EP4055346A1 - Verfahren und vorrichtung zum bestimmen von notfalltrajektorien und zum betreiben von automatisierten fahrzeugen - Google Patents

Verfahren und vorrichtung zum bestimmen von notfalltrajektorien und zum betreiben von automatisierten fahrzeugen

Info

Publication number
EP4055346A1
EP4055346A1 EP20785931.5A EP20785931A EP4055346A1 EP 4055346 A1 EP4055346 A1 EP 4055346A1 EP 20785931 A EP20785931 A EP 20785931A EP 4055346 A1 EP4055346 A1 EP 4055346A1
Authority
EP
European Patent Office
Prior art keywords
emergency
automated
trajectory
data values
automated vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20785931.5A
Other languages
English (en)
French (fr)
Inventor
Michael Gabb
Ruediger-Walter Henn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP4055346A1 publication Critical patent/EP4055346A1/de
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3461Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types, segments such as motorways, toll roads, ferries
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0056Navigation or guidance aids for a single aircraft in an emergency situation, e.g. hijacking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates, inter alia, to a method for determining emergency trajectories and a method for operating an automated vehicle.
  • the method according to the invention for determining emergency trajectories comprises a step of receiving route data values which represent route information of the automated vehicles, a step of determining emergency trajectories for each of the automated vehicles, depending on the route information of the automated vehicles, the emergency trajectories each having a temporal and / or maintain local predetermined minimum distance from one another and a step of transmitting the emergency trajectories to the automated vehicles for operating the automated vehicles.
  • An automated vehicle is to be understood as a vehicle which is designed according to one of SAE levels 1 to 5 (see standard SAE J3016).
  • a (normal and / or emergency) trajectory is to be understood as a predefined route for an automated vehicle, which is followed, for example, by means of an automated transverse and / or longitudinal control.
  • a trajectory represents, for example, discrete coordinate points and / or vectors, etc.
  • the normal trajectory in particular represents a connection between a starting point (for example a position of the corresponding automated vehicle at the time of determining the normal trajectory) and a target point, the normal trajectory being determined, for example, by adding environmental features [traffic density, road courses, intersections, other vehicles, etc.] must be taken into account.
  • the normal trajectory preferably provides a route for the automated one Vehicle, which is determined by a traffic management system (for automated vehicles) taking into account further (automated) vehicles or other objects by means of a (digital) map, with a communication link between the automated vehicle and the traffic management system - for example to adjust the route to changing conditions (pedestrians, vehicle movements, etc.) - is a prerequisite.
  • the emergency trajectory represents a route which is used, for example, to bring the automated vehicle to a safe stop (without collisions with objects, other vehicles, etc.) as quickly as possible, starting from a position at the time the emergency occurred.
  • the emergency trajectory preferably includes the fastest possible route into a safe area (edge area of a traffic route, parking lot, etc.).
  • the route information includes, for example, the normal trajectory and / or a (current) position of the automated vehicle, in particular along the normal trajectory.
  • a predetermined minimum distance in time and / or location between the emergency trajectories is to be understood as meaning that these emergency trajectories either do not cross each other or - if they are at least partially parallel - have a safety distance of, for example, a few meters from one another and / or that the emergency trajectories which may cross each other or cannot have a safety distance, can be determined in such a way that the affected automated vehicles (which receive these emergency trajectories) pass the corresponding hazard area with a time delay.
  • the steps of the method are preferably repeated cyclically, in particular with a predetermined cycle duration, until no more route data values are received.
  • the route data are repeatedly received by the automated vehicles in order - for example, depending on the current position (along the normal trajectory) - to determine a (current) emergency trajectory and to transmit it to the automated vehicles.
  • the method preferably additionally provides for the reception of environmental data values, the environmental data values representing surroundings of the automated vehicles.
  • the determination of the emergency trajectories also takes place depending on the surroundings of the automated vehicles.
  • Receiving environmental data values is to be understood as meaning, for example, that the automated vehicles themselves (at least partially) detect these surroundings by means of an environmental sensor system and transmit them for reception.
  • the environmental data values are additionally or alternatively recorded by means of an infrastructure unit (lighting device, traffic signs, bridge piers, tunnel walls, etc.), which include an environmental sensor system, and are transmitted for reception.
  • An environment sensor system is at least one video and / or at least one radar and / or at least one lidar and / or at least one ultrasound and / or at least one further sensor - which is designed to detect the environment of the automated vehicles in the form of To capture environmental data values - to understand.
  • the environment sensor system is designed in particular to detect environmental features in the environment (road course, traffic signs, lane markings, buildings, lane boundaries, etc.) and / or traffic objects (vehicles, cyclists, pedestrians, etc.).
  • the environment sensor system includes, for example, a computing unit (processor, main memory, hard disk) with suitable software and / or is connected to such a computing unit, whereby these environmental features can be recorded and / or classified or assigned.
  • Determining the emergency trajectory is understood to mean, for example, that an environment model is created based on map data and / or route data of the automated vehicles and / or environment data values and the emergency trajectories are then determined using the environment model.
  • the device according to the invention (for determining emergency trajectories), in particular a server, is set up to carry out all steps of the method according to one of the corresponding method claims.
  • the device (for determining emergency trajectories) comprises a computing unit (processor, main memory, hard disk) and suitable software to carry out the method according to one of the method claims.
  • the device comprises, for example, a transmitting and / or receiving unit which is designed to provide and / or transmit and / or receive route data values and / or environmental data values and / or emergency trajectories (in the form of data values or in the form of signals) .
  • the device is connected to a transmitting and / or receiving device by means of a suitable interface.
  • a server is to be understood as meaning, for example, an individual server or a network of servers (cloud).
  • a computer program comprising instructions which, when the computer program is executed by a computer, cause the computer to carry out a method according to one of the method claims for determining emergency trajectories.
  • the computer program corresponds to the software comprised by the device (for determining emergency trajectories).
  • the method according to the invention for operating an automated vehicle comprises a step of transmitting route data values to an external server, the route data values representing route information depending on a normal trajectory of the automated vehicle, and a step of receiving an emergency trajectory from the external server, the emergency trajectory is determined by means of a method according to one of the method claims for determining emergency trajectories.
  • the method further comprises a step of checking the functionality of a communication link of the automated vehicle, the communication link being designed at least to receive the emergency trajectory, and a step of operating the automated vehicle using the normal trajectory or using the emergency trajectory, depending on the functionality of the communication link.
  • a functionality of the communication link of the automated vehicle is to be understood as meaning, for example, the existing or non-existing functionality for transmitting and / or receiving data values.
  • the functionality represents, for example - in the form of data values - one of two possible feedback messages from the communication link: (1) the communication link is functional; (2) Communication link is not functional.
  • the checking is carried out, for example, by carrying out an internal (software-based) analysis and / or by sending out a test signal and comparing it with a (possible) response signal.
  • the steps of the method are preferably repeated cyclically.
  • the automated vehicle is operated using the normal trajectory or the most recently received emergency trajectory.
  • Operating the automated vehicle using the normal trajectory or using the most recently received emergency trajectory is understood to mean, for example, that the automated vehicle is moved along the corresponding trajectory by means of an automated transverse and / or longitudinal control.
  • operation is also to be understood as performing an assistance function that increases safety (tightening the belts, preconditioning an airbag, adjusting the seat position, etc.).
  • Operation is to be understood in particular to mean that the vehicle is operated in such a way that one danger for the automated vehicle or for the occupants of the automated vehicle - for example due to a collision - is avoided or reduced as far as possible.
  • the device according to the invention (for operating an automated vehicle), in particular a control device, is set up to carry out all steps of the method according to one of the corresponding method claims.
  • the device for operating an automated vehicle
  • the device comprises, for example, a transmitting and / or receiving unit which is designed to send route data values and / or environmental data values and / or emergency trajectories (in the form of data values or in Form of signals) to provide and / or to transmit and / or to receive.
  • the device is connected to a transmitting and / or receiving device by means of a suitable interface.
  • the transmitting and / or receiving device or the interface corresponds to the communication connection, which is designed at least to receive the emergency trajectory.
  • the device has an interface for operating the automated vehicle, by means of which, for example, corresponding signals for transverse and / or longitudinal control can be provided.
  • the method according to the invention advantageously solve the problem of enabling automated vehicles to be operated - for example, starting from a traffic control center (here: server) - in such a way that even if a communication link between the automated vehicles and the traffic control center fails, the automated vehicles can be operated safely To enable vehicles (for example until the communication link is available again and / or until all automated vehicles involved have safely come to a halt (collision-free, etc.)).
  • a traffic control center here: server
  • This object is achieved by means of the system according to the invention, which comprises a device for determining emergency trajectories and a device for operating an automated vehicle in each case, in that emergency trajectories are determined for each of the automated vehicles, depending on the route information of the automated vehicles.
  • the automated vehicles are then operated using the emergency trajectory, depending on the functionality of the communication link that is responsible for exchanging the relevant data. This allows these emergency trajectories to be coordinated with one another in such a way that there will be no overlap or collision if the communication connection breaks off (in particular spontaneously).
  • FIG. 1 shows an exemplary embodiment of the method according to the invention for determining emergency trajectories in the form of a flow chart
  • FIG. 2 shows an exemplary embodiment of the method according to the invention for operating an automated vehicle in the form of a flow chart
  • FIG. 3 shows an exemplary embodiment of the interaction between the two methods in the form of a flow chart.
  • FIG. 1 shows an exemplary embodiment of a method 300 for determining 320 emergency trajectories.
  • the method 300 starts in step 301.
  • step 310 route data values which represent route information from automated vehicles are received.
  • step 320 follows.
  • step 315 follows.
  • step 315 environmental data values are received, the environmental data values representing surroundings of the automated vehicles.
  • step 315 follows first and then step 310, or steps 310 and 315 are carried out at least partially at the same time.
  • step 320 emergency trajectories are determined for each of the automated vehicles, depending on the route information of the automated vehicles, in such a way that the emergency trajectories each maintain a predetermined minimum distance from one another in terms of time and / or location.
  • the emergency trajectories are additionally determined as a function of the surroundings of the automated vehicles.
  • step 330 the emergency trajectories are transmitted to the automated vehicles - for operating the automated vehicles.
  • step 340 follows.
  • steps 310, 320, 330 of method 300 are repeated cyclically, in particular with a predetermined cycle duration, until no more route data values are received.
  • the method 300 ends in step 340.
  • FIG. 2 shows an exemplary embodiment of a method 400 for operating 440 an automated vehicle.
  • the method 400 starts in step 401.
  • route data values are transmitted to an external server, the route data values representing route information as a function of a normal trajectory of the automated vehicle.
  • step 420 an emergency trajectory is received from the external server, the emergency trajectory being determined by means of an embodiment of the method 300.
  • step 430 a functionality of a communication link of the automated vehicle is checked, the communication link being designed at least to receive the emergency trajectory.
  • step 440 the automated vehicle is operated using the normal trajectory or using the emergency trajectory, depending on the functionality of the communication link.
  • steps 410, 420, 430 of method 400 are repeated cyclically, the automated vehicle being operated using the normal trajectory or using the last received emergency trajectory.
  • the method 400 ends in step 450.
  • FIG. 3 shows an exemplary embodiment of the interaction of the method 300 for determining 320 emergency trajectories and the method 400 for operating 440 an (awarded) automated vehicle.
  • route data values are transmitted from the (labeled) automated vehicle to an external server, the route data values representing route information depending on a normal trajectory of the (labeled) automated vehicle.
  • step 310 the route data values from the (labeled) automated vehicle and further route data values which represent route information from (further) automated vehicles are received.
  • step 320 emergency trajectories (i.e. also an excellent emergency trajectory for the distinguished automated vehicle which has transmitted its route data values in step 410) are determined for each of the automated vehicles, depending on the route information of the automated vehicles, in such a way that the emergency trajectories each have a temporal and / or comply with the locally specified minimum distance from one another.
  • emergency trajectories i.e. also an excellent emergency trajectory for the distinguished automated vehicle which has transmitted its route data values in step 410 are determined for each of the automated vehicles, depending on the route information of the automated vehicles, in such a way that the emergency trajectories each have a temporal and / or comply with the locally specified minimum distance from one another.
  • step 330 the emergency trajectories are transmitted to the automated vehicles (that is to say also the designated emergency trajectory to the designated automated vehicle which has transmitted its route data values in step 410) - for operating the automated vehicles.
  • step 420 the emergency trajectory is received from the external server.
  • step 430 a functionality of a communication link of the (awarded) automated vehicle is checked, the communication link being designed at least to receive the emergency trajectory.
  • step 440 the (labeled) automated vehicle is operated by means of the normal trajectory or by means of the (labeled) emergency trajectory, depending on the functionality of the communication link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Verfahren (300) und Vorrichtung zum Bestimmen (320) von Notfalltrajektorien sowie Verfahren (400) und Vorrichtung zum Betreiben (440) eines automatisierten Fahrzeugs.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Bestimmen von Notfalltrajektorien und zum Betreiben von automatisierten Fahrzeugen
Die vorliegende Erfindung betrifft unter anderem ein Verfahren zum Bestimmen von Notfalltrajektorien und ein Verfahren zum Betreiben eines automatisierten Fahrzeugs.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren zum Bestimmen von Notfalltrajektorien umfasst einen Schritt des Empfangens von Routendatenwerten, welche Routenangaben der automatisierten Fahrzeuge repräsentieren, einen Schritt des Bestimmens von Notfalltrajektorien für jedes der automatisierten Fahrzeuge, abhängig von den Routenangaben der automatisierten Fahrzeuge, wobei die Notfalltrajektorien jeweils einen zeitlichen und/oder örtlichen vorgegebenen Mindestabstand zueinander einhalten und einen Schritt des Übertragens der Notfalltrajektorien an die automatisierten Fahrzeuge zum Betreiben der automatisierten Fahrzeuge.
Unter einem automatisierten Fahrzeug ist ein Fahrzeug, welches gemäß einem der SAE- Level 1 bis 5 (siehe Norm SAE J3016) ausgebildet ist, zu verstehen.
Unter einer (Normal- und/oder Notfall-) Trajektorie ist eine vorgegebene Route für ein automatisiertes Fahrzeug zu verstehen, welche beispielsweise mittels einer automatisierten Quer- und/oder Längssteuerung abgefahren wird. In einer Ausführungsform repräsentiert eine Trajektorie beispielsweise diskrete Koordinatenpunkte und/oder Vektoren, etc.
Dabei stellt die Normaltrajektorie insbesondere eine Verbindung zwischen einem Startpunkt (beispielsweise eine Position des entsprechenden automatisierten Fahrzeugs zum Zeitpunkt des Bestimmens der Normaltrajektorie) und einem Zielpunkt dar, wobei das Bestimmen der Normaltrajektorie beispielsweise erfolgt, indem Umgebungsmerkmale [Verkehrsdichte, Straßenverläufe, Kreuzungen, andere Fahrzeuge, etc.] berücksichtigt werden. Vorzugsweise stellt die Normaltrajektorie eine Route für das automatisierte Fahrzeug dar, welche von einem Verkehrsleitsystem (für automatisierte Fahrzeug) unter Berücksichtigung weiterer (automatisierter) Fahrzeuge bzw. sonstige Objekte mittels einer (digitalen) Karte bestimmt wird, wobei beim Bestimmen eine Kommunikationsverbindung zwischen dem automatisierten Fahrzeug und dem Verkehrsleitsystem - beispielsweise zum Anpassen der Route an sich ändernde Bedingungen (Fußgänger, Fahrzeugbewegungen, etc.) - vorausgesetzt wird.
Die Notfalltrajektorie stellt eine Route dar, welche beispielsweise dazu dient - ausgehend von einer Position zum Zeitpunkt des Eintretens des Notfalls - schnellstmöglich einen sicheren Halt des automatisierten Fahrzeugs (ohne Kollisionen mit Objekten, weiteren Fahrzeugen, etc.) herbeizuführen. Vorzugsweise umfasst die Notfalltrajektorie eine schnellstmögliche Route in einen sicheren Bereich (Randbereich eines Verkehrsweges, Parkplatz, etc.).
Die Routenangaben umfassen beispielsweise die Normaltrajektorie und/oder eine (aktuelle) Position des automatisierten Fahrzeugs, insbesondere entlang der Normaltrajektorie.
Unter einem einzuhaltenden zeitlichen und/oder örtlichen vorgegebenen Mindestabstand der Notfalltrajektorien zu einander ist zu verstehen, dass sich diese Notfalltrajektorien entweder nicht kreuzen oder - falls diese wenigstens teilweise parallel verlaufen - einen Sicherheitsabstand von beispielsweise einigen Metern zueinander aufweisen und/oder dass die Notfalltrajektorien, welche sich gegebenenfalls kreuzen oder ein Sicherheitsabstand nicht aufweisen können, derart bestimmt werden, dass die betroffenen automatisierten Fahrzeuge (welche diese Notfalltrajektorien empfangen) zeitlich versetzt den entsprechenden Gefährdungsbereich passieren.
Vorzugsweise werden die Schritte des Verfahrens so lange zyklisch wiederholt, insbesondere mit einer vorgegebenen Zyklusdauer, bis keine Routendatenwerte mehr empfangen werden.
Dies bedeutet beispielsweise, dass immer wieder die Routendaten von den automatisierten Fahrzeugen empfangen werden, um so - beispielsweise abhängig von der jeweils aktuellen Position (entlang der Normaltrajektorie) - eine (aktuelle) Notfalltrajektorie zu bestimmen und an die automatisierten Fahrzeuge zu übertragen. Vorzugsweise sieht das Verfahren zusätzlich ein Empfangen von Umgebungsdatenwerten vor, wobei die Umgebungsdatenwerte Umgebungen der automatisierten Fahrzeuge repräsentieren. Dabei erfolgt das Bestimmen der Notfalltrajektorien zusätzlich abhängig von den Umgebungen der automatisierten Fahrzeuge.
Unter einem Empfangen von Umgebungsdatenwerten ist beispielsweise zu verstehen, dass die automatisierten Fahrzeuge selbst (wenigstens teilweise) diese Umgebungen mittels einer Umfeldsensorik erfassen und zum Empfangen übertragen. In einerweiteren Ausführungsform werden die Umgebungsdatenwerte zusätzlich oder alternativ mittels einer Infrastruktureinheit (Beleuchtungseinrichtung, Verkehrszeichen, Brückenpfeiler, Tunnelwände, etc.), welche eine Umfeldsensorik umfassen, erfasst und zum Empfangen übertragen.
Unter einer Umfeldsensorik ist wenigstens ein Video- und/oder wenigstens ein Radar- und/oder wenigstens ein Lidar- und/oder wenigste einen Ultraschall- und/oder wenigstens ein weiterer Sensor - welcher dazu ausgebildet ist, eine Umgebung der automatisierten Fahrzeuge in Form von Umgebungsdatenwerten zu erfassen - zu verstehen. Die Umfeldsensorik ist insbesondere dazu ausgebildet, Umgebungsmerkmale in der Umgebung (Straßenverlauf, Verkehrszeichen, Fahrbahnmarkierung, Gebäude, Fahrbahnbegrenzungen, etc.) und/oder Verkehrsobjekte (Fahrzeuge, Radfahrer, Fußgänger, etc.) zu erfassen. In einer Ausführungsform umfasst die Umfeldsensorik beispielsweise eine Recheneinheit (Prozessor, Arbeitsspeicher, Festplatte) mit einer geeigneten Software und/oder ist mit solch einer Recheneinheit verbunden, wodurch diese Umgebungsmerkmale erfasst und/oder klassifiziert bzw. zugeordnet werden können.
Unter einem Bestimmen der Notfalltrajektorie ist beispielsweise zu verstehen, dass basierend auf Kartendaten und/oder Routendaten der automatisierten Fahrzeuge und/oder Umgebungsdatenwerten ein Umfeldmodell erstellt wird und anschließend die Notfalltrajektorien mittels des Umfeldmodells bestimmt werden.
Die erfindungsgemäße Vorrichtung (zum Bestimmen von Notfalltrajektorien), insbesondere ein Server, ist dazu eingerichtet, alle Schritte des Verfahrens gemäß einem der entsprechenden Verfahrensansprüche auszuführen. ln einer möglichen Ausführungsform umfasst die Vorrichtung (zum Bestimmen von Notfalltrajektorien) eine Recheneinheit (Prozessor, Arbeitsspeicher, Festplatte) sowie eine geeignete Software um das Verfahren gemäß einem der Verfahrensansprüche auszuführen. Dazu umfasst die Vorrichtung beispielsweise eine Sende- und/oder Empfangseinheit, welche dazu ausgebildet ist, Routendatenwerte und/oder Umgebungsdatenwerte und/oder Notfalltrajektorien (in Form von Datenwerten bzw. in Form von Signalen) bereitzustellen und/oder zu übertragen und/oder zu empfangen. In einer alternativen Ausführungsform ist die Vorrichtung mittels einer geeigneten Schnittstelle mit einer Sende- und/oder Empfangseinrichtung verbunden.
Unter einem Server ist beispielsweise ein einzelner Server oder ein Verbund von Server (Cloud) zu verstehen.
Weiterhin wird ein Computerprogramm beansprucht, umfassend Befehle, die bei der Ausführung des Computerprogramms durch einen Computer diesen veranlassen, ein Verfahren gemäß einem der Verfahrensansprüche zum Bestimmen von Notfalltrajektorien auszuführen. In einer Ausführungsform entspricht das Computerprogramm der von der Vorrichtung (zum Bestimmen von Notfalltrajektorien) umfassten Software.
Weiterhin wird ein maschinenlesbares Speichermedium, auf dem das Computerprogramm gespeichert ist, beansprucht.
Das erfindungsgemäße Verfahren zum Betreiben eines automatisierten Fahrzeugs umfasst einen Schritt des Übertragens von Routendatenwerten an einen externen Server, wobei die Routendatenwerte Routenangaben, abhängig von einer Normaltrajektorie des automatisierten Fahrzeugs, repräsentieren, und einen Schritt des Empfangens einer Notfalltrajektorie von dem externen Server, wobei die Notfalltrajektorie mittels einem Verfahren gemäß einem der Verfahrensansprüche zum Bestimmen von Notfalltrajektorien bestimmt wird. Das Verfahren umfasst weiterhin einen Schritt des Überprüfens einer Funktionalität einer Kommunikationsverbindung des automatisierten Fahrzeugs, wobei die Kommunikationsverbindung wenigstens zum Empfangen der Notfalltrajektorie ausgebildet ist, und einen Schritt des Betreibens des automatisierten Fahrzeugs mittels der Normaltrajektorie oder mittels der Notfalltrajektorie, abhängig von der Funktionalität der Kommunikationsverbindung. Unter einer Funktionalität der Kommunikationsverbindung des automatisierten Fahrzeugs ist beispielsweise die vorhandene oder nicht-vorhandene Funktionsfähigkeit zum Übertragen und/oder Empfangen von Datenwerten zu verstehen. Die Funktionalität repräsentiert dabei beispielsweise - in Form von Datenwerten - eine von zwei möglichen Rückmeldung der Kommunikationsverbindung: (1) Kommunikationsverbindung ist funktionsfähig; (2) Kommunikationsverbindung ist nicht funktionsfähig. Das Überprüfen wird beispielsweise durchgeführt, indem eine interne (softwarebasierte) Analyse ausgeführt wird und/oder indem ein Testsignal ausgesendet und mit einem (möglichen) Antwortsignal verglichen wird.
Vorzugsweise werden die Schritte des Verfahrens zyklisch wiederholt. Dabei erfolgt das Betreiben des automatisierten Fahrzeugs mittels der Normaltrajektorie oder mittels der zuletzt empfangenen Notfalltrajektorie.
Unter einem Betreiben des automatisierten Fahrzeugs mittels der Normaltrajektorie oder mittels der zuletzt empfangenen Notfalltrajektorie ist beispielsweise zu verstehen, dass mittels einer automatisierten Quer- und/oder Längssteuerung das automatisierte Fahrzeug entlang der entsprechenden Trajektorie bewegt wird. In einer weiteren Ausführungsform ist unter einem Betreiben zusätzlich ein Ausführen einer sicherheitssteigernden Assistenzfunktion (Straffen der Gurte, Vorkonditionierung eines Airbags, Anpassung der Sitzlage, etc.) zu verstehen. Unter einem Betreiben ist insbesondere zu verstehen, dass das Fahrzeug derart betrieben wird, dass die eine Gefahr für das automatisierte Fahrzeug bzw. für die Insassen des automatisierten Fahrzeugs - beispielsweise aufgrund einer Kollision - vermieden oder so weit wie möglich reduziert werden.
Die erfindungsgemäße Vorrichtung (zum Betreiben eines automatisierten Fahrzeugs), insbesondere ein Steuergerät, ist dazu eingerichtet, alle Schritte des Verfahrens gemäß einem der entsprechenden Verfahrensansprüche auszuführen.
In einer möglichen Ausführungsform umfasst die Vorrichtung (zum Betreiben eines automatisierten Fahrzeugs) eine Recheneinheit (Prozessor, Arbeitsspeicher, Festplatte) sowie eine geeignete Software um das Verfahren gemäß einem der Verfahrensansprüche auszuführen. Dazu umfasst die Vorrichtung beispielsweise eine Sende- und/oder Empfangseinheit, welche dazu ausgebildet ist, Routendatenwerte und/oder Umgebungsdatenwerte und/oder Notfalltrajektorien (in Form von Datenwerten bzw. in Form von Signalen) bereitzustellen und/oderzu übertragen und/oder zu empfangen. In einer alternativen Ausführungsform ist die Vorrichtung mittels einer geeigneten Schnittstelle mit einer Sende- und/oder Empfangseinrichtung verbunden. Abhängig von der Ausführungsform entspricht die Sende- und/oder Empfangseinrichtung oder die Schnittstelle der Kommunikationsverbindung, welche wenigstens zum Empfangen der Notfalltrajektorie ausgebildet ist. Zudem weist die Vorrichtung eine Schnittstelle zum Betreiben des automatisierten Fahrzeugs auf, mittels derer beispielsweise entsprechende Signale für eine Quer- und/oder Längssteuerung bereitgestellt werden können.
Die erfindungsgemäße Verfahren lösen unter anderem vorteilhafterweise die Aufgabe, ein Betreiben von automatisierten Fahrzeugen - beispielsweise ausgehend von einer Verkehrsleitzentrale (hier: Server) - derart zu ermöglichen, dass selbst bei einem Ausfall einer Kommunikationsverbindung zwischen den automatisierten Fahrzeugen und der Verkehrsleitzentrale ein sicheres Betreiben der automatisierten Fahrzeugen zu ermöglichen (beispielsweise bis die Kommunikationsverbindung wieder vorhanden ist und/oder bis alle beteiligten automatisierten Fahrzeuge sicher (kollisionsfrei, etc.) zum Halten gekommen sind). Diese Aufgabe wird mittels des erfindungsgemäßen Systems, welches eine Vorrichtung zum Bestimmen von Notfalltrajektorien und jeweils einer Vorrichtung zum Betreiben eines automatisierten Fahrzeugs umfasst, gelöst, indem für jedes der automatisierten Fahrzeuge, abhängig von den Routenangaben der automatisierten Fahrzeuge, Notfalltrajektorien bestimmt werden. Die automatisierten Fahrzeuge werden dann mittels der Notfalltrajektorie, abhängig von der Funktionalität der Kommunikationsverbindung, welche für den Austausch der relevanten Daten zuständig ist, betrieben. Dies erlaubt, dass diese Notfalltrajektorien so aufeinander abgestimmt werden, dass es zu keiner Überschneidung bzw. Kollision kommen wird, falls die Kommunikationsverbindung (insbesondere spontan) abbricht.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben und in der Beschreibung aufgeführt.
Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in den nachfolgenden Beschreibungen näher erläutert. Es zeigen: Figur 1 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Bestimmen von Notfalltrajektorien in Form eines Ablaufdiagramms;
Figur 2 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Betreiben eines automatisierten Fahrzeugs in Form eines Ablaufdiagramms; und
Figur 3 ein Ausführungsbeispiel des Zusammenwirkens beider Verfahren in Form eines Ablaufdiagramms.
Ausführungsformen der Erfindung
Figur 1 zeigt ein Ausführungsbeispiel eines Verfahrens 300 zum Bestimmen 320 von Notfalltrajektorien.
In Schritt 301 startet das Verfahren 300.
In Schritt 310 werden Routendatenwerte, welche Routenangaben von automatisierten Fahrzeugen repräsentieren, empfangen.
In einer Ausführungsform folgt Schritt 320. In einer alternativen Ausführungsform folgt Schritt 315.
In Schritt 315 werden Umgebungsdatenwerten empfangen, wobei die Umgebungsdatenwerte Umgebungen der automatisierten Fahrzeuge repräsentieren.
In weiteren alternativen Ausführungsformen folgt erst Schritt 315 und anschließend Schritt 310 oder es werden die Schritt 310 und 315 wenigstens teilweise zeitgleich ausgeführt.
In Schritt 320 werden Notfalltrajektorien für jedes der automatisierten Fahrzeuge, abhängig von den Routenangaben der automatisierten Fahrzeuge, derart bestimmt, dass die Notfalltrajektorien jeweils einen zeitlichen und/oder örtlichen vorgegebenen Mindestabstand zueinander einhalten. In einerweiteren Ausführungsform werden die Notfalltrajektorien zusätzlich abhängig von den Umgebungen der automatisierten Fahrzeuge bestimmt. ln Schritt 330 werden die Notfalltrajektorien an die automatisierten Fahrzeuge - zum Betreiben der automatisierten Fahrzeuge - übertragen. In einer Ausführungsform folgt Schritt 340. In einer alternativen Ausführungsform werden die Schritte 310, 320, 330 des Verfahrens 300 so lange zyklisch wiederholt, insbesondere mit einer vorgegebenen Zyklusdauer, bis keine Routendatenwerte mehr empfangen werden.
In Schritt 340 endet das Verfahren 300.
Figur 2 zeigt ein Ausführungsbeispiel eines Verfahrens 400 zum Betreiben 440 eines automatisierten Fahrzeugs.
In Schritt 401 startet das Verfahren 400.
In Schritt 410 werden Routendatenwerte an einen externen Server übertragen, wobei die Routendatenwerte Routenangaben, abhängig von einer Normaltrajektorie des automatisierten Fahrzeugs, repräsentieren.
In Schritt 420 wird eine Notfalltrajektorie von dem externen Server empfangen, wobei die Notfalltrajektorie mittels einer Ausführungsform des Verfahrens 300 bestimmt wird.
In Schritt 430 wird eine Funktionalität einer Kommunikationsverbindung des automatisierten Fahrzeugs überprüft, wobei die Kommunikationsverbindung wenigstens zum Empfangen der Notfalltrajektorie ausgebildet ist.
In Schritt 440 wird das automatisierte Fahrzeug mittels der Normaltrajektorie oder mittels der Notfalltrajektorie, abhängig von der Funktionalität der Kommunikationsverbindung, betrieben. In einer alternativen Ausführungsform werden die Schritte 410, 420, 430 des Verfahrens 400 zyklisch wiederholt, wobei das automatisierte Fahrzeug mittels der Normaltrajektorie oder mittels der zuletzt empfangenen Notfalltrajektorie betrieben wird.
In Schritt 450 endet das Verfahren 400.
Figur 3 zeigt ein Ausführungsbeispiel des Zusammenwirkens des Verfahrens 300 zum Bestimmen 320 von Notfalltrajektorien und des Verfahrens 400 zum Betreiben 440 eines (ausgezeichneten) automatisierten Fahrzeugs. ln Schritt 410 werden Routendatenwerte von dem (ausgezeichneten) automatisierten Fahrzeug an einen externen Server übertragen, wobei die Routendatenwerte Routenangaben, abhängig von einer Normaltrajektorie des (ausgezeichneten) automatisierten Fahrzeugs, repräsentieren.
In Schritt 310 werden die Routendatenwerte von dem (ausgezeichneten) automatisierten Fahrzeug sowie weitere Routendatenwerte, welche Routenangaben von (weiteren) automatisierten Fahrzeugen repräsentieren, empfangen.
In Schritt 320 werden Notfalltrajektorien (also auch eine ausgezeichnete Notfalltrajektorie für das ausgezeichnete automatisierte Fahrzeug, welches in Schritt 410 seine Routendatenwerte übertragen hat) für jedes der automatisierten Fahrzeuge, abhängig von den Routenangaben der automatisierten Fahrzeuge, derart bestimmt, dass die Notfalltrajektorien jeweils einen zeitlichen und/oder örtlichen vorgegebenen Mindestabstand zueinander einhalten.
In Schritt 330 werden die Notfalltrajektorien an die automatisierten Fahrzeuge (also auch die ausgezeichnete Notfalltrajektorie an das ausgezeichnete automatisierte Fahrzeug, welches in Schritt 410 seine Routendatenwerte übertragen hat) - zum Betreiben der automatisierten Fahrzeuge - übertragen.
In Schritt 420 wird die Notfalltrajektorie von dem externen Server empfangen.
In Schritt 430 wird eine Funktionalität einer Kommunikationsverbindung des (ausgezeichneten) automatisierten Fahrzeugs überprüft, wobei die Kommunikationsverbindung wenigstens zum Empfangen der Notfalltrajektorie ausgebildet ist.
In Schritt 440 wird das (ausgezeichnete) automatisierte Fahrzeug mittels der Normaltrajektorie oder mittels der (ausgezeichneten) Notfalltrajektorie, abhängig von der Funktionalität der Kommunikationsverbindung, betrieben.

Claims

Ansprüche
1. Verfahren (300) zum Bestimmen (320) von Notfalltrajektorien, umfassend:
- Empfangen (310) von Routendatenwerten, welche Routenangaben von automatisierten Fahrzeugen repräsentieren;
- Bestimmen (320) von Notfalltrajektorien für jedes der automatisierten Fahrzeuge, abhängig von den Routenangaben der automatisierten Fahrzeuge, wobei die Notfalltrajektorien jeweils einen zeitlichen und/oder örtlichen vorgegebenen Mindestabstand zueinander einhalten; und
- Übertragen (330) der Notfalltrajektorien an die automatisierten Fahrzeuge zum Betreiben der automatisierten Fahrzeuge.
2. Verfahren (300) nach Anspruch 1, dadurch gekennzeichnet, dass die Schritte des Verfahrens (300) so lange zyklisch wiederholt werden, insbesondere mit einer vorgegebenen Zyklusdauer, bis keine Routendatenwerte mehr empfangen werden.
3. Verfahren (300) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verfahren (300) zusätzlich ein Empfangen (315) von Umgebungsdatenwerten vorsieht, wobei die Umgebungsdatenwerte Umgebungen der automatisierten Fahrzeuge repräsentieren, und das Bestimmen (320) der Notfalltrajektorien zusätzlich abhängig von den Umgebungen der automatisierten Fahrzeuge erfolgt.
4. Vorrichtung, insbesondere ein Server, die eingerichtet ist, alle Schritte des Verfahrens (300) gemäß einem der Ansprüche 1 bis 3 auszuführen.
5. Computerprogramm, umfassend Befehle, die bei der Ausführung des Computerprogramms durch einen Computer diesen veranlassen, ein Verfahren (300) gemäß einem der Ansprüche 1 bis 3 auszuführen.
6. Maschinenlesbares Speichermedium, auf dem das Computerprogramm nach Anspruch 5 gespeichert ist.
7. Verfahren (400) zum Betreiben (440) eines automatisierten Fahrzeugs, umfassend:
- Übertragen (410) von Routendatenwerten an einen externen Server, wobei die Routendatenwerte Routenangaben, abhängig von einer Normaltrajektorie des automatisierten Fahrzeugs, repräsentieren; - Empfangen (420) einer Notfalltrajektorie von dem externen Server, wobei die
Notfalltrajektorie mittels einem Verfahren (300) nach einem der Ansprüche 1 bis 3 bestimmt wird;
- Überprüfen (430) einer Funktionalität einer Kommunikationsverbindung des automatisierten Fahrzeugs, wobei die Kommunikationsverbindung wenigstens zum Empfangen der Notfalltrajektorie ausgebildet ist; und
- Betreiben (440) des automatisierten Fahrzeugs mittels der Normaltrajektorie oder mittels der Notfalltrajektorie, abhängig von der Funktionalität der Kommunikationsverbindung.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Schritte des
Verfahrens (400) zyklisch wiederholt werden und das Betreiben (440) des automatisierten Fahrzeugs mittels der Normaltrajektorie oder mittels der zuletzt empfangenen Notfalltrajektorie erfolgt.
9. Vorrichtung, insbesondere ein Steuergerät, die eingerichtet ist, alle Schritte des
Verfahrens (400) gemäß einem der Ansprüche 7 bis 8 auszuführen.
EP20785931.5A 2019-11-04 2020-09-28 Verfahren und vorrichtung zum bestimmen von notfalltrajektorien und zum betreiben von automatisierten fahrzeugen Pending EP4055346A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019216956.2A DE102019216956A1 (de) 2019-11-04 2019-11-04 Verfahren und Vorrichtung zum Bestimmen von Notfalltrajektorien und zum Betreiben von automatisierten Fahrzeugen
PCT/EP2020/077061 WO2021089242A1 (de) 2019-11-04 2020-09-28 Verfahren und vorrichtung zum bestimmen von notfalltrajektorien und zum betreiben von automatisierten fahrzeugen

Publications (1)

Publication Number Publication Date
EP4055346A1 true EP4055346A1 (de) 2022-09-14

Family

ID=72744741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20785931.5A Pending EP4055346A1 (de) 2019-11-04 2020-09-28 Verfahren und vorrichtung zum bestimmen von notfalltrajektorien und zum betreiben von automatisierten fahrzeugen

Country Status (6)

Country Link
US (1) US20220404154A1 (de)
EP (1) EP4055346A1 (de)
JP (1) JP2022554337A (de)
CN (1) CN114930125A (de)
DE (1) DE102019216956A1 (de)
WO (1) WO2021089242A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022202742A1 (de) 2022-03-21 2023-09-21 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum infrastrukturgestützten Assistieren eines Kraftfahrzeugs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200002A1 (de) * 2001-01-12 2002-08-22 Zoltan Pal E-Traffic Network e-Verkehr Netzwerk Verfahren Computergestützte über Präzision Position Information Navigation Telekommunikation Verkehrsüberwachungs-Koordinations-Operationssystem
DE102011086241B4 (de) * 2011-11-14 2018-04-05 Robert Bosch Gmbh Verfahren zum sicheren Abstellen eines Fahrzeuges
DE102013213169A1 (de) * 2013-07-04 2015-01-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs in einem automatisierten Fahrbetrieb
GB2521415B (en) * 2013-12-19 2020-03-04 Here Global Bv An apparatus, method and computer program for controlling a vehicle
JP6437629B2 (ja) * 2015-03-03 2018-12-12 パイオニア株式会社 経路探索装置、制御方法、プログラム及び記憶媒体
JP6776513B2 (ja) * 2015-08-19 2020-10-28 ソニー株式会社 車両制御装置と車両制御方法と情報処理装置および交通情報提供システム
DE102016213300A1 (de) * 2016-07-20 2018-01-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtungen zum Führen eines autonom fahrenden Fahrzeugs in kritischen Situationen
DE102017210961A1 (de) * 2017-06-28 2019-01-03 Audi Ag Verfahren zum zumindest teilautomatisierten Betrieb eines Kraftfahrzeugs
JP2019121040A (ja) * 2017-12-28 2019-07-22 株式会社デンソーテン 駐車制御装置、車両制御装置および駐車制御方法
JP7246007B2 (ja) * 2018-03-27 2023-03-27 パナソニックIpマネジメント株式会社 デマンド調停システムおよびデマンド調停システムの制御方法

Also Published As

Publication number Publication date
WO2021089242A1 (de) 2021-05-14
CN114930125A (zh) 2022-08-19
DE102019216956A1 (de) 2021-05-06
JP2022554337A (ja) 2022-12-28
US20220404154A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
EP3271231B1 (de) Verfahren und vorrichtung zum überwachen einer von einem fahrzeug abzufahrenden soll-trajektorie auf kollisionsfreiheit
DE102016205972A1 (de) Verfahren zur autonomen oder teilautonomen Durchführung eines kooperativen Fahrmanövers
WO2018086784A1 (de) Fahrerassistenzsystem für ein kraftfahrzeug
DE102015202367A1 (de) Autonome steuerung in einer dichten fahrzeugumgebung
DE102018212733A1 (de) Erkennung einer nachlassenden Leistungsfähigkeit eines Sensors
DE102018215008A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugsystems eines Kraftfahrzeugs, Fahrerassistenzeinrichtung, und Kraftfahrzeug
EP3504697B1 (de) Verfahren zum vermessen eines fahrereignisses, servervorrichtung und system aus der servervorrichtung und mehreren kraftfahrzeugen
DE102009058035A1 (de) Verfahren und Vorrichtung zum Betrieb eines Fahrerassistenzsystems eines Fahrzeuges
DE102015015021A1 (de) Verfahren zur Unterstützung eines Fahrers beim Führen eines Fahrzeugs
DE102016223830A1 (de) Verfahren zum Betreiben eines automatisierten Fahrzeugs
DE102015218361A1 (de) Verfahren und Testeinheit zur Verifizierung einer Fahrzeugfunktion
DE102017129501A1 (de) Autonome Kraftfahrzeug-Objekterkennung
DE102019216989A1 (de) Zwischenfahrzeug-sensorvalidierung unter ver wendung eines sensorfusionsnetzwerks
DE102017214531A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs in einem automatisierten Fahrbetrieb sowie Kraftfahrzeug
DE102016207276A1 (de) Verfahren zur Freigabe einer Fahrfunktion in einem Fahrzeug
DE102017205495A1 (de) Vorrichtung und Verfahren zum Fokussieren von Sensoren im fahrdynamischen Grenzbereich für ein Kraftfahrzeug
EP3529789A1 (de) Verfahren und vorrichtung zum generieren eines notrufs für ein fahrzeug
DE102018121312A1 (de) Verfahren zum teilautomatisierten Betreiben eines Fahrzeugs und Fahrerassistenzsystem
DE102016207463A1 (de) Verfahren und Vorrichtung zum Betreiben wenigstens eines Fahrzeugs in Bezug auf wenigstens ein passierbares Objekt in der Umgebung des wenigstens einen Fahrzeugs
DE102008063033A1 (de) Vorrichtung und Verfahren zur Erkennung von Kollisionen mit erhöhter funktionaler Sicherheit
WO2021089242A1 (de) Verfahren und vorrichtung zum bestimmen von notfalltrajektorien und zum betreiben von automatisierten fahrzeugen
DE102020215657A1 (de) Verfahren und System zum Testen eines Steuergeräts eines Fahrzeugs
WO2021130066A1 (de) Training von neuronalen netzen durch ein neuronales netz
DE102020200133A1 (de) Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs
WO2019211293A1 (de) Verfahren zum betreiben eines fahrerassistenzsystems eines egofahrzeugs mit wenigstens einem umfeldsensor zum erfassen eines umfelds des egofahrzeugs, computer-lesbares medium, system, und fahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231115