EP4068503A1 - Kühlvorrichtung für antennenvorrichtung - Google Patents
Kühlvorrichtung für antennenvorrichtung Download PDFInfo
- Publication number
- EP4068503A1 EP4068503A1 EP20892918.2A EP20892918A EP4068503A1 EP 4068503 A1 EP4068503 A1 EP 4068503A1 EP 20892918 A EP20892918 A EP 20892918A EP 4068503 A1 EP4068503 A1 EP 4068503A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- dissipating
- cooling device
- wave
- dissipating fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 38
- 239000004020 conductor Substances 0.000 claims description 6
- 238000009751 slip forming Methods 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000470 constituent Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/02—Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
Definitions
- the present invention relates to a cooling device for an antenna apparatus, and more particularly, to a cooling device for an antenna apparatus, which is capable of improving heat-dissipating performance by making a flow of outside air smooth.
- a distributed antenna system is an example of a relay system for relaying communication between a base station and a user terminal.
- the distributed antenna system is used to expand service coverage of a base station in order to provide mobile communication service up to a shadow area that necessarily occurs indoors or outdoors.
- the distributed antenna system receives a base station signal from the base station based on a down-link route and performs processing such as amplification on the signal. Then, the distributed antenna system transmits the signal-processed base station signal to a user terminal in a service region, performs processing such as amplification on a terminal signal transmitted from the user terminal in the service region based on an up-link route, and then transmits the signal to the base station.
- the distributed antenna system To implement the relay function of the distributed antenna system, it essential to match the signals transmitted and received between the base station and the dispersion antenna system, for example, adjust signal power. To this end, a base station signal matching device has been used.
- the base station signal matching device adjusts the base station signal having a high power level at the down-link route to an appropriate power level required for the distributed antenna system. In this case, a significant amount of heat is generated, which damages the base station signal matching device and shortens the lifespan. Accordingly, there is a need for a solution capable of efficiently dissipating the heat.
- FIG. 1 is a cross-sectional view illustrating a heat-dissipating fin structure of a general heat-dissipating unit applied to an antenna apparatus in the related art.
- the heat-dissipating unit in the related art technology includes: a heat-dissipating cover 10 having an inner surface exposed to a predetermined space (TS, thermal space) in which heat exists; and a plurality of heat-dissipating fins 20 coupled to an outer surface of a heat-dissipating cover 10.
- the plurality of heat-dissipating fins 20 each has a vertical cross-section having an approximately straight line shape.
- the heat in the predetermined space TS is generated from electrical components (not illustrated) configured as heating elements and thermally transferred by conduction through an inner surface of the heat-dissipating cover 10 made of a thermally conductive material.
- the heat is dissipated to the outside through the plurality of heat-dissipating fins 20 coupled to the outer surface of the heat-dissipating cover 10.
- the heat-dissipating fin structure of the general heat-dissipating unit configured as described above has a problem in that heat stagnation occurs on a connection part (see reference numeral "A" in FIG. 1 ) between the heat-dissipating fin 20 and the heat-dissipating cover 10, which degrades heat-dissipating performance.
- the heat-dissipating fin structure of the general heat-dissipating unit in the related art has a structure in which the outside air may flow only when flow directions of outside air between the adjacent heat-dissipating fins 20 are coincident with each other. Therefore, a width of the single heat-dissipating fin 20 blocks the flow of outside air, such that the outside air hardly flows. For this reason, the heat, which needs to be dissipated, stagnates on the connection part with the heat-dissipating cover 10, which degrades heat-dissipating performance.
- the present invention has been made in an effort to solve the above-mentioned problems, and an object of the present invention is to provide a cooling device for an antenna apparatus having a plurality of wave heat-dissipating fins provided such that outside air may flow into the plurality of wave heat-dissipating fins in all directions except for a side closed by a heat-dissipating cover.
- Another object of the present invention is to provide a cooling device for an antenna apparatus capable of facilitating arrangement design of a plurality of wave heat-dissipating fins.
- An exemplary embodiment of the present invention provides a cooling device for an antenna apparatus, the cooling device including: a heat-dissipating cover having an inner surface exposed to a predetermined space in which heat exists, and an outer surface exposed to the outside where outside air flows; and a plurality of wave heat-dissipating fins disposed on the outer surface of the heat-dissipating cover so as to perform thermal conduction, the plurality of wave heat-dissipating fins extending to define curved surfaces continuously formed from the outer surface of the heat-dissipating cover to any height.
- the plurality of wave heat-dissipating fins may be disposed such that outer ends at points farthest from the outer surface of the heat-dissipating cover are kept rotated at a predetermined angle in the same direction which is any one direction.
- one end of each of the plurality of wave heat-dissipating fins may be in thermal contact with and fixed to the outer surface of the heat-dissipating cover.
- the plurality of wave heat-dissipating fins may be disposed in multiple rows on the outer surface of the heat-dissipating cover, and the cooling device may further include a mounting thermal conduction plate simultaneously connected to the plurality of wave heat-dissipating fins disposed in one row or two or more rows and configured to mediate the thermal contact and fixing between the plurality of wave heat-dissipating fins and the outer surface of the heat-dissipating cover.
- the mounting thermal conduction plate may include: at least one vertical flange disposed perpendicular to the outer surface of the heat-dissipating cover so as to connect the ends of the plurality of wave heat-dissipating fins disposed in one row or two or more lows; and a horizontal flange bent and extending from a tip of at least one vertical flange in parallel with the outer surface of the heat-dissipating cover.
- the horizontal flange may be fixedly seated in a seating groove formed in the outer surface of the heat-dissipating cover, and an outer surface of the horizontal flange may be horizontally matched with and fixedly seated on the outer surface of the heat-dissipating cover.
- the plurality of wave heat-dissipating fins may each be manufactured by twisting a rectangular board elongated upward and downward and made of a conductive material in one direction based on a vertical central axis.
- horizontal cross-sections of the plurality of wave heat-dissipating fins corresponding to any height from the outer surface of the heat-dissipating cover may be arranged in a predetermined direction, which is the same direction.
- the plurality of wave heat-dissipating fins may be arranged to have the same spacing distance.
- each of the plurality of wave heat-dissipating fins may extend in a spiral shape in a direction away from the outer surface of the heat-dissipating cover.
- each of the plurality of wave heat-dissipating fins may be formed by being twisted so that the other end spaced apart from the outer surface of the heat-dissipating cover at a longest distance is rotated at 180 degrees or more about a vertical central axis with respect to one end connected to the outer surface of the heat-dissipating cover.
- the outside air easily flows into the plurality of wave heat-dissipating fins from the outside in all directions, thereby improving the overall heat-dissipating performance.
- one surface and the other surface of each of the plurality of wave heat-dissipating fins are formed so that the outside air flows in all directions at least according to the height at which the plurality of wave heat-dissipating fins is spaced apart from the heat-dissipating cover. Therefore, it is possible to facilitate the arrangement design of the plurality of wave heat-dissipating fins.
- first, second, A, B, (a), and (b) may be used to describe constituent elements of the exemplary embodiments of the present invention. These terms are used only for the purpose of discriminating one constituent element from another constituent element, and the nature, the sequences, or the orders of the constituent elements are not limited by the terms. Further, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention pertains. The terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with meanings in the context of related technologies and should not be interpreted as ideal or excessively formal meanings unless explicitly defined in the present application.
- FIG. 2 is a perspective view illustrating an embodiment of a cooling device for an antenna apparatus according to the present invention
- FIG. 3A is a front view of FIG. 2
- FIG. 3B is a side view of FIG. 2
- FIG. 4 is a top plan view of FIG. 2
- FIG. 5 is a perspective view illustrating a wave heat-dissipating fin among the components in FIG. 2
- FIG. 6 is a perspective view illustrating various embodiments of the wave heat-dissipating fins among the components in FIG. 2 .
- a cooling device 100 for an antenna apparatus includes: a heat-dissipating cover 110 having an inner surface exposed to a predetermined space in which heat exists (or, a 'thermal space', hereinafter, denoted by reference numeral 'TS'), and an outer surface exposed to the outside where outside air flows; and a plurality of wave heat-dissipating fins 120 disposed on an outer surface of the heat-dissipating cover 110.
- the predetermined space TS may be defined as an internal space of the casing unit 101 provided to install and protect a printed circuit board (PCB) 103 on which electrical components, i.e., a plurality of exothermic elements 105, are mounted.
- PCB printed circuit board
- the plurality of exothermic elements 105 may be antenna-related electrical components such as a power amplifier (PA), a field-programmable gate array (FPGA), or the like.
- PA power amplifier
- FPGA field-programmable gate array
- the heat-dissipating cover 110 may be coupled to one open side of the casing unit 101 and disposed to cover one side of the printed circuit board 103 on which the electrical components, i.e., the plurality of exothermic elements, are mounted.
- the predetermined space TS is defined between an inner surface of the heat-dissipating cover 110 and the printed circuit board 103.
- the predetermined space TS is a space in which the electrical components, i.e., the plurality of exothermic elements 105, generate heat.
- the plurality of wave heat-dissipating fins 120 may be disposed in multiple rows so as to transfer heat to an outer surface of the heat-dissipating cover 110. Further, the plurality of wave heat-dissipating fins 120 may extend by a preset spacing distance from the outer surface of the heat-dissipating cover 110. In this case, the plurality of wave heat-dissipating fins 120 not only extends by the preset spacing distance from the outer surface of the heat-dissipating cover 110, but also forms curved surfaces continuously formed to any spacing distance from the outer surface of the heat-dissipating cover 110.
- the plurality of wave heat-dissipating fins 120 may each have a horizontal cross-section (hereinafter, referred to as an 'outer cross-section') spaced apart from the outer surface of the heat-dissipating cover 110 at any spacing distance, and the outer cross-section may have a straight-line shape in a state of being rotated at a predetermined angle in any one direction with respect to a horizontal cross-section (hereinafter, referred to as an 'inner cross-section') of the outer surface (or a portion adjacent to the outer surface) of the heat-dissipating cover 110.
- an 'outer cross-section' spaced apart from the outer surface of the heat-dissipating cover 110 at any spacing distance
- the outer cross-section may have a straight-line shape in a state of being rotated at a predetermined angle in any one direction with respect to a horizontal cross-section (hereinafter, referred to as an 'inner cross-section') of the outer
- the plurality of wave heat-dissipating fins 120 may each have one end fixed to the outer surface of the heat-dissipating cover 110.
- the heat-dissipating cover 110 when the heat-dissipating cover 110 is provided in the form of an approximately rectangular board made of a conductive material, the plurality of wave heat-dissipating fins 120 may be arranged in two or more rows or two or more columns in a longitudinal direction or a width direction on the outer surface of the heat-dissipating cover 110.
- the heat-dissipating cover 110 is provided in the form of a square board, and the plurality of wave heat-dissipating fins 120 is arranged in 10 rows and 10 columns.
- the present invention is not necessarily limited to the above-mentioned arrangement.
- the plurality of wave heat-dissipating fins 120 may be arranged to have the same spacing distance.
- the present invention is not limited thereto.
- the plurality of wave heat-dissipating fins 120 may be arranged and designed to have different spacing distances in accordance with the arrangement positions or the amount of heat generation of the electrical components, i.e., the exothermic elements 105 disposed in the casing unit 101.
- the plurality of wave heat-dissipating fins 120 may each have one end (a lower portion in FIG. 2 ) fixed to and being in thermal contact with the outer surface of the heat-dissipating cover 110.
- the expression 'fixed to and being in thermal contact with' means all the concepts in which thermal conduction is performed through contact according to the characteristics of materials.
- the plurality of wave heat-dissipating fins 120 may be disposed in the plurality of rows and columns.
- the cooling device 100 for an antenna apparatus may further include a mounting thermal conduction plate 130 simultaneously connected to the plurality of wave heat-dissipating fins 120 disposed in one row (see FIG. 6A ) or two or more rows (see FIG. 6B ) and configured to mediate the thermal contact and fixing between the plurality of wave heat-dissipating fins 120 and the outer surface of the heat-dissipating cover 110.
- the mounting thermal conduction plate 130 may include: a vertical flange 131 configured to connect the ends of the plurality of wave heat-dissipating fins disposed in one row; and a horizontal flange 132 bent and extending at a tip of the vertical flange 131 so as to be parallel to the outer surface of the heat-dissipating cover 110.
- the mounting thermal conduction plate 130 may include: first and second vertical flanges 131a and 131b configured to connect the ends of the plurality of wave heat-dissipating fins 120 disposed in two rows; and a horizontal flange 132 configured to connect tips of the first and second vertical flanges 131a and 131b and bent and extending to be parallel to the outer surface of the heat-dissipating cover 110.
- the horizontal flange 132 of the mounting thermal conduction plate 130 may be seated on and fixed to a seating groove 115 (see FIGS. 3A and 3B ) formed in advance in the outer surface of the heat-dissipating cover 110.
- a seating groove 115 (see FIGS. 3A and 3B ) formed in advance in the outer surface of the heat-dissipating cover 110.
- an outer surface of the horizontal flange 132 may be horizontally matched with and fixedly seated on the outer surface of the heat-dissipating cover 110. Therefore, flow resistance of outside air introduced between the plurality of wave heat-dissipating fins 120 is minimized, thereby preventing deterioration in heat-dissipating performance.
- a method of fixing the horizontal flange 132 to the seating groove 115 of the heat-dissipating cover 110 may be any one of a welding method and a screw-fastening method.
- the screw-fastening method may be used to fix the horizontal flange 132 so that the horizontal flange 132 is easily replaceable in consideration of the amount of heat generation of the exothermic elements 105 disposed in the predetermined space TS.
- the horizontal flange 132 may have a plurality of screw fastening holes 133 so that the horizontal flange 132 is screw-fastened to the heat-dissipating cover 110.
- the seating groove 115 is formed in the heat-dissipating cover 110 and provided in the form of a hole that communicates with the predetermined space TS of the heat-dissipating cover 110.
- An inner surface of the horizontal flange 132 of the mounting thermal conduction plate 130 is installed in the seating groove 115 provided in the form of a hole, such that the inner surface of the horizontal flange 132 is fixedly seated to be exposed to the predetermined space TS.
- the exothermic elements 105 in the predetermined space TS may be thermally in direct surface contact with the horizontal flange 132.
- the plurality of wave heat-dissipating fins 120 and the exothermic elements 105 having a large amount of heat generation may be in direct contact with one another and dissipate heat in a thermal conduction manner, thereby achieving the higher heat-dissipating performance and effect.
- the plurality of wave heat-dissipating fins 120 may each be manufactured by twisting a rectangular board elongated upward and downward and made of a thermally conductive material in one direction based on a vertical central axis C.
- a left end 120L and a right end 120R of each of the plurality of wave heat-dissipating fins may extend in a direction away from the outer surface of the heat-dissipating cover 110 and extend in a spiral shape.
- each of the plurality of wave heat-dissipating fins 120 may be formed by being twisted so that the other end 120b spaced apart from the outer surface of the heat-dissipating cover 110 at a longest distance is rotated at 180 degrees or more about the vertical central axis C with respect to one end 120a connected to the outer surface of the heat-dissipating cover 110. Because the twisting angle of each of the plurality of wave heat-dissipating fins 120 is '180 degrees or more', each of the plurality of wave heat-dissipating fins 120 may be rotated by 360 degrees (i.e., one rotation) or more. In this case, the curved surface may be necessarily formed in the direction away from the outer surface of the heat-dissipating cover 110.
- each of the plurality of wave heat-dissipating fins 120 each have a predetermined circular shape when viewed from above to immediately below.
- a diameter of each of the circles may be equal to a width of the rectangular board which is the base material of each of the wave heat-dissipating fins 120.
- the outer cross-section of each of the plurality of wave heat-dissipating fins 120 may have a straight-line shape at a first height equal to a height from the outer surface of the heat-dissipating cover 110. Further, the outer cross-section of each of the plurality of wave heat-dissipating fins 120 may also have a straight-line shape at a second height higher than the first height.
- the present invention is not necessarily limited to the configuration in which the outer cross-section of each of the plurality of wave heat-dissipating fins 120 has a straight-line shape at the same height.
- a cut surface of the curved surface may have a curved line shape within a range in which outside air easily flows inside the plurality of wave heat-dissipating fins 120.
- the shape of the outer cross-section of each of the plurality of wave heat-dissipating fins 120 at the first height and shape of the outer cross-section of each of the plurality of wave heat-dissipating fins 120 at the second height may define a predetermined angle or equally overlap each other on an x-y coordinate, but extend to define the curved surface in an upward/downward direction (i.e., z-coordinate).
- one surface or the other surface of each of the plurality of wave heat-dissipating fins 120 may necessarily have a curved shape without a stepped portion.
- outer cross-sections of the plurality of wave heat-dissipating fins 120 which are positioned at the same height from the outer surface of the heat-dissipating cover 110, may be arranged in a predetermined direction, i.e., the same direction. Further, the outer cross-sections of the plurality of wave heat-dissipating fins 120 at the same height may have any one of the straight-line shape and the curved-line shape of the cut surface of the curved surface.
- the outside air positioned outside the plurality of wave heat-dissipating fins 120 may flow in different directions (in all directions) according to the distance away from the outer surface of the heat-dissipating cover 110 (i.e., according to the height of the wave heat-dissipating fin 120). Therefore, the flow rate of the outside air may increase.
- FIG. 7 is a perspective view illustrating a state in which outside air is introduced through the heat-dissipating cover and the plurality of wave heat-dissipating fins
- FIG. 8 is a cut-away perspective view taken along line B-B, C-C, D-D, and E-E in FIG. 2
- FIG. 9 is a front view of the cooling device for an antenna apparatus according to the present invention
- FIGS. 10A to 10C are cross-sectional views taken along line 'I-I', 'II-II', and 'III-III' in FIG. 9 and illustrating an inflow of the outside air.
- the heat is trapped in the predetermined space TS defined between the inner surface of the heat-dissipating cover 110 of the printed circuit board 103 disposed in the casing unit 101.
- the trapped heat is transferred through the inner surface of the heat-dissipating cover 110 made of a thermally conductive material.
- the heat transferred to the outer surface of the heat-dissipating cover 110 is transferred to the plurality of wave heat-dissipating fins 120 disposed on the outer surface of the heat-dissipating cover 110, and smooth heat dissipation may be performed by outside air introduced between the wave heat-dissipating fins 120 adjacent to the outer surface of the heat-dissipating cover 110 at any spacing distance.
- line B-B, line C-C, line D-D, and line E-E are cross-sectional lines defined at different spacing distances with respect to the outer surface of the heat-dissipating cover 110.
- the outer cross-section of the wave heat-dissipating fin 120 which is defined by the cross-sectional line at each portion, has a straight-line shape
- the outer cross-section of the wave heat-dissipating fin 120, which is adjacent to the above-mentioned heat-dissipating fin 120 also has a straight-line shape parallel to the above-mentioned straight-line shape. Therefore, the outside air may be easily introduced between the plurality of wave heat-dissipating fins 120 in all directions, thereby greatly improving heat-dissipating performance.
- the tip portions of the plurality of wave heat-dissipating fins 120 are arranged in a straight-line shape side by side in an oblique line direction, and the outside air may flow into or out of the portions between the adjacent wave heat-dissipating fins 120 in the oblique line direction.
- the tip portions of the plurality of wave heat-dissipating fins 120 have blocking shapes so that the outside air hardly flows in a leftward/rightward direction of the heat-dissipating cover 110 based on the drawings.
- the tip portions of the plurality of wave heat-dissipating fins 120 are arranged side by side in a straight-line shape in a forward/rearward direction of the heat-dissipating cover 110 based on the drawings, such that the outside air may flow into or out of the portions between the adjacent wave heat-dissipating fins 120 in the forward/rearward direction.
- the tip portions of the plurality of wave heat-dissipating fins 120 have blocking shapes so that the outside air hardly flows in the forward/rearward direction of the heat-dissipating cover 110 based on the drawings.
- the tip portions of the plurality of wave heat-dissipating fins 120 are arranged side by side in a straight-line shape in the leftward/rightward direction of the heat-dissipating cover 110 based on the drawings, such that the outside air may flow into or out of the portions between the adjacent wave heat-dissipating fins 120 in the leftward/rightward direction.
- the plurality of wave heat-dissipating fins 120 is provided to define continuous curved surfaces from the outer surface of the heat-dissipating cover 110 to any spacing point so that the outside air may naturally flow with respect to the adjacent wave heat-dissipating fins 120. Therefore, it is possible to prevent heat concentration that may occur on the coupling parts between the heat-dissipating cover 110 and the plurality of wave heat-dissipating fins 120. Therefore, it is possible to further improve heat-dissipating performance.
- the present invention provides the cooling device for an antenna apparatus having the plurality of wave heat-dissipating fins provided such that the outside air may flow into the plurality of wave heat-dissipating fins in all directions except for a side closed by the heat-dissipating cover.
- the present invention is not necessarily limited by the embodiment, and various modifications of the embodiment and any other embodiments equivalent thereto may of course be carried out by those skilled in the art to which the present invention pertains. Accordingly, the true protection scope of the present invention should be determined by the appended claims.
- the present invention provides the cooling device for an antenna apparatus having the plurality of wave heat-dissipating fins provided such that the outside air may flow into the plurality of wave heat-dissipating fins in all directions except for a side closed by the heat-dissipating cover.
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190151879 | 2019-11-25 | ||
PCT/KR2020/016769 WO2021107587A1 (ko) | 2019-11-25 | 2020-11-25 | 안테나 장치용 방열 기구 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4068503A1 true EP4068503A1 (de) | 2022-10-05 |
EP4068503A4 EP4068503A4 (de) | 2023-12-20 |
Family
ID=76373046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20892918.2A Pending EP4068503A4 (de) | 2019-11-25 | 2020-11-25 | Kühlvorrichtung für antennenvorrichtung |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4068503A4 (de) |
KR (1) | KR102463545B1 (de) |
CN (2) | CN115053399A (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782940B (zh) * | 2021-08-31 | 2023-05-26 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 高速气流穿通式风冷散热机载天线 |
KR102560841B1 (ko) | 2021-12-22 | 2023-07-28 | 위너콤 주식회사 | 차량용 안테나 시스템 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09252066A (ja) * | 1996-03-15 | 1997-09-22 | Mitsubishi Electric Corp | ヒートシンク |
KR200241122Y1 (ko) * | 2001-04-25 | 2001-10-12 | 주식회사 우주통신 | 전자 회로 기판용 방열판 |
JP2003152419A (ja) * | 2001-08-28 | 2003-05-23 | Toshiba Corp | アンテナ装置 |
US20070131386A1 (en) * | 2005-12-14 | 2007-06-14 | Ming-Kun Tsai | Fin unit for a cooler |
KR102098802B1 (ko) * | 2016-10-10 | 2020-04-08 | 주식회사 케이엠더블유 | 방열 장치 |
-
2020
- 2020-11-25 KR KR1020200159452A patent/KR102463545B1/ko active IP Right Grant
- 2020-11-25 EP EP20892918.2A patent/EP4068503A4/de active Pending
- 2020-11-25 CN CN202080081601.3A patent/CN115053399A/zh active Pending
- 2020-11-25 CN CN202022758510.9U patent/CN215299480U/zh active Active
Also Published As
Publication number | Publication date |
---|---|
KR102463545B1 (ko) | 2022-11-09 |
CN215299480U (zh) | 2021-12-24 |
KR20210064091A (ko) | 2021-06-02 |
EP4068503A4 (de) | 2023-12-20 |
CN115053399A (zh) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4068503A1 (de) | Kühlvorrichtung für antennenvorrichtung | |
US8611088B2 (en) | Mechanical heat pump for an electrical housing | |
US20200021005A1 (en) | Heat-dissipation mechanism and wireless communication device | |
US20060223362A1 (en) | Electrical connector with cooling features | |
US20180198197A1 (en) | Wireless communication device | |
KR20190068486A (ko) | 전장소자의 방열 장치 | |
US20180019769A1 (en) | Radio unit housing and a base station antenna module | |
CN111788876A (zh) | 电子元件的散热装置 | |
US11968805B2 (en) | Heatsink having air partitioning baffle | |
JP6739642B2 (ja) | バッテリセルの電気的に固定された接続のための基板およびバッテリ | |
CN100456205C (zh) | 散热装置 | |
CN107785338B (zh) | 散热组件、半导体加热装置和半导体烹饪器具 | |
US12062829B2 (en) | Cooling device for antenna apparatus | |
CN203250734U (zh) | 可更换芯片的芯片队列散热器及芯片阵列散热器 | |
JP6539295B2 (ja) | 冷却装置 | |
KR102313252B1 (ko) | 방열 함체 및 그 제작 방법 | |
CN208480171U (zh) | 散热装置 | |
JP2016092258A (ja) | 車両用冷却器及び融雪アタッチメント | |
JP2007005715A (ja) | 放熱装置、および放熱方法 | |
WO2023037912A1 (ja) | ヒートシンク | |
JP2020053570A (ja) | 放熱構造体 | |
CN112842092B (zh) | 烤箱 | |
US11570932B2 (en) | Heat exchange ribbon | |
US20230387617A1 (en) | Thermal management structures for power connector | |
CN115720436A (zh) | 一种散热装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220531 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20231117 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/24 20060101ALN20231113BHEP Ipc: H05K 7/20 20060101ALI20231113BHEP Ipc: H01Q 1/02 20060101AFI20231113BHEP |