range of between 5 ° and 100 ° C, preferably at room temperature.
  • the extrusion step is carried out so that the paste leaves the extrusion die at a pressure between 1.0 and 20.0 MPa, preferably a pressure between 3.0 and 9.5 MPa.
  • One skilled in the art will adjust the water content of the dough, if necessary, to adjust the viscosity of the dough to the extrusion pressure range.
  • the catalytic support extrudates according to the invention have a diameter which is greater than or equal to 0.3 mm, preferably greater than or equal to 0.8 mm, and / or a diameter less than or equal to 10 mm, preferably less than or equal to 4.0 mm.
  • Their length is preferably between 1 and 20 mm, preferably between 2 and 10 mm.
  • the catalytic support extrudates according to the invention have a grain-to-grain crushing (EGG) of at least 0.5 kg / mm, preferably at least 0.8 kg / mm and / or preferably at most. 10.7 kg / mm.
  • GSG grain-to-grain crushing
  • Step iii of drying the extrudates resulting from the extrusion step is carried out, preferably directly after the extrusion step, for example in an oven or an oven, with a drying temperature preferably between 80 and 200 ° C, for a period of typically 3 to 24 hours.
  • Stage iv of calcination of the extrudates resulting from the drying stage is carried out, preferably directly after the drying stage, in an oven or an oven, with a calcination temperature of between 200 ° C and 1400 ° C. , preferably between 400 and 1200 ° C, more preferably between 450 and 800 ° C for a period typically of 1 to 8 hours.
  • the humidity level during this step is 0 to 800 g of water per kg of dry air.
  • the calcination step is carried out with a temperature below the melting point of the hollow microspheres, preferably at least 20 ° C lower, more preferably at least 50 ° C lower.
  • the material of the hollow microspheres is chosen according to the calcination temperature of the catalytic support, so that the melting temperature of the hollow microspheres is at least 20 ° C higher, preferably at least 50 ° C. above the calcination temperature of the catalytic support.
  • the calcination temperature is between 450 ° C and 800 ° C.
  • the calcination temperature is between 800 ° C and 1400 ° C.
  • microspheres are thus chosen as a function of the temperature “seen” / undergone by the support which incorporates them during heat treatments of the calcination type.
  • the calcination temperature depends on the target matrix for the support and the properties, particularly in terms of porosity, targeted for the support: thus, if the support matrix is alumina-based, calcination can be carried out around 500 ° C. to have a high accessible surface and a relatively small pore diameter, whereas calcination at 900 ° C will lead to a smaller accessible surface and higher pore diameters.
  • Calcination step iv is preferably carried out by first carrying out a temperature rise ramp so as to control the temperature rise in the extrudate, for example in a muffle furnace or in a through bed.
  • the temperature ramp is typically 1 to 10 ° C per minute, starting from room temperature.
  • the temperature of the calcination step is kept fixed, for example, at a temperature between 450 ° C and 800 ° C: for the glass spheres for a period of 1 to 3 hours. Finally, the temperature drop of the calcination step is done freely, gradually.
  • step v of hydrothermal treatment preferably in a confined atmosphere, also called “autoclaving”, of the extrudates resulting from the calcination step is carried out, preferably directly after the calcination step, in an autoclave, in particular of type of that described in patent application EP 0387 109.
  • the temperature during autoclaving can be between 150 and 250 ° C for a period of time between 30 minutes and 3 hours.
  • the treatment can be carried out under saturated vapor pressure or under a partial pressure of water vapor at least equal to 70% of the saturated vapor pressure corresponding to the treatment temperature.
  • This hydrothermal treatment in a confined atmosphere therefore consists here of a treatment by autoclaving in the presence of water at a temperature above ambient temperature.
  • the alumina can be treated in different ways, or more generally, the shaped support according to the invention.
  • the alumina can be impregnated with acid prior to its passage in the autoclave, the autoclaving of the alumina being carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave being able to be acidic or not.
  • This impregnation, prior to autoclaving can be carried out dry or by immersing the alumina in an acidic aqueous solution.
  • dry impregnation is meant bringing the alumina into contact with a volume of solution less than or equal to the total pore volume of the treated alumina.
  • the impregnation is carried out dry. Manufacturing process of balls / spherical particles by coaqulation in qouttes
  • the support according to the invention is manufactured by a drop coagulation process (or "oil-drop").
  • the process for preparing the support according to the invention preferably comprises the following steps:
  • the spheroidal alumina particles according to the invention have a macroporous median diameter D 50 seen by scanning electron microscopy of between 0.05 gm (50 nm) and 30 gm (30,000 nm).
  • the macroporous median diameter is between 0.05 gm (50 nm) and 30 gm (30,000 nm), preferably comprised between 1 gm (1000 nm) and 5 gm (5000 nm).
  • It can be, for example, between 500 micrometers and 5 mm for hollow microspheres of the order of 20 to 100 micrometers in diameter.
  • the spheroid particles according to the invention advantageously exhibit a level of macroporosity within a particle of less than 30% of the total pore volume, preferably less than 25%, and particularly preferably less than 20%.
  • Step v of preparing a suspension
  • the preparation of the suspension of step v is carried out by mixing with vigorous stirring an acidic aqueous solution to which one or more types of boehmite powder have been added.
  • alumina charge When preparing the boehmite suspension, it is possible to add an alumina charge.
  • the amount of filler used, expressed in% by weight of AI 2 0 3, is less than or equal to 30% by weight relative to the total weight of Al 2 0 3 equivalent of the suspension.
  • This charge can be chosen from the group formed by the so-called transition aluminas comprising at least one rho, chi, eta, gamma, kappa, theta, delta and alpha phase.
  • the alumina filler may be in the form of powder or alumina particles obtained by grinding and sieving shaped alumina bodies; these particles have, after grinding, a median diameter D 50 less than or equal to 50 ⁇ m, preferably less than 30 ⁇ m and even more preferably less than 20 ⁇ m.
  • the level of acid involved in the suspension is such that the ratio of the mass of said acid relative to the dry mass of the source (s) of boehmite and of the charge (if the latter is present in the suspension) is between 0 , 5 and 20% by weight, preferably between 1 and 15%.
  • the acidic aqueous solution is a solution of a strong mineral acid, such as HN0 3 OR H 2 S0 4.
  • the proportion of water used in the suspension is calculated so that the mass ratio dry (corresponding to the mass of boehmite powder plus optionally the load, expressed in Al 2 O 3 equivalent) on the total mass of water of the mixture is between 10 and 50% by weight, preferably between 15 and 40%.
  • the suspension can comprise a salt of one or more elements chosen from the groups IA, MA, NIA, IVA, VA, which act as promoters in the catalysts described below. These elements will thus be incorporated into the final spheroidal particles after drying and calcination.
  • the proportion of the metal salt (s) is calculated so that the mass content of elements of groups IA, NA, NIA, IVA, VA in the final product, after calcination, is between 0.01 and 2% by weight, preferably between 0.05 and 1% by weight.
  • Step vi of adding microspheres and a porogen consists of:
  • the pore-forming agent is in particular those described in patent EP 3 090986.
  • This step is concomitant with the previous step v.
  • the pore-forming agent is a solid pore-forming agent having a particle size of between 0.05 and 30 ⁇ m in the suspension obtained in step a).
  • the pore-forming agent is a liquid pore-forming agent.
  • a liquid pore-forming agent, at least one surfactant and optionally water, or an emulsion comprising at least one liquid pore-forming agent, at least one surfactant and water are added to the suspension of the liquid.
  • liquid pore-forming agent the surfactant and optionally water directly into the aqueous suspension containing the boehmite, that is to say without forming an emulsion beforehand, either by adding them at the same time, or by successive stages.
  • the same proportions of the various constituents described below are used.
  • Step vii of shaping the spheroid particles by droplet coagulation
  • step vii of the preparation process the spheroidal particles are shaped by drop coagulation, from the mixture obtained in step vi.
  • This method consists in passing the mixture obtained in step vi, for example the mixture (suspension of alumina + solid pore-forming agent) in a draining pot made up of nozzles having an orifice of calibrated size so as to form droplets.
  • the draining pot is placed at the head of a column containing an upper organic phase and a lower phase consisting of a basic aqueous phase.
  • the organic phase is chosen in such a way that it has a density slightly lower than that of water.
  • step vii of shaping the particles comprises the following steps: vii1) the mixture is transferred into a drip tray equipped with nozzles whose orifices are calibrated to form droplets of at least 500 micrometers; vN2) the mixture is drained by gravity in a column containing an organic phase in the upper part and a basic aqueous phase in the lower part so as to collect the spheroidal particles at the bottom of the basic aqueous phase.
  • Surfactant-type additives can be added to the aqueous phase to promote the passage of the interface and the coagulation of the particles in the basic aqueous phase.
  • the immiscible organic phase can be chosen from fats, mineral oils and waxes, fatty substances, hydrocarbons and petroleum fractions.
  • the organic phase is a paraffinic cut having 10 to 14 carbon atoms, formed from normal- and iso-paraffins, and having a boiling point of between 220 and 350 ° C.
  • the basic aqueous phase is, for example, a solution of ammonia, ammonium carbonate or amines.
  • the basic aqueous phase is an ammonia solution.
  • a compound such as urea can also be introduced into the suspension of step a) and then decomposed in the lower aqueous phase of the column.
  • This compound according to US Pat. No. 4,542,113, allows easier adjustment of the rise in viscosity.
  • the particles are recovered and separated from the aqueous phase, for example on a sieve. It is also possible to subject the particles thus formed to one or more maturing stages, as taught in application EP 0001023.
  • step ix of the preparation process the particles obtained in step viii are dried.
  • Step ix of drying the spheroidal particles according to the process of the invention is carried out at a temperature of between 40 and 150 ° C., in dry or humid air, for generally between 30 minutes and 20 hours.
  • the drying protocol may optionally include one or more temperature stages. It may optionally require varying humidity levels during drying, preferably between 10 and 1000 g of water per kg of dry air, even more preferably between 40 and 1000 g of water per kg of air. dry. > Calcination step x:
  • step x of the preparation process the particles obtained in step ix are calcined.
  • Step x of calcination of the spheroidal particles is carried out at a temperature between 450 and 900 ° C, preferably between 550 and 800 ° C for 0.5 to 12 hours, preferably between 1 and 8 hours, more preferably still. between 1 and 5 hours.
  • This calcination step can include one or more temperature stages.
  • the calcination step is carried out with a temperature below the melting point of the hollow microspheres, preferably at least 20 ° C, more preferably at least 50 ° C.
  • the calcination temperature is between 450 ° C and 900 ° C, preferably between 550 and 800 ° C, for 0.5 to 12 hours, from preferably between 1 and 8 hours, more preferably between 1 and 5 hours.
  • Calcination step iv is preferably carried out by first performing a temperature rise ramp so as to control the temperature rise in the extrude, for example in a muffle furnace or in a through bed.
  • the temperature ramp is typically 1 to 10 ° C per minute, starting from room temperature.
  • the temperature of the calcination step is kept fixed, for example, at a temperature between 500 and 650 ° C for a period of 1 to 3 hours.
  • the temperature drop in the calcination step is done freely, gradually.
  • the support according to the invention is shaped in the form of granules by a granulation process.
  • the process for preparing the support according to the invention preferably comprises the following steps: a step xi of granulation of a paste comprising hollow microspheres a drying step xii a calcination step xiii optionally, a treatment step xiv hydrothermal.
  • Granulation step xi comprises the following steps:
  • the step of shaping said powder in the presence of hollow microspheres in the form of granules can be carried out by any technique known to those skilled in the art. It is carried out directly on the powder by rotating technology.
  • rotating technology is meant any device in which the agglomeration is carried out by contacting and rotating the product to be granulated on itself.
  • the size of the granules obtained is not critical. It is generally between 1 and 5 mm.
  • the step of maturing the granules from the previous step is carried out by maintaining the alumina beads in an atmosphere with controlled humidity.
  • the temperature is preferably between 30 and 100 ° C, preferably between 80 and 100 ° C.
  • the duration of the ripening can vary between a few hours and a few tens of hours, preferably between 6 and 24 hours.
  • a practical embodiment of the ripening consists in injecting living water vapor onto the alumina balls.
  • Drying step xii is carried out in the same way as drying step iii of the extrusion process.
  • Calcination step xiii is carried out in the same way as drying step iv of the extrusion process.
  • the optional hydrothermal treatment step xiv is carried out in the same way as the hydrothermal treatment step v of the extrusion process.
  • the support according to the invention or resulting from the process according to the invention can be used as catalysts, catalyst supports or adsorbents. It is known to those skilled in the art that catalytic supports can then be converted into catalysts, so we will not go into details.
  • the catalytic supports according to the invention can in particular be used to manufacture catalysts for hydrotreatment, hydroconversion, selective hydrogenation, hydrocracking, reforming, isomerization, DeNox, selective catalytic reduction (SCR) processes ( or “Selective Catalytic Reduction” according to the English terminology), in steam reforming, cracking, dehydrogenation, dehydrocyclization of hydrocarbons or other organic and / or Claus compounds.
  • SCR selective catalytic reduction
  • metals are deposited on / impregnate the catalytic support according to the invention according to techniques well known to those skilled in the art, for example by impregnation from a solution of metal precursors.
  • Impregnation can for example be carried out according to the known method of dry impregnation, according to which the desired quantity of elements is introduced in the form of salts soluble in the chosen solvent, for example demineralized water, so as to fill as exactly as possible the porosity of the support.
  • the support thus filled with the solution is preferably dried.
  • the preferred support is alumina which can be prepared from any type of precursors and shaping tools known to those skilled in the art.
  • the metals can be deposited by co-impregnation or by successive addition.
  • the metals for example cobalt and molybdenum
  • the metals are deposited on the support in a single step, by dry impregnation of said support with a solution containing the desired amount of metals, here cobalt and molybdenum.
  • the first metal and then the second metal for example cobalt and then molybdenum, or vice versa, molybdenum and then cobalt, are deposited by impregnation.
  • a first impregnation step is carried out on the support of the two metals, for example cobalt and molybdenum.
  • a second impregnation of only two metals is then carried out, in order to adjust the molar ratio between the two metals.
  • the impregnated support before the second impregnation, is dried and optionally calcined.
  • doping elements such as phosphorus or boron can be added to the impregnation solutions.
  • the support according to the invention is preferably subjected to a calcination treatment.
  • the purpose of this treatment is to transform the molecular precursors of metals into the oxide phase. In this case, it is an oxidizing treatment, but a simple drying of the support d can also be carried out.
  • the support according to the invention is subjected to a calcination treatment, prior to its implementation in the process according to the invention. Said calcination treatment is advantageously carried out in air or in dilute oxygen, at a temperature between 200 ° C and 550 ° C, preferably between 300 ° C and 500 ° C.
  • a calcination temperature is chosen so that it remains below the melting point of the hollow microspheres, preferably with the same temperature difference as with the calcination carried out on the support before impregnation with metals).
  • the catalyst produced from said support according to the invention has a reduced density compared to the catalyst produced from a conventional support without hollow microspheres. Its porous texture is substantially identical to that of a catalyst from a support devoid of hollow microspheres.
  • the hollow microspheres used according to the invention are of several types and are described in Table 1 below: The thermal stability indicated is to be understood as the temperature above which the microspheres see their properties change significantly, without however melting ( therefore a temperature lower than the melting temperature). Table 1
  • a first series of catalyst supports with and without hollow microspheres is prepared by an extrusion process with a step i of preparing the paste according to the second embodiment.
  • the resulting paste is kneaded for 15 minutes. Then, the paste is neutralized with a basic solution, and kneaded again for 5 minutes.
  • the resulting paste is passed through the 2.1 mm three-lobed die of a laboratory piston extruder at an extrusion pressure of between 6.0 and 9.5 MPa.
  • the supports are then dried for two hours in an oven at 140 ° C., then calcined for 2 hours at a temperature of 600 ° C. in humid air containing 40 g of water per kg of dry air to obtain so-called “supports”.
  • support 1 in Table 2 below.
  • Porous diameters Dp are measured by the conventional mercury porosimetry method according to ASTM D4284-12 at a maximum pressure of 4000 bar, using a surface tension of 484 dyne / cm and a contact angle for amorphous alumina supports of 140 °, in order to determine the pore distribution of the samples.
  • the supports 3 to 8 according to the invention have an absolute density lower than that of the comparative supports 1 and 2 without a hollow microsphere.
  • the absolute density decreases as the content of hollow microspheres increases, as shown by the comparison of the absolute density difference values AD abs .
  • the lightening power of the A microspheres is greater than that of the C microspheres, due to the lower absolute density of the A microspheres compared to that of the C microspheres.
  • the supports 3 to 8 according to the invention are manufactured with an extrusion pressure in ranges similar to those of the comparative supports 1 and 2, that is to say between 6.5 and 9.5 MPa.
  • the supports 3 to 8 according to the invention have a porous median diameter by volume denoted Dp which is slightly less than or equal to that of the comparative supports 1 and 2.
  • Supports 3 to 8 according to the invention have a pore volume by mercury intrusion per volume of grain (V Hg / V grain ) substantially identical to that of comparative supports 1 and 2, even though the absolute density of supports 3 to 8 according to the invention is much less than that of comparative supports 1 and 2.
  • a second series of catalyst supports with and without hollow microspheres is prepared by an extrusion process with a paste preparation step i according to the second embodiment.
  • the resulting paste is kneaded for 15 minutes. Then the paste is neutralized with a base, and kneaded again for 5 minutes.
  • the resulting paste is passed through the 2.1mm quadrilobe die of a single-screw extruder of a pilot unit to obtain extrudates.
  • the extruded supports are then dried overnight in an oven at 140 ° C and then calcined for 2 hours at a temperature of 580 ° C in humid air containing 40 g of water per kg of dry air.
  • the supports 10 and 11 according to the invention have an absolute density and a packed filling density "DRT" lower than those of the comparative support 10, while keeping a pore volume per grain volume (V Hg / V grain ) similar to the support. 10 comparative.
  • the comparative support 9 and the supports 10 and 11 according to the invention have an essentially monomodal pore distribution, with similar porous median diameters and a percentage of pore of the same size of approximately 80% by volume as indicated by % single-mode column in Table 3 above. (Volume at Dmedian + 15A - Volume at Dmedian - 15A) / (Volume at Dmedian + 30A - Volume at Dmedian - 30A). This means that 80% of the pore volume at median diameter +/- 30A falls within a range of median diameter +/- 15A.
  • the results of the grain-to-grain crushing test are satisfactory (greater than 0.8 kg / mm).
  • the specific surface is expressed in m 2 per gram.
  • the presence of porous microspheres in the support increases the specific surface area of the support according to the invention.
  • the specific surface of the supports 10 and 11 according to the invention is comparable to the specific surface of the comparative support 9.
  • the catalytic supports 10 and 11 according to the invention are suitable for use in the manufacture of catalysts.
  • a third series of catalyst supports with and without hollow microspheres is prepared by an extrusion process with a step i of preparing the paste according to the second embodiment.
  • the starting point is titanium dioxide powder G5, marketed by the company Tronox. It is rehydrated and said mixture is kneaded in the presence of an aqueous solution acidified with a strong mineral acid and with an organic additive to facilitate the extrusion and following the tests for a content of hollow microspheres. The dough obtained is kneaded for 30 minutes.
  • the resulting paste is passed through the 4mm cylinder die of a screw extruder to obtain extrudates.
  • extruded supports are then dried overnight in an oven at 140 ° C and then calcined for 2 hours at a temperature of 450 ° C in humid air containing 40 g of water per kg of dry air. They are called "support 3" in the absence of the addition of hollow microspheres
  • the support 13 according to the invention has an absolute density and a packed filling density "DRT" lower than those of the comparative support 12.
  • Support 12 can be used as is as a catalyst for the first Claus reactor for the following reactions:
  • a fourth series of catalyst supports with and without hollow microspheres is prepared by a drop coagulation process.
  • a suspension containing 20% of mineral matter (expressed in% by weight of Al 2 0 3 ) is prepared by mixing an alumina charge g having a volume median diameter of 50 ⁇ m and the Pural SB3 boehmite powder in an acidified aqueous solution containing 3.6% by weight of HNOs / AlsOs.
  • the solid fraction of Al 2 O 3 is brought to 88% by weight by the boehmite and to 12% by the alumina charge g.
  • This suspension also contains a pore-forming agent and a surfactant.
  • the pore-forming agent is an organic phase comprising a mixture of paraffins containing between 10 and 12 carbon atoms, the boiling point of which is approximately 290 ° C. and of density 0.75 g / cm 3 .
  • the microspheres are also added if necessary in the suspension.
  • the suspension is directly subjected to mixing until the viscosity of the mixture is between 250 and 400 mPa.s. At this viscosity, the suspension has the rheological properties suitable for draining through nozzles. Spherical beads / particles are obtained.
  • the beads are then dried overnight in an oven at 140 ° C and then calcined for 2 hours at a temperature of 580 ° C in humid air containing 40 g of water per kg of dry air.
  • Support 4 The characteristics of the supports obtained are collated in Table 7 below: the supports in the form of beads without the addition of hollow microspheres are called Support 4:
  • the support 15 according to the invention has an absolute density and a packed filling density "DRT" lower than those of the comparative support 14.
  • DVT packed filling density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention concerne un support calciné, notamment catalyseur ou support catalytique ou masse adsorbante/absorbante, se présentant notamment sous forme d'extrudés, de pastilles, de granulés ou de billes, ledit support comprenant une matrice poreuse à base de carbonates, d'argiles, de zéolithes, d'oxydes, ou d'hydroxydes métalliques et/ou de silicium, et la matrice incorpore des microsphères creuses minérales d'une composition différente et dans une teneur comprise entre 0,3 et 50% en poids, notamment entre 0,5 et 15% en poids, de la matrice.

Description

Support catalytique comprenant des microsphères creuses Domaine technique
La présente invention concerne les supports, de type catalyseur, support de catalyseur ou encore masse absorbante, ou masse adsorbante du type masse de captation, utilisés dans l’industrie pétrolière, pétrochimique, incluant le gaz naturel, ou encore dans le domaine de la conversion de biomasse. Elle concerne également leurs modes de production, et toutes leurs utilisations.
Technique antérieure
De manière connue, les catalyseurs usuellement employés pour la synthèse, la conversion ou le traitement d’hydrocarbures, du gaz naturel, ou des intermédiaires pétrochimiques, sont composés d'un support sur lequel sont optionnellement déposés un ou des composés choisis notamment parmi les oxydes métalliques, tels que par exemple les oxydes de cobalt, de nickel, de molybdène, de fer, de ruthénium etc., parmi les hétéro-polyanions, ou parmi les métaux nobles tel que le palladium, le platine, le rhodium, etc. Lesdits composés déposés constituent, après une éventuelle étape de sulfuration et/ou de réduction, la phase active du catalyseur.
Le support, qu’il soit destiné ou non à être imprégné d’une telle phase active, est, en général, à base d'oxydes poreux (alumine, silice, oxyde de titane, magnésie), d'argiles et de mélanges d'au moins deux de ces matériaux. Le support est choisi de manière à présenter un profil/une distribution de porosité adaptés au type de réactions mises en oeuvre. Il peut être mis en forme sous forme de billes, de pastilles, de granulés ou d’extrudés notamment (on parlera la suite de « grain » pour les définir de façon générique, et on conservera ce terme pour le grain une fois muni de la phase active catalytique, par soucis de concision).
Pour remplir un volume de réacteur donné, on raisonne généralement en poids de catalyseur. On cherche généralement à alléger le poids des supports catalytiques. En effet, l’allègement des supports permet de réduire la masse de catalyseur chargé dans un volume de réacteur donné, ce qui est avantageux à plusieurs titres (économique, mais également en termes de mise en oeuvre industrielle, avec une masse moindre à charger dans le réacteur, et en termes de durée de vie des supports, avec un écrasement moindre des supports se trouvant, par exemple, dans un lit fixe de catalyseur, dans la partie la plus basse dudit lit. Or la densité du support dépend de sa morphologie : à la fois externe, c’est-à-dire de par la forme et la dimension du grain, et interne, de par son volume poreux. Lorsque l’on fait varier la morphologie interne du grain, on peut faire diminuer le poids du support catalytique en augmentant son volume poreux. Ce faisant, on augmente généralement le nombre et/ou la taille des pores, c’est-à-dire le volume poreux des grains, ce qui tend à impacter négativement la résistance mécanique des grains, à les fragiliser. Or la résistance mécanique est une propriété importante des grains, en particulier parce qu’elle conditionne leur résistance à l’écrasement, ainsi qu’à un phénomène d’attrition, par exemple quand le support fait partie d’un lit mobile. De plus, une modification de la texture poreuse (volume poreux, distribution poreuse) est susceptible d’avoir un impact défavorable sur la performance catalytique, notamment car cette modification de la porosité peut entraîner une modification dans la diffusion des réactifs et des produits de la réaction qui se déroule dans un réacteur donnée par exemple, avec une modification éventuelle de l’accès des réactifs aux sites actifs du support.
Il est donc délicat de concilier besoin d’allègement, besoin de résistance mécanique et maintien des performances catalytiques.
Selon une première solution pour alléger les grains, il est connu d’ajouter des composés dits « porogènes » lors du mélange des différents composés ou précurseurs des composés des supports, avant mise en forme et calcination : ces agents porogènes vont brûler/disparaître lors de la calcination, en créant ainsi la porosité recherchée, et peuvent créer notamment de la porosité supplémentaire au sein des grains une fois calcinés, ce qui permet d’alléger le support. On peut par exemple se reporter au brevet EP 3 090 986, qui concerne des catalyseurs de réformage catalytique à partir de supports en alumine, et qui décrit l’utilisation d’agents porogènes ajoutés lors de la préparation de particules sphéroïdales d’alumine, notamment des agents porogènes solides du type amidon, ou liquides du type huiles, avant leur calcination.
Selon une variante décrite dans le brevet US 4292 206, on ajoute, lors de la préparation de supports catalytiques sous forme de billes d’alumine ou d’alumino-silicate, des sphères creuses de verre dont le diamètre est compris entre 50 et 175 micromètres et jouant le rôle d’agent porogène : les sphères creuses, en fondant lors de la calcination finale, créent de la porosité dans les billes. Il est par ailleurs connu du brevet US 4 637990 des supports catalytiques à base de microsphères creuses poreuses : ici les microsphères creuses constituent le support, et sont destinées à être imprégnées de phase active catalytique, qui vient combler au moins partiellement la cavité centrale des microsphères.
L’invention a alors pour but d’améliorer des supports tels que définis plus haut. Elle vise notamment à les alléger tout en maintenant leurs propriétés mécaniques. Elle vise, plus particulièrement encore, à maintenir également la distribution poreuse des supports, et notamment encore à maintenir les performances catalytiques des supports une fois la phase catalytique ajoutée.
Résumé de l’invention
L’invention a tout d’abord pour objet un support calciné, se présentant notamment sous forme d’extrudés, de pastilles, de granulés ou de billes, ledit support comprenant une matrice poreuse à base de carbonates, d’argiles, de zéolithes, d’oxydes, ou d’hydroxydes métalliques et/ou de silicium, tel que la matrice incorpore des microsphères creuses minérales d’une composition différente et dans une teneur comprise entre 0,3 et 50% en poids, notamment entre 0,5 et 20% en poids, de la matrice.
Les teneurs en poids en microsphères sont à comprendre dans tout le présent texte en considérant les teneurs en matière sèche.
Avantageusement, la teneur en microsphères creuses maximale est telle que choisie pour permettre de maintenir les performances catalytiques et mécaniques du support obtenu.
De préférence, la teneur est inférieure ou égale à 15% en poids, notamment entre 0,5 et 10% en poids de la matrice. Elle est plus particulièrement comprise entre 0,5 et 4,5 % en poids de la matrice, encore plus particulièrement entre 1 et 4,5% ou entre 1 et 4% en poids.
Selon l’invention, on comprend par « support », un support qui présente lui-même des propriétés catalytiques, ou un support catalytique destiné à recevoir une phase active catalytique, le catalyseur obtenu pouvant avoir des proportions variables entre support et phase active, ou encore une masse adsorbante ou absorbante, et qui est utilisé dans l’industrie pétrolière ou pétrochimique, notamment pour le traitement ou la conversion d’hydrocarbures, de pétrole ou encore de gaz naturel (mais aussi pour le traitement ou la conversion de biomasse en carburants propres), ainsi que pour la production et la purification des principaux intermédiaires pétrochimiques.
Il s’est en effet avéré qu’un support calciné contenant des microsphères creuses dans cette teneur est plus léger qu’un support analogue dépourvu de telles microsphères creuses, grâce à la porosité fermée qu’elles apportent au support. Contrairement aux utilisations antérieures de microsphères creuses, ici, selon l’invention, les microsphères sont intègres dans le support calciné, elles présentent toujours leur cavité fermée, elles n’ont pas été détruites lors de la préparation du support. En outre, elles ne viennent pas non plus remplacer la matrice poreuse vis-à-vis de la phase catalytique active : leur cavité reste fermée, non accessible à la phase active. Et, comme vu plus loin, leurs parois externes sont dépourvues d’une porosité suffisante pour que la phase active s’y dépose ou s’imprégne significativement à leur surface.
La présence de ces microsphères creuses confère au support de l’invention une masse volumique moindre, sans modifier substantiellement la distribution poreuse de la matrice elle-même. Les inventeurs ont aussi pu montrer qu’avec ces microsphères, la résistance mécanique du support n’était pas significativement altérée, et que les catalyseurs utilisant les supports selon l’invention présentaient des caractéristiques et des performances également similaires. A noter que c’est le choix de la teneur en microsphères dans la matrice prévu selon l’invention qui permet de concilier allègement et maintien des propriétés mécaniques. En fait, tout se passe comme si ces microsphères creuses s’intégrent dans le support, sans qu’elles n’affectent les propriétés du support notablement, à part sa masse volumique diminuée.
De préférence, selon l’invention, la teneur en microsphères creuses est d’au plus 15%, notamment d’au moins 1% en poids, et notamment comprise entre 0,5 et 20 % en poids ou entre 1 ,5 et 5% en poids de la matrice. De préférence, la teneur est entre 0,5 et 4,5 % en poids de la matrice, encore plus particulièrement entre 1 et 45% ou entre 1 et 4% en poids de la matrice.
Cette teneur minimale permet d’obtenir un allègement suffisamment notable pour être vraiment intéressant à l’échelle industrielle. La teneur maximale garantit la cohésion du support et le maintien de ses propriétés mécaniques. De plus, la teneur maximale proposée minimise la modification de la texture poreuse (volume poreux, distribution poreuse) par rapport à un même support mais qui serait sans microsphères. Ainsi, la performance catalytique d’un catalyseur à base du support calciné selon l’invention ou du support utilisé directement comme catalyseur ou comme adsorbent est maintenue.
Avantageusement, le ratio de la plus petite dimension des pastilles ou granulés ou extrudés ou billes par rapport au diamètre (externe) des microsphères creuses est d’au moins 5/1 , notamment au moins 8/1 , notamment d’au moins 20/1 et, dans certains cas peut aller jusqu’à au moins 100/1 , et d’au plus 2000/1. Les grains de support sont donc de préférence de dimensions plus grandes que celle des microsphères creuses, ce qui garantit le maintien des propriétés du support avec microsphère par rapport au support sans microsphère
A titre d’exemples non limitatifs, on peut utiliser des microsphères sous forme de cénosphères d’alumino-silicate (fillites) de diamètre 100 micromètres pour faire, avec une matrice, des grains, des extrudés notamment, des extrudés notamment, de 1 ,6 mm de diamètre. On peut aussi utiliser, pour des grains de même dimension, des microsphères en verre creux de diamètre 20 micromètres.
De préférence, les microsphères creuses ont un diamètre médian D50 inférieur ou égal à 150 micromètres, notamment inférieur ou égal à 110, 100, 80 ou 50 micromètres, de préférence d’au moins 1 , ou au moins 5, ou au moins 10, micromètres. Ces gammes sont choisies de manière à résister à l’extrusion, tout en allégeant suffisamment le support obtenu et en garantissant le maintien des propriétés du support avec microsphère par rapport au support sans microsphère.
De préférence, la plus petite dimension du support de type pastilles, granulés ou billes ou granulés est d’au moins 0,3 mm, notamment comprise entre 0,5 et 6 mm.
De préférence, l’épaisseur des parois des microsphères creuses est d’au moins 5% du diamètre, notamment d’au moins 10% dudit diamètre. Une épaisseur suffisante de leurs parois les rend suffisamment résistantes mécaniquement, tant que leur densité est suffisamment faible pour permettre l’allègement visé
Avantageusement, le support selon l’invention présente une texture poreuse analogue à celle d’un support dépourvu de microsphères creuses. De préférence, la densité absolue des microsphères creuses est comprise entre 0,1 et 1 ,3 g/cm3, notamment entre 0,25 et 0,85 g/cm3. Ainsi, même une faible teneur en microsphères creuses dans le support permet une réduction notable de la masse volumique du support, compte-tenu de leur faible densité absolue.
De préférence, la température de fusion des microsphères est d’au moins 500°C, notamment d’au moins 600°C, notamment d’au moins 800°C ou d’au moins 1000°C et de préférence d’au plus 1500°C, notamment d’au plus 1450°C. Avec ces températures de fusion élevées, leur intégrité peut être conservée au cours de la calcination du support qui les incorpore, la température de calcination habituelle des supports catalytiques étant généralement inférieure à ces valeurs.
Avantageusement, la paroi des microsphères creuses n’est pas poreuse, c’est-à-dire qu’elle est pleine, dépourvue de porosité : la phase catalytique active ne tiendra pas à s’y déposer et ne pourra pas imprégner ces parois lisses (ce terme étant à comprendre en comparaison avec le reste du support, qui, lui est poreux avec des parois poreuses/rugueuses).
Selon un mode de réalisation, les gaz contenus à l’intérieur des microsphères creuses sont de l’azote ou du C02 ou tout gaz, qui peut être inerte ou non, et qui peut notamment être soufré.
Les microsphères creuses sont par exemple en verre, de type verre de borosilicate, ou en céramique. Ce type de matériau présente en effet de nombreux avantages dans le cadre de l’invention : il est largement inerte chimiquement, il résiste sans fondre à de très hautes températures, ce qui signifie qu’il est apte à supporter sans détérioration (en préservant sa porosité fermée donc) des températures de calcination habituelles.
Avantageusement, les oxydes, ou hydroxydes métalliques de la matrice sont choisis parmi au moins un des composés suivants : carbonates/ oxydes/hydroxydes de titane, d’aluminium, de cuivre, de zirconium, de zinc, de silicium, seul ou en mélange.
Préférentiellement, le support selon l’invention est choisi parmi l’alumine, la silice, le dioxyde de titane, les zéolithes, les oxydes de cuivre, les oxydes de zirconium et les oxydes de métaux ou un mélange d’au moins deux de ces matériaux. Il peut aussi s’agir de carbonate(s) ou d’argile(s).
Avantageusement, le support calciné selon l’invention comprend une matrice poreuse constituée essentiellement de zéolithes ou d’oxydes, ou d’hydroxydes d’aluminium et/ou de silicium ou d’oxyde de titane, seuls ou en mélange, notamment un mélange silice-alumine.
L’invention a également pour objet un catalyseur qui comprend le support décrit plus haut et au moins un élément ou composé actif vis-à-vis de la catalyse (appelé plus haut également phase active) et imprégnant et/ou déposé sur la matrice, notamment choisi par au moins un élément du groupe VIII B ou I B ou MB, notamment parmi un des éléments suivants : cobalt, molybdène, nickel, palladium, platine, rhodium, ruthénium, fer, étain.
L’invention a également pour objet l’utilisation du support décrit plus haut tant que catalyseur. En effet, pour certains types de procédé, le support lui-même peut servir de catalyseur. Un exemple non limitatif consiste ainsi en un support à base de titane pour la récupération de soufre dans un flux d’hydrocarbures de type procédé Claus.
L’invention a également pour objet l’utilisation du support décrit plus haut en tant que masse d’adsorption /absorption. En effet, pour certains types d’impuretés, le support lui-même peur servir de d’adsorbant.
L’invention a également pour objet l’utilisation du catalyseur décrit plus haut comme catalyseur de procédé de synthèse, de traitement ou de conversion d’hydrocarbures, de gaz naturel, d’huiles végétales, et/ou de biomasse, notamment un hydrotraitement, une hydroconversion, une hydrogénation sélective, un hydrocraquage, un reformage, une isomérisation, un traitement des NOx, une réduction catalytique sélective, une déshydrocyclisation.
L’invention a également pour objet un procédé de production par extrusion du support décrit plus haut, qui comprend une étape de préparation d’une pâte comprenant d’une part les microsphères creuses et d’autre part les argiles, et/ou zéolithes ou encore des carbonates/ oxydes et/ou hydroxydes de métal et/ou de silicium, une étape d’extrusion de ladite pâte en extrudés , une étape de séchage des extrudés, une étape de calcination des extrudés à une température inférieure à la température de fusion des microsphères creuses, et optionnellement (ensuite) une étape de traitement hydrothermal.
L’invention a également pour objet un procédé de production par coagulation en billes (technique appelée aussi « oil-drop » selon la terminologie anglo-saxonne) du support décrit plus haut, qui comprend une étape de préparation d’une suspension en phase liquide comprenant d’une part les argiles, et/ou zéolithes ou encore des carbonates/ oxydes et/ou hydroxydes de métal et/ou de silicium, et d’autre part les microsphères creuses, puis une étape de coagulation en billes de la dite suspension, une étape de séchage des billes, puis une étape de calcination des billes à une température inférieure à la température de fusion des microsphères creuses, et optionnellement (ensuite) une étape de traitement hydrothermal.
L’invention a également pour objet un procédé de production par granulation du support décrit plus haut, qui comprend une étape de préparation d’une pâte comprenant d’une part les microsphères creuses, et d’autre part les argiles, et/ou zéolithes ou encore des carbonates/ oxydes et/ou hydroxydes de métal et/ou de silicium, une étape de granulation de la pâte en granulés, une étape de séchage des granulés, puis une étape de calcination des granulés à une température inférieure à la température de fusion des microsphères creuses, et optionnellement (ensuite) une étape de traitement hydrothermal.
Quelle que soit la mise en forme du support, elle implique généralement une étape de calcination. C’est la raison pour laquelle on choisit de préférence le matériau des microsphères de façon à ce qu’il présente une température de fusion supérieure d’au moins 20°C, notamment d’au moins 50°C, à la température de calcination des pastilles, extrudés ou billes ou granulés : on s’assure ainsi de leur intégrité pendant la calcination pour conserver une porosité fermée.
Description des modes de réalisation
L’invention sera ci-après détaillée à l’aide de modes de réalisation non limitatifs.
Définitions
Dans l’ensemble du présent texte, on entend par : - «densité de remplissage tassée » de la poudre notée aussi « DRT » exprimée en gramme par millilitre (g/ml) : la masse de support catalytique que l’on peut introduire dans une unité de volume ;
- « micropores » : l’ensemble des pores de diamètres strictement inférieur à 2 nm ;
- « mésopores » : l’ensemble des pores de diamètres compris entre 2 et 50 nm ;
- « macropores » : l’ensemble des pores de diamètres strictement supérieurs à 50 nm.
- « microsphère creuse » : une particule de géométrie sensiblement sphérique avec un diamètre de l'ordre du micromètre (entre 1 pm et 1 mm) qui est creuse et dont la/les cavités est/sont remplie de gaz ;
- « diamètre des microsphères creuses » : le diamètre médian D50 en volume des microsphères creuses ;
- densité absolue la masse divisée par le volume total de l’échantillon - (moins) le volume poreux accessible (ou ouvert), le volume poreux accessible étant mesuré par pycnométrie à l’Hélium ;
- « diamètre médian poreux Dp en volume »: le diamètre des pores pour lequel la moitié du volume poreux VHgmesuré par intrusion porosimétrie au mercure est dans des pores plus grands et l’autre moitié est dans des pores plus petits ;
- « volume poreux par intrusion au mercure par volume de grain VHg/Vgrain » : le Volume poreux par intrusion au mercure VHg en ml/g, mentionné plus haut, multiplié par la densité de grain de ce même matériau ;
- « monomodalité », une caractéristique traduisant l’étroitesse de la distribution poreuse et correspondant au ratio du volume poreux des pores de taille comprise entre le diamètre médian en volume plus ou moins 15 Â sur le volume poreux des pores de taille comprise entre le diamètre médian en volume plus ou moins 30 Â, qu’on calcule en utilisant le volume poreux à différents diamètres de pores :
(Volume à Dmecjian+i5 Volume à DmeC|jan _ I) / (Volume à Dmedjan + 3oA Volume à DmeC|jan _ 3)
Les propriétés texturales et structurales du support et du catalyseur décrits ci-après sont déterminées par les méthodes de caractérisation connues de l'homme du métier. Le volume poreux total et la distribution poreuse sont déterminés dans la présente invention par porosimétrie au mercure (cf. Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Académie Press, 1999). Plus particulièrement, le volume poreux par intrusion au mercure VHg est mesuré par porosimétrie au mercure selon la norme ASTM D4284-12, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Micromeritics™. Le volume poreux total VPT (c’est-à-dire le volume poreux des pores entre 1A et 8 pm) est déduit des mesures du volume poreux par intrusion au mercure VHg et du volume accessible par pycnométrie à l’hélium. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T, méthode décrite dans le même ouvrage de référence que la porosimétrie au mercure, et plus particulièrement selon la norme ASTM D3663-03.
La valeur de l'écrasement grain à grain (EGG) est obtenue via un test normalisé (norme ASTM D4179-01) qui consiste à soumettre un objet millimétrique, comme un support sous forme extrudée, ou sous forme de bille ou de pastille, dans le cas de la présente invention, à une force de compression générant la rupture. Ce test est utilisé pour mesurer de manière indirecte la résistance du matériau. L'analyse est répétée sur un certain nombre de particules pris individuellement et typiquement sur un nombre de particules compris entre 50 et 200, de préférence compris entre 100 et 200. La moyenne des forces latérales de rupture à l’écrasement mesurées constitue l'EGG moyen qui est exprimé dans le cas des particules sphéroïdales en unité de force (N).
De préférence, les microsphères creuses contenues dans le support selon l’invention sont choisies parmi les microsphères creuses obtenues en tant que sous-produits d’un autre procédé, notamment les sous-produits de combustion, ou parmi les microsphères creuses fabriquées industriellement, notamment en verre.
Ainsi, selon un mode de réalisation, elles peuvent être des sous-produits de la combustion de charbon, notamment dans des centrales à charbon, on les désigne parfois sous le terme de « cénosphères », (« cenospheres » selon la terminologie anglo-saxonne). Formées de microsphères creuses de silicate d’aluminium, matière similaire à un verre, leurs cavités sont remplies d'un mélange d'azote, d'oxygène et de dioxyde de carbone. Ce sont les particules les plus légères contenues dans les cendres volantes.
Selon un autre mode de réalisation, il peut s’agir de microsphères creuses fabriquées industriellement, notamment en verre, par exemple des microsphères creuses de verre commercialisées par la société 3M sous la dénomination « 3M™ Glass Bubbles » par exemple. Elles sont en verre de borosilicate de soude et de chaux (« soda-lime-borosilicate glass » selon la terminologie anglo-saxonne).
De préférence, la matrice du support du support catalytique selon l'invention comprend au moins un des carbonates/oxydes/hydroxydes suivants : oxyde d’aluminium, de titane, de silicium, de zirconium, de zinc, de magnésium, de cuivre, de nickel, de fer, de cérium.
Selon un mode de réalisation, elle est produite à partir des oxydes ou hydroxydes correspondants.
Selon un mode de réalisation, le support du support catalytique selon l'invention est fabriqué essentiellement à partir d'argiles et/ou de zéolithes, seuls ou en mélanges avec les précédents.
Selon un mode de réalisation, le support du support catalytique selon l'invention est fabriqué essentiellement à partir d'alumine et/ou de silice, seuls ou en mélanges avec les précédents.
Selon un mode de réalisation, le support du support catalytique selon l'invention est fabriqué essentiellement à partir d'oxyde de titane, seul ou en mélange avec les précédents.
Selon encore un autre mode de réalisation, le support du support catalytique selon l'invention peut également être fabriqués à partir de carbonates, comme les carbonates de cuivre, de zinc ou de nickel, seuls ou en mélanges avec les précédents.
Optionnellement, le support du support catalytique selon l'invention peut aussi comprendre des composés dopants tels que, par exemple, des oxydes choisis dans le groupe constitué de l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique, avec des teneurs comprises entre 0,1% en poids et 3% poids.
Les supports à base d'alumine sont préparés par exemple :
- à partir d'alumine gel ou gel de pseudo-boehmite;
- ou à partir de l'alumine issue de la déshydratation rapide d'hydrargillite, dite alumine « flash » ;
- ou à partir d’un mélange de ces différents types d’alumine.
L’alumine flash ou alumine issue de la déshydratation rapide d'hydrargillite est issue de la déshydratation rapide de l'hydrate de Bayer (hydrargillite) à l'aide d'un courant de gaz chauds, la température d'entrée des gaz dans l'appareillage variant généralement de 400 à 1200 °C environ, le temps de contact de l'alumine avec les gaz chauds étant généralement compris entre une fraction de seconde et 4-5 secondes. Le gel de pseudo-boehmite ou gel d’alumine peut être obtenu par précipitation de sels d'aluminium tels que le chlorure d'aluminium, le sulfate d'aluminium, le nitrate d'aluminium, l'acétate d'aluminium avec une base ou par hydrolyse d'oxydes d'aluminium tels que le triéthoxyde d'aluminium.
Le gel d’alumine peut être utilisé tel quel, ou peut subir préalablement à l’étape de préparation de la pâte un traitement pour ajuster la teneur en alcalins dans la pâte. Une teneur en Na20 inférieure à 0,5 % en poids peut être préférée.
Le support catalytique suivant l’invention conserve également une distribution poreuse sensiblement identique/analogue à la distribution poreuse d’un support dépourvu de microsphères creuses
Le support catalytique suivant l’invention, avec une matrice incorporant des microsphères creuses, a une répartition poreuse sensiblement identique/analogue à la répartition poreuse du support avec la même matrice mais dépourvu de microsphères creuses et qui aurait été fabriqué suivant un procédé identique.
Ainsi, en conservant le même type de porosité, la matrice conserve les mêmes propriétés liées à cette porosité, notamment sa capacité à l’imprégnation par la phase catalytique active dans le cas d’un support destiné à recevoir une phase catalytique active, et l’aptitude à obtenir les performances catalytiques / adsorbantes recherchées.
Par exemple, quand le support catalytique dépourvu de microsphères creuses (uniquement composé d’une matrice donc selon la terminologie de l’invention) ne comprend pas de macropores, le support catalytique comprenant des microsphères poreuses est dépourvu également de pores macroporeux. Quand le support catalytique dépourvu de microsphères creuses présente une répartition poreuse monomodale ou bimodale, le support catalytique comprenant des microsphères creuses conserve cette répartition respectivement monomodale ou bimodale.
Par texture poreuse sensiblement identique/analogue, on entend ici :
- que le paramètre VHg/Vgrain « volume poreux par intrusion au mercure par volume de grain » est sensiblement identique ;
- que la répartition poreuse est sensiblement identique, c’est-à-dire que la répartition poreuse pour laquelle l’écart de diamètre poreux correspondant à chaque volume poreux est compris entre plus ou moins 30 Â, préférentiellement plus ou moins 15 Â. Préférentiellement, quand le support catalytique selon l’invention contient majoritairement, notamment essentiellement, de l’alumine, le support catalytique selon l’invention présente un volume poreux total (VPT) supérieur ou égal à 0,60 cm3/g, de préférence supérieur ou égal à 0,65 cm3/g.
Préférentiellement, quand le support catalytique selon l’invention contient majoritairement, notamment essentiellement du dioxyde de titane, le support catalytique selon l’invention présente un volume poreux total V.P.T supérieur ou égal à 0,25 cm3/g, de préférence supérieur ou égal à 0,35 cm3/g, notamment quand le support contient du dioxyde de titane seul.
Préférentiellement, quand le support contient majoritairement, notamment essentiellement de l’alumine, le support catalytique selon l'invention présente une surface spécifique d’au moins 10 m2/g, d’au moins 50 m2/g, d'au moins 120 m2/g, de préférence de150 m2/g. La surface spécifique est au maximum de 1 000 m2/g.
Préférentiellement, quand le support contient majoritairement, notamment essentiellement du dioxyde de titane, le support catalytique selon l'invention présente une surface spécifique d'au moins 20 m2/g et d’au plus de 1 000 m2/g, préférentiellement d’au plus 450 m2/g.
Dans une première variante, le support selon l’invention est fabriqué par un procédé d’extrusion, c’est à dire un procédé comprenant une étape d’extrusion. Dans ce cas, le procédé de préparation du support selon l’invention comprend les étapes suivantes :
- une étape i de préparation d’une pâte comprenant des microsphères creuses ;
- une étape ii d’extrusion de ladite pâte ;
- une étape iii de séchage ;
- une étape iv de calcination ;
- optionnellement une étape v de traitement hydrothermal.
L’étape i de préparation de la pâte comprenant des microsphères creuses peut alors comprendre différentes étapes selon différents modes de réalisation, notamment trois modes de réalisation décrits ci-dessous.
> Etape i de préparation de la pâte Premier mode de réalisation :
Dans un premier mode de réalisation, l’étape i de préparation de la pâte comprend les étapes suivantes : a1. on part d'une poudre apte à être utilisée pour la fabrication d’un support catalytique, b1. on réhydrate ladite poudre, c1. on malaxe ladite poudre réhydratée en présence des microsphères creuses.
Avantageusement, dans ce premier mode de réalisation, la poudre est choisie parmi de l’alumine issue de la déshydratation rapide d'hydrargillite, des gels d’alumine, des hydroxydes d’alumine, des carbonates, le dioxyde de titane, les argiles, la silice, les zéolithes, les oxydes de cuivre, les oxydes de zirconium, seuls ou en mélange.
L’étape de réhydratation b1 de la poudre, apte à être utilisée pour la fabrication d’un support catalytique, comprend : une étape b11 de mise en contact de la poudre et d’eau. Cette étape est mise en oeuvre préférentiellement dans un équipement de type malaxeur dans lequel la poudre est mise en présence d’eau. Optionnellement, un agent complexant et/ou peptisant peut être employé. Préférentiellement, la température au cours de cette étape est comprise entre 50 et 100 °C, et sa durée est comprise entre 3 heures et 72 heures. une étape b12 de filtration de la suspension obtenue à l’issue de l’étape b11 . Cette étape est mise en oeuvre dans un filtre et on récupère un gâteau qui peut être, de façon optionnelle, lavé à l'eau.
Optionnellement, une étape b13 de séchage dans des conditions permettant d'éliminer l'eau dont est imprégnée la poudre réhydratée, par exemple l'alumine réhydratée, mais sans éliminer l'eau liée à la poudre par exemple à la poudre d'alumine. De ce fait, la température de séchage est d'au plus 250 °C. On peut par exemple sécher le gâteau à une température comprise entre 60 et 150 °C. De préférence, on sèche le gâteau de manière à ce que la poudre réhydratée séchée, par exemple, la poudre d'alumine séchée, présente une perte au feu mesurée par calcination à 1000°C comprise entre 20 et 40 %.
L’étape c1 de malaxage de la poudre réhydratée, optionnellement séchée, issue de l’étape b1 est mise en oeuvre, préférentiellement directement, en présence de microsphères creuses, et optionnellement en présence d’un gel de pseudo-boehmite et /ou en présence d’un acide. L’étape de malaxage est mise en œuvre par toute manière connue de l'homme du métier, et notamment à l'aide d'un malaxeur bras en Z ou un mélangeur bi-vis.
Optionnellement, l’étape c1 de malaxage s’effectue en présence d’additifs permettant d’améliorer l’efficacité du malaxage, comme des agents plastifiants, des liants, connus de l’homme du métier.
Dans une première variante, l’étape c1 de malaxage de la poudre réhydratée s’effectue en présence d’un gel de pseudo-boehmite dans une teneur préférablement comprise entre 1 et 30 % poids par rapport à la poudre réhydratée, par exemple l'alumine réhydratée.
Dans une deuxième variante, éventuellement combinable avec la première, l’étape c1 de malaxage de la poudre réhydratée s’effectue en milieu acide. Dans ce cas, il est préférable de neutraliser la pâte à l’issue de l’étape de malaxage. Cette neutralisation peut être effectuée à l'aide d'une base, introduite habituellement à la fin du malaxage dans le malaxeur.
Typiquement, la teneur en acide utilisée est de l’ordre de 0,1 à 15% en poids par rapport à la teneur en oxydes.
Typiquement, la teneur en base utilisée est de l’ordre de 0,1 à 10% en poids par rapport à la teneur en oxydes.
Préférentiellement, dans ce premier mode de réalisation, la poudre apte à être utilisée pour la fabrication d’un support est de l’alumine. L’étape de préparation de la pâte comprend alors les étapes suivantes : a1 . on part d’une poudre d’alumine, issue de la déshydratation rapide d’hydrargilite, b1 . on réhydrate l'alumine de départ, c1. on malaxe l'alumine réhydratée en présence des microsphères creuses Deuxième mode de réalisation: Dans un deuxième mode de réalisation, l’étape i de préparation de la pâte comprend les étapes suivantes : a2. on part d’un gel de pseudo-boehmite b2. on malaxe ledit gel de pseudo-boehmite en présence d’eau et de microsphères creuses Dans ce mode de réalisation, le gel de pseudo-boehmite contient des hydrates d’aluminium, et est donc déjà partiellement hydraté.
L’étape b2 de malaxage du gel de pseudo-boehmite est mise en oeuvre, en présence d’eau et en présence de microsphères creuses, et optionnellement en présence d’un agent porogène et /ou en présence d’un acide. L’étape de malaxage est mise en oeuvre par toute manière connue de l'homme du métier, et notamment à l'aide d'un malaxeur bras en Z ou un mélangeur bi-vis.
Optionnellement, l’étape b2 de malaxage s’effectue en présence d’additifs permettant d’améliorer l’efficacité du malaxage, comme des agents plastifiants, des liants, connus de l’homme du métier.
L’étape b2 de malaxage de la poudre réhydratée s’effectue préférentiellement avec une teneur en eau nécessaire pour obtenir une pâte avec une rhéologie compatible avec une extrusion ultérieure.
Typiquement la teneur en acide est de l’ordre de 0,1 à 15% en poids par rapport à la teneur en oxydes.
Optionnellement, l’étape b2 de malaxage de la poudre réhydratée s’effectue en milieu acide. Dans ce cas, il est préférable de neutraliser la pâte à l’issue de l’étape de malaxage. Cette neutralisation peut être effectuée à l'aide d'une base. Le neutralisant est introduit habituellement à la fin du malaxage dans le malaxeur.
Typiquement la teneur en acide est de l’ordre de 0,1 à 15% en poids par rapport à la teneur en oxydes.
Typiquement, la teneur en base utilisée est de l’ordre de 0,1 à 10% en poids par rapport à la teneur en oxydes.
Troisième mode de réalisation:
Un troisième mode de réalisation de la pâte comprenant des microsphères creuses comprend les étapes suivantes : a3. on part d'une poudre, notamment une poudre d’alumine issue de la déshydratation rapide d'hydrargillite, b3. on met en forme ladite poudre sous forme de billes en présence d'un porogène, c3. on fait mûrir lesdites billes, d3. on malaxe lesdites billes après mûrissement en présence des microsphères creuses. L’étape de mise en forme b3 sous forme de billes peut être réalisée par toute technique connue de l'homme du métier. Elle s'effectue directement sur la poudre, notamment la poudre d'alumine, par technologie tournante. On entend par « technologie tournante » tout dispositif dans lequel l'agglomération est réalisée par mise en contact et rotation du produit à granuler sur lui-même. Comme appareil de ce type, on peut citer le drageoir tournant, le tambour tournant.
La taille des billes obtenues n'est pas critique. Elle est en général comprise entre 1 et 5 mm.
L’étape c3 de mûrissement des billes issues de l'étape b3 est réalisée par maintien des billes d'alumine dans une atmosphère à taux d'humidité contrôlée. La température est préférentiellement comprise entre 30 et 100 °C, de préférence entre 80 et 100 °C. La durée du mûrissement peut varier entre quelques heures et quelques dizaines d'heures, de préférence entre 6 et 24 heures.
Un mode de mise en oeuvre pratique du mûrissement consiste à injecter de la vapeur d'eausur les billes d'alumine.
L’étape d3 de malaxages des billes issues de l'étape b3 de mûrissement est mise en oeuvre en présence d'eau et d'acide, de manière à les briser et obtenir une pâte homogène apte à être extrudée. L'acide utilisé peut être un acide fort ou un acide faible.
La quantité d'acide par rapport à l'alumine est en général comprise entre 0,1 à 15% en poids par rapport à la teneur en oxydes, plus préférentiellement entre 0,5 et 10 % en poids.
Le malaxage peut être effectué par toute manière connue de l'homme du métier, et notamment à l'aide d'un malaxeur bras en Z ou un mélangeur bi-vis.
Agents porogènes :
Optionnellement, dans les trois modes de réalisation précédents de l’étape i, l’étape de malaxage est réalisée en présence d'un (ou plusieurs) agent porogène. Comme composés porogènes utilisés, on peut citer, à titre d'exemple, la farine de bois, le charbon de bois, le soufre, des goudrons, des matières plastiques ou émulsions de matières plastiques telles que le polychlorure de vinyle, des alcools polyvinyliques, la naphtaline ou analogues, et d'une manière générale tous composés organiques susceptibles d'être éliminés par calcination. La quantité de composés porogènes ajoutés n'est pas critique, leur taille non plus. En général, la quantité de porogènes est comprise entre 1 et 30 % en poids par rapport à la poudre réhydratée considérée, par exemple l'alumine réhydratée.
> Etape ii d’extrusion de la pâte :
L’étape ii d’extrusion de la pâte issue de l’étape de préparation i est mise en oeuvre dans une filière d’extrusion, par exemple à l'aide d'un piston ou d'une vis d'extrusion, préférentiellement sans étape intermédiaire, et produit le support catalytique selon l’invention sous forme d’extrudés.
Cette étape d'extrusion peut être réalisée par toute méthode connue de l'homme du métier.
L’étape d’extrusion est mise en oeuvre préférentiellement dans une gamme de température comprise entre 5° et 100°C, préférentiellement à température ambiante. L’étape d’extrusion est mise en oeuvre de manière à ce que la pâte sorte de la filière d’extrusion à une pression comprise entre 1 ,0 et 20,0 MPa, préférentiellement une pression comprise entre 3,0 et 9,5 MPa. L’homme du métier ajuste, si besoin, la teneur en eau de la pâte pour ajuster la viscosité de la pâte à la gamme de pression d’extrusion.
Préférentiellement, les extrudés de support catalytique selon l'invention ont un diamètre qui est supérieur ou égal à 0,3 mm, de préférence supérieur ou égal à 0,8 mm, et / ou un diamètre inférieur ou égal à 10 mm, de préférence inférieur ou égal à 4,0 mm. Leur longueur est comprise préférentiellement entre 1 et 20 mm, de préférence entre 2 et 10 mm. Avec ces dimensions, les extrudés de support catalytique selon l’invention génèrent une perte de charge limitée quand ils sont mis en oeuvre dans un lit catalytique tout en ayant des propriétés mécaniques satisfaisantes.
Préférentiellement, les extrudés de support catalytique selon l'invention ont un écrasement grain à grain (EGG) d'au moins 0,5 kg/mm, préférentiellement d’au moins 0,8 kg/mm et/ou préférentiellement d'au plus 10,7 kg/mm.
> Etape iii de séchage des extrudés :
L’étape iii de séchage des extrudés issus de l’étape d’extrusion est mise en oeuvre, préférentiellement directement après l’étape d’extrusion, par exemple dans une étuve ou un four, avec une température de séchage préférentiellement comprise entre 80 et 200°C, pendant une durée typiquement de 3 à 24 heures. > Etape iv de calcination des extrudés :
L’étape iv de calcination des extrudés issus de l’étape de séchage est mise en oeuvre, préférentiellement directement après l’étape de séchage, dans une étuve ou un four, avec une température de calcination comprise entre 200°C et 1400 °C, préférentiellement entre 400 et 1200°C, plus préférentiellement entre 450 et 800°C pendant une durée typiquement de 1 à 8 heures. Typiquement, le taux d’humidité lors de cette étape est de 0 à 800 g d’eau par kg d’air sec. L’étape de calcination est mise en oeuvre avec une température inférieure à la température de fusion des microsphères creuses, préférentiellement d’au moins 20°C inférieure, plus préférentiellement d’au moins 50°C inférieure.
Avantageusement, le matériau des microsphères creuses, donc le type de microsphères creuses, est choisi en fonction de la température de calcination du support catalytique, de manière à ce que la température de fusion des microsphères creuses soit supérieure d’au moins 20°C, préférentiellement supérieure d’au moins 50°C à la température de calcination du support catalytique.
Avantageusement, quand les microsphères creuses sont des microsphères creuses fabriquées industriellement, notamment en verre, la température de calcination est comprise entre 450°C et 800°C. Avec des microsphères en verre borosilicate, on peut avoir des températures de calcination jusqu’à 900°C voire plus. Cependant, on préfère choisir des températures de calcination bien en deçà de la température de fusion des microsphères, de façon non seulement à éviter leur fusion, mais également à éviter leur début de ramollissement : on s’assure ainsi que les microsphères ne se déforment pas.
Avantageusement, quand les microsphères creuses sont des microsphères creuses des sous-produits de la combustion, notamment des centrales à charbon, la température de calcination est comprise entre 800°C et 1400°C.
On choisit ainsi la nature des microsphères en fonction de la température « vue » / subie par le support qui les incorpore lors de traitements thermiques de type calcination.
La température de calcination dépend de la matrice visée pour le support et des propriétés, notamment en termes de porosité, visées pour le support : ainsi, si la matrice du support est à base d’alumine, la calcination peut être réalisée vers 500°C pour avoir une surface accessible élevée et un diamètre poreux relativement petit, alors qu’une calcination à 900°C conduira à une surface accessible plus faible et à des diamètres poreux plus élevés. L’étape iv de calcination est mise en oeuvre préférentiellement en réalisant d’abord une rampe de montée en température de manière à contrôler la montée en température dans l’extrudé, par exemple dans un four à moufle ou en lit traversant. La rampe de température est typiquement de 1 à 10°C par minute, en partant de la température ambiante. Ensuite, la température de l’étape de calcination est maintenue fixe, par exemple, à une température comprise entre 450°C et 800°C : pour les sphères en verre pendant une durée de 1 à 3 heures. Enfin, la descente en température de l’étape de calcination se fait librement, progressivement.
> Etape v optionnelle de traitement hydrothermal acide en atmosphère confinée :
L’étape v optionnelle de traitement hydrothermal, de préférence en atmosphère confinée, appelée également « autoclavage », des extrudés issus de l’étape de calcination est mise en oeuvre, préférentiellement directement après l’étape de calcination, dans un autoclave, notamment du type de celui décrit dans la demande de brevet EP 0387 109.
La température pendant l'autoclavage peut être comprise entre 150 et 250 °C pendant une période de temps comprise entre 30 minutes et 3 heures.
Le traitement peut être réalisé sous pression de vapeur saturante ou sous une pression partielle de vapeur d'eau au moins égale à 70 % de la pression de vapeur saturante correspondant à la température de traitement.
Ce traitement hydrothermal en atmosphère confinée consiste donc ici en un traitement par passage à l'autoclave en présence d'eau sous une température supérieure à la température ambiante. Au cours de ce traitement hydrothermal, on peut traiter de différentes manières l'alumine, ou de façon plus générale, le support selon l’invention mis en forme. Ainsi, on peut imprégner l'alumine d'acide préalablement à son passage à l'autoclave, l'autoclavage de l'alumine étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non. Cette imprégnation, préalable à l'autoclavage, peut être effectuée à sec ou par immersion de l'alumine dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact de l'alumine avec un volume de solution inférieur ou égal au volume poreux total de l'alumine traitée. De préférence, l'imprégnation est réalisée à sec. Procédé de fabrication de billes/particules sphériques par coaqulation en qouttes
Dans une deuxième variante, le support selon l’invention est fabriqué par un procédé de coagulation en gouttes (ou « oil-drop »). Dans ce cas, le procédé de préparation du support selon l’invention comprend préférentiellement les étapes suivantes :
- une étape v de préparation d’une suspension ;
- une étape vi d’ajout de microsphères et/ou d’un agent porogène ;
- une étape vii de mélange de la suspension ;
- une étape viii de mise en forme des particules sphéroïdes par coagulation en gouttes, à partir du mélange obtenu à l’étape c) de malaxage ;
- une étape ix de séchage ;
- une étape x de calcination.
Le document US 2422499 décrit le principe du procédé de fabrication de particules sphéroïdes (ou billes) par coagulation en gouttes. Cette technique consiste à préparer un sol aqueux de support, notamment d'alumine (boehmite) et à égoutter, en fines gouttelettes, celui-ci à travers une buse, dans une colonne comprenant une phase supérieure non miscible à l'eau et une phase aqueuse inférieure. La mise en forme des particules a alors lieu lors du passage dans la phase non miscible à l'eau, et la coagulation ultérieure dans la phase aqueuse. Une fois recueillies, les particules sont lavées, séchées et calcinées. On obtient ainsi des particules sphéroïdales d’alumine.
Les particules sphéroïdales d'alumine selon l’invention présentent un diamètre médian D50 macroporeux vu par microscopie électronique à balayage compris entre 0,05 gm (50 nm) et 30 gm (30000 nm). Selon une première variante, notamment lorsqu’on utilise un agent porogène solide pour la préparation des particules sphéroïdales d'alumine, le diamètre médian macroporeux est compris entre 0,05 gm (50 nm) et 30 gm (30000 nm), de préférence compris entre 1 gm (1000 nm) et 5 gm (5000 nm).
Il peut être, par exemple, compris entre 500 micromètres et 5 mm pour des microsphères creuses de l’ordre de 20 à 100 micromètres de diamètre.
Les particules sphéroïdes suivant l’invention présentent avantageusement un taux de macroporosité au sein d’une particule inférieure à 30 % du volume poreux total, de préférence inférieur à 25 %, et de manière particulièrement préférée inférieur à 20 %. > Etape v de préparation d’une suspension :
La préparation de la suspension de l’étape v est réalisée par mélange sous agitation vigoureuse d'une solution aqueuse acide dans laquelle on a ajouté un ou plusieurs types de poudre de boehmite.
Lors de la préparation de la suspension de boehmite, il est possible d'ajouter une charge d'alumine. La quantité de charge mise en oeuvre, exprimée en % en poids d'AI203, est inférieure ou égale à 30% en poids par rapport au poids total d'équivalent Al203 de la suspension. Cette charge peut être choisie dans le groupe formé par les alumines dites de transition comportant au moins une phase rhô, chi, êta, gamma, kappa, thêta, delta et alpha. La charge d'alumine peut être sous forme de poudre ou de particules d'alumine obtenues par broyage et tamisage de corps d'alumine façonnés ; ces particules ont, après broyage, un diamètre médian D50 inférieur ou égal à 50 pm, de préférence inférieur à 30 pm et de manière encore plus préférée inférieur à 20 pm.
Le taux d'acide engagé dans la suspension est tel que le rapport de la masse dudit acide rapporté à la masse sèche de la ou des sources de boehmite et de la charge (si celle-ci est présente dans la suspension) soit compris entre 0,5 et 20 % poids, de préférence entre 1 et 15%. A titre d'exemple, la solution aqueuse acide est une solution d'un acide minéral fort, tel que HN03 OU H2S04.La proportion d'eau engagée dans la suspension est calculée de telle sorte que le rapport de la masse sèche (correspondant à la masse de poudre de boehmite plus éventuellement la charge, exprimée en équivalent Al203) sur la masse d'eau totale du mélange soit compris entre 10 et 50% poids, de préférence entre 15 et 40%.
Éventuellement, la suspension peut comprendre un sel d'un ou plusieurs éléments choisis parmi les groupes IA, MA, NIA, IVA, VA, qui agissent comme promoteurs dans les catalyseurs décrits ci-dessous. Ces éléments seront ainsi incorporés dans les particules sphéroïdales finales après séchage et calcination. La proportion du ou des sels métalliques est calculée pour que la teneur massique en éléments des groupes IA, NA, NIA, IVA, VA dans le produit final, après calcination, soit comprise entre 0,01 et 2% poids, de manière préférée entre 0,05 et 1% poids.
> Etape vi d’ajout de microsphères et d’un agent porogène:
L’étape vi d’ajout de microsphères et d’un porogène consiste à :
- ajouter dans la suspension des microsphères creuses, de préférence d’un diamètre inférieur ou égal à 100 mhi, plus préférentiellement inférieur ou égal à 80 mhi ; - ajouter dans la suspension un agent porogène.
L’agent porogène est notamment de ceux décrits dans le brevet EP 3 090986.
Cette étape est concomitante à l’étape v précédente.
Dans une première variante, le porogène est un agent porogène solide ayant une taille de particules comprise entre 0,05 et 30 pm à la suspension obtenue à l’étape a).
Dans une deuxième variante, éventuellement combinable avec la première, le porogène est un agent porogène liquide. Dans ce cas, on ajoute à la suspension un agent porogène liquide, au moins un tensioactif et éventuellement de l'eau, ou une émulsion comprenant au moins un agent porogène liquide, au moins un tensioactif et de l'eau à la suspension de l'étape a).
Il est également possible d'ajouter l'agent porogène liquide, le tensio-actif et optionnellement de l'eau directement dans la suspension aqueuse contenant la boehmite, c'est-à-dire sans formation d'une émulsion au préalable, soit en les ajoutant en même temps, soit par des étapes successives. Dans ce cas, on utilise les mêmes proportions des différents constituants décrites ci-dessous.
> Etape vii de mise en forme des particules sphéroïdes par coagulation en gouttes:
Selon l’étape vii du procédé de préparation, on met en forme les particules sphéroïdales par coagulation en goutte, à partir du mélange obtenu à l’étape vi.
Cette méthode consiste à faire passer le mélange obtenu à l'étape vi, par exemple le mélange (suspension d'alumine + porogène solide) dans un pot d'égouttage constitué de buses ayant un orifice de taille calibrée de manière à former des gouttelettes. Le pot d'égouttage est placé en tête d'une colonne contenant une phase supérieure organique et une phase inférieure constituée par une phase aqueuse basique. La phase organique est choisie d'une manière telle qu'elle présente une masse volumique légèrement inférieure à celle de l'eau.
De manière préférée, l'étape vii de mise en forme des particules comprend les étapes suivantes : vii1) on transfère le mélange dans un pot d'égouttage équipé de buses dont les orifices sont calibrés pour former des gouttelettes d’au moins 500 micromètres; vN2) on procède à un égouttage du mélange par gravité dans une colonne contenant une phase organique en partie supérieure et une phase aqueuse basique en partie inférieure de sorte à récolter les particules sphéroïdales en pied de phase aqueuse basique.
C'est lors du passage de la gouttelette à travers la phase organique qu'a lieu la mise en forme des sphères tandis que la gélification (ou coagulation) s'effectue dans la phase aqueuse. Des additifs de type tensioactifs peuvent être ajoutés dans la phase aqueuse pour favoriser le passage de l’interface et la coagulation des particules dans la phase aqueuse basique.
Dans le cadre de l'invention, la phase organique non miscible peut être choisie parmi les graisses, les huiles et cires minérales, les corps gras, les hydrocarbures et les coupes pétrolières. De préférence, la phase organique est une coupe paraffinique ayant de 10 à 14 atomes de carbone, formée de normal- et d'iso-paraffines, et présentant un point d'ébullition compris entre 220 et 350 °C.
La phase aqueuse basique est par exemple une solution d'ammoniaque, de carbonate d'ammonium ou d'amines. De préférence la phase aqueuse basique est une solution d'ammoniaque.
Un composé tel que l’urée peut également être introduit dans la suspension de l’étape a), puis se décomposer dans la phase aqueuse inférieure de la colonne. Ce composé, selon le brevet US 4542 113 permet un ajustement plus facile de la montée en viscosité.
A l'issue de l'étape de formation des particules sphéroïdales, les particules sont récupérées et séparées de la phase aqueuse, par exemple sur un tamis. Il est également possible de faire subir aux particules ainsi formées une ou plusieurs étapes de mûrissement, comme enseigné dans la demande EP 0001023.
> Etape ix de séchage:
Selon l’étape ix du procédé de préparation, on sèche les particules obtenues à l’étape viii. L'étape ix de séchage des particules sphéroïdales selon le procédé de l'invention est effectuée à une température comprise entre 40 et 150°C, sous air sec ou humide, pendant généralement entre 30 minutes et 20 heures. Le protocole de séchage peut éventuellement comporter un ou plusieurs paliers en température. Il peut éventuellement requérir des taux d'hygrométrie variables au cours du séchage, de préférence entre 10 et 1000 g d'eau par kg d'air sec, de manière encore plus préférée entre 40 et 1000 g d'eau par kg d'air sec. > Etape x de calcination:
Selon l’étape x du procédé de préparation, on calcine les particules obtenues à l’étape ix. L'étape x de calcination des particules sphéroïdales est effectuée à une température comprise entre 450 et 900°C, préférentiellement comprise entre 550 et 800°C pendant 0,5 à 12 heures, de préférence entre 1 et 8 heures, de manière encore préférée entre 1 et 5 heures. Cette étape de calcination peut comprendre un ou plusieurs paliers de température.
Avantageusement, l’étape de calcination est mise en oeuvre avec une température inférieure à la température de fusion des microsphères creuses, préférentiellement d’au moins 20°C, plus préférentiellement d’au moins 50°C. Avantageusement, quand les microsphères creuses sont des microsphères creuses fabriquées industriellement, notamment en verre, la température de calcination est comprise entre 450°C et 900°C, préférentiellement comprise entre 550 et 800°C, pendant 0,5 à 12 heures, de préférence entre 1 et 8 heures, de manière encore préférée entre 1 et 5 heures.
L’étape iv de calcination est mise en oeuvre préférentiellement en réalisant d’abord une rampe de montée en température de manière à contrôler la montée en température dans l’extrudé, par exemple dans un four à moufle ou en lit traversant. La rampe de température est typiquement de 1 à 10°C par minute, en partant de la température ambiante. Ensuite, la température de l’étape de calcination est maintenue fixe, par exemple, à une température comprise entre 500 et 650°C pendant une durée de 1 à 3 heures. Enfin, la descente en température de l’étape de calcination se fait librement, de façon progressive.
Procédé de fabrication par granulation en granulés
Dans une troisième variante, le support selon l’invention est mis en forme sous forme de granulés par un procédé de granulation. Dans ce cas, le procédé de préparation du support selon l’invention comprend préférentiellement les étapes suivantes : une étape xi de granulation d’une pâte comprenant des microsphères creuses une étape xii de séchage une étape xiii de calcination optionnellement, une étape xiv de traitement hydrothermal. L’étape xi de granulation comprend les étapes suivantes :
- on part d'une poudre en présence de microsphères creuses et optionnellement d'un porogène (même type de porogène qu’avec la production de support par extrusion décrite plus haut),
- on met en forme ladite poudre sous forme de billes,
- on fait mûrir lesdites billes.
L’étape de mise en forme de ladite poudre en présence de microsphères creuses sous forme de granulés peut être réalisée par toute technique connue de l'homme du métier. Elle s'effectue directement sur la poudre par technologie tournante. On entend par technologie tournante tout appareil dans lequel l'agglomération est réalisée par mise en contact et rotation du produit à granuler sur lui-même. Comme appareil de ce type, on peut citer le drageoir tournant, le tambour tournant.
La taille des granulés obtenus n'est pas critique. Elle est en général comprise entre 1 et 5 mm.
L’étape de mûrissement des granulés issus de l'étape précédente est réalisée par maintien des billes d'alumine dans une atmosphère à taux d'humidité contrôlée. La température est préférentiellement comprise entre 30 et 100 °C, de préférence entre 80 et 100 °C. La durée du mûrissement peut varier entre quelques heures et quelques dizaines d'heures, de préférence entre 6 et 24 heures.
Un mode de mise en oeuvre pratique du mûrissement consiste à injecter de la vapeur d'eau vive sur les billes d'alumine.
L’étape xii de séchage est mise en oeuvre de la même façon que l’étape iii de séchage du procédé d’extrusion.
L’étape xiii de calcination est mise en oeuvre de la même façon que l’étape iv de séchage du procédé d’extrusion.
L’étape xiv de traitement hydrothermal optionnelle est mise en oeuvre de la même façon que l’étape v de traitement hydrothermal du procédé d’extrusion. Procédé pour produire un son utilisation
Le support selon l’invention ou issus du procédé selon l’invention peut être utilisé en tant que catalyseurs, supports de catalyseurs ou adsorbants. Il est connu de l’homme du métier que les supports catalytiques peuvent être transformés ensuite en catalyseurs, on ne rentrera donc pas dans les détails.
Les supports catalytiques selon l’invention peuvent notamment être utilisés pour fabriquer les catalyseurs de procédés d’hydrotraitement, d’hydroconversion, hydrogénation sélective, d’hydrocraquage, de reforming, d’isomérisation, de DeNox, de réduction catalytique sélective (RCS) (ou « Sélective Catalytic Réduction » selon la terminologie anglo-saxonne), dans le reformage à la vapeur, le craquage, la déshydrogénation, la déshydrocyclisation d'hydrocarbures ou d'autres composés organiques et/ou de Claus. En général, des métaux sont déposés sur/imprègnent le support catalytique selon l'invention selon des techniques bien connues de l'homme du métier, par exemple par imprégnation à partir de solution de précurseurs de métaux. L'imprégnation peut être par exemple réalisée selon le mode connu d'imprégnation à sec, selon lequel on introduit la quantité d'éléments désirée sous forme de sels solubles dans le solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support. Le support ainsi rempli par la solution est de préférence séché. Le support préféré est l'alumine qui peut être préparée à partir de tout type de précurseurs et outils de mise en forme connus de l'homme du métier.
Les métaux peuvent être déposés en co-imprégnation ou par ajout successif.
Typiquement, on dépose sur le support les métaux, par exemple le cobalt et le molybdène, en une seule étape, par imprégnation à sec dudit support au moyen d'une solution contenant la quantité désirée de métaux, ici de cobalt et de molybdène.
Alternativement selon un deuxième mode de réalisation, dans une première étape on dépose par imprégnation le premier métal et ensuite le second métal, par exemple le cobalt et ensuite le molybdène, ou l’inverse le molybdène et ensuite le cobalt. Selon un troisième mode de réalisation, on réalise une première étape d'imprégnation sur le support des deux métaux, par exemple le cobalt et le molybdène. Une seconde imprégnation d’un deux métaux seul est ensuite réalisée, afin d'ajuster le rapport molaire entre les deux métaux. Dans ce deuxième ou troisième mode de réalisation, avant la deuxième imprégnation, le support imprégné est séché et éventuellement calciné. Optionnellement, des éléments dopants comme le phosphore ou le bore peuvent être ajoutés dans les solutions d'imprégnation.
Après introduction des métaux et éventuellement des agents dopants, le support selon l’invention est préférentiellement soumis à un traitement de calcination. Ce traitement a pour but de transformer les précurseurs moléculaires des métaux en phase oxyde. Il s'agit dans ce cas d'un traitement oxydant, mais un simple séchage du support d peut également être effectué. De manière préférée, le support selon l’invention est soumis à un traitement de calcination, préalablement à sa mise en oeuvre dans le procédé selon l'invention. Ledit traitement de calcination est avantageusement mis en oeuvre sous air ou sous oxygène dilué, à une température comprise entre 200°C et 550 °C, de préférence entre 300°C et 500°C. On note là encore que, selon l’invention, on choisit une température de calcination de façon à ce qu’elle reste inférieure à la température de fusion des microsphères creuses, avec de préférence le même écart de température qu’avec la calcination réalisée sur le support avant imprégnation par les métaux). On note que le catalyseur fabriqué à partir dudit support selon l’invention présente une masse volumique réduite par rapport au catalyseur produit à partir d’un support conventionnel sans microsphères creuses. Sa texture poreuse est sensiblement identique à celle d’un catalyseur à partir d’un support dépourvu de microsphères creuses.
Exemples Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
Une série de supports catalytiques avec et sans microsphères creuses est préparé. Les microsphères creuses utilisées selon l’invention sont de plusieurs types et décrites dans le tableau 1 ci-dessous : La stabilité thermique indiquée est à comprendre comme la température au-delà de laquelle les microsphères voient leurs propriétés changer significativement, sans pour autant fondre (donc une température inférieure à la température de fusion). Tableau 1
Série 1 d’exemples
Une première série de supports de catalyseur avec et sans microsphères creuses est préparée par un procédé d’extrusion avec une étape i de préparation de la pâte selon le deuxième mode de réalisation.
On part d’un gel de pseudo-boehmite tabulaire ultrafine ou gel d’alumine. On malaxe ledit gel de pseudo-boehmite en présence d’une solution aqueuse et suivant les essais d’une teneur en microsphères creuses, sans acide ajouté avec une perte au feu au malaxage acide, c’est- à-dire après ajout d’une solution d’acide (mesure connue sous l’acronyme PAFa) comprise entre 59 et 60%.
La pâte obtenue est malaxée pendant 15 minutes. Ensuite, la pâte est neutralisée par une solution basique, et malaxée à nouveau pendant 5 minutes.
La pâte obtenue est passée à travers la filière trilobé de 2,1 mm d’une extrudeuse à piston de laboratoire à une pression d’extrusion comprise entre 6,0 et 9,5 MPa. Les supports sont ensuite séchés pendant deux heures à l’étuve à 140°C, puis calcinés pendant 2 heures à une température de 600°C sous air humide contenant 40 g d’eau par kg d’air sec pour obtenir des supports dits « support 1 » dans le tableau 2 ci-dessous.
Les caractéristiques des supports extrudés obtenus sont rassemblées dans le tableau 2 ci- dessous (msp = microsphère creuse) :
Tableau 2
Les diamètres poreux Dp sont mesurés par la méthode classique de porosimétrie au mercure selon la norme ASTM D4284-12 à une pression maximale de 4000 bars, utilisant une tension de surface de 484 dyne/cm et un angle de contact pour les supports alumine amorphe de 140°, afin de déterminer la répartition poreuse des échantillons.
Les supports 3 à 8 suivant l’invention présentent une densité absolue inférieure à celle des supports 1 et 2 comparatifs sans microsphère creuse. La densité absolue diminue lorsque la teneur en microsphères creuses augmente, comme le montre la comparaison des valeurs de différence de densité absolue ADabs. Le pouvoir allégeant des microsphères A est supérieur à celui des microsphères C, du fait de la plus faible densité absolue des microsphères A comparée à celle des microsphères C.
Les supports 3 à 8 suivant l’invention sont fabriqués avec une pression d’extrusion dans des gammes similaires à celles des supports comparatifs 1 et 2, c’est-à-dire entre 6,5 et 9,5 MPa. Les supports 3 à 8 suivant l’invention présentent un diamètre médian poreux en volume noté Dp légèrement inférieur ou égal à celui des supports comparatifs 1 et 2.
Les supports 3 à 8 suivant l’invention ont un volume poreux par intrusion au mercure par volume de grain (VHg/Vgrain) sensiblement identique à celui des supports comparatifs 1 et 2, alors même que la densité absolue des supports 3 à 8 suivant l’invention est bien inférieure à celle des supports comparatifs 1 et 2.
Pour tous les supports, les résultats du test d’écrasement grain à grain (EGG) sont satisfaisants (supérieurs à 0,8 kg/mm).
Série 2 d’exemples: Une deuxième série de supports de catalyseur avec et sans microsphères creuses est préparée par un procédé d’extrusion avec une étape i de préparation de la pâte selon le deuxième mode de réalisation.
On part d’un gel de pseudo-boehmite tabulaire ultrafine ou gel d’alumine. On malaxe ledit gel de pseudo-boehmite en présence d’une solution aqueuse et suivant les essais d’une teneur en microsphères creuses, sans acide ajouté.
La pâte obtenue est malaxée pendant 15 minutes. Ensuite, la pâte est neutralisée par une base, et malaxée à nouveau pendant 5 minutes.
La pâte obtenue est passée à travers la filière quadrilobe de 2,1 mm d’une extrudeuse monovis d’une unité pilote pour obtenir des extrudés. Les supports extrudés sont ensuite séchés une nuit à l’étuve à 140°C puis calcinés pendant 2 heures à une température de 580°C sous air humide contenant 40 g d’eau par kg d’air sec.
Les caractéristiques des supports extrudés obtenus sont rassemblées dans le tableau 3 ci- dessous : Ils sont appelés « support 2 » en l’absence d’ajout de microsphères creuses. Tableau 3
Les supports 10 et 11 suivant l’invention présentent une densité absolue et une densité de remplissage tassé « DRT » inférieures à celles du support 10 comparatif, tout en gardant un volume poreux par volume de grain (VHg/Vgrain) similaire au support 10 comparatif.
Par ailleurs, le support 9 comparatif et les supports 10 et 11 selon l’invention ont une répartition poreuse essentiellement monomodale, avec des diamètres médians poreux similaires et un pourcentage de pore de même taille d’environ 80 % en volume comme l’indique la colonne % monomodalité dans le tableau 3 ci-dessus. (Volume à Dmedian + 15A - Volume à Dmedian - 15A) / (Volume à Dmedian + 30A - Volume à Dmedian - 30A). Cela signifie que 80% du volume poreux à diamètre médian +/- 30A est compris dans une gamme à diamètre médian +/- 15A.
Pour tous les supports, les résultats du test d’écrasement grain à grain (EGG) sont satisfaisants (supérieur à 0,8 kg/mm). La surface spécifique est exprimée en m2 par grammes. Aussi la présence de microsphères poreuses dans le support augmente la surface spécifique du support selon l’invention. La surface spécifique des supports 10 et 11 selon l’invention est comparable à la surface spécifique du support 9 comparatif.
Au vue des propriétés des supports 2 incluant des microsphères A et C, les supports catalytiques 10 et 11 selon l’invention sont aptes à être utilisés pour la fabrication de catalyseurs. Série 3 d’exemples :
Une troisième série de supports de catalyseur avec et sans microsphères creuses est préparée par un procédé d’extrusion avec une étape i de préparation de la pâte selon le deuxième mode de réalisation. On part de poudre de dioxyde de titane G5, commercialisée par la société Tronox. On la réhydrate et on malaxe ledit mélange en présence d’une solution aqueuse acidifiée avec un acide minéral fort et avec un additif organique pour faciliter l’extrusion et suivant les essais d’une teneur en microsphères creuses. La pâte obtenue est malaxée pendant 30 minutes.
La pâte obtenue est passée à travers la filière cylindre de 4 mm d’une extrudeuse à vis pour obtenir des extrudés.
Les supports extrudés sont ensuite séchés une nuit à l’étuve à 140°C puis calcinés pendant 2 heures à une température de 450°C sous air humide contenant 40 g d’eau par kg d’air sec. Ils sont appelés « support 3 » en l’absence d’ajout de microsphères creuses
Les caractéristiques des supports extrudés obtenus sont rassemblées dans le tableau 4 ci- dessous :
Tableau 4
Le support 13 suivant l’invention présente une densité absolue et une densité de remplissage tassé « DRT » inférieures à celles du support 12 comparatif. Le support 12 peut être utilisé en l’état comme catalyseur de premier réacteur Claus pour les réactions suivantes :
2 H2S + S02 < 3/xSx + 2 H20 CS2 + 2 H20 -> C02 + 2 H2S On envoie dans un réacteur maintenu à 320°C un gaz de composition volumique décrite au tableau 5 ci-dessous, avec un temps de contact entre le mélange gazeux et le catalyseur de 0,9 s :
Tableau 5
Le taux de conversion du CS2 est mesuré par chromatographie gazeuse en sortie du réacteur est indiqué dans le tableau 6 ci-dessous:
Tableau 6 La mesure de l’activité catalytique en hydrolyse de CS2 en C02 dans des conditions de premier réacteur Claus montre que le support 13 selon l’invention est au moins aussi performant que le support 12 (comparatif).
Série 4 d’exemples :
Une quatrième série de supports de catalyseur avec et sans microsphères creuses est préparée par un procédé de coagulation en gouttes.
On part d’une boehmite de type Pural SB3 commercialisée par Sasol. Une suspension contenant 20% de matière minérale (exprimée en % poids d'AI203) est préparée en mélangeant une charge d'alumine g ayant un diamètre médian en volume de 50 pm et la poudre de boehmite Pural SB3 dans une solution aqueuse acidifiée contenant 3,6% poids d'HNOs/AlsOs.
La fraction solide d'AI203 est apportée à 88% poids par la boehmite et à 12% par la charge d'alumine g. Cette suspension contient, en outre, un agent porogène et un tensioactif. L'agent porogène est une phase organique comprenant un mélange de paraffines contenant entre 10 et 12 atomes de carbone dont la température d'ébullition est d'environ 290°C et de densité 0,75 g/cm3. Le tensioactif est du Galoryl® EM10, agent émulsionnant commercial. Ces composés sont introduits dans les proportions suivantes : fraction massique de porogène / alumine = 14% et fraction massique de tensioactif / porogène = 7%. Les microsphères sont également ajoutées le cas échéant dans la suspension.
Dans cet exemple, après ajout de tous les composés, la suspension est directement soumise à un mélange jusqu’à ce que la viscosité du mélange soit comprise entre 250 et 400 mPa.s. A cette viscosité, la suspension présente les propriétés rhéologiques adaptées à un égouttage au travers de buses. On obtient des billes/particules sphériques.
Les billes sont ensuite séchées une nuit à l’étuve à 140°C puis calcinées pendant 2 heures à une température de 580°C sous air humide contenant 40 g d’eau par kg d’air sec.
Les caractéristiques des supports obtenus sont rassemblées dans le tableau 7 ci-dessous : les supports sous forme de billes sans ajout de microsphères creuses sont appelés Support 4 :
Tableau 7
Le support 15 suivant l’invention présente une densité absolue et une densité de remplissage tassé « DRT » inférieures à celles du support 14 comparatif. En conclusion, l’ajout de microsphères creuses dans les supports tel que réalisé selon l’invention est très flexible dans sa mise en oeuvre, permet d’alléger de manière assez substantielle les supports et donc les catalyseurs qui les intègrent, sans que cet allègement s’obtienne au détriment des caractéristiques de porosité du support, ni de ses propriétés mécaniques.

Claims

Revendications
1. Support calciné, notamment catalyseur ou support catalytique ou masse adsorbante/absorbante, se présentant notamment sous forme d’extrudés, de pastilles, de granulés ou de billes, ledit support comprenant une matrice poreuse à base d’argiles, de zéolithes, ou de carbonates, d’oxydes, ou d’hydroxydes métalliques et/ou de silicium, caractérisé en ce que la matrice incorpore des microsphères creuses minérales d’une composition différente et dans une teneur comprise entre 0,3 et 50% en poids, notamment entre 0,5 et 15% en poids, de la matrice.
2. Support selon la revendication précédente, caractérisé en ce que la teneur en microsphères creuses est d’au plus 15%, notamment d’au moins 1% en poids, et notamment comprise entre 0,5 et 20 % en poids ou entre 1 ,5 et 5% en poids, notamment entre 0,5 et 4,5 % en poids ou entre 1 et 4.5% en poids.
3. Support selon l’une des revendications précédentes, caractérisé en ce que le ratio de la plus petite dimension du support du type pastilles ou granulés ou extrudés ou billes par rapport au diamètre des microsphères creuses est d’au moins 5/1 , notamment d’au moins 8/1.
4. Support selon l’une des revendications précédentes, caractérisé en ce que les microsphères creuses ont un diamètre médian D50 inférieur ou égal à 150 micromètres, notamment inférieur ou égal à 110, 100, 80 ou 50 micromètres, de préférence d’au moins 1 ou au moins 5 ou au moins 10 micromètres, notamment entre 10 et 150 micromètres.
5. Support selon l’une des revendications précédentes, caractérisé en ce qu’il présente une texture poreuse analogue à celle d’un support dépourvu de microsphères creuses.
6. Support selon l’une des revendications précédentes, caractérisé en ce que la densité absolue des microsphères creuses est comprise entre 0,1 et 1 ,3 g/cm3, notamment entre 0,25 et 0,85 g/cm3.
7. Support selon l’une des revendications précédentes, caractérisé en ce que la température de fusion des microsphères est d’au moins 500°C, notamment d’au moins 600°C, et de préférence d’au plus 1500°C, notamment d’au plus 1450°C.
8. Support selon l’une des revendications précédentes, caractérisé en ce que les microsphères creuses sont en verre, de type verre de borosilicate, ou en céramique.
9. Support selon l’une des revendications précédentes, caractérisé en ce que les carbonates, oxydes, ou hydroxydes métalliques de la matrice sont choisis parmi au moins un des composés suivants : carbonates/oxydes/hydroxydes de titane, d’aluminium, de cuivre, de zirconium, de zinc, de silicium, seuls ou en mélange.
10. Catalyseur caractérisé en ce qu’il comprend le support selon l’une des revendications précédentes et au moins un élément ou composé actif vis-à-vis de la catalyse et imprégnant et/ou déposé sur la matrice, notamment choisi par au moins un élément du groupe VIII B ou I B ou MB, notamment parmi un des éléments suivants : cobalt, molybdène, nickel, palladium, platine, rhodium, ruthénium, fer, étain.
11. Utilisation du support selon l’une des revendications 1 à 9 en tant que catalyseur ou en tant que masse d’adsorption / absorption.
12. Utilisation du catalyseur selon la revendication 10 comme catalyseur de procédé de synthèse, de traitement ou de conversion d’hydrocarbures, notamment un hydrotraitement, une hydroconversion, une hydrogénation sélective, un hydrocraquage, un reformage, une isomérisation, un traitement des NOx, une réduction catalytique sélective, une déshydrocyclisation.
13. Procédé de production par extrusion du support selon l’une des revendications 1 à 9, caractérisé en ce que ledit procédé comprend une étape de préparation d’une pâte comprenant d’une part les microsphères creuses, et d’autre part les argiles, et/ou zéolithes, ou les carbonates/oxydes et/ou hydroxydes de métal et/ou de silicium, une étape d’extrusion de ladite pâte en extrudés , une étape de séchage des extrudés, une étape de calcination des extrudés à une température inférieure à la température de fusion des microsphères creuses, et optionnellement une étape de traitement hydrothermal.
14. Procédé de production par coagulation en billes du support selon l’une des revendications 1 à 9, caractérisé en ce que ledit procédé comprend une étape de préparation d’une suspension en phase liquide comprenant d’une part les argiles, et/ou zéolithes ou les carbonates/ oxydes et/ou hydroxydes de métal et/ou de silicium, et d’autre part les microsphères creuses, puis une étape de coagulation en billes de la dite suspension, une étape de séchage des billes, puis une étape de calcination des billes à une température inférieure à la température de fusion des microsphères creuses, et optionnellement une étape de traitement hydrothermal.
15. Procédé de production par granulation du support selon l’une des revendications 1 à 9, caractérisé en ce que ledit procédé comprend une étape de préparation d’une pâte comprenant d’une part les microsphères creuses et d’autre part les argiles, et/ou zéolithes ou les carbonates/ oxydes et/ou hydroxydes de métal et/ou de silicium, une étape de granulation de la pâte en granulés, une étape de séchage des granulés, puis une étape de calcination des granulés à une température inférieure à la température de fusion des microsphères creuses, et optionnellement une étape de traitement hydrothermal.
16. Procédé selon l’une des revendications 13 à 15, caractérisé en ce qu’on choisit le matériau des microsphères de façon à ce qu’il présente une température de fusion supérieure d’au moins 20°C, notamment d’au moins 50°C, à la température de calcination des extrudés ou billes ou granulés.
EP20819772.3A 2019-12-20 2020-12-09 Support catalytique comprenant des microsphères creuses Pending EP4076743A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915084A FR3105022B1 (fr) 2019-12-20 2019-12-20 Support catalytique comprenant des microsphères creuses
PCT/EP2020/085222 WO2021122201A1 (fr) 2019-12-20 2020-12-09 Support catalytique comprenant des microsphères creuses

Publications (1)

Publication Number Publication Date
EP4076743A1 true EP4076743A1 (fr) 2022-10-26

Family

ID=70295289

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20819772.3A Pending EP4076743A1 (fr) 2019-12-20 2020-12-09 Support catalytique comprenant des microsphères creuses

Country Status (6)

Country Link
US (1) US20230035172A1 (fr)
EP (1) EP4076743A1 (fr)
JP (1) JP2023506983A (fr)
CN (1) CN114786813A (fr)
FR (1) FR3105022B1 (fr)
WO (1) WO2021122201A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602470A (zh) * 2022-03-10 2022-06-10 浙江奇彩环境科技股份有限公司 一种处理工业污泥用催化剂及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422499A (en) 1944-02-16 1947-06-17 Standard Oil Dev Co Alumina gel
FR2399276A1 (fr) 1977-08-03 1979-03-02 Rhone Poulenc Ind Procede de fabrication de billes d'alumine
US4637990A (en) 1978-08-28 1987-01-20 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalysts and method of making same
WO1981002844A1 (fr) * 1980-04-04 1981-10-15 G Hirs Filtre et son procede de fabrication
US4292206A (en) 1980-08-22 1981-09-29 American Cyanamid Company Use of hollow glass spheres in conjunction with rehydratable alumina for making low density catalyst support beads
DE3212249C2 (de) 1982-04-02 1986-08-21 Condea Chemie GmbH, 2212 Brunsbüttel Verfahren zur Herstellung von kugelförmiger Tonerde
FR2642414B1 (fr) 1989-02-01 1991-04-26 Rhone Poulenc Chimie Procede de fabrication d'agglomeres d'alumine active, agglomeres obtenus par le procede et dispositif pour sa mise en oeuvre
JP2004130156A (ja) * 2002-10-08 2004-04-30 Himeka Engineering Kk 光触媒担持粒体およびその製造方法
AU2010336912B2 (en) * 2009-12-31 2013-12-12 Halliburton Energy Services, Inc Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
AU2011209837B2 (en) * 2010-01-29 2014-11-27 Halliburton Energy Services, Inc Self-toughened high-strength proppant and methods of making same
CN102351200A (zh) * 2011-07-06 2012-02-15 天津工业大学 大孔/介孔中空二氧化硅微球及其制备方法
US9623360B2 (en) * 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
FR3035798B1 (fr) 2015-05-07 2017-04-28 Ifp Energies Now Particules spheroidales d'alumine de resistance mecanique amelioree ayant un diametre median macroporeux compris entre 0,05 et 30 μm.
US20180207611A1 (en) * 2017-01-25 2018-07-26 Ingevity South Carolina, Llc Particulate adsorbent material and methods of making the same
FR3084267B1 (fr) * 2018-07-25 2021-10-08 Axens Alumine a acidite et structure de porosite optimales

Also Published As

Publication number Publication date
FR3105022B1 (fr) 2022-08-19
US20230035172A1 (en) 2023-02-02
CN114786813A (zh) 2022-07-22
JP2023506983A (ja) 2023-02-20
FR3105022A1 (fr) 2021-06-25
WO2021122201A1 (fr) 2021-06-24

Similar Documents

Publication Publication Date Title
CA2615210C (fr) Procede d&#39;hydroconversion en slurry de charges hydrocarbonees lourdes en presence d&#39;une phase active dispersee et d&#39;un oxyde a base d&#39;alumine
CA2500755C (fr) Catalyseur supporte dope de forme spherique et procede d&#39;hydrotraitement et d&#39;hydroconversion de fractions petrolieres contenant des metaux
CA2615225C (fr) Procede d&#39;hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
CA2634564C (fr) Catalyseur supporte de forme irreguliere, non spherique et procede d&#39;hydroconversion de fractions petrolieres lourdes
EP2794487B1 (fr) Procédé de fabrication de particules sphéroïdales d&#39;alumine.
WO2015189194A1 (fr) Catalyseur mesoporeux et macroporeux d&#39;hydroconversion de résidus et méthode de préparation
WO2013093225A1 (fr) Catalyseur comprenant au moins une zeolithe nu-86, au moins une zeolithe usy et une matrice minerale poreuse et procede d&#39;hydroconversion de charges hydrocarbonees utilisant ce catalyseur
FR2904783A1 (fr) Alumine a structure multiporeuse, catalyseur et procede d&#39;hydrogenation selective d&#39;essence de pyrolyse
WO2009103880A2 (fr) Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d&#39;hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur
EP0848641B1 (fr) Procede d&#39;oxydation directe des composes soufres en soufre a l&#39;aide d&#39;un catalyseur a base de cuivre
CA2415405A1 (fr) Procede de preparation d&#39;un catalyseur acide a base de zircone sulfatee massique, catalyseur susceptible d&#39;etre obtenu par ce procede et ses utilisations
EP4076743A1 (fr) Support catalytique comprenant des microsphères creuses
EP3154678B1 (fr) Alumine mésoporeuse et macroporeuse amorphe à distribution poreuse optimisée et son procédé de préparation
CA2442550C (fr) Agglomeres d&#39;alumine, leur procede de preparation, et leurs utilisations comme support de catalyseur, catalyseur ou adsorbant
FR2556363A1 (fr) Procede d&#39;hydrotraitement d&#39;hydrocarbures
FR2895280A1 (fr) Procede d&#39;hydroconversion de fractions petrolieres lourdes en lit fixe utilisant un catalyseur supporte de forme irreguliere, non spherique
EP3154663B1 (fr) Masse de captation à porosité trimodale pour la captation des métaux lourds
EP4188594A1 (fr) Produit a base de mof et procede de fabrication de produits a base de mof
Kumar et al. Control of mesoporosity in alumina

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)