EP4069565A1 - Verfahren und vorrichtung zum austauschen von manöverinformationen zwischen fahrzeugen - Google Patents
Verfahren und vorrichtung zum austauschen von manöverinformationen zwischen fahrzeugenInfo
- Publication number
- EP4069565A1 EP4069565A1 EP20808337.8A EP20808337A EP4069565A1 EP 4069565 A1 EP4069565 A1 EP 4069565A1 EP 20808337 A EP20808337 A EP 20808337A EP 4069565 A1 EP4069565 A1 EP 4069565A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- external
- trajectory
- planner
- trajectory planner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004590 computer program Methods 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
- G08G1/163—Decentralised systems, e.g. inter-vehicle communication involving continuous checking
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
Definitions
- the invention relates to a method for exchanging maneuver information between vehicles and a corresponding device.
- Autonomous vehicles and semi-autonomous vehicles can coordinate their maneuvers with one another in order to enable the flow of traffic as smoothly as possible.
- the vehicles can exchange maneuver information for coordination.
- the maneuver information can be planned trajectories that are calculated by a vehicle and sent as a data packet to the other vehicle, and vice versa. In this way, the vehicles are informed about the planned trajectories of the other vehicle.
- a collision-free trajectory can be found for each vehicle using a selection process and coordination process.
- Embodiments of the present invention can advantageously make it possible to limit a data volume to be exchanged when exchanging maneuver information between autonomous or semi-autonomous vehicles and, in doing so, additionally to increase the information content of the maneuver information.
- the approach presented here can provide the maneuver information for a period of time that extends further into the future than when exchanging precalculated trajectories.
- a method for exchanging maneuver information between vehicles is proposed, with future own maneuver information of an own vehicle being mapped in a parameterizable own trajectory planner for planning at least one own trajectory of the own vehicle and the own trajectory planner being provided for at least one other vehicle.
- a method for exchanging maneuver information between vehicles wherein a parameterizable foreign trajectory planner that is provided by an external vehicle and depicts future external maneuver information of the external vehicle is parameterized and executed using at least one time parameter in an own vehicle in order to at least one future external trajectory of the third-party vehicle.
- a method for exchanging maneuver information between vehicles is proposed, whereby according to the first aspect of the invention a parameterizable own trajectory planner for planning at least one future own trajectory of an own vehicle is provided for at least one other vehicle and according to the second aspect of the invention in the own vehicle at least one from an external vehicle received, parameterizable external trajectory planner is executed for planning at least one future external trajectory of the external vehicle.
- An own vehicle can be referred to as an ego vehicle.
- the procedure presented here is described from the perspective of the own vehicle.
- a third-party vehicle can be another vehicle, i.e. a distant road user.
- the prefixes “Eigen” and “Fremd” are used here to differentiate between terms that are otherwise identical or have the same meaning.
- Maneuver information can depict future behavior of a vehicle.
- the maneuver information can include a large number of possible trajectories on which the vehicle can travel from a current location or, in particular, a location that was recently in the past to at least one destination to be reached in the future.
- the trajectories can differ both in terms of a location profile or spatially and also in terms of a speed profile or acceleration profile.
- the trajectories can be described by a sequence of reference points or in the form of a function, e.g. a polynomial. A vector with a speed and a direction can be assigned to each reference point.
- a trajectory planner that is to say an own trajectory planner or external trajectory planner, can be a calculation rule for the maneuver information.
- the trajectory planner can be an algorithm that outputs at least one of the trajectories of the maneuver information as a function of at least one parameter or a variable input variable.
- the trajectory planner can be created in a standardized data format.
- the parameter can also be entered as a range of values.
- the parameter can in particular be a time parameter.
- the time parameter can identify a calculation time of the trajectory planner.
- the time parameter can also identify a time horizon for the prediction of the trajectories to be calculated.
- the time parameter can be due to an actual movement of the vehicle can also be coupled to a position of the vehicle. The vehicle moves at a real speed. The time parameter can therefore also be linked to a speed of the vehicle.
- the time parameter can also be entered into the trajectory planner as the future point in time.
- trajectories or groups of trajectories can be transmitted wirelessly from vehicle to vehicle as a data packet of maneuver information.
- the transmission is heavily dependent on a possible transmission speed.
- the size of the data packet can be reduced. For example, a resolution of the trajectories can be reduced.
- a length of the trajectories can also be limited. The trajectories can therefore be transmitted with a low prediction horizon.
- the trajectory planner presented here can also be transmitted wirelessly from vehicle to vehicle.
- the trajectory planner can have a significantly lower memory requirement than the data packet of the maneuver information.
- the trajectory planner can be an executable file.
- one or more planned trajectories can be determined, in particular calculated, depending on a current parameterization.
- the trajectory planner can be compiled in the sending vehicle and executed in the receiving vehicle.
- an intermediate representation comparable to a bytecode in the Java programming language can be used. The code can then be executed by an interpreter.
- the trajectory planner can output trajectories with a high resolution when it is executed in the third-party vehicle.
- the output resolution can be significantly higher than a resolution of trajectories read out from the data packet.
- the trajectories output by the trajectory planner can have a wide prediction horizon.
- the trajectory planner can therefore be up-to-date for a longer period of time.
- the trajectories output by the trajectory planner can have a prediction horizon that is further away than trajectories read out from the data packet. Due to the more distant prediction horizon the trajectory planner will be up-to-date longer than the trajectories read from the data packet.
- the external trajectory planner can also be parameterized and executed in the own vehicle using at least one own parameter of the own vehicle.
- the number of generated trajectories can be limited by the own parameter, since irrelevant trajectories are not calculated in the first place. Only relevant trajectories for the own vehicle are calculated.
- the own parameter can characterize a planned future own trajectory of the own vehicle.
- the intrinsic parameters can be used to generate external trajectories that lie in the area of a planned intrinsic trajectory of the own vehicle. Foreign trajectories that are remote from the intrinsic trajectory are indeed mapped in the extraneous trajectory planner, but are not calculated due to the at least one intrinsic parameter.
- the main focus here may be on trajectories that are collision-free for the planned intrinsic trajectory. In this way, it can be determined for various possible intrinsic trajectories whether collision-free external trajectories exist for them in order to identify a future possible collision-free course of the traffic situation.
- the time parameter can be updated and the external trajectory planner can be parameterized and executed again in the own vehicle using the updated time parameter in order to obtain an updated future external trajectory of the external vehicle.
- the external trajectory planner can still be up-to-date even after being executed once or several times.
- the foreign trajectories output can change over time. Executing it multiple times can reduce an amount of data transferred.
- the external trajectories output can be subsections of the maneuver information of the external vehicle that is mapped in the external trajectory planner.
- the external trajectory planner can be received in encoded form by the external vehicle and decoded before it is parameterized and executed in the own vehicle.
- the external trajectory planner can be encrypted to include the external maneuver information or the algorithm for the calculation to protect the foreign trajectories from unauthorized access.
- the external trajectory planner can be transferred as a black box.
- the external trajectory planner can be created and encrypted individually for the own vehicle. A limited part of the external maneuver information can be mapped in the received external trajectory planner.
- the vehicles can, for example, carry out a handshake to exchange encryption information.
- the own trajectory planner can be provided by the own vehicle in coded or encrypted form.
- the own trajectory planner can be created individually for the third-party vehicle. Only the part of the maneuver information that is relevant for the external vehicle can be mapped in the own trajectory planner.
- a simplified representation of the surroundings of the surroundings of the own vehicle can be mapped in the own trajectory planner.
- the vehicle can monitor its surroundings using sensors.
- the environment monitoring can recognize and classify objects.
- a recognized object can be classified as an obstacle, for example. Obstacles and a recognized course of the roadway can be included in the representation of the surroundings.
- the representation of the surroundings can also contain recognized road users. An improved coordination of maneuvers can take place based on the representation of the surroundings.
- trajectories or undesired trajectories can be identified by an evaluation.
- the evaluation can take place in the form of costs assigned to the respective trajectory. Preferred trajectories can have low costs, while undesired trajectories have high costs.
- a maneuver coordination can be optimized through the evaluation.
- the maneuver information displayed in the own trajectory planner for the third-party vehicle can be simplified.
- the maneuver information can be idealized.
- the own trajectory for the own vehicle can run in the middle of a lane.
- a space required by the own vehicle can be represented by a placeholder.
- the amount of data can be reduced by the simplification.
- the method can be implemented, for example, in software or hardware or in a mixed form of software and hardware, for example in a control device.
- the approach presented here also creates a device which is designed to carry out, control or implement the steps of a variant of the method presented here in corresponding devices.
- the device can be an electrical device with at least one computing unit for processing signals or data, at least one memory unit for storing signals or data, and at least one interface and / or one communication interface for reading in or outputting data that are embedded in a communication protocol, be.
- the computing unit can be, for example, a signal processor, a so-called system ASIC or a microcontroller for processing sensor signals and outputting data signals as a function of the sensor signals.
- the storage unit can be, for example, a flash memory, an EPROM or a magnetic storage unit.
- the interface can be designed as a sensor interface for reading in the sensor signals from a sensor and / or as an actuator interface for outputting the data signals and / or control signals to an actuator.
- the communication interface can be designed to read in or output the data wirelessly and / or wired.
- the interfaces can also be software modules that are present, for example, on a microcontroller alongside other software modules.
- a computer program product or computer program with program code which can be stored on a machine-readable carrier or storage medium such as a semiconductor memory, a hard disk or an optical memory, and for performing, implementing and / or controlling the steps of the method according to one of the embodiments described above is also advantageous is used, especially when the program product or program is executed on a computer or device.
- FIG. 1 shows an illustration of a vehicle with a device according to an exemplary embodiment.
- FIG. 1 shows an illustration of an own vehicle 100a with a device 102 according to an exemplary embodiment.
- the device 102 is designed to exchange maneuver information 104 between the own vehicle 100a and at least one other vehicle 100b.
- Own vehicle 100a can be referred to as ego vehicle 100a.
- the foreign vehicle 100b can be referred to as a traffic vehicle 100b.
- the foreign vehicle 100b also has a corresponding device, not shown here, for exchanging maneuver information.
- the devices 102 each have an imaging device 106.
- the mapping devices 106 map the maneuver information 104 in each case in a parameterizable algorithm referred to as a trajectory planner 108.
- the maneuver information 104 in each case includes possible future trajectories 110 of the vehicles 100.
- a future possible trajectory 110 of the own vehicle 100 can be referred to as an own trajectory 110a.
- a future possible trajectory 110 of the external vehicle 100b can be referred to as external trajectory 110b.
- the different trajectories 110 of maneuver information 104 all start essentially from the same starting point 112 and can lead to different target points 114.
- the trajectories 110 of maneuver information 104 can be referred to as a group of trajectories 116.
- the trajectory planner 108 of the own vehicle 100a can be referred to as the own trajectory planner 108a.
- the trajectory planner 108 generated in the external vehicle 100b can be referred to as the external trajectory planner 108b.
- the own trajectory planner 108a is transmitted wirelessly to the other vehicle 100b.
- the own trajectory planner 108a can also be sent from the own vehicle 100a to the other vehicle 100b, for example, via a higher-level data processing device 118, such as a cloud server.
- the data transmission for the external trajectory planner 108b of the external vehicle 100b takes place in the opposite direction.
- the external trajectory planner 108b is received by the device 102.
- the external trajectory planner 108b is parameterized in a parameterization device 120 of the device 102 using at least one parameter 122.
- the parameter 122 can in particular be a time parameter 124.
- the time parameter 124 defines a point in time of interest.
- the time parameter 124 can map a future point in time.
- the parameterized external trajectory planner 108b is an executable computer program product.
- the parameterized external trajectory planner 108b is executed in an execution device 126 of the device 102.
- Execution device 126 outputs at least one external trajectory 110b that is dependent on parameter 122.
- the external trajectory planner 108b is parameterized using an intrinsic parameter 128 as parameter 122.
- the intrinsic parameter 128 can map an intrinsic speed of the own vehicle 100a, for example.
- the intrinsic parameter 128 can map a planned future intrinsic trajectory 110a.
- the own parameter 128 can represent, for example, a sequence of reference points to be approached by the own vehicle 100a in the future.
- the external trajectory planner 108b parameterized using the intrinsic parameter 128 then outputs extraneous trajectories 110b in the area of the intrinsic trajectory 110a.
- the external trajectory planner 108b is executed several times in succession.
- the time parameter 124 is updated in each case in accordance with a movement of the own vehicle 100a.
- V2X Vehicle-to-Everything
- vehicles can receive environment data from other vehicles or infrastructure facilities or receive a complete global environment model in order to enrich their own local environment model.
- vehicles can exchange maneuver data in order, for example, to plan and implement cooperative driving maneuvers based on this.
- maneuver data can exchange trajectories.
- the receiving vehicle can deduce how the sending vehicle will behave and whether it wants to perform a certain maneuver.
- the receiving vehicle can plan its maneuver and, if necessary, communicate its desired maneuver to other vehicles, which confirm it by adapting their plans. Further methods can be based on so-called distributed state machines, which can be used to coordinate cooperative maneuvers.
- Reference Planner software libraries
- Reference Planner software libraries
- V2X the calculation rule is shared.
- a method for encryption can be used for dividing the calculation rule or a neural network can be distributed, which ensures the functionality without specifically disclosing the calculation rule.
- the Reference Planner can be event-driven, i.e. only communicated once to vehicles that have not yet received it (e.g. vehicles that have entered the communication range of the sending vehicle for the first time). Otherwise, the cooperation can then be confirmed or rejected once. A termination of the cooperation or an update of the reference planner due to an unfavorable change in the situation is still possible.
- the receiving vehicle can generate any number of trajectories for the vehicle from which the Reference Planner originates in order to be able to infer the behavior of this vehicle during given own maneuvers and vice versa.
- the number of trajectories for vehicles for which a reference planner is available is not limited by the communication, but only by the computing power. The latter is significantly cheaper than communication.
- the proposed method can be combined in that it is also used for vehicles for which a reference planner is available, while for vehicles for which there is no reference planner, the trajectories sent by these vehicles are taken into account in the own maneuver planning.
- DA Driver Assistance
- AD Automatic Driving
- each vehicle generates a planner for the current situation and its current destination and distributes it to vehicles in its vicinity in order to enable the receiving vehicles to correctly predict / calculate the trajectories of the other vehicles.
- the planner can and should be designed in a simplified manner (eg planning only along the center of the lanes or planning on a grid) in order to enable a quick calculation of the trajectories and a low utilization of the V2X channel when transmitting the reference planner.
- the interface to the planner can be defined and / or standardized (representation of the environment that is made available to the planner, as well as representation of the trajectories that are returned by the planner).
- the sending vehicle can transfer the interface definition, for example in the form of a JSON file, together with the planner.
- the interface definition for example in the form of a JSON file
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019219021.9A DE102019219021A1 (de) | 2019-12-06 | 2019-12-06 | Verfahren und Vorrichtung zum Austauschen von Manöverinformationen zwischen Fahrzeugen |
PCT/EP2020/082323 WO2021110399A1 (de) | 2019-12-06 | 2020-11-17 | Verfahren und vorrichtung zum austauschen von manöverinformationen zwischen fahrzeugen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4069565A1 true EP4069565A1 (de) | 2022-10-12 |
Family
ID=73476110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20808337.8A Pending EP4069565A1 (de) | 2019-12-06 | 2020-11-17 | Verfahren und vorrichtung zum austauschen von manöverinformationen zwischen fahrzeugen |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230005370A1 (de) |
EP (1) | EP4069565A1 (de) |
JP (1) | JP7438356B2 (de) |
CN (1) | CN114761299A (de) |
DE (1) | DE102019219021A1 (de) |
WO (1) | WO2021110399A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9953538B1 (en) * | 2017-01-17 | 2018-04-24 | Lyft, Inc. | Autonomous vehicle notification system |
US20230115758A1 (en) * | 2021-10-11 | 2023-04-13 | Argo AI, LLC | Systems and methods for controlling speed of an autonomous vehicle |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555461B2 (ja) * | 1998-09-01 | 2004-08-18 | トヨタ自動車株式会社 | 経路決定方法及び移動体交通制御システム |
JP2003296884A (ja) * | 2002-04-04 | 2003-10-17 | Sharp Corp | 通信型経路案内システム及び通信型経路案内方法 |
JP2004101586A (ja) * | 2002-09-05 | 2004-04-02 | Ricoh Co Ltd | 地図コンテンツ生成装置及び生成方式 |
JP2006160111A (ja) * | 2004-12-08 | 2006-06-22 | Nissan Motor Co Ltd | プリクラッシュセーフティシステム、プリクラッシュ動作決定装置及びプリクラッシュ動作決定方法 |
JP2008299676A (ja) * | 2007-05-31 | 2008-12-11 | Toyota Motor Corp | 死角情報要求/提供装置及びこれらを利用した車車間通信システム |
DE102010030463A1 (de) * | 2010-06-24 | 2011-12-29 | Robert Bosch Gmbh | Verfahren zur Unterstützung eines Fahrers eines Kraftfahrzeugs |
JP2012230523A (ja) * | 2011-04-26 | 2012-11-22 | Mitsubishi Electric Corp | 救援システム及び救援指示装置及び救援装置及び対象装置及びコンピュータプログラム及び救援指示方法 |
DE102014211507A1 (de) * | 2014-06-16 | 2015-12-17 | Volkswagen Aktiengesellschaft | Verfahren für ein Fahrerassistenzsystem eines Fahrzeugs |
DE102015215929A1 (de) * | 2015-08-20 | 2017-02-23 | Volkswagen Aktiengesellschaft | Vorrichtungen, Verfahren und Computerprogramm zum Bereitstellen von Information über eine voraussichtliche Fahrintention |
DE102015220481B4 (de) * | 2015-10-21 | 2024-05-29 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung in einer Verkehrseinheit zum kooperativen Abstimmen von Fahrmanövern von mindestens zwei Kraftfahrzeugen |
DE102015221817A1 (de) * | 2015-11-06 | 2017-05-11 | Audi Ag | Verfahren zum dezentralen Abstimmen von Fahrmanövern |
JP2017182566A (ja) * | 2016-03-31 | 2017-10-05 | 株式会社Subaru | 周辺リスク表示装置 |
US10509407B2 (en) * | 2016-07-01 | 2019-12-17 | Samsung Electronics Co., Ltd. | Apparatus and method for a vehicle platform |
US10074279B1 (en) * | 2017-03-07 | 2018-09-11 | Denso International America, Inc. | Inference-aware motion planning |
CN108932832A (zh) * | 2017-05-23 | 2018-12-04 | 中国移动通信集团安徽有限公司 | 车辆调度方法、装置和系统 |
US10296004B2 (en) * | 2017-06-21 | 2019-05-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Autonomous operation for an autonomous vehicle objective in a multi-vehicle environment |
CN107705601A (zh) * | 2017-10-10 | 2018-02-16 | 中南大学 | 一种基于WiFi技术的交通信号灯识别系统及识别方法 |
US10805086B2 (en) * | 2017-12-20 | 2020-10-13 | Intel Corporation | Methods and arrangements for vehicle-to-vehicle communications |
WO2019150460A1 (ja) * | 2018-01-31 | 2019-08-08 | 住友電気工業株式会社 | 車載装置、車車間通信方法、及びコンピュータプログラム |
DE102018109885A1 (de) * | 2018-04-24 | 2018-12-20 | Continental Teves Ag & Co. Ohg | Verfahren und Vorrichtung zum kooperativen Abstimmen von zukünftigen Fahrmanövern eines Fahrzeugs mit Fremdmanövern zumindest eines Fremdfahrzeugs |
EP3690852A1 (de) * | 2019-01-29 | 2020-08-05 | Volkswagen Aktiengesellschaft | System, fahrzeug, netzwerkkomponente, vorrichtungen, verfahren und computerprogramme für ein fahrzeug und eine netzwerkkomponente |
-
2019
- 2019-12-06 DE DE102019219021.9A patent/DE102019219021A1/de active Pending
-
2020
- 2020-11-17 CN CN202080084575.XA patent/CN114761299A/zh active Pending
- 2020-11-17 US US17/777,727 patent/US20230005370A1/en active Pending
- 2020-11-17 WO PCT/EP2020/082323 patent/WO2021110399A1/de unknown
- 2020-11-17 JP JP2022533430A patent/JP7438356B2/ja active Active
- 2020-11-17 EP EP20808337.8A patent/EP4069565A1/de active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2021110399A1 (de) | 2021-06-10 |
DE102019219021A1 (de) | 2021-06-10 |
CN114761299A (zh) | 2022-07-15 |
US20230005370A1 (en) | 2023-01-05 |
JP7438356B2 (ja) | 2024-02-26 |
JP2023504693A (ja) | 2023-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112017006530B4 (de) | Rückmeldung für ein autonomes fahrzeug | |
EP3785092B1 (de) | Verfahren und vorrichtung zum kooperativen abstimmen von zukünftigen fahrmanövern eines fahrzeugs mit fremdmanövern zumindest eines fremdfahrzeugs | |
EP3785250B1 (de) | Verfahren und vorrichtung zum kooperativen abstimmen von zukünftigen fahrmanövern eines fahrzeugs mit fremdmanövern zumindest eines fremdfahrzeugs | |
DE102019104974A1 (de) | Verfahren sowie System zum Bestimmen eines Fahrmanövers | |
WO2018197083A1 (de) | Verfahren, computerprogrammprodukt, computer-lesbares medium, steuergerät und fahrzeug umfassen das steuergerät zum bestimmen eines kollektiven manövers von wenigstens zwei fahrzeugen | |
DE112012005261B4 (de) | Freirauminformationen in einem Belegungsgitter als Grundlage für die Bestimmung eines Manöverraums für ein Fahrzeug | |
EP3942379B1 (de) | Verfahren zum trainieren wenigstens eines algorithmus für ein steuergerät eines kraftfahrzeugs, computerprogrammprodukt, kraftfahrzeug sowie system | |
EP4069565A1 (de) | Verfahren und vorrichtung zum austauschen von manöverinformationen zwischen fahrzeugen | |
WO2022033810A1 (de) | Computerimplementiertes verfahren und computerprogrammprodukt zum erhalten einer umfeldszenen-repräsentation für ein automatisiertes fahrsystem, computerimplementiertes verfahren zum lernen einer prädiktion von umfeldszenen für ein automatisiertes fahrsystem und steuergerät für ein automatisiertes fahrsystem | |
WO2020094534A1 (de) | Verfahren zum trainieren eines künstlichen neuronalen netzes, künstliches neuronales netz, verwendung eines künstlichen neuronalen netzes sowie entsprechendes computerprogramm, maschinenlesbares speichermedium und entsprechende vorrichtung | |
EP4027245A1 (de) | Computerimplementiertes verfahren zur bestimmung von ähnlichkeitswerten von verkehrsszenarien | |
WO2020126339A1 (de) | Verfahren und vorrichtung zum betreiben eines maschinenlernmodells | |
EP3850536A1 (de) | Analyse dynamisscher räumlicher szenarien | |
EP4350660A1 (de) | System und verfahren zur prädiktion einer zukünftigen position eines verkehrsteilnehmers | |
EP3772050B1 (de) | Verfahren zum durchführen einer manöveranfrage zwischen mindestens zwei fahrzeugen | |
EP3968213A1 (de) | Verfahren und vorrichtung zum ermitteln eines gleisgebundenen schienenpfades in einer gleisanlage | |
DE102018216719A1 (de) | Schlüsselbildbasierter autonomer Fahrzeugbetrieb | |
DE102020213862A1 (de) | Verfahren und Umgebungserfassungssystem zum Bereitstellen von Umgebungsdaten | |
DE102022131178B3 (de) | Verfahren zum automatisierten Führen eines Fahrzeugs sowie Verfahren zum Erzeugen eines hierzu fähigen Modells des Maschinellen Lernens sowie Prozessorschaltung und Fahrzeug | |
EP4109194B1 (de) | Sensordatengenerierung zum steuern eines autonomen fahrzeugs | |
DE102022211126A1 (de) | Verfahren und ein System zur Überwachung und Steuerung von Verkehrsteilnehmern in einem Verkehrsraum | |
DE102020210188A1 (de) | Fahrzeugumgebungserkennungseinrichtung | |
DE102023200080A1 (de) | Verfahren und Steuergerät zum Betreiben eines Fahrzeugs | |
WO2023232202A1 (de) | Verfahren zum ermitteln einer trajektorie, steuerungsvorrichtung und kraftfahrzeug | |
DE102022211851A1 (de) | Verfahren und System zum infrastrukturgestützten Assistieren mindestens eines vernetzten Kraftfahrzeugs bei einer zumindest teilautomatisiert geführten Fahrt durch eine Straßeninfrastruktur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220706 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240712 |