WO2009103880A2 - Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur - Google Patents

Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur Download PDF

Info

Publication number
WO2009103880A2
WO2009103880A2 PCT/FR2008/001721 FR2008001721W WO2009103880A2 WO 2009103880 A2 WO2009103880 A2 WO 2009103880A2 FR 2008001721 W FR2008001721 W FR 2008001721W WO 2009103880 A2 WO2009103880 A2 WO 2009103880A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
advantageously
zeolite
alumina
silica
Prior art date
Application number
PCT/FR2008/001721
Other languages
English (en)
Other versions
WO2009103880A3 (fr
Inventor
Emmanuelle Guillon
Christophe Bouchy
Johan Martens
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Priority to EP08872627A priority Critical patent/EP2234721A2/fr
Priority to BRPI0821825-0A priority patent/BRPI0821825A2/pt
Priority to US12/811,636 priority patent/US20110042270A1/en
Priority to CN2008801238113A priority patent/CN101909751A/zh
Priority to JP2010541077A priority patent/JP2011508667A/ja
Publication of WO2009103880A2 publication Critical patent/WO2009103880A2/fr
Publication of WO2009103880A3 publication Critical patent/WO2009103880A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7042TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7046MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity

Definitions

  • the present invention relates to a catalyst comprising at least one hydrodehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII metals and a carrier comprising at least one silica-alumina, and at least one COK-7 zeolite alone, or in admixture with at least one zeolite ZBM-30.
  • the invention also relates to a process for hydroconversion of hydrocarbon feeds using said catalyst. More particularly hydroconversion is understood to mean the hydrocracking of hydrocarbon feeds. The invention makes it particularly possible to obtain improved yields of middle distillates.
  • Hydrocracking of heavy oil cuts is a very important process of refining which makes it possible to produce, from excessively heavy and unremarkable heavy loads, the lighter fractions such as gasolines, fuels and light gas oils that the refiner seeks in order to adapt his production to the structure of the request.
  • Certain hydrocracking processes also make it possible to obtain a highly purified residue that can constitute excellent bases for oils.
  • the advantage of catalytic hydrocracking is to provide middle distillates, jet fuels and gas oils, of very good quality.
  • the gasoline produced has a much lower octane number than that resulting from catalytic cracking.
  • One of the great interests of hydrocracking is to present a great flexibility at various levels: flexibility in the catalysts used, which brings a flexibility of the charges to be treated and the level of the products obtained.
  • flexibility in the catalysts used which brings a flexibility of the charges to be treated and the level of the products obtained.
  • One of the parameters that can be controlled is the acidity of the catalyst support.
  • the catalysts used in hydrocracking are all of the bifunctional type associating an acid function with a hydrogenating function.
  • the acid function is provided by supports with large surface areas (generally 150 to 800 m 2 / g) with superficial acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), silica-aluminas and zeolites.
  • the hydrogenating function is provided either by one or more metals of group VIII of the periodic table of elements, or by a combination of at least one metal of group VIB of the periodic table and at least one metal of group VIII.
  • catalysts for catalytic hydrocracking are, for the most part, constituted by weakly acidic supports, such as amorphous silica-aluminas by example. These systems are more particularly used to produce middle distillates of very good quality.
  • hydrocracking market catalysts are based on silica-alumina associated with either a Group VIII metal or, preferably, when the heteroatomic content of the feedstock to be treated exceeds 0.5 wt. combination of Group VIB and VIII metal sulphides. These systems have a very good selectivity in middle distillates, and the products formed are of good quality. These catalysts, for the less acidic of them, can also produce lubricating bases. The disadvantage of all these catalytic systems based on amorphous support is, as we said, their low activity.
  • Catalysts comprising zeolite Y of the FAU structural type, or beta type catalysts in turn have a higher catalytic activity than those of silica-aluminas, but have selectivities of light products, unwanted, higher.
  • the zeolites used for the preparation of hydrocracking catalysts are characterized by several quantities such as their Si / Al molar ratio. framework, their crystalline parameter, their porous distribution, their specific surface, their capacity of recovery in sodium ion, or their capacity of adsorption of water vapor.
  • EP 0 544 766 claims a hydrocracking process for the production of middle distillates using a large-pore hydrocracking catalyst and a catalyst comprising an intermediate pore aluminophosphate molecular sieve to improve the cold properties of the distillates means.
  • the hydrocracking catalyst has a hydrodehydrogenating activity and a crunchy support selected from the group formed by silica-alumina, silica-alumina-titanium, clays, zeolitic molecular sieves such as faujasites, zeolites X, Y, taken alone or in situ. mixture, the support being preferably non-zeolitic.
  • the intermediate-pore aluminophosphate molecular sieve is selected from SAPO-11, SAPO-31 and SAPO-41 silicoaluminophosphates.
  • a catalyst comprising at least one hydro-dehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII metals and a carrier comprising at least one silica-alumina, and at least one COK-7 zeolite alone, or in admixture with at least one ZBM-30 zeolite, leads to unexpected catalytic performance in terms of hydrocracking hydrocarbon feedstocks and more particularly makes it possible to achieve yields of middle distillates (kerosene and gas oil) significantly improved over the catalysts known in the prior art and / or improved product qualities.
  • middle distillates kerosene and gas oil
  • the invention thus relates to such a catalyst as well as a process for hydrocracking hydrocarbon feeds using said catalyst.
  • the subject of the invention is a catalyst comprising at least one hydro-dehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII metals and a support comprising at least one silica-alumina, and at least one a COK-7 zeolite alone, or in admixture with at least one zeolite ZBM-30.
  • the invention also relates to a hydrocracking process using said catalyst.
  • the support of the catalyst according to the present invention comprises at least one COK-7 zeolite alone, or in admixture with at least one zeolite ZBM-30.
  • Zeolite ZBM-30 is described in patent EP-A-46 504, and zeolite COK-7 is described in patent applications EP 1 702 888 A1 or FR 2 882 744 A1.
  • the COK-7 zeolite used in the catalyst according to the present invention is synthesized in the presence of the organic triethylenetetramine structurant.
  • the ZBM-30 zeolite used in the catalyst according to the present invention is synthesized in the presence of the organic triethylenetetramine structurant.
  • the support of the catalyst according to the present invention comprises at least one COK-7 zeolite, synthesized in the presence of the organic template triethylenetetramine, in admixture with at least one zeolite ZBM-30 synthesized in the presence of the organic template triethylenetetramine.
  • the proportion of each of the zeolites in the mixture of the two zeolites is advantageously between 20 and 80 % by weight relative to the total weight of the mixture of the two zeolites, and preferably the proportion of each of the zeolites in the mixture of the two zeolites is between 30 and 70% by weight relative to the total weight of the mixture of the two zeolites.
  • the support of the catalyst according to the present invention may also comprise at least one zeolite chosen from the group formed by zeolites of structural type TON, FER, MTT
  • the zeolite of structural type TON which can also be used in the composition of the support of the catalyst according to the present invention is advantageously chosen from the group formed by the zeolites Theta-1, ISI-1, NU-10, KZ-2 and ZSM-22 described. in the "Atlas of Zeolite Structure Types", cited above, and in the case of zeolite ZSM-22, in US Pat. Nos. 4,566,477 and 4,902,406, and in the case of zeolite NU-10, in EP-65400 and EP-77624.
  • the zeolite of structural type FER which can also enter the composition of the support of the catalyst according to the present invention is advantageously chosen from the group formed by zeolites ZSM-35, ferrierite, FU-9 and ISI-6, described in the book " Atlas of Zeolite
  • the MTT structural type zeolite which can also be used in the composition of the catalyst support according to the present invention is advantageously chosen from the group formed by zeolites ZSM-23, EU-13, ISI-4 and KZ-1 described in the book. "Atlas of Zeolite
  • zeolites of structural type TON which can also be used in the composition of the catalyst support according to the present invention, zeolites ZSM-22 and NU-10 are preferred.
  • zeolites of FER structural type that can also be included in the composition of the catalyst support according to the present invention, zeolites ZSM-35 and ferrierite are preferred.
  • the support of the catalyst according to the invention contains a mixture of zeolite COK-7 with at least one zeolite chosen from the group formed by the zeolites of structural type TON, FER, MTT, the COK-7 zeolite. optionally being mixed with zeolite ZBM-30.
  • the support of the catalyst according to the invention contains a mixture of two zeolites and, preferably, a mixture of the COK-7 zeolite with the ZSM-22 zeolite or the NIMO zeolite.
  • the proportion of each of the zeolites in the mixture of the two zeolites is advantageously between 20 and 80% by weight relative to the total weight of the mixture of the two zeolites, and preferably the proportion of each of the zeolites in the mixture of the two zeolites is 50 % by weight relative to the total weight of the mixture of the two zeolites.
  • the zeolites present in the support of the catalyst according to the invention advantageously comprise silicon and at least one element T chosen from the group formed by aluminum, iron, gallium, phosphorus and boron, and preferably said element T is aluminum
  • the overall Si / Al ratio of the zeolites used in the composition of the catalyst support according to the invention as well as the chemical composition of the samples are determined by X-ray fluorescence and atomic absorption.
  • the Si / Al ratios of the zeolites described above are advantageously those obtained in the synthesis according to the procedures described in the various documents cited or obtained after post-synthesis dealumination treatments well known to those skilled in the art. such as and not limited to hydrothermal treatments followed or not acid attacks or even direct acid attacks by solutions of mineral or organic acids.
  • the zeolites used in the composition of the support of the catalyst according to the invention are advantageously calcined and exchanged by at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the zeolites which, once calcined, leads to to the hydrogen form of said zeolites.
  • the zeolites used in the composition of the support of the catalyst according to the invention are advantageously at least partly, preferably almost completely, in acid form, that is to say in acid form (H + ).
  • the atomic ratio Na / T is generally advantageously less than 0.1 and preferably less than 0.5 and even more preferably less than 0.01. Silica-alumina.
  • the support of the catalyst according to the invention also comprises at least one silica-alumina.
  • Silica-aluminas can not be considered as aluminosilicates as close to ideality as zeolites. It is possible to obtain silica-aluminas in the complete range of composition ranging from 0 to 100% Al 2 O 3 , but the degree of association of the two Si and Al elements and therefore the homogeneity of the solid are highly dependent on the method of preparation.
  • the silica-alumina is homogeneous on a micrometer scale and contains an amount greater than 5% by weight and less than or equal to 95% by weight of silica (SiO 2 ), said silica-alumina having the characteristics following: a mean pore diameter, measured by mercury porosimetry, of between 20 and 140 ⁇ , a total pore volume, measured by mercury porosimetry, of between 0.1 ml / g and 0.5 ml / g, a porous volume total, measured by nitrogen porosimetry, between 0.1 ml / g and 0.5 ml / g, a BET specific surface area of between 100 and 550 m 2 / g, a pore volume, measured by mercury porosimetry, included in FIGS.
  • an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina.
  • said silica-alumina contains:
  • silica mass content of between 10 and 80% by weight, preferably a silica content of greater than 20% by weight and less than 80% by weight, and even more preferably greater than 25% by weight and less than 75% by weight, the silica content is advantageously between 10 and 50% by weight, this silica content is measured using X-ray fluorescence.
  • a content of cationic impurities for example Na + ) of less than 0.1% by weight, preferably less than 0.05% by weight and even more preferably less than 0.025% by weight.
  • the content of cationic impurities means the total content of alkali and alkaline earth.
  • an anionic impurities content (e.g., SO 4 2 ', IC ) less than 1% by weight, preferably less than 0.5% by weight and even more preferably less than 0.1% weight.
  • the catalyst further comprises a hydrogenating function, that is to say, at least one hydro-dehydrogenating element chosen from the group consisting of Group VIII and Group VIB metals, taken alone or as a mixture.
  • the group VIII elements are chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum, taken alone or as a mixture.
  • the elements of group VIII are chosen from the noble metals of group VIII, the elements of group VIII are advantageously chosen from platinum and palladium.
  • the elements of group VIII are chosen from non-noble metals of group VIII, the elements of group VIII are advantageously chosen from iron, cobalt and nickel.
  • the group VIB elements of the catalyst according to the present invention are selected from tungsten and molybdenum.
  • the hydrogenating function comprises a group VIII element and a group VIB element
  • the following metal combinations are preferred: nickel-molybdenum, cobalt-molybdenum, iron-molybdenum, iron-tungsten, nickel-tungsten, cobalt- tungsten, and very preferably: nickel-molybdenum, cobalt-molybdenum, nickel-tungsten. It is also possible to use combinations of three metals such as nickel-cobalt-molybdenum example. When these combinations of metals are employed, these metals are preferably used in their sulfurized form.
  • the content of the hydro-dehydrogenating element of said catalyst according to the present invention chosen from the group formed by the metals of group VIB and of group VIII is between 0.1 and 60% by weight relative to the total mass of said catalyst, preferably between 0 , 1 to 50% by weight and very preferably between 0.1 to 40% by weight.
  • the catalyst preferably contains a noble metal content of less than 5% by weight, more preferably less than 2% by weight relative to the total weight of said catalyst.
  • the noble metals are preferably used in their reduced form.
  • the catalyst of the present invention also comprises at least one amorphous or poorly crystallized porous mineral matrix of oxide type selected from aluminas, aluminates and silicas.
  • a matrix containing alumina in all its forms known to those skilled in the art, and very preferably gamma alumina, is used.
  • the catalyst also contains at least one doping element selected from the group consisting of boron, silicon and phosphorus, and preferably boron and / or silicon.
  • the doping element chosen from the group formed by boron, silicon and / or phosphorus may advantageously be in the matrix, the zeolite, the silica-alumina or preferably may be deposited on the catalyst and in this case be located mainly on the matrix.
  • the doping element introduced, and in particular silicon, mainly located on the matrix of the support can advantageously be characterized by techniques such as the Castaing microprobe (distribution profile of the various elements), transmission electron microscopy coupled with an analysis. X catalyst components, or even by establishing a distribution map of the elements present in the catalyst by electron microprobe.
  • the catalyst also contains at least one group VIIA element, preferably chlorine and fluorine, and optionally also at least one group VIIB element.
  • Catalyst composition preferably chlorine and fluorine, and optionally also at least one group VIIB element.
  • the catalyst according to the present invention advantageously contains generally in% by weight with respect to the total mass of the catalyst:
  • said catalyst also contains from 0.1 to 99%, preferably from 0.2 to 99.8%, very preferably from 0.5 to 90%, and more preferably from 1 to 80% by weight.
  • at least one COK-7 zeolite alone, or in the case where the COK-7 zeolite is used as a mixture with at least one zeolite ZBM-30 the proportion of each of the zeolites in the mixture of the two zeolites COK-7 and ZBM- 30 is advantageously between 20 and 80% by weight relative to the total weight of the mixture of the two zeolites, and preferably the proportion of each of the zeolites in the mixture of the two zeolites is between 30 and 70% by weight relative to the total weight of the mixture of the two zeolites;
  • said catalyst optionally containing:
  • zeolites from 0 to 60%, preferably from 5 to 40%, of at least one zeolite chosen from the group formed by zeolites of structural type TON, FER, MTT,
  • the Group VIB 1 metals of Group VIII of the catalyst of the present invention are advantageously present in whole or in part in the metal and / or oxide and / or sulfide form.
  • the catalysts used in the process according to the invention can be prepared according to all methods well known to those skilled in the art, from the carrier based on silico-aluminum matrix and based on at least one COK-7 zeolite alone or in admixture with at least one zeolite ZBM-30.
  • the catalyst further contains a hydrogenating phase.
  • any method of silica-alumina synthesis known to those skilled in the art leading to a homogeneous silica-alumina at the micrometer scale and in which the cationic impurities (for example Na + ) can be reduced to less than 0.1% preferably at a content of less than 0.05% by weight and even more preferably less than 0.025% by weight and in which the anionic impurities (for example SO 4 2 " , CI " ) can be reduced to less than 1% and more preferably less than 0.05% by weight is suitable for preparing the supports that can be used in the process for preparing the silica-alumina used in the catalyst according to the invention.
  • the silico-aluminum matrices advantageously obtained from a mixture at any stage of a compound of alumina which is partially soluble in an acidic medium with a totally soluble silica compound or with a totally soluble combination of alumina and silica hydrated, shaping followed by a hydrothermal or thermal treatment to homogenize micrometric scale, or even nanoscale, allowed to obtain a particularly active catalyst.
  • partially soluble in acidic medium the applicant understands that bringing the alumina compound into contact before any addition of the totally soluble silica compound or the combination with an acidic solution, for example of nitric acid or sulfuric acid, causes them to react. partial dissolution.
  • the silica compounds used according to the invention may advantageously have been chosen from the group formed by silicic acid, silicic acid sols, water-soluble alkali silicates, cationic silicon salts, for example sodium metasilicate hydrate, Ludox® in ammoniacal form or in alkaline form, quaternary ammonium silicates.
  • the silica sol may advantageously be prepared according to one of the methods known to those skilled in the art.
  • a solution of decationized orthosilicic acid is prepared from a water-soluble alkali silicate by ion exchange on a resin.
  • the totally soluble hydrous silica-aluminas used according to the invention can advantageously be prepared by true coprecipitation under controlled stationary conditions (pH, concentration, temperature, average residence time) by reaction of a basic solution containing the silicon, for example under sodium silicate form, optionally aluminum, for example in the form of sodium aluminate with an acid solution containing at least one aluminum salt, for example aluminum sulphate. At least one carbonate or CO 2 may optionally be added to the reaction medium.
  • the applicant intends a process by which at least one fully soluble aluminum compound in basic or acid medium as described below, at least one silicon compound as described below are contacted simultaneously or sequentially in the presence of at least one precipitant and / or coprecipitant compound so as to obtain a mixed phase consisting essentially of silica-hydrated alumina which is optionally homogenized by intense stirring, shearing, colloid milling or by combination of these unit operations.
  • the alumina compounds used according to the invention are advantageously partially soluble in acid medium. They are advantageously chosen wholly or partly from the group of alumina compounds of general formula AI 2 O 3 , nH 2 O.
  • hydrated alumina compounds may be used, such as: hydrargillite, gibbsite, bayerite, boehmite, pseudo-boehmite and amorphous or essentially amorphous alumina gels. It is also advantageous to use the dehydrated forms of these compounds which consist of transition aluminas and which comprise at least one of the phases taken from the group: rho, khi, eta, gamma, kappa, theta, and delta, which differ essentially in the organization of their crystalline structure.
  • the alpha alumina commonly called corundum can advantageously be incorporated in a small proportion in the support according to the invention.
  • Boehmite is generally described as an aluminum monohydrate of formula AI 2 O 3 , nH 2 O which in fact encompasses a wide continuum of materials of variable degree of hydration and organization with more or less well defined boundaries: most hydrated gelatinous boehmite, with n being greater than 2, pseudo-boehmite or microcrystalline boehmite with n between 1 and 2, then crystalline boehmite and finally well crystallized boehmite in large crystals with n close to 1
  • the morphology of aluminum monohydrate can vary within wide limits between these two acicular or prismatic extreme forms. A whole set of variable shapes can be used between these two forms: chain, boats, interwoven plates.
  • Relatively pure aluminum hydrates can advantageously be used in powder form, amorphous or crystallized or crystallized containing an amorphous part.
  • the aluminum hydrate can also advantageously be introduced in the form of aqueous suspensions or dispersions.
  • the aqueous suspensions or dispersions of aluminum hydrate used according to the invention may advantageously be gelable or coagulable.
  • the aqueous dispersions or suspensions may also advantageously be obtained as is well known to those skilled in the art by peptization in water or acidulated water of aluminum hydrates.
  • the aluminum hydrate dispersion may advantageously be carried out by any method known to those skilled in the art: in a "batch" reactor, a continuous mixer, a kneader, a colloid mill. Such a mixture may advantageously also be carried out in a plug flow reactor and, in particular, in a static mixer. Lightnin reactors can be mentioned.
  • alumina having been previously subjected to a treatment that may improve its degree of dispersion.
  • a treatment that may improve its degree of dispersion.
  • homogenization it is advantageous to use at least one of the homogenization treatments described in the text that follows.
  • aqueous dispersions or suspensions of alumina that can be used are advantageously aqueous suspensions or dispersions of fine or ultra-fine boehmites which are composed of particles having colloidal dimensions.
  • the fine or ultra-fine boehmites used according to the present invention may advantageously have been obtained according to the French patent FR-B-1 261 182 and FR-B-1 381 282 or in the European patent application EP-A-15. 196.
  • aqueous suspensions or dispersions obtained from pseudo-boehmite, amorphous alumina gels, aluminum hydroxide gels or ultra-fine hydrargillite It is also advantageous to use aqueous suspensions or dispersions obtained from pseudo-boehmite, amorphous alumina gels, aluminum hydroxide gels or ultra-fine hydrargillite.
  • Aluminum monohydrate may advantageously be purchased from a variety of commercial sources of alumina such as in particular PURAL®, CATAPAL®, DISPERAL®, DISPAL® marketed by SASOL or HIQ® marketed by ALCOA 1 or according to the methods Known to those skilled in the art: it can be prepared by partial dehydration of aluminum trihydrate by conventional methods or it can advantageously be prepared by precipitation. When these aluminas are in the form of a gel, they are advantageously peptized with water or an acidulated solution. In precipitation, the acid source may advantageously be for example chosen from at least one of the following compounds: aluminum chloride, aluminum sulphate, aluminum nitrate.
  • the basic source of aluminum may advantageously be chosen from basic aluminum salts such as sodium aluminate and potassium aluminate.
  • the zeolites used in the catalyst according to the invention are advantageously commercial zeolites or zeolites synthesized according to the procedures described in the patents mentioned above.
  • the zeolites used in the composition of the catalyst according to the invention are advantageously at least partly, preferably almost completely, in acid form, that is to say in hydrogen (H + ) form.
  • the matrix according to the invention may advantageously be prepared according to all methods well known to those skilled in the art from the supports prepared as described above.
  • the zeolite can advantageously be introduced according to any method known to those skilled in the art and at any stage of the preparation of the support or catalyst.
  • a preferred method of preparing the catalyst according to the present invention comprises the following steps:
  • the zeolite may advantageously be introduced during the preparation of the silica-alumina.
  • the zeolite may advantageously be, without limitation, for example in the form of powder, milled powder, suspension, suspension having undergone deagglomeration treatment.
  • the zeolite can advantageously be slurried acidulated or not at a concentration adjusted to the final zeolite content referred to the support.
  • This suspension commonly called a slip is advantageously then mixed with the precursors of the silica-alumina at any stage of its synthesis as described above.
  • the zeolite can advantageously also be introduced during the shaping of the support with the elements which constitute the matrix with possibly at least one binder
  • the zeolite may advantageously be, without being limiting, in the form of powder, ground powder, suspension, suspension having undergone deagglomeration treatment.
  • the preparation and treatment (s) and the shaping of the zeolite can thus advantageously constitute a step in the preparation of these catalysts.
  • the zeolite / silica-alumina matrix is obtained by mixing the silica-alumina and the zeolite, and the mixture is then shaped.
  • the zeolite / silica-alumina matrix may advantageously be shaped by any technique known to those skilled in the art.
  • the shaping can advantageously be carried out for example by extrusion, by pelletization, by the method of drop coagulation ("oil-drop"), by rotating plate granulation or by any other method well known to those skilled in the art. .
  • the shaping can advantageously also be carried out in the presence of the various constituents of the catalyst and extrusion of the obtained mineral paste, by pelletizing, shaped into beads at the rotating bezel or drum, drop coagulation, "oil-drop” , “oil-up”, or any other known method of agglomeration of a powder containing alumina and optionally other ingredients selected from those mentioned above.
  • the catalysts used according to the invention advantageously have the shape of spheres or extrudates. It is however advantageous that the catalyst is in the form of extruded with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are advantageously cylindrical (which may be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used in a preferred manner, but any other form may be used.
  • these supports implemented according to the present invention may advantageously have been treated as is well known to those skilled in the art by additives to facilitate the shaping and / or improve the final mechanical properties of the supports to base of silico-aluminum matrices.
  • additives there may be mentioned in particular cellulose, carboxymethylcellulose, carboxy-ethylcellulose, tall oil, xanthan gums, surfactants, flocculating agents such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc.
  • the shaping may advantageously be carried out using the catalyst shaping techniques known to those skilled in the art, such as, for example: extrusion, coating, spray drying or tabletting.
  • Water may be advantageously added or removed to adjust the viscosity of the paste to be extruded. This step can advantageously be carried out at any stage of the kneading step.
  • a predominantly solid compound and preferably an oxide or a hydrate.
  • a hydrate is preferably used and even more preferably an aluminum hydrate. The loss on ignition of this hydrate is preferably greater than 15%.
  • the acid content added to the kneading before forming is advantageously less than 30%, preferably between 0.5 and 20% by weight of the anhydrous mass of silica and alumina involved in the synthesis.
  • Extrusion can advantageously be performed by any conventional tool, commercially available.
  • the paste resulting from the mixing is advantageously extruded through a die, for example by means of a piston or a single screw or twin extrusion screw.
  • This extrusion step may advantageously be carried out by any method known to those skilled in the art.
  • the support extrusions according to the invention generally have advantageously a crush strength of at least 70 N / cm and preferably greater than or equal to 100 N / cm. Calcination of zeolite / silica-alumina support
  • Drying is carried out by any technique known to those skilled in the art.
  • calcine preferably in the presence of molecular oxygen, for example by conducting a sweep of air, at a temperature of less than or equal to 1100 ° C.
  • At least one calcination can advantageously be performed after any of the steps of the preparation.
  • This treatment for example, can advantageously be carried out in a traversed bed, in a licked bed or in a static atmosphere.
  • the furnace used may be a rotating rotary kiln or a vertical kiln with radial traversed layers.
  • the calcination conditions depend mainly on the maximum temperature of use of the catalyst.
  • the preferred calcination conditions are advantageously between more than one hour at 200 ° C.
  • the calcination can advantageously be carried out in the presence of water vapor.
  • the final calcination may optionally be carried out in the presence of an acidic or basic vapor.
  • the calcination can be carried out under partial pressure of ammonia.
  • Post-synthesis treatments may advantageously be carried out so as to improve the properties of the catalyst.
  • the zeolite / silica-alumina support can thus be optionally subjected to a hydrothermal treatment in a confined atmosphere.
  • Hydrothermal treatment in a confined atmosphere means treatment by autoclaving in the presence of water at a temperature above room temperature.
  • the support can advantageously be treated.
  • the support can advantageously be impregnated, prior to its autoclaving, the autoclaving being done either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave possibly being acidic or not.
  • This impregnation, prior to autoclaving may be acidic or not.
  • This impregnation, prior to autoclaving may advantageously be carried out dry or by immersion of the support in an acidic aqueous solution. Dry impregnation means contacting the support with a solution volume less than or equal to the total pore volume of the support. Preferably, the impregnation is carried out dry.
  • the autoclave is preferably a rotary basket autoclave such as that defined in patent application EP-A-0 387 109.
  • the temperature during autoclaving may advantageously be between 100 and 250 ° C for a period of time between 30 minutes and 3 hours.
  • the hydro-dehydrogenating element may advantageously be introduced at any stage of the preparation, very preferably after forming the zeolite / silica-alumina support.
  • the shaping is advantageously followed by calcination, the hydrogenating element can also be advantageously introduced before or after this calcination.
  • the preparation generally ends with a calcination at a temperature of 250 to 600 ° C.
  • Another of the preferred methods according to the present invention advantageously consists in shaping the support after kneading thereof, then passing the dough thus obtained to through a die to form extrudates with a diameter of between 0.4 and 4 mm.
  • the hydrogenating function can advantageously be then introduced in part only or in full, at the time of mixing.
  • the support is impregnated with an aqueous solution.
  • the impregnation of the support is preferably carried out by the "dry" impregnation method well known to those skilled in the art.
  • the impregnation may advantageously be carried out in a single step by a solution containing all the constituent elements of the final catalyst.
  • the hydrogenating function may also advantageously be introduced by one or more ion exchange operations on the calcined support constituted by a zeolite as previously described, dispersed in the chosen matrix, using solutions containing the precursor salts of the chosen metals. .
  • the hydrogenating function may advantageously be introduced by one or more impregnation operations of the shaped and calcined support, with a solution containing at least one precursor of at least one oxide of at least one metal chosen from the group formed by the metals of groups VIII and group VIB metals one (s) precursor (s) of at least one oxide of at least one metal from group VIII being preferably introduced (s) after those of group VIB or simultaneously the latter, if the catalyst contains at least one Group VIB metal and at least one Group VIII metal.
  • the catalyst advantageously contains at least one element of group VIB, for example molybdenum
  • the impregnation of molybdenum may advantageously be facilitated by the addition of phosphoric acid in the ammonium paramolybdate solutions, which also makes it possible to introduce the phosphorus so as to promote the catalytic activity.
  • the catalyst contains as dopant at least one element selected from silicon, boron and phosphorus. These elements are advantageously introduced on a support already containing at least one COK-7 zeolite alone, or in admixture with at least one zeolite ZBM-30, at least one silica-alumina, as defined above, and at least one selected metal. in the group consisting of Group VIB metals and Group VIII metals.
  • the catalyst contains boron, silicon and phosphorus and optionally the element selected from group VIIA halide ions, these elements can advantageously be introduced into the catalyst at various levels of the preparation and in various ways.
  • Impregnation of the metal is preferably carried out by the so-called “dry” impregnation method well known to those skilled in the art.
  • the impregnation may advantageously be carried out in a single step by a solution containing all the constituent elements of the final catalyst.
  • the P, B, Si and the element chosen from the group VIIA halide ions can advantageously be introduced by one or more impregnation operations with excess of solution on the calcined precursor.
  • a preferred method according to the invention consists in preparing an aqueous solution of at least one boron salt such as ammonium biborate or ammonium pentaborate in an alkaline medium and in the presence of of oxygenated water and to carry out a so-called dry impregnation, in which the pore volume of the precursor is filled with the solution containing boron.
  • boron salt such as ammonium biborate or ammonium pentaborate
  • the catalyst contains silicon
  • a solution of a silicon-type silicon compound is advantageously used.
  • the deposition of boron and silicon can advantageously also be carried out simultaneously using a solution containing a boron salt and a silicon-type silicon compound.
  • a solution containing a boron salt and a silicon-type silicon compound for example in the case where for example the precursor is a nickel-molybdenum type catalyst supported on a support containing zeolite and alumina, it is possible to impregnate this precursor with the aqueous solution of ammonium biborate and Rhodorsil E1P silicone from the company Rhône Poulenc, to carry out a drying, for example at 80 ° C.
  • the catalyst contains at least one group VIIA element, preferably fluorine
  • a solution of ammonium fluoride to dry, for example at 80 ° C. C, and carry out a calcination for example and preferably in air in crossed bed, for example at 500 ° C for 4 hours.
  • the catalyst contains phosphorus
  • a step of intermediate drying of the catalyst is generally advantageously carried out at a temperature generally between 60 and 250 ° C and an intermediate calcination step of the catalyst is generally advantageously carried out at a temperature of temperature between 250 and 600 0 C.
  • the wet solid is advantageously allowed to stand under a humid atmosphere at a temperature of between 10 and 80 ° C., and then the wet solid obtained is dried at a temperature of between 60 and 150 ° C., and finally the solid obtained is calcined at a temperature of between 150 and 800 ° C.
  • the sources of Group VIB elements which can advantageously be used are well known to those skilled in the art.
  • oxides and hydroxides, molybdic and tungstic acids and their salts in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate.
  • ammonium tungstate phosphomolybdic acid, phosphotungstic acid and their salts, silicomolybdic acid, acid silicotungstic and their salts.
  • Oxides and ammonium salts such as ammonium molybdate, ammonium heptamolybdate and ammonium tungstate are preferably used.
  • group VIII elements which can advantageously be used are well known to those skilled in the art.
  • non-noble metals nitrates, sulphates, phosphates, halides, for example chlorides, bromides and fluorides, carboxylates, for example acetates, hydroxides and carbonates
  • noble metals halides are advantageously used, for example chlorides, nitrates, acids such as chloroplatinic acid, oxychlorides such as ammoniacal ruthenium oxychloride.
  • cationic complexes such as ammonium salts when it is desired to deposit the platinum on the zeolite by cation exchange.
  • the preferred phosphorus source is orthophosphoric acid H 3 PO 4, but its salts and esters such as ammonium phosphates are also suitable.
  • the phosphorus may for example be introduced in the form of a mixture of phosphoric acid and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family.
  • ethyl orthosilicate Si (OEt) 4 siloxanes, polysiloxanes, halide silicates such as ammonium fluorosilicate (NH / SiFg) or sodium fluorosilicate Na2SiF ⁇ .
  • silicomolybdic acid and its salts, silicotungstic acid and its salts can also advantageously be used Silicon can be added, for example by impregnation of ethyl silicate in solution in a water / alcohol mixture Silicon can be added, for example by impregnation a silicone-type silicon compound suspended in water.
  • the boron source may advantageously be boric acid, preferably orthoboric acid H 3 BO 3 , ammonium biborate or pentaborate, boron oxide, boric esters.
  • Boron may for example be introduced in the form of a mixture of boric acid, hydrogen peroxide and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family. Boron may advantageously be introduced for example by a boric acid solution in a water / alcohol mixture.
  • the sources of group VIIA elements which can advantageously be used are well known to those skilled in the art.
  • the fluoride anions may advantageously be introduced in the form of hydrofluoric acid or its salts. These salts are formed with alkali metals, ammonium or an organic compound. In the latter case, the salt is advantageously formed in the reaction mixture by reaction between the organic compound and the hydrofluoric acid. It is also possible to use hydrolysable compounds which release fluoride anions in water, such as ammonium fluorosilicate (NH SiF ⁇ , silicon tetrafluoride SiF 4 or sodium Na2SiFg.
  • the fluorine can advantageously be introduced e.g. by impregnation with an aqueous solution of hydrofluoric acid or ammonium fluoride.
  • the catalysts thus obtained, in oxide form after calcination, may optionally be brought at least partly into the metal or sulphide form.
  • the catalysts obtained by the present invention are advantageously shaped into grains of different shapes and sizes. They are advantageously used in general in the form of cylindrical or multi-lobed extrusions such as bilobed, trilobed, straight-lobed or twisted, but may optionally be manufactured and used in the form of crushed powder, tablets, rings, balls, wheels. They have a specific surface area measured by nitrogen adsorption according to the BET method (Brunauer, Emmett, Teller, J. Am Chem Soc., Vol 60, 309-316 (1938)) of between 50 and 600 m 2 / g. , a pore volume measured by mercury porosimetry of between 0.2 and 1.5 cm 3 / g and a pore size distribution that can be monomodal, bimodal or polymodal.
  • BET method Brunauer, Emmett, Teller, J. Am Chem Soc., Vol 60, 309-316 (1938)
  • the catalysts thus obtained are used in conversion reactions of hydrocarbon feeds (in the broad sense of transformation) and in particular hydrocracking reactions.
  • the catalysts described above are used in hydrocracking reactions of hydrocarbon feedstocks such as petroleum cuts.
  • the feedstocks advantageously employed in the process are gasolines, kerosenes, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils and the like. , waxes and paraffins, used oils, residues or deasphalted crudes, fillers derived from thermal or catalytic conversion processes and their mixtures. They contain heteroatoms such as sulfur, oxygen and nitrogen and possibly metals. Charges from the Fischer-Tropsch process are excluded.
  • the catalysts of the invention are used in the hydrocracking process according to the invention and preferably in a hydrocracking process of heavy hydrocarbon cuts of vacuum distillate type, deasphalted or hydrotreated residues or the like.
  • the heavy cuts preferably consist of at least 80% by volume of compounds whose boiling points are at least 350 ° C. and preferably between 350 and 580 ° C. (that is to say corresponding to compounds containing at least 15 to 20 carbon atoms). They usually contain heteroatoms such as sulfur and nitrogen. The nitrogen content is usually between 1 and 5000 ppm by weight and the sulfur content between 0.01 and 5% by weight.
  • the catalysts used in the hydrocarbon feedstock hydrocracking process according to the invention are preferably subjected to a sulphurization treatment which makes it possible, at least in part, to convert the metal species into sulphide before they come into contact with the feedstock. treat.
  • This activation treatment by sulphurisation is well known to those skilled in the art and can be performed by any method already described in the literature.
  • a conventional sulphurization method well known to those skilled in the art consists in heating the catalyst in the presence of hydrogen sulphide at a temperature of between 150 and 800 ° C., preferably between 250 and 600 ° C., generally in a reaction zone at crossed bed.
  • the catalyst of the present invention can be advantageously used in the hydrocracking of vacuum distillate type cuts heavily loaded with sulfur and nitrogen.
  • the desired products are middle distillates and / or oils.
  • the hydrocracking is used in combination with a prior hydrotreatment step in a process for the improved production of middle distillates together with the production of oil bases having a viscosity number between 95 and 150.
  • the invention also relates to hydrocracking processes using the hydrocracking catalysts according to the invention.
  • the conditions of the hydrocracking such as temperature, pressure, hydrogen recycling rate, hourly space velocity, may be very variable depending on the nature of the load, the quality of the desired products and the facilities available to the refiner.
  • the temperature is generally advantageously greater than 200 ° C. and preferably between 250 and 480 ° C.
  • the pressure is advantageously greater than 0.1 MPa and preferably greater than 1 MPa.
  • the hydrogen recycling rate is advantageously at least 50 and preferably between 80 and 5000 normal liters of hydrogen per liter of filler.
  • the hourly volume velocity is advantageously between 0.1 and 20 volumes of filler per volume of catalyst and per hour.
  • the hydrocracking processes according to the invention advantageously cover the pressure and conversion ranges from mild hydrocracking to high pressure hydrocracking.
  • mild hydrocracking is meant a hydrocracking advantageously leading to moderate conversions, generally less than 55% and preferably less than 40%, and operating at low pressure, generally between 2 MPa and 12 MPa and preferably between 2 MPa and 6 MPa. .
  • High-pressure hydrocracking is understood to mean hydrocracking advantageously leading to high conversions, generally greater than 55%, and operating at high pressure, generally greater than 6 MPa.
  • the catalyst of the present invention may advantageously be used alone, in one or more catalytic beds, in one or more reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling of the unconverted fraction, optionally in combination with a hydrorefining catalyst located upstream of the catalyst of the present invention.
  • the catalyst according to the present invention is advantageously used in the second reaction zone, in one or more beds, in one or more reactors, in association or otherwise with a hydrorefining catalyst located upstream of the catalyst of the present invention.
  • the hydrocracking in one step advantageously comprises firstly and generally a high hydrorefining which is intended to carry out a hydrodenitrogenation and a desulphurization of the feed before it is sent to the hydrocracking catalyst proper. , especially in the case where it comprises a zeolite.
  • This extensive hydrorefining of the charge results in only a limited conversion of the charge, in lighter fractions, which remains insufficient and must be completed on the more active hydrocracking catalyst.
  • no separation occurs between the two types of catalysts.
  • the entire effluent at the outlet of the reactor is advantageously injected onto the hydrocracking catalyst proper and only then is separation of the products formed carried out.
  • This version of the hydrocracking also called "Once Through” has a variant that advantageously has a recycling of the unconverted fraction to the reactor for further conversion of the charge.
  • the conversion level is advantageously less than 55% and preferably less than 40%.
  • the catalyst according to the invention is advantageously employed at a temperature which is generally or equal to 230 0 C and preferably at 300 0 C, generally at most 480 C C, and often between 350 and 450 0 C.
  • the pressure is advantageously greater than 2 MPa and preferably 3 MPa, it is less than 12 MPa and preferably less than 10 MPa.
  • the amount of hydrogen is preferably at least 100 normal liters of hydrogen per liter of filler and preferably between 200 and 3000 normal liters of hydrogen per liter of filler.
  • the hourly volume velocity is advantageously between 0.15 and 10 h -1 " Under these conditions, the catalysts according to the present invention have a better activity in conversion, hydrodesulfurization and hydrodenitrogenation than commercial catalysts.
  • the hydrocracking is carried out at high pressure (total pressure greater than 6 MPa), the conversion level is then advantageously greater than 55%.
  • the method according to the invention then operates at a temperature preferably greater than or equal to 230 0 C and preferably between 300 and 480 ° C and very preferably between 300 and 440 0 C 1 5 MPa to a higher pressure and preferably greater than 7 MPa, very preferably greater than 10 MPa and more preferably greater than 12 MPa, with a hydrogen amount of at least 100NI / I of charge and preferably between 200 and 3000N / l of hydrogen per liter of feed and at an hourly space velocity is generally between 0.15 and 10 h "1.
  • Embodiment Two-step process
  • the hydrocracking in two stages advantageously comprises a first stage whose objective, as in the "one stage” process, is to carry out hydrorefining of the charge, but also to achieve a conversion of the latter of the order in general from 40 to 60%.
  • the effluent from the first step then advantageously undergoes separation (distillation), which is usually called intermediate separation, which aims to separate the conversion products from the unconverted fraction.
  • separation distillation
  • intermediate separation which aims to separate the conversion products from the unconverted fraction.
  • the second step of a two-stage hydrocracking process only the fraction of the unconverted feedstock in the first step is processed. This separation allows a two-stage hydrocracking process to be more selective in middle distillate (kerosene + diesel) than a one-step process.
  • the intermediate separation of the conversion products avoids their "over cracking" in naphtha and gas in the second step on the hydrocracking catalyst.
  • the unconverted fraction of the feedstock treated in the second stage generally contains very low levels of sulfur and NH 3 as well as organic nitrogen compounds, generally less than 20 ppm by weight or less 10 ppm weight.
  • the catalysts used in the second stage of the two-stage hydrocracking processes are preferably noble group VIII catalysts, even more preferably platinum and / or palladium catalysts.
  • the catalysts according to the invention are advantageously used in the second stage.
  • the process of the present invention may advantageously be used for partial hydrocracking, that is to say mild or moderate, advantageously under moderate pressure conditions, for example of vacuum distillate-type cuts. loaded with sulfur and nitrogen which have been previously hydrotreated.
  • the conversion level is less than 55% and preferably less than 40%.
  • the catalyst of the first step may advantageously be any hydrotreatment catalyst known to those skilled in the art.
  • This hydrotreatment catalyst advantageously comprises a matrix preferably based on alumina and at least one metal having a hydrogenating function.
  • the hydrotreatment function is provided by at least one metal or metal compound, alone or in combination, chosen from Group VIII and Group VIB metals, such as chosen from nickel, cobalt, molybdenum and tungsten, in particular .
  • this catalyst may optionally contain phosphorus and optionally boron.
  • the first step advantageously takes place at a temperature of 350-460 ° C., preferably 360-450 ° C., a total pressure of at least 2 MPa; and preferably 3 MPa 1 hourly space velocity of 0.1 -5 Ir " and preferably 0.2-2 h " and with a hydrogen amount of at least 100 NI / NI filler, and preferably 260 -3000 NI / NI charge.
  • the temperatures are advantageously greater than or equal to 230 ° C. and often between 300 and 480 ° C., preferably between 330 ° C. and 450 ° C.
  • the pressure is advantageously at least 2 MPa and preferably 3 MPa, it is less than 12 MPa and preferably less than 10 MPa.
  • the amount of hydrogen is advantageously at least 100 Nl / l of filler and preferably between 200 and 3000 Nl / l of hydrogen per liter of filler.
  • the hourly volume velocity is advantageously generally between 0.15 and 10 h -1 .
  • the catalysts of the present invention have a better activity in conversion, hydrodesulfurization, hydrodenitrogenation and a better selectivity in middle distillates than commercial catalysts The service life of the catalysts is also improved in the moderate pressure range.
  • the catalyst according to the present invention can be used for hydrocracking under high pressure conditions of at least 6 MPa.
  • the treated sections are, for example, of the vacuum distillate type which are heavily loaded with sulfur and nitrogen which have been previously hydrotreated.
  • the conversion level is greater than 55%.
  • the petroleum fraction conversion process advantageously takes place in two stages, the catalyst according to the invention being used in the second stage.
  • the catalyst of the first step may advantageously be any hydrotreatment catalyst known to those skilled in the art.
  • This hydrotreatment catalyst advantageously comprises a matrix preferably based on alumina and at least one metal having a hydrogenating function.
  • the hydrotreatment function is provided by at least one metal or metal compound, alone or in combination, chosen from Group VIII and Group VIB metals, such as chosen from nickel, cobalt, molybdenum and tungsten, in particular .
  • this catalyst may optionally contain phosphorus and optionally boron.
  • the first step advantageously takes place at a temperature of 350-460 0 C 1 preferably 360-450 0 C, a pressure higher than 3 MPa, an hourly space velocity of 0.1-5 h "'and preferably 0, 2-2 h '' 'with a quantity of hydrogen of at least 100 NI / NI of filler, and preferably 260-3000 NI / NI load.
  • the temperatures are advantageously greater than or equal to 230 ° C. and often between 300 and 480 ° C. and preferably between 300 and 440 ° C.
  • the pressure is greater than 5 MPa and preferably greater than 7 MPa, more preferably greater than 10 MPa and more preferably greater than 12 MPa.
  • the amount of hydrogen is advantageously at least 10 ONI / l of charge and preferably between 200 and 3000 Nl / I of hydrogen per liter of feedstock.
  • the hourly volume velocity is advantageously generally between 0.15 and 10 h " ".
  • the catalysts of the present invention have a better conversion activity and a better selectivity in middle distillates than commercial catalysts, even for zeolite contents considerably lower than those of commercial catalysts.
  • hydrocracking catalyst C1 (according to the invention) containing a COK-7 zeolite and a silica-alumina
  • hydrocracking catalyst C2 (in accordance with the invention) containing a COK-7 zeolite, a ZBM-30 zeolite and a silica-alumina
  • a catalyst C4 (not in accordance with the invention) containing a zeolite Y and a silica-alumina
  • the COK-7 zeolite is synthesized according to patent EP 1 702 888 A1 with the organic structuring agent triethylenetetramine. Then it is calcined at 550 ° C. under a stream of dry air for 12 hours.
  • the zeolite H-COK-7 (acid form) thus obtained has an Si / Al ratio of 52 and an Na / Al ratio of less than 0.002.
  • the zeolite ZBM-30 is synthesized according to the patent BASF EP-A-46504 with the organic structuring triethylenetetramine. Then it is calcined at 550 ° C. under a stream of dry air for 12 hours.
  • the zeolite H-ZBM-30 (acid form) thus obtained has an Si / Al ratio of 45 and an Na / Al ratio of less than 0.001.
  • a silica-alumina precursor SA1 is prepared in the following manner: An alumina hydrate is prepared according to the teachings of US-A-3,124,418. After filtration, the freshly prepared precipitate (P1) is mixed with a sodium hydroxide solution. silicic acid prepared by exchange on decationizing resin. The proportions of the two solutions are adjusted to achieve a composition of 70% Al 2 O 3 - 30% SiO 2 on the final solid. This mixture is rapidly homogenized in a commercial colloid mill in the presence of nitric acid so that the nitric acid content of the suspension at the mill outlet is 8% based on the mixed silica-alumina solid. Then, the suspension (P2) is conventionally dried in an atomizer in a conventional manner of 300 ° C.
  • the powder thus prepared is shaped in a Z-shaped arm in the presence of 8% of nitric acid relative to anhydrous product.
  • the extrusion is carried out by passing the paste through a die provided with orifices of diameter 1, 4 mm.
  • E1 extruded containing 100% silica-alumina thus obtained are dried at 150 0 C 1 then calcined at 550 0 C, then calcined at 750 0 C in the presence of water vapor.
  • zeolite COK-7 3 g of zeolite COK-7, 2 g of ZBM-30 described above and 15 g of the precursor of the silica-alumina P2 described above are then mixed. This mixing is done before introduction into the extruder.
  • the zeolite powder is first wetted and added to the matrix suspension in the presence of 66% nitric acid (7% by weight of acid per gram of dry gel) and then kneaded for 15 minutes. At the end of this mixing, the paste obtained is passed through a die having cylindrical orifices of diameter equal to 1.4 mm.
  • the extrudates are then dried overnight at 120 ° C. under air and then calcined at 550 ° C. under air.
  • the E3 extrudates contain 20% by weight of zeolite (60% COK-7 + 40% ZBM-30) and 80% silica-alumina.
  • extrusions E1.E2 and E3 are then impregnated dry with an aqueous solution of a mixture of ammonium heptamolybdate, nickel nitrate and orthophosphoric acid, dried overnight at 120 ° C. under air and finally calcined under air at 550 ° C.
  • the oxide weight contents of the catalysts C1, C2 and C3 thus obtained are 3.0% NiO, 14.0% MoO 3 and 4.6% P 2 O 5 .
  • Catalyst C4 is identical to catalyst C1 with zeolite Y instead of zeolite COK-7.
  • the zeolite Y used is a reference commercial zeolite CBV780 (Zeolyst International). It has a Si / Al ratio of 43.5 and an Na / Al ratio of less than 0.004.
  • Catalysts C1, C2, C3 and C4 are evaluated by hydrocracking a vacuum distillate under the conditions of high conversion hydrocracking (60-100%).
  • the petroleum feed is a hydrotreated vacuum distillate whose main characteristics are as follows:
  • This feedstock was obtained by hydrotreating a vacuum distillate over an HR448 catalyst sold by AXENS comprising a group VIB element and a group VIII element deposited on alumina.
  • a sulfur-containing precursor compound of H 2 S (DMDS) and a nitrogen compound precursor of NH 3 (aniline) are added to the hydrotreated feed in order to simulate the partial pressures of H 2 S and NH 3 present in the second stage of hydrocracking.
  • the load is thus enriched with 2.5% sulfur and 1400 ppm nitrogen.
  • the feed thus prepared is injected into the hydrocracking test unit which comprises a fixed bed reactor with up-flow of the feed ("up-flow") into which 50 ml of catalyst C1, C2 or C3.
  • the catalyst is sulfurized mixture by a gas oil + DMDS + aniline up to 320 0 C. It should be noted that any method of sulfurization in-situ or ex-situ is suitable. Once the sulfurization is complete, the charge described above can be transformed.
  • the operating conditions of the test unit are as follows:
  • the catalytic performances are expressed by the temperature which makes it possible to reach a crude conversion level of 80% and by the crude distillate average selectivity of 150-380 ° C. These catalytic performances are measured on the catalyst after a stabilization period. , usually at least 48 hours, has been respected.
  • the gross conversion CB is taken equal to:
  • the gross selectivity SB in middle distillate is taken as equal to: weight of the fraction (150 - 380 ° C) of the effluent oc3 - 1 UU x weight of the fraction 380 ° C ⁇ of the effluent
  • the middle distillates obtained are composed of products having a boiling point of between 150 and 380 ° C.
  • Table 1 shows that the addition of COK-7 to the silica-alumina makes it possible to improve both the activity of the catalyst and the selectivity in DM.
  • Table 1 Catalytic activities of catalysts in hydrocracking high gross conversion (80%)
  • Table 2 shows that the addition of COK-7 to silica-alumina in comparison with zeolite Y makes it possible to improve the iso-conversion middle distillate selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

L'invention décrit un catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et les métaux du groupe VIII et un support comprenant au moins une silice-alumine, et au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30, ainsi qu'un procédé d'hydrocraquage de charges hydrocarbonées mettant en oeuvre ledit catalyseur.

Description

CATALYSEUR COMPRENANT AU MOINS UNE ZÉOLITHE PARTICULIERE
ET AU MOINS UNE SILICE-ALUMINE ET PROCÉDÉ D'HYDROCRAQUAGE DE CHARGES
HYDROCARBONÉES UTILISANT UN TEL CATALYSEUR
La présente invention concerne un catalyseur comprenant au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et les métaux du groupe VIII et un support comprenant au moins une silice-alumine, et au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30.
L'invention concerne également un procédé d'hydroconversion de charges hydrocarbonées mettant en oeuvre ledit catalyseur. On entend plus particulièrement par hydroconversion, l'hydrocraquage de charges hydrocarbonées. L'invention permet tout particulièrement d'obtenir des rendements améliorés en distillât moyens.
Art antérieur
L'hydrocraquage de coupes pétrolières lourdes est un procédé très important du raffinage qui permet de produire, à partir de charges lourdes excédentaires et peu valorisâmes, les fractions plus légères telles que essences, carburéacteurs et gazoles légers que recherche le raffineur pour adapter sa production à la structure de la demande. Certains procédés d'hydrocraquage permettent d'obtenir également un résidu fortement purifié pouvant constituer d'excellentes bases pour huiles. Par rapport au craquage catalytique, l'intérêt de l'hydrocraquage catalytique est de fournir des distillats moyens, carburéacteurs et gazoles, de très bonne qualité. L'essence produite présente un indice d'octane beaucoup plus faible que celle issue du craquage catalytique.
Un des grands intérêts de l'hydrocraquage est de présenter une grande flexibilité à divers niveaux : flexibilité au niveau des catalyseurs utilisés, qui amène une flexibilité des charges à traiter et au niveau des produits obtenus. Un des paramètres qu'il est possible de maîtriser est notamment l'acidité du support du catalyseur.
Les catalyseurs utilisés en hydrocraquage sont tous du type bifonctionnel associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m^.g-i généralement) présentant une acidité superficielle, tels que les alumines halogénées (chlorées ou fluorées notamment), les silice- alumines et les zéolithes. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, soit par une association d'au moins un métal du groupe VIB de la classification périodique et au moins un métal du groupe VIII.
Les catalyseurs conventionnels de l'hydrocraquage catalytique sont, pour leur grande majorité, constitués de supports faiblement acides, tels les silice-alumines amorphes par exemple. Ces systèmes sont plus particulièrement utilisés pour produire des distillats moyens de très bonne qualité.
Beaucoup de catalyseurs du marché de l'hydrocraquage sont à base de silice-alumine associée, soit à un métal du groupe VIII soit, de préférence quand les teneurs en poisons hétéroatomiques de la charge à traiter dépassent 0,5 % en poids, à une association de sulfures des métaux des groupes VIB et VIII. Ces systèmes ont une très bonne sélectivité en distillats moyens, et les produits formés sont de bonne qualité Ces catalyseurs, pour les moins acides d'entre eux, peuvent également produire des bases lubrifiantes. L'inconvénient de tous ces systèmes catalytiques à base de support amorphe est, comme on l'a dit, leur faible activité.
Les catalyseurs comportant de la zéolithe Y de type structural FAU, ou les catalyseurs de type bêta présentent quant à eux une activité catalytique supérieure à celles des silice- alumines, mais présentent des sélectivités en produits légers, non désirés, plus élevées. Dans les brevets de l'art antérieur tels que les brevets US 7 199 00, US 6 387 246 et US 7 169 291 , les zéolithes utilisées pour la préparation des catalyseurs d'hydrocraquage sont caractérisées par plusieurs grandeurs comme leur rapport molaire Si/Ai de charpente, leur paramètre cristallin, leur répartition poreuse, leur surface spécifique, leur capacité de reprise en ion sodium, ou encore leur capacité d'adsorption de vapeur d'eau.
De nombreux travaux ont consisté à étudier des catalyseurs contenant une combinaison de zéolithe Y ou zéolithe beta et d'une silice alumine (les brevets US 3 816 297, US 5 358 917, US 6 399 530 et US 6 902 664) ou de zéolithe Y avec d'autres zéolithes particulières (US 4 925 546, FR 2 852 864).
Le brevet EP 0 544 766 revendique un procédé d'hydrocraquage pour la production de distillats moyens mettant en oeuvre un catalyseur d'hydrocraquage à larges pores et un catalyseur comprenant un tamis moléculaire de type aluminophosphate à pore intermédiaire pour améliorer les propriétés à froid des distillats moyens. Le catalyseur d'hydrocraquage présente une activité hydrodéshydrogénante et un support craquant choisi dans le groupe formé par les silice alumine, les silice alumine- titane, les argiles, les tamis moléculaires zéolithiques tels que les faujasites, zéolithes X, Y, pris seuls ou en mélange, le support étant de préférence non zéolithique. Le tamis moléculaire de type aluminophosphate à pore intermédiaire est choisi parmi les silicoaluminophosphates SAPO-11 , SAPO-31 et SAPO-41.
Les travaux de recherche effectués par le demandeur sur de nombreuses zéolithes et solides microporeux l'ont conduit à découvrir que, de façon surprenante, un catalyseur comprenant au moins un' métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et les métaux du groupe VIII et un support comprenant au moins une silice-alumine, et au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30, conduit à des performances catalytique inattendues en hydrocraquage de charges hydrocarbonées et plus particulièrement permet d'atteindre des rendements en distillats moyens (kérosène et gazole) nettement améliorés par rapport aux catalyseurs connus dans l'art antérieur et/ou à des qualités de produits améliorées.
L'invention concerne donc un tel catalyseur ainsi qu'un procédé d'hydrocraquage de charges hydrocarbonées mettant en oeuvre ledit catalyseur.
Description détaillée de l'invention
Plus précisément, l'invention a pour objet un catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et les métaux du groupe VIII et un support comprenant au moins une silice-alumine, et au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30.
L'invention a également pour objet un procédé d'hydrocraquage mettant en oeuvre ledit catalyseur.
Support
Zéolithes
Conformément à l'invention, le support du catalyseur selon la présente invention comprend au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30. La zéolithe ZBM-30 est décrite dans le brevet EP-A-46 504, et la zéolithe COK-7 est décrite dans les demandes de brevet EP 1 702 888 A1 ou FR 2 882 744 A1. De préférence, la zéolithe COK-7 utilisée dans le catalyseur selon la présente invention est synthétisée en présence du structurant organique triethylènetétramine. De manière préférée, la zéolithe ZBM-30 utilisée dans le catalyseur selon la présente invention est synthétisée en présence du structurant organique triethylènetétramine. De manière plus préférée, le support du catalyseur selon la présente invention comprend au moins une zéolithe COK-7, synthétisée en présence du structurant organique triethylènetétramine, en mélange avec au moins une zéolithe ZBM-30 synthétisée en présence du structurant organique triethylènetétramine.
Dans le cas où le support du catalyseur selon la présente invention comprend au moins une zéolithe COK-7 en mélange avec au moins une zéolithe ZBM-30, la proportion de chacune des zéolithes dans le mélange des deux zéolithes est avantageusement compris entre 20 et 80%poids par rapport au poids total du mélange des deux zéolithes, et de préférence la proportion de chacune des zéolithes dans le mélange des deux zéolithes est comprise entre 30 et 70%poids par rapport au poids total du mélange des deux zéolithes.
Selon un mode de réalisation préféré, le support du catalyseur selon la présente invention peut également comprendre au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT
Les zéolithes de type structural TON sont décrites dans l'ouvrage "Atlas of Zéolithe Structure Types", W.M. Meier, D.H. Oison and Ch. Baerlocher, 5th Revised édition, 2001 , Elsevier.
La zéolithe de type structural TON pouvant également entrer dans la composition du support du catalyseur selon la présente invention est avantageusement choisie dans le groupe formé par les zéolithes Theta-1 , ISI-1, NU-10, KZ-2 et ZSM-22 décrites dans l'ouvrage "Atlas of Zéolithe Structure Types", ci-dessus cité ainsi que, en ce qui concerne la zéolithe ZSM-22, dans les brevets US 456477 et US 4 902 406 et en ce qui concerne la zéolithe NU-10, dans les brevets EP-65400 et EP-77624.
La zéolithe de type structural FER pouvant également entrer dans la composition du support du catalyseur selon la présente invention est avantageusement choisie dans le groupe formé par les zéolithes ZSM-35, ferrierite, FU-9 et ISI-6, décrites dans l'ouvrage "Atlas of Zéolithe
Structure Types", ci-dessus cité.
La zéolithe de type structural MTT pouvant également entrer dans la composition du support du catalyseur selon la présente invention est avantageusement choisie dans le groupe formé par les zéolithes ZSM-23, EU-13, ISI-4 et KZ-1 décrites dans l'ouvrage "Atlas of Zéolithe
Structure Types", ci-dessus cité ainsi que dans le brevet US 4 076 842 en ce qui concerne la zéolithe ZSM-23.
Parmi les zéolithes de type structural TON pouvant également entrer dans la composition du support du catalyseur selon la présente invention, les zéolithes ZSM-22 et NU-10 sont préférées.
Parmi les zéolithes de type structural FER pouvant également entrer dans la composition du support du catalyseur selon la présente invention, les zéolithes ZSM-35 et ferrierite sont préférées.
Parmi les zéolithes de type structural MTT pouvant également entrer dans la composition du support du catalyseur selon la présente invention la zéolithe ZSM-23 est préférée. Selon un mode de réalisation préféré, le support du catalyseur selon l'invention contient un mélange de zéolithe COK-7 avec au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, la zéolithe COK-7 étant éventuellement en mélange avec la zéolithe ZBM-30. De préférence, le support du catalyseur selon l'invention contient un mélange de deux zéolithes et de manière préférée, un mélange de la zéolithe COK-7 avec la zéolithe ZSM-22 ou la zéolithe NlM 0.
La proportion de chacune des zéolithes dans le mélange des deux zéolithes est avantageusement compris entre 20 et 80% poids par rapport au poids total du mélange des deux zéolithes, et de préférence la proportion de chacune des zéolithes dans le mélange des deux zéolithes est de 50% poids par rapport au poids total du mélange des deux zéolithes.
Les zéolithes présentes dans le support du catalyseur selon l'invention comprennent avantageusement du silicium et au moins un élément T choisi dans le groupe formé par l'aluminium, le fer, le gallium, le phosphore et le bore, et de préférence ledit élément T est l'aluminium
Le rapport Si/Ai global des zéolithes entrant dans la composition du support des catalyseurs selon l'invention ainsi que la composition chimique des échantillons sont déterminés par fluorescence X et absorption atomique.
Les rapports Si/Ai des zéolithes décrites ci-dessus sont avantageusement ceux obtenus à la synthèse selon les modes opératoires décrits dans les différents documents cités ou bien obtenus après des traitements de désalumination post-synthèse bien connus de l'homme de l'art, tels que et à titre non exhaustif les traitements hydrothermiques suivis ou non d'attaques acides ou bien encore les attaques acides directes par des solutions d'acides minéraux ou organiques.
Les zéolithes entrant dans la composition du support du catalyseur selon l'invention sont avantageusement calcinées et échangées par au moins un traitement par une solution d'au moins un sel d'ammonium de manière à obtenir la forme ammonium des zéolithes qui une fois calcinée conduit à la forme hydrogène des dites zéolithes.
Les zéolithes entrant dans la composition du support du catalyseur selon l'invention sont avantageusement au moins en partie, de préférence pratiquement totalement, sous forme acide, c'est-à-dire sous forme acide (H+). Le rapport atomique Na/T est généralement avantageusement inférieur à 0,1 et de préférence inférieur à 0,5 et de manière encore plus préférée inférieur à 0,01. Silice-Alumine.
Conformément à l'invention, le support du catalyseur selon l'invention comporte également au moins une silice alumine.
Les silice-alumines ne peuvent pas être considérées comme des aluminosilicates aussi proches de l'idéalité que les zéolithes. Il est possible d'obtenir des silice-alumines dans le domaine complet de composition allant de 0 à 100 % AI2O3, mais le degré d'association des deux éléments Si et Al et donc l'homogénéité du solide dépendent fortement de la méthode de préparation.
Toute silice-alumine connue de l'homme de l'art convient pour l'invention.
Selon un mode de réalisation préféré, la silice-alumine est homogène à l'échelle du micromètre et contient une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (SiO2), ladite silice - alumine présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Λ, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,5 ml/g, une surface spécifique BET comprise entre 100 et 550 m2/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A inférieur à 0,1 ml/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Λ inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A, inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,1 ml/g. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
De préférence, ladite silice-alumine contient :
- une teneur massique en silice (SiO2) comprise entre 10 et 80% poids, de manière préférée une teneur en silice supérieure à 20% poids et inférieure à 80% poids et de manière encore plus préférée supérieure à 25% poids et inférieure à 75% poids, la teneur en silice est avantageusement comprise entre 10 et 50 % poids, cette teneur en silice est mesurée à l'aide de la fluorescence X.
- une teneur en impuretés cationiques (par exemple Na+) inférieure à 0,1% poids, de manière préférée inférieure à 0,05% poids et de manière encore plus préférée inférieure à 0,025% poids. On entend par teneur en impuretés cationiques la teneur totale en alcalins et alcalino- terreux.
- une teneur en impuretés anioniques (par exemple SO4 2', CI") inférieure à 1% poids, de manière préférée inférieure à 0,5% poids et de manière encore plus préférée inférieure à 0,1% poids.
Phase hydrogénante
Conformément à l'invention, le catalyseur comprend en outre une fonction hydrogénante, c'est à dire, au moins un élément hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIII et du groupe VIB, pris seuls ou en mélange.
De préférence, les éléments du groupe VIII sont choisis parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine, pris seuls ou en mélange.
Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux nobles du groupe VIII, les éléments du groupe VIII sont avantageusement choisis parmi le platine et le palladium.
Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux non nobles du groupe VIII, les éléments du groupe VIII sont avantageusement choisis parmi le fer, le cobalt et le nickel.
De préférence, les éléments du groupe VIB du catalyseur selon la présente invention sont choisis parmi le tungstène et le molybdène.
Dans le cas où la fonction hydrogénante comprend un élément du groupe VIII et un élément du groupe VIB, les associations de métaux suivants sont préférées : nickel- molybdène, cobalt-molybdène, fer-molybdène, fer-tungstène, nickel-tungstène, cobalt- tungstène, et de manière très préférée : nickel-molybdène, cobalt-molybdène, nickel- tungstène. Il est également possible d'utiliser des associations de trois métaux tel que par exemple nickel-cobalt-molybdène. Lorsque ces associations de métaux sont employées, on utilise de préférence ces métaux sous leur forme sulfurée.
La teneur en élément hydro-déshydrogénant dudit catalyseur selon la présente invention choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII est comprise entre 0,1 et 60 % poids par rapport à la masse totale dudit catalyseur de préférence entre 0,1 à 50 % poids et de manière très préférée entre 0,1 à 40 % poids.
Lorsque l'élément hydro-déshydrogénant est un métal noble du groupe VIII1 le catalyseur renferme de préférence une teneur en métal noble inférieure à 5% poids, de manière encore plus préférée inférieure à 2% poids par rapport à la masse totale dudit catalyseur . Les métaux nobles sont de préférence utilisés sous leur forme réduite.
Éventuellement, le catalyseur de la présente invention comprend également au moins une matrice minérale poreuse amorphe ou mal cristallisée de type oxyde choisie parmi les alumines, les aluminates et les silices. De préférence, on utilise une matrice contenant de l'alumine, sous toutes ses formes connues de l'Homme du métier, et de manière très préférée l'alumine gamma.
Éventuellement, le catalyseur renferme également au moins un élément dopant choisi dans le groupe formé par le bore, le silicium et le phosphore, et de préférence le bore et/ou le silicium.
L'élément dopant choisi dans le groupe formé par le bore, le silicium et/ou le phosphore peut avantageusement être dans la matrice, la zéolithe, la silice-alumine ou de préférence peut être déposé sur le catalyseur et dans ce cas être principalement localisé sur la matrice.
L'élément dopant introduit, et en particulier le silicium, principalement localisé sur la matrice du support peut avantageusement être caractérisé par des techniques telles que la microsonde de Castaing (profil de répartition des divers éléments), la microscopie électronique par transmission couplée à une analyse X des composants du catalyseurs, ou bien encore par l'établissement d'une cartographie de répartition des éléments présents dans le catalyseur par microsonde électronique.
Éventuellement, le catalyseur renferme également au moins un élément du groupe VIIA, de préférence le chlore et le fluor, et encore éventuellement également au moins un élément du groupe VIIB. Composition du catalyseur
Le catalyseur selon la présente invention renferme avantageusement généralement en % poids par rapport à la masse totale du catalyseur :
- 0,1 à 60 %, de préférence de 0,1 à 50 % et de manière encore plus préférée de 0,1 à 40 % d'au moins un élément hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII,
- 0 à 99 % et de préférence 0 à 98 %, de préférence de 0 à 95 % d'au moins un liant minéral poreux amorphe ou mal cristallisé de type oxyde, hors silice-alumine
- ledit catalyseur renferme également de 0,1 à 99 %, de préférence de 0,2 à 99,8 %, de manière très préférée, de 0,5 à 90 %, et de manière plus préférée de 1 à 80 % d'au moins une zéolithe COK-7 seule, ou dans le cas ou la zéolithe COK-7 est utilisée en mélange avec au moins une zéolithe ZBM-30, la proportion de chacune des zéolithes dans le mélange des deux zéolithes COK-7 et ZBM-30 est avantageusement compris entre 20 et 80% poids par rapport au poids total du mélange des deux zéolithes, et de préférence la proportion de chacune des zéolithes dans le mélange des deux zéolithes est comprise entre 30 et 70%poids par rapport au poids total du mélange des deux zéolithes;
- de 1 à 99% de silice -alumine telle que décrite dans le texte,
ledit catalyseur renfermant éventuellement :
- de 0 à 60 %, de préférence de 5 à 40 % d'au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT,
- de 0 à 20 %, de préférence de 0,1 à 15 % et de manière très préférée de 0,1 à 10 % d'au moins un élément promoteur choisi dans le groupe formé par le silicium, le bore et le phosphore, et de préférence le bore et /ou le silicium.
- 0 à 20 %, de préférence de 0,1 à 15 % et de manière très préférée de 0,1 à 10 % d'au moins un élément choisi dans le groupe VIIA, de préférence le fluor.
Les métaux du groupe VIB1 du groupe VIII du catalyseur de la présente invention sont avantageusement présents en totalité ou partiellement sous la forme métallique et/ou oxyde et/ou sulfure.
Préparation du catalyseur
Les catalyseurs mis en œuvre dans le procédé selon l'invention peuvent être préparés selon toutes les méthodes bien connues de l'homme du métier, à partir du support à base de matrice silico-aluminique et à base d'au moins une zéolithe COK-7 seule ou en mélange avec au moins une zéolithe ZBM-30. Le catalyseur contient en outre une phase hydrogénante.
Préparation de la silice-alumine
Tout procédé de synthèse de silice-alumine connu de l'homme du métier conduisant à une silice-alumine homogène à l'échelle du micromètre et dans lequel les impuretés cationiques (par exemple Na+) peuvent être ramenées à moins de 0,1 %, de manière préférée à une teneur inférieure à 0,05 % poids et de manière encore plus préférée inférieure à 0,025 % poids et dans lequel les impuretés anioniques (par exemple SO4 2", CI") peuvent être ramenées à moins de 1 % et de manière plus préférée inférieure à 0,05 % poids convient pour préparer les supports utilisables dans le procédé de préparation de la silice alumine utilisée dans le catalyseur selon l'invention.
Les matrices silico-aluminiques avantageusement obtenues à partir d'un mélange à quelque étape que ce soit d'un composé d'alumine partiellement soluble en milieu acide avec un composé de silice totalement soluble ou avec une combinaison totalement soluble d'alumine et de silice hydratées, mise en forme suivie d'un traitement hydrothermal ou thermique afin de l'homogénéiser à l'échelle micrométrique, voire à l'échelle nanométrique, permettaient d'obtenir un catalyseur particulièrement actif. Par partiellement soluble en milieu acide, le demandeur entend que la mise en contact du composé d'alumine avant toute addition du composé de silice totalement soluble ou de la combinaison avec une solution acide par exemple d'acide nitrique ou d'acide sulfurique provoque leur dissolution partielle.
Sources de silice
Les composés de silice utilisés selon l'invention peuvent avantageusement avoir été choisis dans le groupe formé par l'acide silicique, les sols d'acide silicique, les silicates alcalins hydrosolubles, les sels cationiques de silicium, par exemple le métasilicate de sodium hydraté, le Ludox® sous forme ammoniacale ou sous forme alcaline, les silicates d'ammonium quaternaire. Le sol de silice peut avantageusement être préparé selon l'une des méthodes connues de l'homme du métier. De manière préférée, une solution d'acide orthosilicique décationisée est préparée à partir d'un silicate alcalin hydrosoluble par échange ionique sur une résine. Sources de silices-alumines totalement solubles
Les silices-alumines hydratées totalement solubles utilisées selon l'invention peuvent avantageusement être préparées par coprécipitation vraie en conditions opératoires stationnâmes maîtrisées (pH, concentration, température, temps de séjour moyen) par réaction d'une solution basique contenant le silicium, par exemple sous forme de silicate de sodium, optionnellement de l'aluminium par exemple sous forme d'aluminate de sodium avec une solution acide contenant au moins un sel d'aluminium par exemple le sulfate d'aluminium. Au moins un carbonate ou encore du CO2 peut éventuellement être rajouté au milieu réactionnel.
Par coprécipitation vraie, le demandeur entend un procédé par lequel au moins un composé d'aluminium totalement soluble en milieu basique ou acide comme décrit ci- après, au moins un composé de silicium comme décrit ci-après sont mis en contact, simultanément ou séquentiellement, en présence d'au moins un composé précipitant et/ou coprécipitant de façon à obtenir une phase mixte essentiellement constituée de silice-alumine hydratée laquelle est éventuellement homogénéisée par agitation intense, cisaillement, broyage colloïdal ou encore par combinaison de ces opérations unitaires.
Sources d'alumine
Les composés d'alumine utilisés selon l'invention sont avantageusement partiellement solubles en milieu acide. Ils sont avantageusement choisis tout ou en partie dans le groupe des composés d'alumine de formule générale AI2O3, nH2O. On peut en particulier utiliser des composés hydratés d'alumine tels que : l'hydrargillite, la gibbsite, la bayerite, la boehmite, la pseudo-boehmite et les gels d'alumine amorphe ou essentiellement amorphe. On peut également avantageusement mettre en œuvre les formes déshydratées de ces composés qui sont constitués d'alumines de transition et qui comportent au moins une des phases prises dans le groupe : rhô, khi, êta, gamma, kappa, thêta, et delta, qui se différencient essentiellement par l'organisation de leur structure cristalline. L'alumine alpha appelée communément corindon peut avantageusement être incorporée dans une faible proportion dans le support selon l'invention.
L'hydrate d'aluminium AI2O3, nH20 utilisé de manière plus préférentielle est la boehmite, la pseudo-boehmite et les gels d'alumine amorphe ou essentiellement amorphe. Un mélange de ces produits sous quelque combinaison que ce soit peut avantageusement être également utilisé. La boehmite est généralement décrite comme un monohydrate d'aluminium de formule AI2O3, nH2O qui englobe en réalité un large continuum de matériaux de degré d'hydratation et d'organisation variables avec des frontières plus ou moins bien définies : la boehmite gélatineuse la plus hydratée, avec n pouvant être supérieur à 2, la pseudo- boehmite ou la boehmite micro-cristalline avec n compris entre 1 et 2, puis la boehmite cristalline et enfin la boehmite bien cristallisée en gros cristaux avec n voisin de 1. La morphologie du monohydrate d'aluminium peut varier dans de larges limites entre ces deux formes extrêmes aciculaire ou prismatique. Tout un ensemble de formes variables peut être utilisé entre ces deux formes : chaîne, bateaux, plaquettes entrelacées.
Des hydrates d'aluminium relativement purs peuvent avantageusement être utilisés sous forme de poudre, amorphes ou cristallisés ou cristallisés contenant une partie amorphe. L'hydrate d'aluminium peut également avantageusement être introduit sous forme de suspensions ou dispersions aqueuses. Les suspensions ou dispersions aqueuses d'hydrate d'aluminium mises en œuvre selon l'invention peuvent avantageusement être gélifiables ou coagulables. Les dispersions ou suspensions aqueuses peuvent également avantageusement être obtenues ainsi qu'il est bien connu de l'homme du métier par peptisation dans l'eau ou l'eau acidulée d'hydrates d'aluminium.
La dispersion d'hydrate d'aluminium peut avantageusement être réalisée par tout procédé connu de l'homme du métier : dans un réacteur en "batch", un mélangeur en continu, un malaxeur, un broyeur colloïdal. Un tel mélange peut avantageusement être également réalisé dans un réacteur à écoulement piston et, notamment dans un mélangeur statique. On peut citer les réacteurs Lightnin.
En outre, on peut également avantageusement mettre en œuvre comme source d'alumine une alumine ayant été soumise au préalable à un traitement susceptible d'améliorer son degré de dispersion. A titre d'exemple, on pourra améliorer la dispersion de la source d'alumine par un traitement d'homogénéisation préliminaire. Par homogénéisation, on peut avantageusement utiliser au moins un des traitements d'homogénéisation décrit dans le texte qui suit.
Les dispersions ou suspensions aqueuses d'alumine que l'on peut mettre en œuvre sont avantageusement les suspensions ou dispersions aqueuses de boehmites fines ou ultra-fines qui sont composés de particules ayant des dimensions dans le domaine colloïdal. Les boehmites fines ou ultra-fines mises en œuvre selon la présente invention peuvent avantageusement avoir été obtenues selon le brevet français FR-B-1 261 182 et FR-B-1 381 282 ou dans la demande de brevet européen EP-A-15 196.
On peut avantageusement mettre en œuvre également les suspensions ou dispersions aqueuses obtenues à partir de pseudo-boehmite, de gels d'alumine amorphe, de gels d'hydroxyde d'aluminium ou d'hydrargillite ultra-fine.
Le monohydrate d'aluminium peut avantageusement être acheté parmi une variété de sources commerciales d'alumine telle que notamment les PURAL®, CATAPAL®, DISPERAL®, DISPAL® commercialisée par la société SASOL ou encore HIQ® commercialisée par ALCOA1 ou selon les méthodes connues de l'homme du métier : elle peut être préparée par déshydratation partielle de trihydrate d'aluminium par des méthodes conventionnelles ou elle peut avantageusement être préparée par précipitation. Lorsque ces alumines se présentent sous forme d'un gel, elles sont avantageusement peptisées par l'eau ou une solution acidulée. Dans la précipitation, la source acide peut avantageusement être par exemple choisie parmi au moins un des composés suivants : le chlorure d'aluminium, le sulfate d'aluminium, le nitrate d'aluminium. La source basique d'aluminium peut avantageusement être choisie parmi les sels basiques d'aluminium tels que l'aluminate de sodium et l'aluminate de potassium.
Préparation de la zéolithe
Les zéolithes utilisées dans le catalyseur selon l'invention sont avantageusement des zéolithes commerciales ou bien des zéolithes synthétisées selon les procédures décrites dans les brevets cités précédemment. Les zéolithes entrant dans la composition du catalyseur selon l'invention sont avantageusement au moins en partie, de préférence pratiquement totalement, sous forme acide, c'est-à-dire sous forme hydrogène (H+).
Préparation de la matrice zéolithe - silice-alumine
La matrice selon l'invention peut avantageusement être préparée selon toutes les méthodes bien connues de l'homme du métier à partir des supports préparés comme décrit plus haut.
La zéolithe peut avantageusement être introduite selon toute méthode connue de l'homme du métier et ce à tout stade de la préparation du support ou du catalyseur. Un procédé préféré de préparation du catalyseur selon la présente invention comprend les étapes suivantes :
Selon un mode de préparation préféré, la zéolithe peut avantageusement être introduite au cours de la préparation de la silice-alumine. La zéolithe peut avantageusement être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, la zéolithe peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en zéolithe visée sur le support. Cette suspension appelée couramment une barbotine est avantageusement alors mélangée avec les précurseurs de la silice- alumine à un stade quelconque de sa synthèse comme décrite plus haut.
Selon un autre mode de préparation préférée, la zéolithe peut avantageusement être introduite également lors de la mise en forme du support avec les éléments qui constituent la matrice avec éventuellement au moins un liant La zéolithe peut avantageusement être, sans que cela soit limitatif, sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération.
La préparation et le ou les traitements ainsi que la mise en forme de la zéolithe peuvent avantageusement ainsi constituer une étape de la préparation de ces catalyseurs. Avantageusement, la matrice zéolithe / silice-alumine est obtenue par mélange de la silice- alumine et de la zéolithe puis le mélange est mis en forme.
Mise en forme des supports et catalyseurs
La matrice zéolithe/ silice-alumine peut avantageusement être mise en forme par toute technique connue de l'homme du métier. La mise en forme peut avantageusement être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte ("oil-drop"), par granulation au plateau tournant ou par toute autre méthode bien connue de l'homme du métier.
La mise en forme peut avantageusement également être réalisée en présence des différents constituants du catalyseur et extrusion de la pâte minérale obtenue, par pastillage, mise en forme sous forme de billes au drageoir tournant ou au tambour, coagulation en goutte, "oil-drop", "oil-up", ou tout autre procédé connu d'agglomération d'une poudre contenant de l'alumine et éventuellement d'autres ingrédients choisis parmi ceux mentionnés plus haut.
Les catalyseurs utilisés selon l'invention ont avantageusement la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont avantageusement cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est avantageusement utilisée de manière préférée, mais toute autre forme peut être utilisée.
Par ailleurs, ces supports mis en œuvre selon la présente invention peuvent avantageusement avoir été traités ainsi qu'il est bien connu de l'homme du métier par des additifs pour faciliter la mise en forme et/ou améliorer les propriétés mécaniques finales des supports à base de matrices silico-aluminiques. A titre d'exemple d'additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy-ethyl-cellulose, du tall-oil, les gommes xanthaniques, des agents tensio-actifs, des agents floculants comme les polyacrylamides, le noir de carbone, les amidons, l'acide stéarique, l'alcool polyacrylique, l'alcool polyvinylique, des biopolymères, le glucose, les polyéthylènes glycols, etc.
La mise en forme peut avantageusement être réalisée en utilisant les techniques de mise eh forme des catalyseurs, connues de l'homme du métier, telles que par exemple : extrusion, dragéification, séchage par atomisation ou encore pastillage.
On peut avantageusement ajouter ou retirer de l'eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut avantageusement être réalisée à tout stade de l'étape de malaxage.
Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut également avantageusement ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate. On utilise de manière préférée un hydrate et de manière encore plus préférée un hydrate d'aluminium. La perte au feu de cet hydrate est de préférence supérieure à 15 %.
La teneur en acide ajouté au malaxage avant la mise en forme est avantageusement inférieure à 30 %, de préférence comprise entre 0,5 et 20 % poids de la masse anhydre en silice et alumine engagée dans la synthèse.
L'extrusion peut avantageusement être réalisée par n'importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est avantageusement extrudée à travers une filière, par exemple à l'aide d'un piston ou d'une mono-vis ou double vis d'extrusion. Cette étape d'extrusion peut avantageusement être réalisée par toute méthode connue de l'homme de métier.
Les extrudés de support selon l'invention ont généralement avantageusement une résistance à l'écrasement d'au moins 70 N/cm et de manière préférée supérieure ou égale à 100 N/cm. Calcination du support zéolithe/ silice-alumine
Le séchage est effectué par toute technique connue de l'homme du métier.
Pour obtenir le support de la présente invention, il est préférable de calciner de préférence en présence d'oxygène moléculaire, par exemple en effectuant un balayage d'air, à une température inférieure ou égale à 11000C. Au moins une calcination peut avantageusement être effectuée après l'une quelconque des étapes de la préparation. Ce traitement par exemple peut avantageusement être effectué en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut être un four rotatif tournant ou être un four vertical à couches traversées radiales. Les conditions de calcination (température, durée) dépendent principalement de la température maximale d'utilisation du catalyseur. Les conditions préférées de calcination se situent avantageusement entre plus d'une heure à 2000C à moins d'une heure à 1100°C. La calcination peut avantageusement être opérée en présence de vapeur d'eau. La calcination finale peut être éventuellement effectuée en présence d'une vapeur acide ou basique. Par exemple, la calcination peut être réalisée sous pression partielle d'ammoniaque.
Traitements post-synthèse
Des traitements post-synthèse peuvent avantageusement être effectués, de manière à améliorer les propriétés du catalyseur.
Selon l'invention, le support zéolithe/ silice-alumine peut ainsi être éventuellement soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l'autoclave en présence d'eau à une température supérieure à la température ambiante.
Au cours de ce traitement hydrothermal, on peut avantageusement traiter le support. Ainsi, on peut avantageusement imprégner le support, préalablement à son passage à l'autoclave, l'autoclavage étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non. Cette imprégnation, préalable à l'autoclavage, peut être acide ou non. Cette imprégnation, préalable à l'autoclavage peut avantageusement être effectuée à sec ou par immersion du support dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact du support avec un volume de solution inférieur ou égal au volume poreux total du support. De préférence, l'imprégnation est réalisée à sec.
L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP-A-O 387 109. La température pendant l'autoclavage peut avantageusement être comprise entre 100 et 250°C pendant une période de temps comprise entre 30 minutes et 3 heures.
Dépôt de la phase hvdroqénante
L'élément hydro-déshydrogénant peut avantageusement être introduit à toute étape de la préparation, de manière très préférée après mise en forme du support zéolithe/silice- alumine. La mise en forme est avantageusement suivie d'une calcination, l'élément hydrogénant peut également être avantageusement introduit avant ou après cette calcination. La préparation se termine généralement par une calcination à une température de 250 à 6000C. Une autre des méthodes préférées selon la présente invention consiste avantageusement à mettre en forme le support après un malaxage de ce dernier, puis passage de la pâte ainsi obtenue au travers d'une filière pour former des extrudés de diamètre compris entre 0,4 et 4 mm. La fonction hydrogénante peut avantageusement être alors introduite en partie seulement ou en totalité, au moment du malaxage. Elle peut également être avantageusement introduite par une ou plusieurs opérations d'échange ionique sur le support calciné constitué d'au moins une silice-alumine, au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30 et éventuellement mise en forme avec un liant, à l'aide de solutions contenant les sels précurseurs des métaux choisis.
D'une façon préférée, le support est imprégné par une solution aqueuse. L'imprégnation du support est de préférence effectuée par la méthode d'imprégnation dite "à sec" bien connue de l'homme du métier. L'imprégnation peut avantageusement être effectuée en une seule étape par une solution contenant l'ensemble des éléments constitutifs du catalyseur final.
La fonction hydrogénante peut également avantageusement être introduite par une ou plusieurs opérations d'échange ionique sur le support calciné constitué d'une zéolithe telle que précédemment décrit, dispersée dans la matrice choisie, à l'aide de solutions contenant les sels précurseurs des métaux choisis.
La fonction hydrogénante peut avantageusement être introduite par une ou plusieurs opérations d'imprégnation du support mis en forme et calciné, par une solution contenant au moins un précurseur d'au moins un oxyde d'au moins un métal choisi dans le groupe formé par les métaux du groupes VIII et les métaux du groupe VIB1 le(s) précurseur(s) d'au moins un oxyde d'au moins un métal du groupe VIII étant de préférence introduit(s) après ceux du groupe VIB ou en même temps que ces derniers, si le catalyseur contient au moins un métal du groupe VIB et au moins un métal du groupe VIII. Dans le cas où Ie catalyseur contient avantageusement au moins un élément du groupe VIB par exemple le molybdène, il est par exemple possible d'imprégner le catalyseur avec une solution contenant au moins un élément du groupe VIB, de sécher, de calciner. L'imprégnation du molybdène peut avantageusement être facilitée par ajout d'acide phosphorique dans les solutions de paramolybdate d'ammonium, ce qui permet d'introduire aussi le phosphore de façon à promouvoir l'activité catalytique.
Dans un mode de réalisation préféré de l'invention, le catalyseur contient à titre de dopant au moins un élément choisi parmi le silicium, le bore et le phosphore. Ces éléments sont avantageusement introduits sur un support contenant déjà au moins une zéolithe COK- 7 seule, ou en mélange avec au moins une zéolithe ZBM-30, au moins une silice-alumine, comme définie ci-avant, et au moins un métal choisi dans le groupe formé par les métaux du groupe VIB et les métaux du groupe VIII.
Dans le cas où le catalyseur contient du bore, du silicium et du phosphore et éventuellement l'élément choisi dans le groupe VIIA des ions halogénures, ces éléments peuvent avantageusement être introduits dans le catalyseur à divers niveaux de la préparation et de diverses manières.
L'imprégnation du métal est de préférence effectuée par la méthode d'imprégnation dite "à sec" bien connue de l'homme du métier. L'imprégnation peut avantageusement être effectuée en une seule étape par une solution contenant l'ensemble des éléments constitutifs du catalyseur final.
Le P, B, Si et l'élément choisi parmi les ions halogénures du groupe VIIA, peuvent avantageusement être introduits par une ou plusieurs opérations d'imprégnation avec excès de solution sur le précurseur calciné.
Dans le cas où le catalyseur contient du bore, une méthode préférée selon l'invention consiste à préparer une solution aqueuse d'au moins un sel de bore tel que le biborate d'ammonium ou le pentaborate d'ammonium en milieu alcalin et en présence d'eau oxygénée et à procéder à une imprégnation dite à sec, dans laquelle on remplit le volume des pores du précurseur par la solution contenant le bore.
Dans le cas où le catalyseur contient du silicium, on utilise avantageusement une solution d'un composé du silicium de type silicone.
Dans le cas où le catalyseur contient du bore et du silicium, le dépôt de bore et de silicium peut avantageusement aussi se faire de manière simultanée en utilisant une solution contenant un sel de bore et un composé du silicium de type silicone. Ainsi, par exemple dans le cas où par exemple le précurseur est un catalyseur de type nickel-molybdène supporté sur un support contenant de la zéolithe et de l'alumine, il est possible d'imprégner ce précurseur par de la solution aqueuse de biborate d'ammonium et de silicone Rhodorsil E1P de la société Rhône Poulenc, de procéder à un séchage par exemple à 80 0C, puis d'imprégner par une solution de fluorure d'ammonium, de procéder à un séchage par exemple à 80 0C, et de procéder à une calcination par exemple et de façon préférée sous air en lit traversé, par exemple à 500 0C pendant 4 heures.
Dans le cas où le catalyseur contient au moins un élément du groupe VIIA, de préférence le fluor, il est par exemple avantageusement possible d'imprégner le catalyseur par une solution de fluorure d'ammonium, de procéder à un séchage par exemple à 80 0C, et de procéder à une calcination par exemple et de façon préférée sous air en lit traversé, par exemple à 500 °C pendant 4 heures.
D'autres séquences d'imprégnation peuvent avantageusement être mises en oeuvre pour obtenir le catalyseur de la présente invention.
Dans le cas où le catalyseur contient du phosphore, il est par exemple possible d'imprégner avantageusement le catalyseur avec une solution contenant du phosphore, de sécher, de calciner.
Dans le cas où les éléments contenus dans le catalyseur, c'est à dire au moins un métal choisi dans le groupe formé par les métaux du groupe VIII et du groupe VIB, éventuellement le bore, le silicium, le phosphore, au moins un élément du groupe VIIA, sont introduits en plusieurs imprégnations des sels précurseurs correspondants, une étape de séchage intermédiaire du catalyseur est généralement avantageusement effectuée à une température généralement comprise entre 60 et 250 °C et une étape de calcination intermédiaire du catalyseur est généralement avantageusement effectuée à une température comprise entre 250 et 600 0C.
Afin de terminer la préparation du catalyseur, on laisse avantageusement reposer le solide humide sous une atmosphère humide à une température comprise entre 10 et 80 0C, puis on sèche le solide humide obtenu à une température comprise entre 60 et 150 0C, et enfin on calcine le solide obtenu à une température comprise entre 150 et 800 0C.
Les sources d'éléments du groupe VIB qui peuvent avantageusement être utilisées sont bien connues de l'homme du métier. Par exemple, parmi les sources de molybdène et de tungstène, on peut avantageusement utiliser les oxydes et hydroxydes, les acides molybdiques et tungstiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, le tungstate d'ammonium, l'acide phosphomolybdique, l'acide phosphotungstique et leurs sels, l'acide silicomolybdique, l'acide silicotungstique et leurs sels. On utilise de préférence les oxydes et les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium et le tungstate d'ammonium.
Les sources d'éléments du groupe VIII qui peuvent avantageusement être utilisées sont bien connues de l'homme du métier. Par exemple, pour les métaux non nobles on utilise avantageusement les nitrates, les sulfates, les phosphates, les halogénures par exemple, chlorures, bromures et fluorures, les carboxylates par exemple acétates, hydroxydes et carbonates. Pour les métaux nobles on utilise avantageusement les halogénures, par exemple les chlorures, les nitrates, les acides tels que l'acide chloroplatinique, les oxychlorures tels que l'oxychlorure ammoniacal de ruthénium. On peut également avantageusement utiliser les complexes cationiques tels que les sels d'ammonium lorsque l'on souhaite déposer le platine sur la zéolithe par échange cationique
La source de phosphore préférée est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut par exemple être introduit sous la forme d'un mélange d'acide phosphorique et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole.
De nombreuses sources de silicium peuvent avantageusement être employées. Ainsi, on peut utiliser l'orthosilicate d'éthyle Si(0Et)4, les siloxanes, les polysiloxanes, les silicates d'halogénures comme le fluorosilicate d'ammonium (NH/^SiFg ou le fluorosilicate de sodium Na2SiFβ. L'acide silicomolybdique et ses sels, l'acide silicotungstique et ses sels peuvent également être avantageusement employés. Le silicium peut être ajouté par exemple par imprégnation de silicate d'éthyle en solution dans un mélange eau/alcool. Le silicium peut être ajouté par exemple par imprégnation d'un composé du silicium de type silicone mis en suspension dans l'eau.
La source de bore peut avantageusement être l'acide borique, de préférence l'acide orthoborique H3BO3, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut par exemple être introduit sous la forme d'un mélange d'acide borique, d'eau oxygénée et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole. Le bore peut avantageusement être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool. Les sources d'éléments du groupe VIIA qui peuvent avantageusement être utilisées sont bien connues de l'homme du métier. Par exemple, les anions fluorures peuvent avantageusement être introduits sous forme d'acide fluorhydrique ou de ses sels. Ces sels sont formés avec des métaux alcalins, l'ammonium ou un composé organique. Dans ce dernier cas, le sel est avantageusement formé dans le mélange réactionnel par réaction entre le composé organique et l'acide fluorhydrique. Il est également possible d'utiliser des composés hydrolysables pouvant libérer des anions fluorures dans l'eau, comme le fluorosilicate d'ammonium (NH^ SiFβ, le tétrafluorure de silicium SiF4 ou de sodium Na2SiFg. Le fluor peut avantageusement être introduit par exemple par imprégnation d'une solution aqueuse d'acide fluorhydrique ou de fluorure d'ammonium.
Les catalyseurs ainsi obtenus, sous forme oxydes après calcination, peuvent éventuellement être amenés au moins en partie sous forme métallique ou sulfure.
Les catalyseurs obtenus par la présente invention sont avantageusement mis en forme sous la forme de grains de différentes formes et dimensions. Ils sont avantageusement utilisés en général sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudre concassées, de tablettes, d'anneaux, de billes, de roues. Ils présentent une surface spécifique mesurée par adsorption d'azote selon la méthode BET (Brunauer, Emmett, Teller, J. Am. Chem. Soc, vol. 60, 309-316 (1938)) comprise entre 50 et 600 m2/g, un volume poreux mesuré par porosimétrie au mercure compris entre 0,2 et 1 ,5 cm3/g et une distribution en taille de pores pouvant être monomodale, bimodale ou polymodale.
Conformément à la présente invention, les catalyseurs ainsi obtenus sont mis en oeuvre dans des réactions de conversion de charges hydrocarbonées (au sens large de transformation) et en particulier des réactions d'hydrocraquage.
Charges
Conformément à l'invention, les catalyseurs décrits plus haut sont mis en oeuvre dans des réactions d'hydrocraquage de charges hydrocarbonées telles que les coupes pétrolières.
Les charges avantageusement employées dans le procédé sont des essences, des kérosènes, des gas-oils, des gas-oils sous vide, des résidus atmosphériques, des résidus sous vide, des distillats atmosphériques, des distillats sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversions thermiques ou catalytiques et leurs mélanges. Elles contiennent des hétéroatomes tels que soufre, oxygène et azote et éventuellement des métaux. Les charges issues du procédé Fischer-Tropsch sont exclues.
Les catalyseurs de l'invention sont mis en oeuvre dans le procédé d'hydrocraquage selon l'invention et de préférence dans un procédé d'hydrocraquage de coupes hydrocarbonées lourdes de type distillats sous vide, résidus désasphaltés ou hydrotraités ou équivalents. Les coupes lourdes sont de préférence constituées d'au moins 80 % en volume de composés dont les points d'ébullition sont d'au moins 350 0C et de préférence entre 350 et 580 0C (c'est-à-dire correspondant à des composés contenant au moins 15 à 20 atomes de carbone). Elles contiennent généralement des hétéroatomes tels que soufre et azote. La teneur en azote est usuellement comprise entre 1 et 5000 ppm poids et la teneur en soufre entre 0,01 et 5 % poids.
Les catalyseurs mis en oeuvre dans le procédé d'hydrocraquage de charges hydrocarbonées selon l'invention sont de préférence soumis à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfure avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'Homme du métier et peut être effectué par toute méthode déjà décrite dans la littérature.
Une méthode de sulfuration classique bien connue de l'homme du métier consiste à chauffer le catalyseur en présence d'hydrogène sulfuré à une température comprise entre 150 et 800 0C, de préférence entre 250 et 600 0C, généralement dans une zone réactionnelle à lit traversé.
Le catalyseur de la présente invention peut être avantageusement mis en oeuvre dans l'hydrocraquage de coupes de type distillats sous vide fortement chargées en soufre et azote. Les produits recherchés sont des distillats moyens et/ou des huiles. Avantageusement, l'hydrocraquage est employé en combinaison avec une étape préalable d'hydrotraitement dans un procédé pour la production améliorée de distillats moyens conjointement à la production de bases huiles ayant un indice de viscosité compris entre 95 et 150.
Procédés d'hvdrocraquage
L'invention concerne également les procédés d'hydrocraquage mettant en oeuvre les catalyseurs d'hydrocraquage selon l'invention.
Les conditions de l'hydrocraquage telles que température, pression, taux de recyclage d'hydrogène, vitesse volumique horaire, pourront être très variables en fonction de la nature de la charge, de la qualité des produits désirés et des installations dont dispose le raffineur. La température est en général avantageusement supérieure à 200 0C et de préférence comprise entre 250 et 480 0C. La pression est avantageusement supérieure à 0,1 MPa et de préférence supérieure à 1 MPa. Le taux de recyclage d'hydrogène est avantageusement au minimum de 50 et de préférence compris entre 80 et 5000 normaux litres d'hydrogène par litre de charge. La vitesse volumique horaire est avantageusement comprise entre 0,1 et 20 volumes de charge par volume de catalyseur et par heure.
Les procédés d'hydrocraquage selon l'invention couvrent avantageusement les domaines de pression et de conversion allant de l'hydrocraquage doux à l'hydrocraquage haute pression.
On entend par hydrocraquage doux, un hydrocraquage conduisant avantageusement à des conversions modérées, généralement inférieures à 55 % et de préférence inférieure à 40%, et fonctionnant à basse pression, généralement entre 2 MPa et 12 MPa et de préférence entre 2 MPa et 6 MPa.
On entend par hydrocraquage haute pression, un hydrocraquage conduisant avantageusement à des conversions élevées, généralement supérieures à 55 %, et fonctionnant à haute pression, généralement supérieure à 6 MPa.
Le catalyseur de la présente invention peut avantageusement être utilisé seul, en un seul ou plusieurs lits catalytiques, dans un ou plusieurs réacteurs, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé en amont du catalyseur de la présente invention.
Dans un schéma d'hydrocraquage en deux étapes avec séparation intermédiaire entre les deux zones réactionnelles, le catalyseur selon la présente invention est avantageusement utilisé dans la deuxième zone réactionnelle, dans un ou plusieurs lits, dans un ou plusieurs réacteurs, en association ou non avec un catalyseur d'hydroraffinage situé en amont du catalyseur de la présente invention.
Procédé dit "en une étape"
L'hydrocraquage en une étape, comporte avantageusement en premier lieu et de façon générale un hydroraffinage poussé qui a pour but de réaliser une hydrodésazotation et une désulfuration poussées de la charge avant que celle-ci ne soit envoyée sur le catalyseur d'hydrocraquage proprement dit, en particulier dans le cas où celui-ci comporte une zéolithe. Cet hydroraffinage poussé de la charge n'entraîne qu'une conversion limitée de la charge, en fractions plus légères, qui reste insuffisante et doit donc être complétée sur le catalyseur d'hydrocraquage plus actif. Cependant, il est à noter qu'aucune séparation n'intervient entre les deux types de catalyseurs. La totalité de l'effluent en sortie de réacteur est avantageusement injectée sur le catalyseur d'hydrocraquage proprement dit et ce n'est qu'ensuite qu'une séparation des produits formés est réalisée. Cette version de l'hydrocraquage, encore appelée "Once Through", possède une variante qui présente avantageusement un recyclage de la fraction non convertie vers le réacteur en vue d'une conversion plus poussée de la charge.
Dans un premier mode de réalisation ou d'hydrocraquage partiel encore appelé hydrocraquage doux ou modéré, le niveau de conversion est avantageusement inférieur à 55 % et de préférence inférieure à 40%. Le catalyseur selon l'invention est alors avantageusement employé à une température en général supérieure ou égale à 230 0C et de préférence à 300 0C, généralement d'au plus 480 CC, et souvent comprise entre 350 et 450 0C. La pression est avantageusement supérieure à 2 MPa et de préférence 3 MPa, elle est inférieure à 12 MPa et de préférence inférieure à 10 MPa. La quantité d'hydrogène est au minimum avantageusement de 100 normaux litres d'hydrogène par litre de charge et de préférence comprise entre 200 et 3000 normaux litres d'hydrogène par litre de charge. La vitesse volumique horaire est avantageusement comprise entre 0,15 et 10 h"''. Dans ces conditions, les catalyseurs selon la présente invention présentent une meilleure activité en conversion, en hydrodésulfuration et en hydrodésazotation que les catalyseurs commerciaux.
Dans un second mode de réalisation, l'hydrocraquage est réalisé à haute pression (pression totale supérieure à 6 MPa), le niveau de conversion est alors avantageusement supérieur à 55 %. Le procédé selon l'invention opère alors à une température avantageusement supérieures ou égales à 230 0C et de préférence comprises entre 300 et 480 °C et de manière très préférée entre 300 et 440 0C1 à une pression supérieure à 5 MPa et de préférence supérieure à 7 MPa, de manière très préférée, supérieure à 10 MPa et de manière plus préférée, supérieure à 12 MPa, à une quantité d'hydrogène au minimum de 100NI/I de charge et de préférence comprise entre 200 et 3000 NI/l d'hydrogène par litre de charge et à une vitesse volumique horaire comprise en général entre 0,15 et 10 h" 1.
Mode de réalisation : Procédé deux étapes
L'hydrocraquage en deux étapes, comporte avantageusement une première étape qui a pour objectif, comme dans le procédé "une étape", de réaliser l'hydroraffinage de la charge, mais aussi d'atteindre une conversion de cette dernière de l'ordre en général de 40 à 60 %. L'effluent issu de la première étape subit ensuite avantageusement une séparation (distillation) appelée le plus souvent séparation intermédiaire, qui a pour objectif de séparer les produits de conversion de la fraction non convertie. Dans la deuxième étape d'un procédé d'hydrocraquage en deux étapes, seule la fraction de la charge non convertie lors de la première étape, est traitée. Cette séparation permet à un procédé d'hydrocraquage deux étapes d'être plus sélectif en distillât moyen (kérosène + diesel) qu'un procédé en une étape. En effet, la séparation intermédiaire des produits de conversion évite leur "sur- craquage" en naphta et gaz dans la deuxième étape sur le catalyseur d'hydrocraquage. Par ailleurs, il est à noter que la fraction non convertie de la charge traitée dans la deuxième étape contient en général de très faibles teneurs en soufre et NH3 ainsi qu'en composés azotés organiques, en général moins de 20 ppm poids voire moins de 10 ppm poids.
Les catalyseurs utilisés dans la deuxième étape des procédés d'hydrocraquage en deux étapes sont de préférence les catalyseurs à base d'éléments du groupe VIII nobles, de manière encore plus préférée les catalyseurs à base de platine et/ou de palladium.
Dans le cas où le procédé de conversion de coupe pétrolière se déroule en deux étapes, les catalyseurs selon l'invention sont avantageusement utilisés dans la deuxième étape.
Selon un premier mode de réalisation, le procédé de la présente invention peut avantageusement être employé pour l'hydrocraquage partiel, c'est à dire doux ou modéré, avantageusement dans des conditions de pression modérée, de coupes par exemple de type distillats sous vide fortement chargées en soufre et azote qui ont été préalablement hydrotraitées. Dans ce mode d'hydrocraquage le niveau de conversion est inférieur à 55 % et de préférence inférieure à 40%. Le catalyseur de la première étape peut avantageusement être tout catalyseur d'hydrotraitement connu de l'homme du métier. Ce catalyseur d'hydrotraitement comprend avantageusement une matrice de préférence à base d'alumine et au moins un métal ayant une fonction hydrogénante. La fonction d'hydrotraitement est assurée par au moins un métal ou composé de métal, seul ou en combinaison, choisi parmi les métaux du groupe VIII et du groupe VIB, tels que choisis parmi le nickel, le cobalt, le molybdène et le tungstène notamment. De plus, ce catalyseur peut contenir éventuellement du phosphore et éventuellement du bore.
La première étape se déroule avantageusement à une température de 350-460 0C, de préférence 360-450 0C, une pression totale d'au moins 2 MPa; et de préférence 3 MPa1 une vitesse volumique horaire de 0,1 -5Ir'' et de préférence 0,2-2h"^ et avec une quantité d'hydrogène d'au moins 100 NI/NI de charge, et de préférence 260-3000 NI/NI de charge. Pour l'étape de conversion avec le catalyseur selon l'invention (ou seconde étape), les températures sont avantageusement supérieures ou égales à 230 0C et souvent comprises entre 300 et 480 0C, de préférence entre 330° C et 450° C. La pression est avantageusement d'au moins 2 MPa et de préférence 3 MPa, elle est inférieure à 12 MPa et de préférence inférieure à 10 MPa. La quantité d'hydrogène est avantageusement au minimum de 100NI/I de charge et de préférence comprise entre 200 et 3000 Nl/I d'hydrogène par litre de charge. La vitesse volumique horaire est avantageusement comprise en général entre 0,15 et 10 h"'' . Dans ces conditions, les catalyseurs de la présente invention présentent une meilleure activité en conversion, en hydrodésulfuration, en hydrodésazotation et une meilleure sélectivité en distillais moyens que les catalyseurs commerciaux. La durée de vie des catalyseurs est également améliorée dans la plage de pression modérée.
Selon un autre mode de réalisation en deux étapes, le catalyseur selon la présente invention peut être employé pour l'hydrocraquage dans des conditions de pression élevées d'au moins 6 MPa. Les coupes traitées sont par exemple de type distillats sous vide fortement chargés en soufre et azote qui ont été préalablement hydrotraités. Dans ce mode d'hydrocraquage le niveau de conversion est supérieur à 55 %. Dans ce cas, le procédé de conversion de coupe pétrolière se déroule avantageusement en deux étapes, le catalyseur selon l'invention étant utilisé dans la deuxième étape.
Le catalyseur de la première étape peut avantageusement être tout catalyseur d'hydrotraitement connu de l'homme du métier. Ce catalyseur d'hydrotraitement comprend avantageusement une matrice de préférence à base d'alumine et au moins un métal ayant une fonction hydrogénante. La fonction d'hydrotraitement est assurée par au moins un métal ou composé de métal, seul ou en combinaison, choisi parmi les métaux du groupe VIII et du groupe VIB, tels que choisis parmi le nickel, le cobalt, le molybdène et le tungstène notamment. De plus, ce catalyseur peut contenir éventuellement du phosphore et éventuellement du bore.
La première étape se déroule avantageusement à une température de 350-460 0C1 de préférence 360-450 0C, une pression supérieure à 3 MPa, une vitesse volumique horaire de 0,1-5 h"'' et de préférence 0,2-2 h"'' et avec une quantité d'hydrogène d'au moins 100 NI/NI de charge, et de préférence 260-3000 NI/NI de charge.
Pour l'étape de conversion avec le catalyseur selon l'invention (ou seconde étape), les températures sont avantageusement supérieures ou égales à 230 °C et souvent comprises entre 300 et 480 0C et de préférence entre 300 et 440 0C. La pression est avantageusement supérieure à 5 MPa et de préférence supérieure à 7 MPa, de manière très préférée, supérieure à 10 MPa et de manière plus préférée, supérieure à 12 MPa. La quantité d'hydrogène est au minimum avantageusement de 10 ONI/I de charge et de préférence comprise entre 200 et 3000 Nl/I d'hydrogène par litre de charge. La vitesse volumique horaire est avantageusement comprise en général entre 0,15 et 10 h"'' .
Dans ces conditions, les catalyseurs de la présente invention présentent une meilleure activité en conversion et une meilleure sélectivité en distillats moyens que les catalyseurs commerciaux, même pour des teneurs en zéolithe considérablement plus faibles que celles des catalyseurs commerciaux.
Dans un procédé de production d'huiles utilisant avantageusement le procédé d'hydrocraquage selon l'invention, il est opéré selon l'enseignement du brevet US-A-5 525 209 avec une première étape d'hydrotraitement dans de conditions permettant d'atteindre un effluent ayant un indice de viscosité de 90-130 et une teneur réduite en azote et en composés polyaromatiques. Dans une étape suivante d'hydrocraquage, l'effluent est avantageusement traité selon l'invention et de façon à ajuster la valeur de l'indice de viscosité à celle souhaitée par l'exploitant.
Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.
Exemple 1 :
Préparation :
- d'un catalyseur d'hydrocraquage C1 (conforme à l'invention) contenant une zéolithe COK-7 et une silice-alumine
- d'un catalyseur d'hydrocraquage C2 (conforme à l'invention) contenant une zéolithe COK-7, une zéolithe ZBM-30 et une silice-alumine
- d'un catalyseur C3 (non conforme à l'invention) contenant la silice-alumine seule
- et d'un catalyseur C4 (non conforme à l'invention) contenant une zéolithe Y et une silice- alumine
La zéolithe COK-7 est synthétisée selon le brevet EP 1 702 888 A1 avec le structurant organique triéthylènetétramine. Puis elle est soumise à une calcination à 550 0C sous flux d'air sec durant 12 heures. La zéolithe H-COK-7 (forme acide) ainsi obtenue possède un rapport Si/Ai de 52 et un rapport Na/ Al inférieur à 0,002. La zéolithe ZBM-30 est synthétisée selon le brevet BASF EP-A-46504 avec le structurant organique triéthylènetétramine. Puis elle est soumise à une calcination à 550 0C sous flux d'air sec durant 12 heures. La zéolithe H-ZBM-30 (forme acide) ainsi obtenue possède un rapport Si/Ai de 45 et un rapport Na/AI inférieur à 0,001.
On prépare un précurseur de silice-alumine SA1 de la façon suivante : On prépare un hydrate d'alumine selon les enseignements du brevet US-A-3 124 418. Après filtration, le précipité (P1) fraîchement préparé est mélangé avec une solution d'acide silicique préparé par échange sur résine décationisante. Les proportions des deux solutions sont ajustées de manière à atteindre une composition de 70 % AI2O3- 30 % SiO2 sur le solide final. Ce mélange est rapidement homogénéisé dans un broyeur colloïdal commercial en présence d'acide nitrique de façon que la teneur en acide nitrique de la suspension en sortie de broyeur soit de 8 % rapportée au solide mixte silice-alumine. Puis, la suspension (P2) est séchée classiquement dans un atomiseur de manière conventionnelle de 3000C à 600C. La poudre ainsi préparée est mise en forme dans un bras en Z en présence de 8 % d'acide nitrique par rapport au produit anhydre. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés E1 contenant 100% de silice-alumine ainsi obtenus sont séchés à 1500C1 puis calcinés à 5500C, puis calcinés à 7500C en présence de vapeur d'eau.
On mélange ensuite 5 g de zéolithe COK-7 décrite plus haut et 15 g du précurseur de la silice-alumine P2 décrit plus haut. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66 % (7 % poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1 ,4 mm. Les extrudés sont ensuite séchés une nuit à 1200C sous air puis calcinés à 5500C sous air. Les extrudés E2 contiennent 20 %poids de zéolithe COK-7 et 80 % de silice-alumine.
On mélange ensuite 3 g de zéolithe COK-7, 2g de ZBM-30 décrite plus haut et 15 g du précurseur de la silice-alumine P2 décrit plus haut. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66 % (7 % poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1,4 mm. Les extrudés sont ensuite séchés une nuit à 1200C sous air puis calcinés à 5500C sous air. Les extrudés E3 contiennent 20% poids de zéolithe (60% COK-7+ 40% ZBM-30) et 80% de silice-alumine.
Les extrudés E1.E2 et E3 sont ensuite imprégnés à sec par une solution aqueuse d'un mélange d'heptamolybdate d'ammonium, de nitrate de nickel et d'acide orthophosphorique, séchés une nuit à 120 0C sous air et enfin calcinés sous air à 550 0C.
Les teneurs pondérales en oxydes des catalyseurs C1 , C2 et C3 ainsi obtenus sont de 3,0 % de NiO, 14,0 % de MoO3 et 4,6 % de P2O5.
Le catalyseur C4 est identique au catalyseur C1 avec la zéolithe Y à la place de la zéolithe COK-7. La zéolithe Y utilisé est une zéolithe commerciale de référence CBV780 (Zeolyst International). Elle possède un rapport Si/Ai de 43.5 et un rapport Na/AI inférieur à 0,004.
Exemple 2
Evaluation des catalyseurs en hvdrocraquage d'un distillât sous vide
Les catalyseurs C1 , C2, C3 et C4 sont évalués en hydrocraquage d'un distillât sous vide dans les conditions de l'hydrocraquage à conversion élevée (60-100%). La charge pétrolière est un distillât sous vide hydrotraité dont les principales caractéristiques sont les suivantes :
Densité (20/4) 0,8610
Soufre (ppm poids) 12
Azote (ppm poids) 4
Distillation simulée :
Point initial 180 0C
- Point 10 % % 275 0C
- Point 50 % % 443 0C
- Point 90 % % 537 0C
Point final 611 0C
Cette charge a été obtenue par hydrotraitement d'un distillât sous vide sur un catalyseur HR448 vendu par la société AXENS comprenant un élément du groupe VIB et un élément du groupe VIII déposés sur alumine.
On ajoute à la charge hydrotraitée un composé soufré précurseur de H2S (DMDS) et un composé azoté précurseur de NH3 (aniline) afin de simuler les pressions partielles d'H2S et d'NH3 présente dans la deuxième étape d'hydrocraquage. La charge est ainsi additivée de 2,5 % de soufre et de 1400 ppm d'azote. La charge ainsi préparée est injectée dans l'unité de test d'hydrocraquage qui comprend un réacteur en lit fixe, à circulation ascendante de la charge ("up-flow"), dans lequel ont été introduits 50 ml de catalyseur C1 , C2 ou C3. Avant injection de la charge, le catalyseur est sulfuré par un mélange gazole + DMDS + aniline jusqu'à 320 0C. Notons que toute méthode de sulfuration in-situ ou ex-situ est convenable. Une fois la sulfuration réalisée, la charge décrite ci-dessus peut être transformée. Les conditions opératoires de l'unité de test sont les suivantes :
- Pression totale 14,9 MPa
- Catalyseur 50 ml
- Température ajustée pour obtenir la conversion désirée
- Débit d'hydrogène 50 Nl/h
- Débit de charge 50 cm^/h
Les performances catalytiques sont exprimées par la température qui permet d'atteindre un niveau de conversion brute de 80 % et par la sélectivité brute en distillats moyen 150-380 0C. Ces performances catalytiques sont mesurées sur le catalyseur après qu'une période de stabilisation, généralement au moins 48 heures, ait été respectée.
La conversion brute CB est prise égale à :
CB = % poids de 380 0C" de l'effluent
La sélectivité brute SB en distillât moyen est prise égale à : poids delà fraction (150 - 380 °C) del'effluent oc3 — 1 UU x poids de la fraction 380 °C~ de l' efQuent
Les distillats moyens obtenus sont composés de produits ayant un point d'ébullition compris entre 150 et 380 0C.
Dans le Tableau 1 qui suit, on a reporté la température de réaction et la sélectivité brute pour les catalyseurs C1 et C2.
Le Tableau 1 met en évidence que l'ajout de COK-7 à la silice-alumine permet d'améliorer à la fois l'activité du catalyseur et la sélectivité en DM. Tableau 1 : Activités catalytiques des catalyseurs en hydrocraquage haute conversion brute (80 %)
Figure imgf000032_0001
Le Tableau 2 met en évidence que l'ajout de COK-7 à la silice-alumine en comparaison à la zéolithe Y permet d'améliorer la sélectivité en distillât moyen à iso-conversion.
Tableau 2 : Activités catalytiques des catalyseurs en hydrocraquage haute conversion brute (80 %)
Figure imgf000032_0002

Claims

REVENDICATIONS
1. Catalyseur comprenant au moins au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et les métaux du groupe VIII et un support comprenant au moins une silice-alumine, et au moins une zéolithe COK-7 seule, ou en mélange avec au moins une zéolithe ZBM-30.
2. Catalyseur selon la revendication 1 dans lequel ladite zéolithe COK-7 est synthétisée en présence du structurant organique triethylènetétramine.
3. Catalyseur selon l'une des revendications 1 ou 2 dans lequel ladite zéolithe ZBM-30 est synthétisée en présence du structurant organique triethylènetétramine.
4. Catalyseur selon l'une des revendications 1 à 3 dans lequel ledit support comprend également au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT.
5. Catalyseur selon l'une des revendications 1 à 4 dans lequel ladite silice-alumine contient une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice, ladite silice - alumine présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Â, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,5 ml/g, une surface spécifique BET comprise entre 100 et 550 m2/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A inférieur à 0,1 ml/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Â inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Λ, inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,1 ml/g. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
6. Catalyseur selon la revendication 5 dans lequel les métaux du groupe VIII sont choisis parmi le platine et le palladium.
7. Catalyseur selon la revendication 6 dans lequel les métaux du groupe VIII sont choisis parmi le fer, le cobalt et le nickel.
8. Catalyseur selon l'une des revendications 1 à 7 dans lequel les métaux du groupe VIB sont choisis parmi le tungstène et le molybdène.
9. Catalyseur selon l'une des revendications 6 à 8 dans lequel la teneur en élément hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII est comprise entre 0,1 et 60 % poids par rapport à la masse totale dudit catalyseur.
10. Procédé d'hydrocraquage mettant en oeuvre le catalyseur selon l'une des revendications 1 à 9.
11. Procédé d'hydrocraquage selon la revendication 10 dans lequel le procédé est dit en une étape.
12. Procédé d'hydrocraquage selon la revendication 10 dans lequel le procédé est dit en deux étapes.
13. Procédé d'hydrocraquage selon l'une des revendications 10 à 12 dans lequel il opère dans des conditions d'hydrocraquage modéré, à des températures supérieures ou égales à 230 0C, à une pression d'au moins 2 MPa et inférieure à 12 MPa, à une quantité d'hydrogène au minimum de 100 Nl/I de charge et à une vitesse volumique horaire comprise entre 0,15 et 10 h"1.
14. Procédé d'hydrocraquage selon l'une des revendications 10 à 12 dans lequel il opère dans des conditions d'hydrocraquage haute pression, à une température supérieure ou égale à 230 0C, à une pression supérieure à 5 MPa, à une quantité d'hydrogène au minimum de 100 Nl/I de charge et à une vitesse volumique horaire comprise en général entre 0,15 et 10 h"1.
15. Procédé d'hydrocraquage l'une des revendications 10 à 14 dans lequel les charges sont des essences, des kérosènes, des gas-oils, des gas-oils sous vide, des résidus atmosphériques, des résidus sous vide, des distillais atmosphériques, des distillats sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversions thermiques ou catalytiques et leurs mélanges.
PCT/FR2008/001721 2008-01-04 2008-12-10 Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur WO2009103880A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08872627A EP2234721A2 (fr) 2008-01-04 2008-12-10 Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur
BRPI0821825-0A BRPI0821825A2 (pt) 2008-01-04 2008-12-10 Catalisador que inclui pelo menos uma zeólita em particular e pelo menos uma sílica-alumina e processo para o hidrocraqueamento de estoque de alimentação de hidrocarboneto que usa tal catalisador
US12/811,636 US20110042270A1 (en) 2008-01-04 2008-12-10 Catalyst comprising at least one particular zeolite and at least one silica-alumina, and process for hydrocracking hydrocarbon feeds using said catalyst
CN2008801238113A CN101909751A (zh) 2008-01-04 2008-12-10 包含至少一种特定沸石和至少一种二氧化硅-氧化铝的催化剂,和使用所述催化剂加氢裂化烃进料的方法
JP2010541077A JP2011508667A (ja) 2008-01-04 2008-12-10 少なくとも1種の特定のゼオライトと少なくとも1つのシリカ−アルミナとを含む触媒、および前記触媒を用いた炭化水素供給原料の水素化分解方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0800055A FR2926028B1 (fr) 2008-01-04 2008-01-04 Catalyseur comprenant au moins une zeolithe particuliere et au moins une silice-alumine et procede d'hydrocraquage de charges hydrocarbonees utilisant un tel catalyseur
FR08/00055 2008-01-04

Publications (2)

Publication Number Publication Date
WO2009103880A2 true WO2009103880A2 (fr) 2009-08-27
WO2009103880A3 WO2009103880A3 (fr) 2009-12-03

Family

ID=39595569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001721 WO2009103880A2 (fr) 2008-01-04 2008-12-10 Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur

Country Status (8)

Country Link
US (1) US20110042270A1 (fr)
EP (1) EP2234721A2 (fr)
JP (1) JP2011508667A (fr)
KR (1) KR20100110854A (fr)
CN (1) CN101909751A (fr)
BR (1) BRPI0821825A2 (fr)
FR (1) FR2926028B1 (fr)
WO (1) WO2009103880A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022224A1 (en) 2010-07-22 2012-01-26 Geraldine Tosin Particles Including Zeolite Catalysts And Their Use In Oligomerization Processes
KR101743293B1 (ko) * 2010-10-22 2017-06-05 에스케이이노베이션 주식회사 다환방향족 탄화수소로부터 고부가의 경방향족 탄화수소를 제조하는 수소화 분해 촉매
KR102008954B1 (ko) * 2011-10-24 2019-08-08 토탈 라피나쥬 프랑스 메조기공-함유 촉매의 제조방법, 이에 따라 획득된 촉매 및 이의 수소첨가전환 공정에서의 용도
RU2502787C1 (ru) * 2012-08-27 2013-12-27 Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук Способ уменьшения вязкости мазута
FR3003563B1 (fr) * 2013-03-21 2015-03-20 IFP Energies Nouvelles Procede de conversion de charges issues de sources renouvelables mettant en oeuvre un catalyseur comprenant une zeolithe nu-10 et une silice alumine
KR101554265B1 (ko) 2013-12-19 2015-09-18 에쓰대시오일 주식회사 비결정질 실리카알루미나-제올라이트 복합체 및 이의 제조방법
WO2016029387A1 (fr) * 2014-08-27 2016-03-03 中国石油天然气集团公司 Catalyseur de transfert de mercaptan bimétallique utilisé dans l'élimination à basse température de mercaptans contenus dans le gaz de pétrole liquéfié
KR102444820B1 (ko) * 2016-12-21 2022-09-20 사우디 아라비안 오일 컴퍼니 수소화분해 공정을 위해 촉매 적재를 최적화하는 방법
US11185850B2 (en) * 2019-12-02 2021-11-30 Saudi Arabian Oil Company Dual functional composite catalyst for olefin metathesis and cracking
US11577235B1 (en) * 2021-08-13 2023-02-14 Chevron U.S.A. Inc. Layered catalyst reactor systems and processes for hydrotreatment of hydrocarbon feedstocks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0046504A1 (fr) * 1980-08-21 1982-03-03 BASF Aktiengesellschaft Zéolite métalsilicate cristalline ZBM-30 et procédé pour sa préparation
FR2852864A1 (fr) * 2003-03-24 2004-10-01 Inst Francais Du Petrole Catalyseur comprenant au moins une zeolithe choisie parmi zbm-30, zsm-48, eu-2 et eu-11 et au moins une zeolithe y et procede d'hydroconversion de charges hydrocarbonees utilisant un tel catalyseur
FR2863913A1 (fr) * 2003-12-23 2005-06-24 Inst Francais Du Petrole Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
EP1702888A1 (fr) * 2005-03-07 2006-09-20 Institut Francais Du Petrole Solide cristallise COK-7, procécé de préparation et utilisation pour la transformation d'hydrocarbures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846574B1 (fr) * 2002-10-30 2006-05-26 Inst Francais Du Petrole Catalyseur et procede d'hydrocraquage de charges hydrocarbonees
FR2852865B1 (fr) * 2003-03-24 2007-02-23 Inst Francais Du Petrole Catalyseur et son utilisation pour l'amelioration du point d'ecoulement de charges hydrocarbonnees
US7402236B2 (en) * 2004-07-22 2008-07-22 Chevron Usa Process to make white oil from waxy feed using highly selective and active wax hydroisomerization catalyst
FR2874837B1 (fr) * 2004-09-08 2007-02-23 Inst Francais Du Petrole Catalyseur dope et procede ameliore de traitement de charges hydrocarbonees
FR2881128B1 (fr) * 2005-01-24 2007-03-23 Inst Francais Du Petrole Nouvelle methode de synthese de la zeolithe zbm-30 a partir d'un melange de composes amines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0046504A1 (fr) * 1980-08-21 1982-03-03 BASF Aktiengesellschaft Zéolite métalsilicate cristalline ZBM-30 et procédé pour sa préparation
FR2852864A1 (fr) * 2003-03-24 2004-10-01 Inst Francais Du Petrole Catalyseur comprenant au moins une zeolithe choisie parmi zbm-30, zsm-48, eu-2 et eu-11 et au moins une zeolithe y et procede d'hydroconversion de charges hydrocarbonees utilisant un tel catalyseur
FR2863913A1 (fr) * 2003-12-23 2005-06-24 Inst Francais Du Petrole Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
EP1702888A1 (fr) * 2005-03-07 2006-09-20 Institut Francais Du Petrole Solide cristallise COK-7, procécé de préparation et utilisation pour la transformation d'hydrocarbures

Also Published As

Publication number Publication date
FR2926028A1 (fr) 2009-07-10
JP2011508667A (ja) 2011-03-17
BRPI0821825A2 (pt) 2015-06-16
US20110042270A1 (en) 2011-02-24
FR2926028B1 (fr) 2010-02-12
WO2009103880A3 (fr) 2009-12-03
KR20100110854A (ko) 2010-10-13
EP2234721A2 (fr) 2010-10-06
CN101909751A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
CA2590108C (fr) Catalyseur zeolithique a teneur controlee en element dopant et procede ameliore de traitement de charges hydrocarbonees
EP1415712B1 (fr) Catalyseur et procédé d'hydrocraquage de charges hydrocarbonées
EP1634643B1 (fr) Catalyseur dopé sur support silice-alumine et procédé de traitement de charges hydrocarbonées
EP2313344B1 (fr) Procede de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch en presence d'un catalyseur comprenant un solide izm-2
WO2009103880A2 (fr) Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur
EP1590424B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
CA2858049C (fr) Catalyseur comprenant au moins une zeolithe nu-86, au moins une zeolithe usy et une matrice minerale poreuse et procede d'hydroconversion de charges hydrocarbonees utilisant ce catalyseur
FR2863913A1 (fr) Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
CA2605400C (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
EP2794102B1 (fr) Procede de preparation d'un catalyseur utilisable en hydroconversion comprenant au moins une zéolithe nu-86
WO2009144411A2 (fr) Procédé de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch avec un catalyseur a base d'un materiau cristallise
FR2846664A1 (fr) Procede flexible de production de bases huiles et de distillats moyens avec une etape de pretraitement convertissant suivie d'un deparaffinage catalytique
WO2009144412A2 (fr) Procédé de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch avec un catalyseur a base d'un materiau amorphe
WO2009106705A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2981943A1 (fr) Procede d'hydrocraquage oligomerisant d'une charge paraffinique issue de la synthese fischer tropsch mettant en oeuvre un catalyseur a base de zeolithe beta dispersee
WO2013153318A1 (fr) Procede d'hydrotraitement et de deparaffinage d'une charge distillats moyens utilisant un catalyseur a base de zeolithe izm-2
WO2013153317A1 (fr) Procédé de deparaffinage de charges hydrocarbonées utilisant un catalyseur a base de zeolithe izm-2
WO2011045484A1 (fr) Procede de production de distillat moyen a partir de cires fischer tropsch utilisant un catalyseur a base de zeolithe modifiee
WO2023117475A1 (fr) Catalyseur comprenant un support à base de matrice silico-aluminique et de zéolithe, sa préparation et procédé d'hydrocraquage de charges hydrocarbonées

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123811.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872627

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008872627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3982/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010541077

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107017268

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12811636

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0821825

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100702