EP4051497A1 - Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit - Google Patents

Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit

Info

Publication number
EP4051497A1
EP4051497A1 EP20793725.1A EP20793725A EP4051497A1 EP 4051497 A1 EP4051497 A1 EP 4051497A1 EP 20793725 A EP20793725 A EP 20793725A EP 4051497 A1 EP4051497 A1 EP 4051497A1
Authority
EP
European Patent Office
Prior art keywords
layer
weight
polyester component
thermoplastic polymer
particularly preferably
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20793725.1A
Other languages
English (en)
French (fr)
Inventor
Christopher Schirwitz
Matthias KNAUPP
Marius Nolte
Ralf Hufen
Dirk Hinzmann
Sven SIEGEMUND
Uwe Klippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Intellectual Property GmbH and Co KG
Original Assignee
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Intellectual Property GmbH and Co KG
Publication of EP4051497A1 publication Critical patent/EP4051497A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • B32B2255/102Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer synthetic resin or rubber layer being a foamed layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the present invention relates to a layer composite of a polycarbonate-based matrix, optionally containing fibers, and a top layer of special polycarbonate-polyester blends, and a layer composite as described above, the top layer of which is provided with a coating on the side facing away from the matrix Production of these composites, as well as their use for the production of, for example, automobile add-on parts.
  • Polycarbonates polycarbonate blends, for example based on PC and ASA or ABS, and polycarbonate composites, i.e. fiber-reinforced polycarbonates, have long been established in the automotive industry. They are used, for example, in the manufacture of automotive add-on parts. Due to their low weight, the weight of the vehicle components produced in this way is significantly reduced in comparison to corresponding vehicle components which were produced using conventional materials, and this while maintaining the same strength and safety. This can significantly reduce fuel consumption.
  • the plastic parts are coated with primer layers, so-called primers, to protect against environmental influences, and layers of lacquer to achieve optical or effect properties.
  • primers to protect against environmental influences
  • layers of lacquer to achieve optical or effect properties.
  • bubbles, blisters, sink marks and cracks can form in the coating, as shown in the experimental section of this document. This is undesirable for aesthetic reasons and can also impair the protective effect of the coating.
  • the object of the present invention was to provide a polycarbonate-based system which can be provided with a coating, in particular a coating for automotive add-on parts, without the disadvantages of the prior art shown.
  • the problem was solved by a multi-layer structure made of a polycarbonate-based matrix and a top layer made of special polycarbonate-polyester blends.
  • the present invention relates to a layer composite comprising a substrate layer S and a cover layer D at least partially connected to the substrate layer S, wherein the material of the substrate layer S comprises a first thermoplastic polymer and the material of the cover layer D also comprises the first thermoplastic polymer, characterized in that the first thermoplastic polymer is an aromatic polycarbonate and in the material of the cover layer D the first thermoplastic polymer as a blend a polyester component P is present, i) the proportion of this polyester component P> 2% by weight, preferably> 5
  • the total weight of the material of the outer layer D is, and the polyester component P comprises or consists of at least one polycycloalkylene terephthalate, ii) the proportion of this polyester component P> 10% by weight, preferably> 15
  • the total weight of the material of the outer layer D is, and the polyester component P comprises or consists of at least one polyalkylene terephthalate, iii) the proportion of this polyester component P> 20% by weight, preferably> 30
  • the total weight of the material of the outer layer D is, and the polyester component P comprises or consists of at least one polyalkylene naphthalate, iv) the proportion of this polyester component P> 2% by weight, preferably> 5
  • the polyester component P comprises a mixture or consists of a mixture of at least 2 of the following components: at least one polycycloalkylene terephthalate, at least one polyalkylene terephthalate, at least one polyalkylene naphthalate.
  • a mixture which comprises or consists of at least one polycycloalkylene terephthalate and at least one polyalkylene terephthalate, or - At least one polycycloalkylene terephthalate and at least one polyalkylene naphthalate, or
  • At least one polyalkylene terephthalate and at least one polyalkylene naphthalate At least one polyalkylene terephthalate and at least one polyalkylene naphthalate.
  • a mixture which comprises or consists of at least one polycycloalkylene terephthalate and at least one polyalkylene terephthalate.
  • DE 202017004083 U1 discloses a multilayer structure made of a core based on a fiber-containing thermoplastic, which is preferably polypropylene or polyamide, and a cover layer made of a thermoplastic film, which is also preferably made of polypropylene or polyamide (claim 1, [0014], [0041]). Polycarbonate-based systems are not mentioned. The document also does not deal with the paintability of thermoplastics.
  • component P comprises or consists of certain polyester components (see i) to iv)).
  • the corresponding polyester component can contain, for example, impurities or other plastics, such as further polyesters, the latter not being those mentioned in the other polyester components.
  • embodiment i) describes a polyester component P which comprises one or more polycycloalkylene terephthalate (s).
  • polyalkylene terephthalates for example, cannot additionally be contained in the polyester component. If polyalkylene terephthalates are also contained, this is to be treated as embodiment iv).
  • polycarbonates are both homopolycarbonates and copolycarbonates and / or polyester carbonates; the polycarbonates can be linear or branched in a known manner. Mixtures of polycarbonates can also be used according to the invention.
  • the weight-average molecular weight M w of the aromatic polycarbonates and polyester carbonates is in the range from 15,000 to 35,000, preferably in the range from 20,000 to 33,000, more preferably 23,000 to 31,000, determined by GPC (gel permeation chromatography in methylene chloride with polycarbonate as standard).
  • aromatic polyester carbonates Some, up to 80 mol%, preferably from 20 mol% to 50 mol%, of the carbonate groups in the polycarbonates used according to the invention can be replaced by aromatic dicarboxylic acid ester groups.
  • aromatic polyester carbonates Such polycarbonates, which contain both acid residues of carbonic acid and acid residues of aromatic dicarboxylic acids built into the molecular chain, are referred to as aromatic polyester carbonates. In the context of the present invention, they are subsumed under the generic term of thermoplastic, aromatic polycarbonates.
  • the polycarbonates are produced in a known manner from diphenols, carbonic acid derivatives, optionally chain terminators and optionally branching agents, some of the carbonic acid derivatives being replaced by aromatic dicarboxylic acids or derivatives of dicarboxylic acids, depending on the amount to be replaced in the aromatic polycarbonates, to produce the polyester carbonates
  • Dihydroxyaryl compounds suitable for the production of polycarbonates are those of the formula (1)
  • HO-Z-OH (1) in which Z is an aromatic radical with 6 to 30 carbon atoms, which can contain one or more aromatic nuclei, can be substituted and can contain aliphatic or cycloaliphatic radicals or alkylaryls or heteroatoms as bridge members .
  • Z in formula (1) is preferably a radical of the formula (2) in the
  • R 6 and R 7 independently of one another for H, Ci- to Cis-alkyl, Ci- to Cis-alkoxy, halogen such as Cl or Br or for each optionally substituted aryl or aralkyl, preferably for H or Ci- to Ci2-alkyl, particularly preferred for H or C1 to Cs-alkyl and very particularly preferably for H or methyl, and
  • X represents a single bond, -SO2-, -CO-, -O-, -S-, Ci- to C ö alkylene, C2- to C5-alkylidene or C 5 to CVCycloalkylidcn which, with Ci- to Ce- alkyl preferably methyl or ethyl, can also be substituted for Ce- to C12-
  • Arylene which can optionally be fused with further aromatic rings containing heteroatoms.
  • X is preferably a single bond, C j to C 5 alkylene, C 2 to C 5 alkylidene, C 5 to C 8 cycloalkylidene, -O-, -SO-, -CO-, -S-, -S0 2 - or for a radical of the formula (3a)
  • dihydroxyaryl compounds diphenols
  • dihydroxybenzenes dihydroxydiphenyls
  • Diphenols suitable for producing the polycarbonates to be used according to the invention are, for example, hydroquinone, resorcinol, dihydroxydiphenyl, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers, bis - (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, a, a'-bis (hydroxyphenyl) diisopropylbenzenes and their alkylated, ring alkylated and ring halogenated compounds.
  • Preferred diphenols are 4,4'-dihydroxydiphenyl, 2,2-bis- (4-hydroxyphenyl) -l-phenylpropane, 1,1-bis- (4-hydroxyphenyl) -phenylethane, 2,2-bis- (4-hydroxyphenyl) ) propane, 2,4-bis- (4-hydroxyphenyl) -2-methylbutane, 1,3-bis- [2- (4-hydroxyphenyl) -2-propyl] benzene
  • diphenols are 4,4'-dihydroxydiphenyl, 1,1-bis- (4-hydroxyphenyl) -phenyl-ethane, 2,2-bis- (4-hydroxyphenyl) -propane, 2,2-bis (3,5 -dimethyl-4-hydroxyphenyl) -propane, 1,1-bis- (4-hydroxyphenyl) -cyclohexane and I, I -bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (Bisphenol TMC).
  • the monofunctional chain terminators required to regulate the molecular weight such as phenols or alkylphenols, in particular phenol, p-tert. Butylphenol, iso-octylphenol, cumylphenol, their chlorocarbonic acid esters or acid chlorides of monocarboxylic acids or mixtures of these chain terminators are either added to the reaction with the bisphenolate or bisphenolates or added at any point in the synthesis as long as phosgene or chlorocarbonic acid end groups are still in the reaction mixture are present, or in the case of the acid chlorides and chlorocarbonic acid esters as chain terminators, as long as sufficient phenolic end groups of the polymer being formed are available.
  • the chain terminator or terminators are added after the phosgenation at one point or at a time when no more phosgene is present but the catalyst has not yet been metered in, or they are metered in before the catalyst, together with the catalyst or in parallel.
  • Any branching agents or branching mixtures to be used are added to the synthesis in the same way, but usually before the chain terminators.
  • trisphenols, quarter phenols or acid chlorides of tri- or tetracarboxylic acids or mixtures of the polyphenols or the acid chlorides are used.
  • Some of the compounds with three or more than three phenolic hydroxyl groups that can be used as branching agents are, for example, phloroglucinol, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2, 4,6-tri- (4-hydroxyphenyl) -heptane, 1,3,5-tris- (4-hydroxyphenyl) -benzene, l, l, l-tri- (4-hydroxyphenyl) -ethane, tris- (4 -hydroxyphenyl) - phenylmethane, 2,2-bis- [4,4-bis- (4-hydroxyphenyl) -cyclohexyl] -propane, 2,4-bis- (4-hydroxyphenyl-isopropyl) -phenol, tetra- (4 hydroxyphenyl) methane.
  • trifunctional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride, and 3,3-bis- (3-methyl-4-hydroxyphenyl) -2-oxo-2,3-dihydroindole.
  • Preferred branching agents are 3,3-bis- (3-methyl-4-hydroxyphenyl) -2-oxo-2,3-dihydroindole and 1,1,1-tri (4-hydroxyphenyl) ethane.
  • the amount of branching agents to be used is 0.05 mol% to 2 mol%, again based on the moles of diphenols used in each case.
  • the branching agents can either be initially introduced with the diphenols and the chain terminators in the aqueous alkaline phase or dissolved in an organic solvent and added before the phosgenation.
  • Aromatic dicarboxylic acids suitable for preparing the polyester carbonates are, for example, orthophthalic acid, terephthalic acid, isophthalic acid, tert-butyl isophthalic acid, 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-benzophenonedicarboxylic acid, 3,4'-benzophenonedicarboxylic acid, 4,4 '-Diphenyletherdicarboxylic acid, 4,4'-
  • Diphenylsulfonedicarboxylic acid 2,2-bis- (4-carboxyphenyl) -propane, trimethyl-3-phenylindan-4,5'-dicarboxylic acid.
  • terephthalic acid and / or isophthalic acid are particularly preferably used.
  • Derivatives of the dicarboxylic acids are the dicarboxylic acid dihalides and the dicarboxylic acid dialkyl esters, in particular the dicarboxylic acid dichlorides and the dicarboxylic acid dimethyl esters.
  • the replacement of the carbonate groups by the aromatic dicarboxylic acid ester groups takes place essentially stoichiometrically and also quantitatively, so that the molar ratio of the reactants is also found in the finished polyester carbonate.
  • the incorporation of the aromatic dicarboxylic acid ester groups can take place either randomly or in blocks.
  • Preferred methods of production of the polycarbonates to be used according to the invention, including the polyester carbonates, are the known interfacial process and the known melt transesterification process (cf., for example, WO 2004/063249 A1, WO 2001/05866 A1, WO 2000/105867, US Pat 5,097,002 A, US-A 5,717,057 A).
  • the acid derivatives used are preferably phosgene and optionally dicarboxylic acid dichlorides, in the latter case preferably diphenyl carbonate and optionally dicarboxylic acid diesters.
  • Catalysts, solvents, work-up, reaction conditions, etc. for the production of polycarbonate or polyester carbonate are adequately described and known in both fields.
  • the material of the substrate layer S can also contain plastics other than polycarbonate as blend partners.
  • the blend partners are used in amounts of preferably a maximum of 70% by weight, particularly preferably a maximum of 50% by weight, very particularly preferably a maximum of 35% by weight based on the total weight
  • additives up to 10.0% by weight, preferably 0.10 to 8.0% by weight, particularly preferably 0.2 to 3.0% by weight, based on the total weight of the material of the substrate layer, are other customary ones Contains additives.
  • This group includes flame retardants, anti-dripping agents, thermal stabilizers, mold release agents, antioxidants, UV absorbers, IR absorbers, antistatic agents, optical brighteners, light scattering agents, colorants such as pigments, including inorganic pigments, carbon black and / or dyes, and inorganic fillers in the usual polycarbonate materials Amounts.
  • additives can be added individually or as a mixture.
  • the substrate layer can contain one or more reinforcement fiber layers made of a fiber material. This creates fiber-containing composite materials, hereinafter referred to as fiber composite materials.
  • the substrate layer S can also consist of several layers of fiber composite material and is then referred to as a multilayer composite material.
  • the chemical structure of the fibers of the fiber material can be of the most varied of types.
  • the fiber materials have a higher softening or melting point than the thermoplastic matrix material present in each case.
  • the fiber material used is preferably coated with suitable sizes.
  • the fiber layer is designed as a unidirectional fiber layer, as a woven or gauze layer, as a knitted fabric, knitted fabric or braid, as random fiber mats or fleeces or as a combination thereof.
  • the best properties of fiber composite materials were achieved with unidirectional fiber layers, fabrics and scrims.
  • Unidirectional in the context of the invention means that the fibers are aligned essentially unidirectionally, that is to say point lengthwise in one direction and thus have the same running direction.
  • essentially unidirectional it is meant here that a deviation of the grain direction of up to 5% is possible.
  • the deviation in the grain direction is preferably well below 3%, particularly preferably well below 1%.
  • the fiber material can be present as short fibers (length ⁇ 1mm), as long fibers (1 to 50 mm) or as continuous fibers (> 50 mm). It is preferably in the form of long fibers or continuous fibers in front. According to the invention, the fiber material is preferably ground fibers or chopped glass fibers. “Available” means that it can also be a mixture with other fiber materials. However, the respective fiber material is preferably the only fiber material.
  • continuous fiber is to be understood in the sense of the invention as a delimitation from the short or long fibers likewise known to the person skilled in the art.
  • Continuous fibers usually extend over the entire length of the layer of fiber composite material.
  • the term continuous fiber is derived from the fact that these fibers are wound up on a roll and are unwound and impregnated with plastic during the production of the individual fiber composite material layers, so that, with the exception of occasional breakage or roll changes, their length is usually essentially the same as the length of the manufactured fiber composite material layer matches.
  • fiber materials are inorganic materials such as silicate and non-silicate glasses of various types, carbon, basalt, boron, silicon carbide, metals, metal alloys, metal oxides, metal nitrides, metal carbides and silicates, as well as organic materials such as natural and synthetic polymers, for example polyacrylonitriles, polyesters, ultra-vertically oriented ones Polyamides, polyimides, aramids, liquid crystalline polymers, polyphenylene sulfides, polyether ketones, polyether ether ketones, polyether imides.
  • High-melting materials for example glasses, carbon, aramids, basalt, liquid crystal polymers, polyphenylene sulfides, polyether ketones, polyether ether ketones and polyether imides are preferred.
  • Particularly preferred fiber materials are glass fibers or carbon fibers.
  • a layer of fiber material also referred to as a fiber layer, is understood to be a flat layer which is formed by fibers arranged essentially in a surface.
  • the fibers can be connected to one another by their position to one another, for example by a fabric-like arrangement of the fibers.
  • the fiber layer can also have a proportion of resin or another adhesive in order to connect the fibers to one another.
  • the fibers can also be unconnected. This is understood to mean that the fibers can be detached from one another without the application of any significant force.
  • the fiber layer can also have a combination of connected and unconnected fibers. At least one side of the fiber layer is embedded in the polycarbonate-based compositions used according to the invention as a matrix material.
  • the fiber layer is surrounded at least on one side, preferably on both sides, by the polycarbonate-based composition.
  • the outer edge of the fiber composite material is preferably formed by the matrix made of a polycarbonate-based composition.
  • the number of fiber layers in a layer of fiber composite material is basically not restricted. Two or more fiber layers can therefore also be arranged one above the other. Two fiber layers lying one above the other can each be embedded individually in the matrix material so that they are each surrounded on both sides by the matrix material. Furthermore, two or more fiber layers can also lie directly on top of one another, so that their entirety is surrounded by the matrix material. In this case, these two or more fiber layers can also be viewed as one thick fiber layer.
  • Multilayer composites and materials have at least two, preferably at least three superimposed layers of fiber composite material, whereby in the case of three composite material layers these are defined relative to one another as two outer layers of fiber composite material and at least one inner layer of fiber composite material.
  • the preferred fiber material in the layers of fiber composite material are continuous fibers, which are preferably aligned unidirectionally.
  • the inner layers of fiber composite material can be oriented essentially identically and their orientation relative to the outer layers of fiber composite material can be rotated by 30 ° to 90 °, the orientation of a layer of fiber composite material being determined by the orientation of the unidirectional fibers contained therein becomes.
  • the layers are arranged alternately.
  • the outer layers are in a 0 ° orientation. It has proven to be particularly practical if the inner layers of fiber composite material are oriented in the same way and their orientation is rotated by 90 ° relative to the outer layers of fiber composite material. “Alternating” means that the inner layers are arranged alternately at an angle of 90 ° or an angle of 30 ° to 90 °.
  • the outer layers are each in a 0 ° orientation. The angles can be varied from 30 ° to 90 ° for each position.
  • Another preferred embodiment is that at least some of the layers have the same orientation and at least one other part of the layers is rotated by 30 ° to 90 °.
  • the outer layers are in a 0 ° orientation.
  • Another preferred embodiment is that the inner layers have the same orientation and their orientation relative to the outer layers of laser composite material is rotated by 30 ° to 90 ° and the outer layers are in a 0 ° orientation for this purpose.
  • the layers of laser composite materials are stacked alternately in the warp direction (0 °) and weft direction (90 °) or at the angles indicated above in the Lalle of fabrics.
  • the laser or multilayer composite materials can have a metallic sound. They also have the advantage that they can be manufactured inexpensively and are extremely lightweight due to the plastic used therein. Another advantage of the laser or multilayer composite materials is that the design, for example of a housing part, can be particularly simple and flexible due to the thermoformability of the composite materials.
  • the multilayer composite material according to the invention can also contain one or more further layers in addition to the layers of laser composite material.
  • Additional layers made of plastic which can be identical to or different from the plastic matrix used in the layers of laser composite material, may be mentioned here by way of example.
  • These plastic layers can in particular also contain fillers that are different from the laser materials provided according to the invention.
  • Learner can also be included in the multilayer composite material according to the invention, adhesive, fabric, fleece or surface coating layers, for example lacquer layers.
  • These further layers can be contained between inner and outer layers of laser composite material, between several inner layers of laser composite material and / or on the outer layer of laser composite material, which is on the side facing away from cover layer D.
  • the outer layer and the at least one inner layer of laser composite material are preferably connected to one another in such a way that no further layers lie between them.
  • the individual layers of laser composite material can be constructed and / or oriented essentially identically or differently.
  • an essentially identical structure of the layers of laser composite material is understood to mean that at least one feature from the group of chemical composition, laser volume content and layer thickness is the same.
  • Chemical composition is understood to mean the chemical composition of the plastic matrix of the fiber composite material and / or the chemical composition of the fiber material such as continuous fibers.
  • the outer layers of fiber composite material have essentially the same structure with regard to their composition, their fiber volume content and their layer thickness.
  • the multilayer composite material preferably has a total thickness of 0.4 to 2.5 mm, preferably 0.7 to 1.8 mm, in particular 0.9 to 1.2 mm. Practical tests have shown that it is possible with the multilayer composite material according to the invention to achieve extremely good mechanical properties even with these small thicknesses.
  • the sum of all inner layers of fiber composite material has a total thickness of 200 ⁇ m to 1200 ⁇ m, preferably 400 ⁇ m to 1000 ⁇ m, particularly preferably 500 ⁇ m to 750 ⁇ m.
  • each of the two outer layers of fiber composite material is 100 to 250 ⁇ m, preferably 120 ⁇ m to 230 ⁇ m, particularly preferably 130 ⁇ m to 180 ⁇ m.
  • Fiber composite layers preferred according to the invention have a fiber volume content of> 30% by volume and ⁇ 60% by volume, preferably> 35% by volume and ⁇ 55% by volume, particularly preferably> 37% by volume and ⁇ 52% by volume. -% on.
  • a fiber volume content of over 60% by volume leads to a deterioration in the mechanical properties of the fiber composite material. Without wishing to be bound by scientific theories, this seems to be due to the fact that the fibers can no longer be adequately wetted during impregnation with such high fiber volume contents, which leads to an increase in air inclusions and an increased occurrence of surface defects in the fiber composite material, and more significantly Reduction of the mechanical load capacity leads.
  • the volume content of the fiber material in the total volume of the multilayer composite material is in the range from 30 to 60% by volume, preferably in the range from 40 to 55% by volume.
  • the outer layers of fiber composite material have a fiber volume content of at most 50% by volume, preferably at most 45% by volume, in particular at most 42% by volume. According to a particular embodiment of the invention, the outer layers of fiber composite material have a fiber volume content of at least 30% by volume, preferably at least 35% by volume, in particular at least 37% by volume.
  • the outer layers of fiber composite material have a lower volume content of fibers, based on the total volume of the layer of fiber composite material, than the at least one inner layer of fiber composite material.
  • the inner layers of fiber composite material can have a fiber volume content of 40 to 60% by volume, preferably 45 to 55% by volume, particularly preferably 48 to 52% by volume, based on the total volume of the fiber composite material layer.
  • Vol .-% is understood here to mean the volume fraction (% v / v) based on the total volume of the layer of fiber composite material.
  • the material of the cover layer D comprises the aromatic polycarbonate, which is also contained in the substrate layer S as a blend with a polyester component P which comprises poly (cyclo) alkylene terephthalates and polyalkylene naphthalates or mixtures of these polyesters according to the statements of claim 1.
  • polyesters are reaction products of terephthalic acid or
  • Naphthalene-2,6-dicarboxylic acid or its reactive derivatives such as, for example, the dimethyl esters of these two acids, and aliphatic or cycloaliphatic diols.
  • (ar) aliphatic diols with 3 to 12 carbon atoms such as, for example: Ethylene glycol, 1,4-butanediol, 1,3-propanediol, 2-ethylpropanediol-1,3, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-ethylpentanediol-2,4, 2-methylpentanediol-2, 4, 2,2,4-trimethylpentanediol-1,3, 2-ethylhexanediol-1,3, 2,2-diethylpropanediol-1,3, hexanediol-2,5, 1,4-di- (ß-hydroxyethoxy) - benzene, 2,2-bis- (4-ß-hydroxyethoxyphenyl
  • cycloaliphatic diols with 6 to 21 carbon atoms, such as, for example: cyclohexane-1,4-dimethanol,
  • Particularly preferred polyalkylene terephthalates or naphthalates contain at least 80% by weight, preferably at least 90% by weight, based on the dicarboxylic acid component, terephthalic acid residues or naphthalene-2,6-dicarboxylic acid residues and at least 80% by weight, preferably at least 90 mol- %, based on the diol component, ethylene glycol and / or 1,4-butanediol residues.
  • Particularly preferred polycycloalkylene terephthalates contain at least 80% by weight, preferably at least 90% by weight, based on the dicarboxylic acid component tere phthalic acid residues and at least 80% by weight, preferably at least 90 mol%, based on the diol component cyclohexane-dimethanol-1, 4- and / or 2,2,4,4-tetramethyl-1,3cyclobutanediol residues.
  • the preferred poly (cyclo) alkylene terephthalates or polyalkylene naphthalates can contain, in addition to terephthalic acid residues or naphthalene-2,6-dicarboxylic acid residues, up to 20 mol%, preferably up to 10 mol%, residues of other aromatic or cycloaliphatic dicarboxylic acids having 8 to 14 carbon atoms or aliphatic dicarboxylic acids with 4 to 12 carbon atoms, such as residues of phthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, cyclohexanediacetic acid.
  • the preferred polyalkylene terephthalates or naphthalates can contain, in addition to ethylene glycol or butanediol 1,4 radicals, up to 20 mol%, preferably up to 10 mol%, of other (ar) aliphatic diols with 3 to 12 carbon atoms, For example, residues of 1,3-propanediol, 2-ethylpropanediol-1,3, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-ethylpentanediol-2,4, 2-methylpentanediol-2,4,2 , 2,4-trimethylpentanediol-1,3,2-ethylhexanediol 1,3, 2,2-Diethylpropanediol-1,3, hexanediol-2,5, 1,4-di- (ß-hydroxyethoxy) -benzene,
  • the preferred polycycloalkylene terephthalates can contain up to 20 mol%, preferably up to 10 mol%, of other cyclo aliphatic diols Contain 6 to 21 carbon atoms, for example residues of 2,2-bis (4-hydroxycyclohexyl) propane.
  • polyesters can be branched by incorporating relatively small amounts of 3- or 4-valent alcohols or 3- or 4-basic carboxylic acids, e.g. according to DE-A 1 900270 and US Pat. No. 3,692,744.
  • preferred branching agents are trimesic acid, trimellitic acid, trimethylol ethane and propane and pentaerythritol.
  • Very particularly preferred polyalkylene terephthalates are based solely on terephthalic acid or its reactive derivatives (e.g. its dialkyl esters) and ethylene glycol or 1,4-butanediol.
  • Very particularly preferred polycycloalkylene terephthalates are based solely on terephthalic acid or its reactive derivatives (e.g. its dialkyl esters) and cyclohexanedimethanol-1,4 and / or 2,2,4,4-tetramethyl-1,3cyclobutanediol.
  • Very particularly preferred polyalkylene naphthalates are based solely on naphthalene-2,6-dicarboxylic acid or its reactive derivatives (e.g. their dialkyl esters) and ethylene glycol or 1,4-butanediol.
  • poly (cyclo) alkylene terephthalates and polyalkylene naphthalates can be produced by known methods (see e.g. Kunststoff-Handbuch, Volume VIII, pp. 695 ff., Carl-Hanser-Verlag, Kunststoff 1973).
  • the proportion of polyester component P is very particularly preferably> 30% by weight, even more preferably> 35% by weight, based on the total weight of the material of the outer layer D, provided that polyester component P according to variant i) comprises or consists of at least one polycycloalkylene terephthalate.
  • the proportion of the polyester component P is very particularly preferably> 30% by weight, even more preferably> 35% by weight, based on the total weight of the material Cover layer D, provided that polyester component P according to variant ii) comprises or consists of at least one polyalkylene terephthalate.
  • polyester component P is moreover preferably> 45% by weight, most preferably> 50% by weight, based on the total weight of the material of the outer layer D, provided that polyester component P according to variant ii) comprises or consists of polyethylene terephthalate.
  • the proportion of the polyester component P for all embodiments is preferably ⁇ 60, particularly preferably ⁇ 55% by weight, based on the total weight of the material of the cover layer D.
  • the material of the cover layer can contain further blend partners.
  • blend partners polyamides, polyesters different from the polyesters described above, polylactide, polyether, thermoplastic polyurethane, polyacetal, fluoropolymer, in particular polyvinylidene fluoride, polyether sulfones, polyolefin, in particular polyethylene and polypropylene, polyimide, polyacrylate, in particular poly (methyl) methacrylate, polyphenylene oxide,
  • the cover layer D has a thickness ⁇ 500 mih, preferably ⁇ 300 mih, particularly preferably ⁇ 200 mih, very particularly preferably ⁇ 100 mih.
  • the cover layer D has a thickness> 5 mhi, preferably> 10 mhi.
  • Lacquer is the name for a liquid or powdery coating material that is applied thinly to objects and by chemical or physical means Processes (for example evaporation of the solvent) is built up into a continuous, solid film.
  • lacquer layer L All lacquers known to the person skilled in the art for use on polycarbonate-containing substrates are suitable as lacquer layer L.
  • the lacquer layer L preferably comprising one or more of the following layers:
  • a primer layer is understood to mean coatings that optimize the adhesive strength of paints on plastic parts, for example even after weathering.
  • the plastic parts are usually coated with a primer, also called a primer, before the color and effect paint layer or layers are applied.
  • the primer should also help protect against falling rocks.
  • a primer can be made conductive by adding appropriate additives such as conductive carbon black, so that the subsequently applied layers can be applied by means of electrostatic spray application and thus with particularly high transfer efficiency.
  • Basecoat is a name for a color-imparting intermediate coating material customary in automotive painting.
  • a clear coat protects the base coat from the effects of the weather, as well as mechanical and chemical attacks.
  • the number of basecoat layers and clearcoat layers to be applied is in each case not limited to one layer. It is also possible to apply two, three, four or more layers of basecoat or alternating layers of basecoat and clearcoat. The individual layers can each be dried completely or only partially dried before the next layer is applied. The latter is also known as the “wet-on-wet” application. Even when overcoating with a clear lacquer, the number of layers is not limited to one.
  • primers, basecoats and topcoats known to the person skilled in the art, aqueous or based on organic solvents, can be used to produce the lacquer layer L.
  • primer layers G that can be used according to the invention can be found, for example, in EP-B 1226218 or the European patent application with the application number 18213389.2, which was still unpublished at the time the present invention was applied for.
  • basecoat films B which can be used according to the invention can be found, for example, in US-A-3,639,147, DE-A-33 33 072, DE-A-38 14 853, GB-A-2012 191, US-A-3,953,644, EP-A -260 447, DE-A-39 03 804, EP-A-320 552, DE-A-36 28 124, US-A-4,719,132, EP-A-297 576, EP-A-69 936, EP-A -89 497, EP-A-195 931, EP-A-228 003, EP-A-38 127, DE-A-28 18 100 and WO-A 2017/202692.
  • Another object of the present invention is a method for producing a layer composite, comprising the step:
  • step II Application of at least one lacquer layer to the side of the top layer D facing away from the substrate layer S in the layer composite obtained after step I).
  • the layer composites according to the invention are used for the production of, for example, automobile add-on parts.
  • composite plates of a composite material made of polycarbonate and carbon fiber (hereinafter referred to as composite) with the dimensions 350 ⁇ 350 mm 2 were used as the substrate layer.
  • the composites were produced by Covestro Thermplast Composite GmbH (CTC) from 8 layers of UD tape, whereby the UD tapes themselves are made from 40-45% by volume of unidirectional carbon fiber of the Mitsubishi TRH-50 60M type and 60-55% by volume.
  • Polycarbonate matrix type Makroion® 3107 in color 901510
  • the layer structure in the individual UD tape layers was chosen so that there was a quasi-isotropic reinforcement of the composite (0745 ° / -45 ° / 90 ° / 90 ° / -45 ° / 45 ° / 0 °).
  • Thermoplastic molding compositions containing components A to E with the formulations given in Table 1 were produced on a ZSK25 twin-screw extruder from Coperion, Werner and Pfleiderer (Germany) at melt temperatures of 250.degree. C. to 300.degree. Films with a thickness of about 100 ⁇ m were then extruded from the granules obtained.
  • the corresponding material was pre-dried (4 h, 85-90 ° C) on the extruder (speed approx. 50 / min, melt temperature 265 ° C (entries 1-16 in table 1) and 300 ° C (entry 17 in table 1)) melted and extruded onto a rolling mill through a 450 mm wide slot nozzle.
  • Component A linear bisphenol A polycarbonate with an average molecular weight Mw of approx. 31,000 g / mol and a softening temperature (VST / B 120 according to ISO 306: 2014-3) of 150 ° C, which does not contain any UV absorber.
  • VST / B 120 a softening temperature
  • the melt Volume flow rate (MVR) according to ISO 1133: 2012-03 was 6.0 cm 3 / (10 min) at 300 ° C and 1.2 kg load.
  • Component B1 Polybutylene terephthalate (PBT) with a melt-mass flow rate (MFR) of 9.0g / 10min to 14.5g / 10min measured according to DIN EN ISO 1133 at a temperature of 250 ° C and with a load of 2.16 kg.
  • PBT Polybutylene terephthalate
  • MFR melt-mass flow rate
  • Component B2 polyethylene terephthalate (PET) with an intrinsic viscosity of 0.623 dl / g.
  • the specific viscosity is measured in dichloroacetic acid in a concentration of 1% by weight at 25 ° C.
  • Component B3 Polyester based on terephthalic acid, cyclohexanedimethanol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol with an inherent viscosity of 0.69-0.75 dl / g measured in a 60/40 mixture (% by weight /% By weight) of phenol / tetrachloroethane at 25 ° C in a concentration of 0.5 g / 100 ml.
  • Component B4 polyethylene naphthalate (PEN).
  • Component C impact modifier with core-shell morphology, a styrene-butadiene-rubber core and a grafted-on shell made of methyl methacrylate-styrene copolymer, a butadiene content of 68% - 72% and a rubber
  • Component Dl Talc with an average particle diameter dso of 1.2 ⁇ m, measured by means of Sedigraph and with an APO content of 0.5% by weight.
  • Component D2 Irganox 1076, thermal stabilizer, BASF SE
  • Component D3 Phosphorous acid H 3 PO 3 as a solid.
  • Component E Pentaerythrityl tetrastearate as a lubricant / mold release agent.
  • the composites (substrate) were then laminated on both sides of a static laboratory press (type Joos LAP 100) with the films to be examined (cover layer D).
  • a polished insert (“high-gloss stamp”) and an external release agent (Frekote®, Henckel) were used.
  • Aerosil® R 972 Evonik Resource Efficiency GmbH, DE, fumed silica matting agent
  • Bayhydrol® U 2757, Covestro AG, DE aliphatic, anionic, hydroxy-functional polyurethane dispersion based on a mixture of aromatic polyester diol and a polycarbonate diol, co-solvent-free.
  • Bayhydrol® UH 2606, Covestro AG, DE aliphatic, polycarbonate-containing anionic polyurethane dispersion, co-solvent-free. Binder for the production of water-thinnable coatings for plastic substrates and wood-based materials, approx. 35% in water, neutralized with N-ethyldiisopropylamine (bound as salt) in the ratio: approx. 35: 64: 1, information according to data sheet edition 2016-09-13.
  • Bayhydrol® UA 2856 XP, Covestro AG, DE Aliphatic, acrylate-modified polyurethane dispersion Binder for aqueous, air- and oven-drying basecoats for 2-layer vehicle painting, plastic painting, automotive refinishing, industrial painting and for low-temperature-drying stone chip functional layers.
  • Viscosity ⁇ 100 mPa s at 23 ° C (ISO 3219 / A.3), information according to data sheet edition 2016-03-03
  • Bayhydur® XP 2655 Covestro AG, DE, hydrophilic polyisocyanate based on trimers of hexamethylene diisocyanate, NCO content 20.8% (ISO 11909), viscosity 3500 mPa s at 23 ° C (ISO 3219 / A.3), information in accordance with Data sheet edition 2017-06-01.
  • Desmodur® ultra N 3390, Covestro AG, DE aliphatic polyisocyanate (trimer of hexamethylene diisocyanate).
  • aliphatic polyisocyanate trimer of hexamethylene diisocyanate.
  • NCO content 19.6% (ISO 11909), viscosity 500 mPa s at 23 ° C (ISO 3219 / A.3), information according to data sheet edition 2018-11-14.
  • Desmodur® ultra N 3600, Covestro AG, DE polyisocyanate based on trimers of hexamethylene diisocyanate, NCO content 23.0% (ISO 11909), viscosity 1200 mPa s at 23 ° C (ISO 3219 / A.3), information in accordance with Data sheet edition 2017-06-01.
  • Desmophen® 670 BA, Covestro AG, DE slightly branched polyester containing hydroxyl groups for the production of weatherproof, elastic coatings.
  • Viscosity 3000 mPa s at 23 ° C (ISO 3219 / A.3), information according to data sheet edition 2018-03-01
  • DAA Diacetone Alcohol
  • Acros Organics Solvent
  • component 1 To produce component 1, the binder was initially introduced and then the other ingredients were weighed in in the order shown, glass beads (2.85 - 3.45 mm) were added 1: 1 (by volume) and then shaken with a Skandex BA laboratory shaker for 30 minutes. S20 from Lau rubbed. The glass beads were then sieved off. While stirring with a dissolver (dissolver disk 5 cm, at 800 rpm), the thickener was then slowly metered in and stirred in for a further 5 minutes. Component 1 was then adjusted with demineralized water to a flow time in the 4 mm DIN cup of 25 to 30 s.
  • a dissolver dissolver disk 5 cm, at 800 rpm
  • component 2 was incorporated while stirring with a paddle stirrer (5 min, 700 rpm) and the ready-to-use primer was applied within 30 minutes.
  • Water-based metallic basecoat (one-component hydro-basecoat HEBE 4134/1 according to the starting formulation published by Covestro GmbH AG (Edition 2016-08-23): First, the metallic paste (Table 2, Part 3) was prepared in a separate container all ingredients in table 2, part 3, mixed in the specified order while stirring with a propeller stirrer. The pH value was then tested (target: pH 8.0-8.5) and, if necessary, adjusted with DMEA. After stirring again for 30 minutes at approx. 10.5 m / s (maximum heating to 50 ° C) the paste was ready for use. For the metallic basecoat, part 1 and part 2 from Table 2 were mixed with a propeller stirrer at approx. 5.2 m / s.
  • Part 3 was then added and stirred in for 30 minutes at about 10.5 m / s. Finally, part 4 was added and stirred in again for 5 minutes at 5.2 m / s. Before application, the pH of the paint was adjusted to 8.0-8.5 with DMEA. The outflow time was set to 40 seconds in accordance with DIN cup 4 mm with demineralized water and the paint was filtered off through a 56 ⁇ m sieve.
  • binders were initially introduced. While stirring with a dissolver (dissolver disk 5 cm, at 800 rpm), all the other components in Table 3, Part 1, are metered in in the order given and stirred in for a further 5-10 minutes.
  • dissolver dissolver disk 5 cm, at 800 rpm
  • component 2 was incorporated while stirring with a paddle stirrer (5 min, 700 rpm) and the ready-to-use clearcoat was applied within 30 minutes.
  • the procedure for the production of the paint formulations and subsequent painting of the substrate-top layer laminates is described, inter alia, in the European patent application with the application number 18213389.2, which was still unpublished at the time of the application of the present invention.
  • the aqueous, two-component plastic primer was prepared as described above and applied over the entire surface with a Satajet RP gravity gun, 1.3 mm, air pressure 2.1 bar in 1 cross-pass to create a layer thickness (dry) of 20-25 ⁇ m. After application, the primer was dried for 10 min at room temperature, 30 min at 80 ° C. in a convection oven and stored for 16 h at room temperature.
  • the one-component hydro-base paint was then prepared as described above and also applied over the entire surface with a Satajet HVLP gravity gun, 1.2 mm, air pressure 2.1 bar in 1 cross-pass to produce a layer thickness (dry) of 9-12 ⁇ m.
  • the basecoat was dried for 10 min at room temperature, 30 min at 80 ° C. in a convection oven and stored for 3 h at room temperature.
  • the solvent-based clearcoat was prepared as described above and immediately after mixing the base paint and hardener with a Satajet HVLP gravity gun, 1.2 mm, air pressure 2.1 bar, applied in 1 cross-pass to achieve a layer thickness (dry) of 25-32 ⁇ m produce.
  • the clearcoat was dried for 10 minutes at room temperature and 45 minutes at 80 ° C. in a circulating air oven.
  • the grade “1” was awarded if the coated substrate layer-top layer laminate was free of bubbles, collapses, blisters or cracks and if fibers from the substrate underneath the film were at most minimally visible on the surface.
  • the grade “2” was awarded if the coated substrate layer-top layer laminate was free of bubbles, sink marks, blisters or cracks, but if fibers from the substrate underneath the film were visible on the surface.
  • the grade “3” was awarded if the if the coated substrate layer-top layer laminates had bubbles, sink marks, blisters and / or cracks.
  • grades 1 and 2 could only be achieved with a certain concentration of the polyester components B1 to B4 in the top layer, whereas always without admixing a polyester component (when using the pure component A) Bubbles, sink marks, blisters and / or cracks occurred after painting (Example 17, grade 3).

Abstract

Die vorliegende Erfindung betrifft einen Schichtenverbund aus einer, gegebenenfalls Fasern enthaltenden, Polycarbonat-basierten Matrix und einer Deckschicht aus speziellen Polycarbonat-Polyester-Blends, sowie einen Schichtenverbund wie zuvor beschrieben, dessen Deckschicht auf der Matrix abgewandten Seite mit einer Lackierung versehen ist, Verfahren zur Herstellung dieser Verbunde, sowie ihre Verwendung zur Herstellung beispielsweise von Automobilanbauteilen.

Description

Schichtenverbund aus Polycarbonat und Polycarbonatblend zur verbesserten Lackierbarkeit
Die vorliegende Erfindung betrifft einen Schichtenverbund aus einer, gegebenenfalls Fasern enthaltenden, Polycarbonat-basierten Matrix und einer Deckschicht aus speziellen Polycarbonat-Polyester-Blends, sowie einen Schichtenverbund wie zuvor beschrieben, dessen Deckschicht auf der Matrix abgewandten Seite mit einer Lackierung versehen ist, Verfahren zur Herstellung dieser Verbünde, sowie ihre Verwendung zur Herstellung beispielsweise von Automobilanbauteilen.
Polycarbonate, Polycarbonatblends, beispielsweise auf Basis von PC und ASA oder ABS, und Polycarbonatcomposite, d.h. faserverstärkte Polycarbonate, sind in der Automobilindustrie seit langem etabliert. Sie werden zur Herstellung beispielsweise von Automobilanbauteilen verwendet. Durch ihr geringes Gewicht wird das Gewicht der damit erzeugten Fahrzeugkomponenten im Vergleich zu entsprechenden Fahrzeugkomponenten, die unter Verwendung herkömmlicher Materialien hergestellten wurden, deutlich verringert, und dies bei gleichbleibender Festigkeit und Sicherheit. So kann der Kraftstoffverbrauch erheblich reduziert werden.
Die Kunststoffteile werden mit Grundierungsschichten, sogenannten Primern, zum Schutz gegen Umwelteinflüsse, und Lackschichten zur Erzielung optischer oder effektgebender Eigenschaften beschichtet. Beim Einbrennen dieser Beschichtungen kann es zur Bildung von Blasen, Blistern, sowie Einfallstellen und Rissen in der Beschichtung kommen, wie im experimentellen Teil des vorliegenden Dokuments gezeigt wird. Dies ist aus ästhetischen Gründen unerwünscht und kann darüber hinaus zur Beeinträchtigung der Schutzwirkung der Beschichtung führen.
Die Aufgabe der vorliegenden Erfindung bestand in der Bereitstellung eines Polycarbonat- basierten Systems, welches ohne die aufgezeigten Nachteile des Standes der Technik mit einer Lackierung, im Besonderen einer Automobilanbauteil-Lackierung, versehen werden kann.
Gelöst wurde die Aufgabe durch einen Mehrschichtaufbau aus einer Polycarbonat basierten Matrix und einer Deckschicht aus speziellen Polycarbonat-Polyester-Blends.
Gegenstand der vorliegenden Erfindung ist ein Schichtenverbund, umfassend eine Substratschicht S und eine mit der Substratschicht S wenigstens teilweise verbundene Deckschicht D, wobei das Material der Substratschicht S ein erstes thermoplastisches Polymer umfasst und das Material der Deckschicht D ebenfalls das erste thermoplastische Polymer umfasst, dadurch gekennzeichnet, dass das erste thermoplastische Polymer ein aromatisches Polycarbonat ist und in dem Material der Deckschicht D das erste thermoplastische Polymer als Blend mit einer Polyesterkomponente P vorliegt, wobei i) der Anteil dieser Polyesterkomponente P > 2 Gewichts-%, bevorzugt > 5
Gewichts-%, besonders bevorzugt > 8 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polycycloalkylenterephthalat umfasst oder daraus besteht, ii) der Anteil dieser Polyesterkomponente P > 10 Gewichts-%, bevorzugt > 15
Gewichts-%, besonders bevorzugt > 17 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polyalkylenterephthalat umfasst oder daraus besteht, iii) der Anteil dieser Polyesterkomponente P > 20 Gewichts-%, bevorzugt > 30
Gewichts-%, besonders bevorzugt > 35 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polyalkylennaphthalat umfasst oder daraus besteht, iv) der Anteil dieser Polyesterkomponente P > 2 Gewichts-%, bevorzugt > 5
Gewichts-%, besonders bevorzugt > 8 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P eine Mischung umfasst oder aus einer Mischung besteht aus mindestens 2 der folgenden Komponenten: mindestens ein Polycycloalkylenterephthalat, mindestens ein Polyalkylenterephthalat, mindestens ein Polyalkylennaphthalat.
Bevorzugt wird in Variante iv) eine Mischung eingesetzt, die umfasst oder besteht aus - mindestens einem Polycycloalkylenterephthalat und mindestens einem Polyalkylenterephthalat, oder - mindestens einem Polycycloalkylenterephthalat und mindestens einem Polyalkylennaphthalat, oder
- mindestens einem Polyalkylenterephthalat und mindestens einem Polyalkylennaphthalat.
Besonders bevorzugt wird in Variante iv) eine Mischung eingesetzt, die umfasst oder besteht aus mindestens einem Polycycloalkylenterephthalat und mindestens einem Polyalkylenterephthalat. DE 202017004083 Ul offenbart einen Mehrschichtenaufbau aus einen Kern auf Basis eines Fasern enthaltenden Thermoplasten, bei dem es sich bevorzugt um Polypropylen oder Polyamid handelt, und einer Decklage aus einer Thermoplastfolie, die ebenfalls bevorzugt aus Polypropylen oder Polyamid besteht (Anspruch 1, [0014], [0041]). Polycarbonat-basierte Systeme werden nicht erwähnt. Auch befasst sich das Dokument nicht mit der Lackierbarkeit von Thermoplasten.
Gemäß dem oben genannten erfindungsgemäßen Gegenstand umfasst oder besteht Komponente P aus bestimmten Polyesterkomponenten (siehe i) bis iv)). Bei der Ausführungsform „umfasst“ kann die entsprechende Polyesterkomponente beispielsweise Verunreinigungen oder auch weitere Kunststoffe, wie z.B. weitere Polyester enthalten, wobei es sich bei letzteren nicht um solche handelt, die in den übrigen Polyesterkomponenten genannt sind. So beschreibt beispielsweise Ausführungsform i) eine Polyesterkomponente P, die ein oder mehrere Polycycloalkylenterephthalat/e umfasst. In dieser Ausführungsform können nicht zusätzlich z.B. Polyalkylenterephthalate in der Polyesterkomponente enthalten sein. Sind zusätzlich Polyalkylenterephthalate enthalten, so ist dies als Ausführungform iv) zu behandeln.
Beschreibung der Substratschicht S
Polycarbonate im Sinne der vorliegenden Erfindung sind sowohl Homopolycarbonate als auch Copolycarbonate und/oder Polyestercarbonate; die Polycarbonate können in bekannter Weise linear oder verzweigt sein. Erfindungsgemäß können auch Mischungen von Polycarbonaten verwendet werden. Das gewichtsgemittelte Molekulargewicht Mw der aromatischen Polycarbonate und Polyestercarbonate liegt im Bereich von 15.000 bis 35.000, bevorzugt im Bereich von 20.000 bis 33.000, weiter bevorzugt 23.000 bis 31.000, bestimmt durch GPC (Gelpermeationschromatographie in Methylenchlorid mit Polycarbonat als Standard).
Ein Teil, bis zu 80 Mol-%, vorzugsweise von 20 Mol-% bis zu 50 Mol-%, der Carbonat- Gruppen in den erfindungsgemäß eingesetzten Polycarbonaten können durch aromatische Dicarbonsäureester-Gruppen ersetzt sein. Derartige Polycarbonate, die sowohl Säurereste der Kohlensäure als auch Säurereste von aromatischen Dicarbonsäuren in die Molekülkette eingebaut enthalten, werden als aromatische Polyestercarbonate bezeichnet. Sie werden im Rahmen der vorliegenden Erfindung unter dem Oberbegriff der thermoplastischen, aromatischen Polycarbonate subsumiert.
Die Herstellung der Polycarbonate erfolgt in bekannter Weise aus Diphenolen, Kohlensäurederivaten, gegebenenfalls Kettenabbrechern und gegebenenfalls Verzweigern, wobei zur Herstellung der Polyestercarbonate ein Teil der Kohlensäurederivate durch aromatische Dicarbonsäuren oder Derivate der Dicarbonsäuren ersetzt wird, und zwar je nach Maßgabe der in den aromatischen Polycarbonaten zu ersetzenden
Carbonatstruktureinheiten durch aromatische Dicarbonsäureesterstruktureinheiten.
Für die Herstellung von Polycarbonaten geeignete Dihydroxyarylverbindungen sind solche der Formel (1)
HO-Z-OH (1), in welcher Z ein aromatischer Rest mit 6 bis 30 C- Atomen ist, der einen oder mehrere aromatische Kerne enthalten kann, substituiert sein kann und aliphatische oder cycloaliphatische Reste bzw. Alkylaryle oder Heteroatome als Brückenglieder enthalten kann.
Bevorzugt steht Z in Formel (1) für einen Rest der Formel (2) in der
R6 und R7 unabhängig voneinander für H, Ci- bis Cis-Alkyl-, Ci- bis Cis-Alkoxy, Halogen wie CI oder Br oder für jeweils gegebenenfalls substituiertes Aryl oder Aralkyl, bevorzugt für H oder Ci- bis Ci2-Alkyl, besonders bevorzugt für H oder Ci- bis Cs- Alkyl und ganz besonders bevorzugt für H oder Methyl stehen, und
X für eine Einfachbindung, -SO2-, -CO-, -O-, -S-, Ci- bis Cö-Alkylen, C2- bis C5- Alkyliden oder C5- bis CVCycloalkylidcn, welches mit Ci- bis Ce- Alkyl, vorzugsweise Methyl oder Ethyl, substituiert sein kann, ferner für Ce- bis C12-
Arylen, welches gegebenenfalls mit weiteren Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann, steht.
Bevorzugt steht X für eine Einfachbindung, Cj- bis C5- Alkylen, C2- bis C5-Alkyliden, C5- bis C8-Cycloalkyliden, -O-, -SO-, -CO-, -S-, -S02- oder für einen Rest der Formel (3a)
Beispiele für Dihydroxyarylverbindungen (Diphenole) sind: Dihydroxybenzole, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)-cycloalkane, Bis-
(hydroxyphenyl)-aryle, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis- (hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, 1,1’- Bis-(hydroxyphenyl)-diisopropylbenzole sowie deren kernalkylierte und kernhalogenierte Verbindungen.
Für die Herstellung der erfindungsgemäß zu verwendenden Polycarbonate geeignete Diphenole sind beispielsweise Hydrochinon, Resorcin, Dihydroxydiphenyl, Bis- (hydroxyphenyl)-alkane, Bis(hydroxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis- (hydroxyphenyl)-sulfoxide, a,a'-Bis-(hydroxyphenyl)-diisopropylbenzole sowie deren alkylierte, kernalkylierte und kernhalogenierte Verbindungen.
Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-l- phenylpropan, 1 , 1 -Bis-(4-hydroxyphenyl)-phenylethan, 2,2-Bis-(4-hydroxyphenyl)propan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, l,3-Bis-[2-(4-hydroxyphenyl)-2-propyl]benzol
(Bisphenol M), 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4- hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5- dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, l,3-Bis-[2-(3,5-dimethyl-4-hydroxyphenyl)-2-propyl]-benzol und l,l-Bis-(4- h yd ro x y p h c n y I ) - 3 , 3 , 5 - 1 r i m c t h y I c y c I o h e x a n (Bisphenol TMC).
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, l,l-Bis-(4-hydroxyphenyl)- phenyl-ethan, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)- propan, l,l-Bis-(4-hydroxyphenyl)-cyclohexan und I , I -Bis-(4-hydroxyphenyl )-3,3,5- trimethylcyclohexan (Bisphenol TMC).
Am stärksten bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A).
Diese und weitere geeignete Diphenole sind z.B. in US 2999 835 A, 3 148 172 A, 2991 273 A, 3271 367 A, 4 982 014 A und 2 999 846 A, in den deutschen Offenlegungsschriften 1 570 703 A, 2 063 050 A, 2 036 052 A, 2 211 956 A und 3 832 396 A, der französischen Patentschrift 1 561 518 Al, in der Monographie „H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, S. 28 ff.; S.102 ff.“, und in „D.G. Legrand, J.T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, S. 72ff.“ beschrieben.
Im Falle der Homopolycarbonate wird nur ein Diphenol eingesetzt, im Falle von Copolycarbonaten werden zwei oder mehr Diphenole eingesetzt. Die verwendeten Diphenole, wie auch alle anderen der Synthese zugesetzten Chemikalien und Hilfsstoffe, können mit den aus ihrer eigenen Synthese, Handhabung und Lagerung stammenden Verunreinigungen kontaminiert sein. Es ist jedoch wünschenswert, mit möglichst reinen Rohstoffen zu arbeiten.
Die zur Regelung des Molekulargewichtes benötigten monofunktionellen Kettenabbrecher, wie Phenole oder Alkylphenole, insbesondere Phenol, p-tert. Butylphenol, iso-Octylphenol, Cumylphenol, deren Chlorkohlensäureester oder Säurechloride von Monocarbonsäuren bzw. Gemische aus diesen Kettenabbrechern, werden entweder mit dem Bisphenolat bzw. den Bisphenolaten der Reaktion zugeführt oder aber zu jedem beliebigen Zeitpunkt der Synthese zugesetzt, solange im Reaktionsgemisch noch Phosgen oder Chlorkohlensäureendgruppen vorhanden sind, bzw. im Falle der Säurechloride und Chlorkohlensäureester als Kettenabbrecher, solange genügend phenolische Endgruppen des sich bildenden Polymers zur Verfügung stehen. Vorzugsweise werden der oder die Kettenabbrecher jedoch nach der Phosgenierung an einem Ort oder zu einem Zeitpunkt zugegeben, wenn kein Phosgen mehr vorliegt, aber der Katalysator noch nicht dosiert wurde, bzw. sie werden vor dem Katalysator, mit dem Katalysator zusammen oder parallel zudosiert. In der gleichen Weise werden eventuell zu verwendende Verzweiger oder Verzweigermischungen der Synthese zugesetzt, üblicherweise jedoch vor den Kettenabbrechern. Üblicherweise werden Trisphenole, Quarterphenole oder Säurechloride von Tri- oder Tetracarbonsäuren verwendet oder auch Gemische der Polyphenole oder der Säurechloride.
Einige der als Verzweiger verwendbaren Verbindungen mit drei oder mehr als drei phenolischen Hydroxylgruppen sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, l,3,5-Tris-(4- hydroxyphenyl)-benzol, l,l,l-Tri-(4-hydroxyphenyl)-ethan, Tris-(4-hydroxyphenyl)- phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4- hydroxyphenyl-isopropyl)-phenol, Tetra-(4-hydroxyphenyl)-methan.
Einige der sonstigen trifunktionellen Verbindungen sind 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3- dihydroindol.
Bevorzugte Verzweiger sind 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol und 1,1,1 -Tri-(4-hydroxyphenyl)-ethan.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt 0,05 Mol-% bis 2 Mol-%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können entweder mit den Diphenolen und den Kettenabbrechern in der wässrigen alkalischen Phase vorgelegt werden oder in einem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden.
Ahe diese Maßnahmen zur Herstellung der Polycarbonate sind dem Fachmann geläufig.
Für die Herstellung der Polyestercarbonate geeignete aromatische Dicarbonsäuren sind beispielsweise Orthophthalsäure, Terephthalsäure, Isophthalsäure, tert-Butylisophthalsäure, 3,3'-Diphenyldicarbonsäure, 4,4'-Diphenyldicarbonsäure, 4,4-Benzophenondicarbonsäure, 3,4'-Benzophenondicarbonsäure, 4,4'-Diphenyletherdicarbonsäure, 4,4'-
Diphenylsulfondicarbonsäure, 2,2-Bis-(4-carboxyphenyl)-propan, Trimethyl-3-phenylindan- 4,5'-dicarbonsäure.
Von den aromatischen Dicarbonsäuren werden besonders bevorzugt die Terephthalsäure und/oder Isophthalsäure eingesetzt. Derivate der Dicarbonsäuren sind die Dicarbonsäuredihalogenide und die Dicarbonsäure- dialkylester, insbesondere die Dicarbonsäuredichloride und die Dicarbonsäuredimethylester.
Der Ersatz der Carbonatgruppen durch die aromatischen Dicarbonsäureestergruppen erfolgt im Wesentlichen stöchiometrisch und auch quantitativ, so dass das molare Verhältnis der Reaktionspartner sich auch im fertigen Polyestercarbonat wiederfindet. Der Einbau der aromatischen Dicarbonsäureestergruppen kann sowohl statistisch als auch blockweise erfolgen.
Bevorzugte Herstellungsweisen der erfindungsgemäß zu verwendenden Polycarbonate, ein schließlich der Polyestercarbonate, sind das bekannte Grenzflächenverfahren und das bekannte Schmelzeumesterungsverfahren (vgl. z. B. WO 2004/063249 Al, WO 2001/05866 Al, WO 2000/105867, US 5,340,905 A, US 5,097,002 A, US-A 5,717,057 A).
Im ersten Fall dienen als Säurederivate vorzugsweise Phosgen und gegebenenfalls Dicarbon säuredichloride, im letzteren Fall vorzugsweise Diphenylcarbonat und gegebenenfalls Dicarbonsäurediester. Katalysatoren, Lösungsmittel, Aufarbeitung, Reaktionsbedingungen etc. für die Polycarbonatherstellung bzw. Polyestercarbonatherstellung sind in beiden Fähen hinreichend beschrieben und bekannt.
Das Material der Substratschicht S kann weiterhin von Polycarbonat verschiedene Kunststoffe als Blendpartner enthalten.
Als Blendpartner lassen sich Polyamide, Polyester, insbesondere Polybutylenterephthalat und Polyethylenterephthalat, Polylactid, Polyether, thermoplastisches Polyurethan, Polyacetal, Fluorpolymer, insbesondere Polyvinylidenfluorid, Polyethersulfone, Polyolefin, insbesondere Polyethylen und Polypropylen, Polyimid, Polyacrylat, insbesondere Poly(methyl)methacrylat, Polyphenylenoxid, Polyphenylensulfid, Polyetherketon, Polyaryletherketon, Styrolpolymerisate, insbesondere Polystyrol, Styrolcopolymere, insbesondere Styrolacrylnitrilcopolymer, Acrylnitrilbutadienstyrolblockcopolymere und Polyvinylchlorid einsetzen. Die Blendpartner werden in Mengen von bevorzugt maximal 70 Gew.-%, besonders bevorzugt maximal 50 Gew.-%, ganz besonders bevorzugt maximal 35 Gew.-% bezogen auf das Gesamtgewicht aus Polycarbonat und Blendpartner eingesetzt.
Zusätzlich sind optional bis zu 10,0 Gew.-%, bevorzugt 0,10 bis 8,0 Gew.-%, besonders bevorzugt 0,2 bis 3,0 Gew.-% bezogen auf das Gesamtgewicht des Materials der Substratschicht, sonstige übliche Additive enthalten. Diese Gruppe umfasst Flammschutzmittel, Antitropfmittel, Thermostabilisatoren, Entformungsmittel, Antioxidantien, UV- Absorber, IR- Absorber, Antistatika, optische Aufheller, Lichtstreumittel, Farbmittel wie Pigmente, auch anorganischen Pigmente, Ruß und/oder Farbstoffe, und anorganische Füllstoffe in den für Polycarbonat üblichen Mengen. Diese Additive können einzeln oder auch im Gemisch zugesetzt werden.
Solche Additive, wie sie üblicherweise bei Polycarbonaten zugesetzt werden, sind beispielsweise in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 oder „Plastics Additives Handbook“, Hans Zweifel, 5th Edition 2000, Hanser Verlag, München beschrieben. Die Substratschicht kann eine oder mehrere, der Verstärkung dienende, Faserlagen aus einem Fasermaterial enthalten. Es entstehen dadurch faserhaltige Verbundwerkstoffe, im Folgenden Faserverbundwerkstoffe genannt. Die Substratschicht S kann auch aus mehreren Lagen Faserverbundwerkstoff bestehen und wird dann als Mehrschichtverbundwerkstoff bezeichnet.
Faserverbundwerkstoff
Der chemische Aufbau der Fasern des Fasermaterials kann von der unterschiedlichsten Art sein. Die Fasermaterialien besitzen einen höheren Erweichungs- bzw. Schmelzpunkt als das jeweils vorliegende thermoplastische Matrixmaterial. Das eingesetzte Fasermaterial ist bevorzugt mit geeigneten Schlichten beschichtet.
Bei einer Ausführungsform des Faserverbundwerkstoffs ist die Faserlage als unidirektionale Faserlage, als Gewebe- oder Gelegelage, als Gestrick, Gewirk oder Geflecht, als Wirrfasermatten oder Vliesen oder als Kombination daraus ausgebildet. In Versuchen wurden mit unidirektionalen Faserlagen, Geweben und Gelegen die besten Eigenschaften der Faserverbundwerkstoffe erreicht.
Unidirektional im Sinne der Erfindung bedeutet, dass die Fasern im Wesentlichen unidirektional ausgerichtet sind, also der Länge nach in eine Richtung zeigen und damit die gleiche Laufrichtung aufweisen. Mit „im Wesentlichen unidirektional“ ist hier gemeint, dass eine Abweichung der Faserlaufrichtung von bis zu 5% möglich ist. Bevorzugt beträgt die Abweichung der Faserlaufrichtung jedoch deutlich unter 3%, besonders bevorzugt deutlich unter 1%.
Das Fasermaterial kann als Kurzfasern (Länge < 1mm), als Langfasern (1 bis 50 mm) oder als Endlosfasern (> 50 mm) vorliegen. Bevorzugt liegt es als Langfasern oder Endlosfasern vor. Das Fasermaterial sind erfindungsgemäß bevorzugt Mahlfasern oder Schnittglasfasern. „Liegt vor“ bedeutet hierbei, dass es auch eine Mischung mit anderen Fasermaterialien sein kann. Bevorzugt ist das jeweilige Fasermaterial aber das einzige Fasermaterial.
Der Begriff „Endlosfaser“ ist im Sinne der Erfindung als Abgrenzung zu den dem Fachmann ebenfalls bekannten Kurz- oder Langfasern zu verstehen. Endlosfasern erstrecken sich in der Regel über die gesamte Länge der Lage Faserverbundwerkstoff. Der Begriff Endlosfaser leitet sich davon ab, dass diese Fasern auf einer Rolle aufgewickelt vorliegen und während der Herstellung der einzelnen Faserverbundwerkstofflagen abgewickelt und mit Kunststoff imprägniert werden, so dass, mit Ausnahme von gelegentlichem Bruch oder Rollenwechsel, ihre Länge üblicherweise im Wesentlichen mit der Länge der hergestellten Faserverbundwerkstofflage übereinstimmt.
Beispiele für Fasermaterialien sind anorganische Materialien wie silikatische und nichtsilikatische Gläser der verschiedensten Art, Kohlenstoff, Basalt, Bor, Siliciumcarbid, Metalle, Metalllegierungen, Metalloxide, Metallnitride, Metallcarbide und Silikate, sowie organische Materialien wie natürliche und synthetische Polymere, beispielsweise Polyacrylnitrile, Polyester, ultrahochgereckte Polyamide, Polyimide, Aramide, flüssigkristalline Polymere, Polyphenylensulfide, Polyetherketone, Polyetheretherketone, Polyetherimide. Bevorzugt sind hochschmelzende Materialien, beispielsweise Gläser, Kohlenstoff, Aramide, Basalt, Liquid-crystal-Polymere, Polyphenylensulfide, Polyetherketone, Polyetheretherketone und Polyetherimide. Besonders bevorzugte Fasermaterialien sind Glasfasern oder Carbonfasern.
Unter einer Lage Fasermaterial, auch als Faserlage bezeichnet, wird eine flächige Lage verstanden, welche durch im Wesentlichen in einer Fläche angeordnete Fasern gebildet wird. Die Fasern können durch ihre Lage zueinander miteinander verbunden sein, beispielsweise durch eine gewebeartige Anordnung der Fasern. Weiterhin kann die Faserlage auch einen Anteil Harz oder einen anderen Kleber aufweisen, um die Fasern miteinander zu verbinden. Die Fasern können alternativ auch unverbunden sein. Hierunter wird verstanden, dass die Fasern ohne Aufwendung einer nennenswerten Kraft voneinander gelöst werden können. Die Faserlage kann auch eine Kombination von verbundenen und unverbundenen Fasern aufweisen. Mindestens eine Seite der Faserlage ist in die erfindungsgemäß eingesetzten auf Polycarbonat basierenden Zusammensetzungen als Matrixmaterial eingebettet. Hierunter wird verstanden, dass die Faserlage zumindest einseitig, vorzugsweise beidseitig von der auf Polycarbonat basierenden Zusammensetzung umgeben ist. Der äußere Rand des Faserverbundwerkstoffes wird bevorzugt durch die Matrix aus Polycarbonat basierter Zusammensetzung gebildet. Die Zahl der Faserlagen in einer Lage Faserverbundwerkstoff ist grundsätzlich nicht beschränkt. Es können daher auch zwei oder mehr Faserlagen übereinander angeordnet werden. Zwei übereinanderliegende Faserlagen können dabei jeweils einzeln in das Matrixmaterial eingebettet sein, so dass sie jeweils beidseitig von dem Matrixmaterial umgeben sind. Weiterhin können zwei oder mehr Faserlagen auch unmittelbar übereinander liegen, so dass ihre Gesamtheit von dem Matrixmaterial umgeben wird. In diesem Fall können diese zwei oder mehr Faserlagen auch als eine dicke Faserlage angesehen werden.
Mehrschichtverbundwerkstoffe Mehr schichtverb und Werkstoffe weisen mindestens zwei, bevorzugt mindestens drei übereinander liegende Lagen Faserverbundwerkstoff umfasst, wobei im Falle von drei Verbundwerkstofflagen diese relativ zueinander definiert werden als zwei außenliegende Lagen Faserverbundwerkstoff und mindestens eine innenliegende Lage Faserverbundwerkstoff. Bevorzugtes Fasermaterial in den Lagen Faserverbundwerkstoff sind Endlosfasern, die bevorzugt unidirektional ausgerichtet sind.
Im Falle von Endlosfasern als Fasermaterial können die innenliegenden Lagen Faserverbundwerkstoff im Wesentlichen gleich orientiert und ihre Orientierung relativ zu den außenliegenden Lagen Faserverbundwerkstoff um 30° bis 90° rotiert sein, wobei die Orientierung einer Lage Faserverbundwerkstoff durch die Orientierung der darin enthaltenen, unidirektional ausgerichteten Fasern bestimmt wird.
In einer bevorzugten Ausführungsform sind die Lagen alternierend angeordnet. Hierbei liegen die äußeren Lagen in einer 0° Orientierung vor. Als besonders praxisgerecht hat es sich erwiesen, wenn die innenliegenden Lagen Faserverbundwerkstoff gleich orientiert sind und ihre Orientierung relativ zu den außenliegenden Lagen Faserverbundwerkstoff um 90° rotiert ist. „Alternierend“ heißt, dass die innenliegenden Lagen jeweils um einen Winkel von 90 ° oder einem Winkel von 30° bis 90° abwechselnd angeordnet sind. Die äußeren Lagen liegen in einer 0° Orientierung jeweils vor. Die Winkel können pro Lage jeweils von 30° bis 90° variiert werden. Eine weitere bevorzugte Ausführungsform ist, dass mindestens ein Teil der Lagen die gleiche Orientierung aufweist und mindestens ein anderer Teil der Lagen um 30° bis 90° rotiert ist. Hierbei liegen die äußeren Lagen in einer 0° Orientierung vor. Eine weitere bevorzugte Ausführungsform ist, dass die innenliegenden Lagen die gleiche Orientierung aufweisen und ihre Orientierung relativ zu den außenliegenden Lagen Laserverbundwerkstoff um 30° bis 90° rotiert ist und die äußeren Lagen dazu in einer 0° Orientierung vorliegen.
Im Lalle von Geweben erfolgt ein Stapeln der Lagen Laserverbundwerkstoffe abwechselnd in Kettrichtung (0°) und Schussrichtung (90°) bzw. in den oben angegebenen Winkeln.
Die Laser- bzw. Mehrschichtverbundwerkstoffe können einen metallischen Klang aufweisen. Sie weisen ferner den Vorteil auf, dass sie sich kostengünstig herstellen lassen und durch den darin verwendeten Kunststoff äußerst leichtgewichtig sind. Vorteilhaft an den Laser- bzw. Mehrschichtverbundwerkstoffen ist ferner, dass die Gestaltung, beispielsweise eines Gehäuseteils, durch die Thermoformbarkeit der Verbundwerkstoffe besonders einfach und flexibel erfolgen kann.
Grundsätzlich kann der erfindungsgemäße Mehrschichtverbundwerkstoff neben den Lagen Laserverbundwerkstoff auch noch eine oder mehrere weitere Lagen enthalten. Beispielhaft seien hier weitere Lagen aus Kunststoff, der gleich oder verschieden von der in den Lagen Laserverbundwerkstoff verwendeten Kunststoffmatrix sein kann, genannt. Diese Kunststofflagen können insbesondere auch Lüllstoffe, die von den erfindungsgemäß vorgesehenen Lasermaterialien verschieden sind, enthalten. Lerner können auch Klebstoff-, Gewebe-, Vlies- oder Oberflächenvergütungslagen, beispielsweise Lackschichten, im erfindungsgemäßen Mehrschichtverbundwerkstoff enthalten sein. Diese weiteren Lagen können zwischen innen- und außenliegenden Lagen Laserverbundwerkstoff, zwischen mehreren innenliegenden Lagen Laserverbundwerkstoff und/oder auf der außenliegenden Lage Laserverbundwerkstoff, die sich auf der zur Deckschicht D abgewandten Seite befindet, enthalten sein. Vorzugsweise sind die außenliegenden und die mindestens eine innenliegende Lage Laserverbundwerkstoff jedoch derart miteinander verbunden, dass keine weiteren Lagen dazwischenliegen.
Die einzelnen Lagen Laserverbundwerkstoff können im Wesentlichen gleich oder unterschiedlich aufgebaut und/oder orientiert sein.
Unter einem im Wesentlichen gleichen Aufbau der Lagen Laserverbundwerkstoff wird im Rahmen der Erfindung verstanden, dass mindestens ein Merkmal aus der Gruppe chemische Zusammensetzung, Laservolumengehalt und Schichtdicke gleich ist. Unter chemischer Zusammensetzung wird die chemische Zusammensetzung der Kunststoffmatrix des Faserverbundwerkstoffs und/oder die chemische Zusammensetzung des Fasermaterials wie Endlosfasern verstanden.
Gemäß einer bevorzugten Ausführungsform der Erfindung sind die außenliegenden Lagen Faserverbundwerkstoff in Bezug auf ihre Zusammensetzung, ihren Faservolumengehalt und ihre Schichtdicke im Wesentlichen gleich aufgebaut.
Bevorzugt weist der Mehrschichtverbundwerkstoff eine Gesamtdicke von 0,4 bis 2,5 mm, vorzugsweise 0,7 bis 1,8 mm, insbesondere 0,9 bis 1,2 mm auf. Praktische Versuche haben gezeigt, dass es mit dem erfindungsgemäßen Mehrschichtverbundwerkstoff möglich ist, selbst bei diesen geringen Dicken ausgesprochen gute mechanische Eigenschaften zu erzielen.
Dabei hat es sich als besonders vorteilhaft erwiesen, wenn die Summe aller innenliegenden Lagen Faserverbundwerkstoff eine Gesamtdicke von 200 pm bis 1200 u m, bevorzugt 400 pm bis 1000 pm, besonders bevorzugt 500 pm bis 750 pm aufweist.
Vorteilhaft im Rahmen der Erfindung ist es ferner, wenn die Dicke jeder einzelnen der beiden außenliegenden Lagen Faserverbundwerkstoff jeweils 100 bis 250 pm, bevorzugt, 120 pm bis 230 pm, besonders bevorzugt 130 pm bis 180 pm beträgt.
Erfindungsgemäß bevorzugte Faserverbundwerkstofflagen weisen einen Faservolumengehalt von > 30 Vol.-% und < 60 Vol.-%, vorzugsweise > 35 Vol.-% und < 55 Vol.-%, besonders bevorzugt von > 37 Vol.-% und < 52 Vol.-% auf. Ein Faservolumengehalt von über 60 Vol.- % führt zu einer Verschlechterung der mechanischen Eigenschaften des Faserverbundwerkstoffs. Ohne an wissenschaftliche Theorien gebunden sein zu wollen, scheint dies darauf zurückführbar zu sein, dass die Fasern bei der Imprägnierung bei derartig hohen Faservolumengehalten nicht mehr ausreichend benetzt werden können, was zu einer Zunahme an Lufteinschlüssen und zu einem vermehrten Auftreten von Oberflächendefekten im Faserverbundwerkstoff und signifikanter Reduktion der mechanischen Belastbarkeit führt.
Bei einer Ausführungsform des Mehrschichtverbundwerkstoffs liegt der Volumengehalt des Fasermaterials am Gesamtvolumen des Mehrschichtverbundwerkstoffs im Bereich von 30 bis 60 Vol.-%, bevorzugt im Bereich 40 bis 55 Vol.-%.
Gemäß einer Ausführungsform der Erfindung weisen die außenliegenden Lagen Faserverbundwerkstoff einen Faservolumengehalt von höchstens 50 Vol.-%, vorzugsweise höchstens 45 Vol.-%, insbesondere höchstens 42 Vol.-% auf. Gemäß einer besonderen Ausführungsform der Erfindung weisen die außenliegenden Lagen Faserverbundwerkstoff einen Faservolumengehalt von mindestens 30 Vol.-%, vorzugsweise mindestens 35 Vol.-%, insbesondere mindestens 37 Vol.-% auf.
Gemäß einer weiteren besonderen Ausführungsform der Erfindung weisen die außenliegenden Lagen Faserverbundwerkstoff einen geringeren Volumengehalt an Fasern, bezogen auf das Gesamtvolumen der Lage Faserverbundwerkstoff, auf als die mindestens eine innenliegende Lage Faserverbundwerkstoff.
Die innenliegenden Lagen Faserverbundwerkstoff können einen Faservolumengehalt von 40 bis 60 Vol.-%, bevorzugt 45 bis 55 Vol.-%, besonders bevorzugt 48 bis 52 Vol.-% bezogen auf das Gesamtvolumen der Lage Faserverbundwerkstoff aufweisen.
Unter Vol.-% wird hier der Volumenanteil (% v/v) bezogen auf das Gesamtvolumen der Lage Faserverbundwerkstoff verstanden.
Herstellung der Faserverbundwerkstoffe und der Mehrschichtverbundwerkstoffe Die Herstellung der erfindungsgemäß als Substartschicht S zu verwendenden Faserverbundwerkstoffe bzw. Mehrschichtverbundwerkstoffe sind dem Fachmann bekannt und beispielsweise in EP3464471 Al und EP3055348 Bl beschrieben.
Beschreibung der Deckschicht D
Das Material der Deckschicht D umfasst das aromatische Polycarbonat, welches auch in der Substratschicht S enthalten ist als Blend mit einer Polyesterkomponente P, die Poly(cyclo)alkylenterephthalate und Polyalkylennaphthalate oder Mischungen dieser Polyester gemäß den Ausführungen des Anspruchs 1 umfasst. Bei diesen Polyestern handelt es sich um Reaktionsprodukte aus Therephtahlsäure bzw.
Naphthalin-2,6-dicarbonsäure oder ihren reaktionsfähigen Derivaten, wie beispielsweise den Dimethylestern dieser beiden Säuren, und aliphatischen bzw. cycloaliphtiaschen Diolen.
Zur Herstellung der Polyalkylenterephthalate und -naphthalate kommen bevorzugt (ar)aliphatische Diole mit 3 bis 12 C-Atomen zum Einsatz, wie beispielsweise: Ethylenglycol, 1,4-Butandiol, Propandiol-1,3, 2-Ethylpropandiol-l,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, 3-Ethylpentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4- Trimethylpentandiol-1,3, 2-Ethylhexandiol-l,3, 2,2-Diethylpropandiol-l,3, Hexandiol-2,5, l,4-Di-(ß-hydroxyethoxy)-benzol, 2,2-Bis-(4-ß-hydroxyethoxy-phenyl)-propan und/oder
2.2-Bis-(4-hydroxypropoxyphenyl)-propan. Bevorzugt sind Ethylenglycol und 1,4- Butandiol.
Zur Herstellung der Polycycloalkylenterephthalate kommen bevorzugt cycloaliphatische Diole mit 6 bis 21 C-Atomen zum Einsatz, wie beispielsweise: Cyclohexan-dimethanol-1,4,
2.2-Bis-(4-hydroxycyclohexyl)-propan und/oder 2,2,4,4-tetramethyl-l,3cyclobutandiol. Bevorzugt sind Cyclohexan-dimethanol-1,4 und 2,2,4,4-tetramethyl-l,3cyclobutandiol und deren Mischungen.
Besonders bevorzugte Polyalkylenterephthalate bzw. -naphthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäurereste bzw. Naphthalin-2,6-dicarbonsäurereste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 mol-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-l,4-Reste.
Besonders bevorzugte Polycycloalkylenterephthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Tere phthalsäurereste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 mol-%, bezogen auf die Diolkomponente Cyclohexan-dimethanol-1,4- und/oder 2,2,4,4-tetramethyl- l,3cyclobutandiol -Reste.
Die bevorzugten Poly(cyclo)alkylenterephthalate bzw. Polyalkylennaphthalate können neben Terephthalsäureresten bzw. Naphthalin-2,6-dicarbonsäureresten bis zu 20 mol-%, vorzugsweise bis zu 10 mol-%, Reste anderer aromatischer oder cycloaliphatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z.B. Reste von Phthalsäure, Isophthalsäure, 4,4'-Diphenyldi- carbonsäure, Bernsteinsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Cyclohexandiessigsäure.
Die bevorzugten Polyalkylenterephthalate bzw. -naphthalate können neben Ethylenglykol- bzw. Butandiol-l,4-Resten bis zu 20 mol-%, vorzugsweise bis zu 10 mol-%, andere (ar)aliphatische Diole mit 3 bis 12 C-Atomen enthalten, z.B. Reste von Propandiol- 1,3, 2-Ethylpropandiol-l,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, 3-Ethyl- pentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-l,3, 2-Ethylhexandiol- 1,3, 2,2-Diethylpropandiol-l,3, Hexandiol-2,5, l,4-Di-(ß-hydroxyethoxy)-benzol, 2,2-Bis- (4-ß-hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)-propan.
Die bevorzugten Polycycloalkylenterephthalate können neben Cyclohexan-dimethanol-1,4 und/oder 2,2,4,4-tetramethyl-l,3cyclobutandiol-Resten bis zu 20 mol-%, vorzugsweise bis zu 10 mol-%, andere cyclo aliphatische Diole mit 6 bis 21 C-Atomen enthalten, z.B. Reste von 2,2-Bis-(4-hydroxycyclohexyl)-propan.
Die oben genannten Polyester können durch Einbau relativ kleiner Mengen 3- oder 4- wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z.B. gemäß DE-A 1 900270 und US-PS 3692744, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.
Ganz besonders bevorzugte Polyalkylenterephthalate basieren allein auf Terephthalsäure oder deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Ethylenglykol oder Butandiol-1,4.
Ganz besonders bevorzugte Polycycloalkylenterephthalate, basieren allein auf Terephthalsäure oder deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Cyclohexan-dimethanol- 1 ,4 und/oder 2,2,4,4-tetramethyl- 1 ,3cyclobutandiol.
Ganz besonders bevorzugte Polyalkylennaphthalate basieren allein auf Naphthalin-2,6- dicarbonsäure oder deren reaktionsfähigen Derivaten (z.B. deren Dialkylestern) und Ethylenglykol oder Butandiol-1,4.
Die Poly(cyclo)alkylenterephthalate und Polyalkylennaphthalate lassen sich nach bekannten Methoden herstellen (s. z.B. Kunststoff-Handbuch, Band VIII, S. 695 ff., Carl-Hanser- Verlag, München 1973).
Der Anteil der Polyesterkomponente P beträgt ganz besonders bevorzugt > 30 Gewichts-%, noch mehr bevorzugt > 35 Gewichts-%, bezogen auf das Gesamtgewicht des Materials der Deckschicht D, sofern Polyesterkomponente P gemäß Variante i) mindestens ein Polycycloalkylenterephthalat umfasst oder daraus besteht . Der Anteil der Polyesterkomponente P beträgt ganz besonders bevorzugt > 30 Gewichts-%, noch mehr bevorzugt > 35 Gewichts-%, bezogen auf das Gesamtgewicht des Materials der Deckschicht D, sofern Polyesterkomponente P gemäß Variante ii) mindestens ein Polyalkylenterephthalat umfasst oder daraus besteht .
Der Anteil der Polyesterkomponente P beträgt darüberhinaus bevorzugt > 45 Gewichts- %, am meisten bevorzugt > 50 Gewichts-%, bezogen auf das Gesamtgewicht des Materials der Deckschicht D, sofern Polyesterkomponente P gemäß Variante ii) Polyethylentherephthalat umfasst oder daraus besteht.
Der Anteil der Polyesterkomponente P beträgt für alle Ausführungsformen bevorzugt < 60, besonders bevorzugt < 55 Gewichts-%, bezogen auf das Gesamtgewicht des Materials der Deckschicht D. Das Material der Deckschicht kann weitere Blendpartner enthalten. Als Blendpartner lassen sich Polyamide, von den oben beschriebenen Polyestern verschiedene Polyester, Polylactid, Polyether, thermoplastisches Polyurethan, Polyacetal, Fluorpolymer, insbesondere Polyvinylidenfluorid, Polyethersulfone, Polyolefin, insbesondere Polyethylen und Polypropylen, Polyimid, Polyacrylat, insbesondere Poly(methyl)methacrylat, Polyphenylenoxid, Polyphenylensulfid, Polyetherketon, Polyaryletherketon, Styrolpolymerisate, insbesondere Polystyrol, Styrolcopolymere, insbesondere Styrolacrylnitrilcopolymer, Acrylnitrilbutadienstyrolblockcopolymere und Polyvinylchlorid einsetzen. Zusätzlich sind optional bis zu 10,0 Gew.-%, bevorzugt 0,10 bis 8,0 Gew.-%, besonders bevorzugt 0,2 bis 3,0 Gew.-%, bezogen auf das Gesamtgewicht des Materials der Deckschicht D, sonstige übliche Additive enthalten. An dieser Stelle sei auf die Ausführungen zu den Additiven unter der Beschreibung der Substratschicht verwiesen. Die Deckschicht D weist eine Dicke < 500 mih, bevorzugt < 300 mih , besonders bevorzugt < 200 mhi, ganz besonders bevorzugt < 100 mhi auf.
Die Deckschicht D weist eine Dicke > 5 mhi, bevorzugt > 10 mhi auf.
Beschreibung der Lackschicht L
Lack ist die Bezeichnung für einen flüssigen oder auch pulverförmigen Beschichtungsstoff, der dünn auf Gegenstände aufgetragen wird und durch chemische oder physikalische Vorgänge (zum Beispiel Verdampfen des Lösungsmittels) zu einem durchgehenden, festen Film aufgebaut wird.
Als Lackschicht L kommen alle dem Fachmann bekannten Lacke zur Verwendung auf Polycarbonat-haltigen Untergründen in Frage. In einer bevorzugten Ausführungsform handelt es sich um einen Lack für den Bereich der Automobilanbauteillackierung, wobei die Lackschicht L bevorzugt eine oder mehrere der folgenden Schichten umfasst:
- wenigstens eine Grundierungsschicht G,
- wenigstens eine Basislackschicht B
- wenigstens eine Klarlackschicht K.
Unter einer Grundierungsschicht werden im Automobilsektor Beschichtungen verstanden, die die Haftfestigkeit von Lacken auf Kunststoffteilen, beispielsweise auch nach Bewitterung, optimiert. So werden die Kunststoffteile meist mit einer Grundierung, auch Primer genannt, beschichtet, bevor die färb- und effektgebende Lackschicht oder -schichten appliziert werden. Neben der Haftfestigkeit soll die Grundierung beispielsweise auch zum Steinschlagschutz beitragen. Weiterhin kann eine Grundierung durch Zusatz von entsprechenden Additiven wie Leitrußen leitfähig ausgestaltet werden, so dass die anschließend applizierten Schichten mittels elektrostatischer Spritzapplikation und damit mit besonders hoher Transfereffizienz aufgebracht werden können.
Basislack (Basislackschicht) ist eine Bezeichnung für einen in der Automobil-Lackierung üblichen farbgebenden Zwischenbeschichtungsstoff.
Ein Klarlack (Klarlackschicht) schützt den Basislack vor Witterungseinflüssen, sowie mechanischen und chemischen Angriffen.
Die Anzahl an aufzubringenden Basislackschichten und Klarlackschichten ist jeweils nicht auf eine Schicht begrenzt. Es ist es auch möglich, zwei, drei, vier oder mehr Basislackschichten aufzubringen bzw. mehrfach abwechselnd Basis- und Klarlackschichten aufzubringen. Die einzelnen Schichten können dabei jeweils vollständig getrocknet oder nur teilweise getrocknet werden, bevor die nächste Schicht aufgetragen wird. Letzteres wird auch als „nass in nass“-Applikation bezeichnet. Auch bei der Überlackierung mit einem Klarlack ist die Anzahl der Schichten nicht auf eine begrenzt.
Zur Herstellung der Lackschicht L können alle dem Fachmann bekannten, wässrigen oder auf organischen Lösungsmittel basierenden Primer, Basis- und Decklacke verwendet werden. Beispiele für erfindungsgemäß verwendbare Grundierungsschichten G finden sich z.B. in EP-B 1226218 oder der zum Zeitpunkt der Anmeldung der vorliegenden Erfindung zum Patent noch unveröffentlichten Europäischen Patentanmeldung mit der Anmeldenummer 18213389.2. Eine Beschreibung erfindungsgemäß verwendbarer Basislackschichten B findet sich z.B. in den Schriften US-A-3,639,147, DE-A-33 33 072, DE-A-38 14 853, GB-A-2012 191, US-A- 3,953,644, EP-A-260 447, DE-A-39 03 804, EP-A-320 552, DE-A-36 28 124, US-A- 4,719,132, EP-A-297 576, EP-A-69 936, EP-A-89 497, EP-A-195 931, EP-A-228 003, EP- A-38 127, DE-A-28 18 100 und WO-A 2017/202692.
Klarlackschichten K, die erfindungsgemäß verwendet werden können, sind beispielsweise in der EP-A 3445827 und WO-A 2017/202692 beschrieben.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Schichtenverbundes, umfassend den Schritt:
I) Verbinden einer Substratschicht S mit einer Deckschicht D, wobei die Substratschicht S und die Deckschicht D den vorangegangenen Beschreibungen entspricht. Ein weiterer Gegenstand ist ein Verfahren, wie zuvor beschrieben, umfassend weiterhin den Schritt:
II) Aufträgen wenigstens einer Lackschicht auf die der Substratschicht S abgewandten Seite der Deckschicht D in dem nach Schritt I) erhaltenen Schichtenverbund. Die erfindungsgemäßen Schichtenverbunde finden Anwendung zur Herstellung beispielsweise von Automobilanbauteilen.
Weitere Gegenstände der vorliegenden Erfindung sind daher die Verwendung der erfindungsgemäßen Schichtenverbunde zur Herstellung von Automobilanbauteilen, sowie die daraus erhältlichen Automobilanbauteile selbst. Beispiele
Die vorliegende Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne jedoch darauf beschränkt zu sein. Herstellung des Substrats S:
Für die Versuche wurden Platten eines Verbundwerkstoffs aus Polycarbonat und Kohlefaser (im Folgenden als Komposit bezeichnet) mit den Abmaßen 350 x 350 mm2 als Substratschicht verwendet. Die Komposite wurden von der Covestro Thermplast Composite GmbH (CTC) aus 8 Lagen UD-Tape hergestellt, wobei die UD-Tapes selbst aus 40-45 Vol.% unidirektional orientierter Kohlefaser des Typs Mitsubishi TRH-50 60M und 60-55 Vol.% Polycarbonat-Matrix (Typ Makroion® 3107 in Farbe 901510) aufgebaut waren. Eine allgemeine Beschreibung der Herstellung ist beispielsweise in WO 2018/007335 Al zu finden.
Der Lagenaufbau wurde, bezogen auf die Winkelorientierung der Kohlefasern, in den einzelnen UD-Tape-Lagen so gewählt, dass eine quasi-isotrope Verstärkung des Komposits vorlag (0745° / -45° / 90° / 90° / -45° / 45° / 0°).
Herstellung der Deckschicht D:
Es wurden thermoplastische Formmassen enthaltend die Komponenten A bis E mit den in Tabelle 1 angegebenen Formulierungen auf einem Doppelwellenextruder ZSK25 der Fa. Coperion, Werner und Pfleiderer (Deutschland) bei Schmelzetemperaturen von 250 °C bis 300 °C hergestellt. Aus den erhaltenen Granulaten wurden anschließend Folien mit einer Dicke von etwa 100 pm extrudiert. Dazu wurde das entsprechende Material nach Vortrocknung (4 h, 85 - 90 °C) auf dem Extruder (Drehzahl ca. 50/min, Massetemperatur 265 °C (Einträge 1-16 in Tabelle 1) und 300 °C (Eintrag 17 in Tabelle 1)) aufgeschmolzen und über eine 450 mm-Breitschlitzdüse auf ein Walzwerk extrudiert.
Verwendete Komponenten in der Deckschicht D:
Komponente A: lineares Bisphenol-A-Polycarbonat mit einem mittleren Molekulargewicht Mw von ca. 31.000 g/mol und einer Erweichungstemperatur (VST/B 120 nach ISO 306:2014-3) von 150 °C, welches keinen UV-Absorber enthält. Die Schmelze- Volumenfließrate (MVR) nach ISO 1133:2012-03 betrug 6,0 cm3/(10 min) bei 300 °C und 1.2 kg Belastung.
Komponente Bl: Polybutylenterephthalat (PBT) mit einer melt-mass flow rate (MFR) von 9.0g/10min bis 14.5g/10 min gemessen nach DIN EN ISO 1133 bei einer Temperatur von 250 °C und mit einer Belastung von 2.16 kg.
Komponente B2: Polyethylenterephthalat (PET) mit einer intrinsischen Viskosität von 0.623 dl/g. Die spezifische Viskosität wird gemessen in Dichloressigsäure in einer Konzentration von 1 Gew.-% bei 25 °C. Die intrinsische Viskosität wird aus der spezifischen Viskosität gemäß nachstehender Formel berechnet: Intrinsische Viskosität = Spezifische Viskosität · 0.0006907 + 0.063096
Komponente B3: Polyester auf Basis von Terephthalsäure, Cyclohexandimethanol und 2,2,4,4-tetramethyl-l,3-cyclobutandiol mit einer inhärenten Viskosität von 0.69 - 0.75 dl/g gemessen in einer 60/40-Mischung (Gew.-%/Gew.- %) von Phenol/Tetrachloroethan bei 25 °C in einer Konzentration von 0.5 g / 100 ml. Komponente B4: Polyethylennaphthalat (PEN).
Komponente C: Schlagzähmodifikator mit Kern-Schale Morphologie, einem Styrol- Butadien-Kautschuk-Kern und einer aufgepfropften Schale aus Methylmethacrylat-Styrol- Copolymer, einem Butadien-Anteil von 68 % - 72 % und einer Kautschuk-
Partikelgrößen Verteilung zwischen 130 nm und 160 nm. Komponente Dl: Talk mit einem mittleren Partikeldurchmesser dso von 1.2 pm, gemessen mittels Sedigraph und mit einem APO -Gchalt von 0.5 Gew.-%.
Komponente D2: Irganox 1076, Thermostabilisator, BASF SE
Komponente D3: Phosphorige Säure H3PO3 als Feststoff.
Komponente E: Pentaerythrityl-Tetrastearat als Gleit-/Entformungsmittel.
Anschließend wurden die Komposite (Substrat) auf einer statischen Laborpresse (Typ Joos LAP 100) doppelseitig mit den zu untersuchenden Folien (Deckschicht D) laminiert. Dabei wurden ein polierter Einsatz („Hochglanzstempel“) und ein externes Trennmittel (Frekote®, Firma Henckel) verwendet.
Herstellung der Lackschicht L Verwendete Substanzen zur Herstellung der Grundier-, Basislack- und Klarlackschicht :
Die Substanzen wurden, soweit nicht anders erwähnt, ohne weitere Reinigung oder Vorbehandlung eingesetzt.
Additol XL 250, Allnex Resins Germany GmbH, DE, anionisches Netz- und Dispersionsmittel für Pigmente
Aerosil® R 972, Evonik Resource Efficiency GmbH, DE, pyrogene Kieselsäure Mattierungsmittel
Aquatix 8421, BYK Chemie GmbH, DE, Rheologie-modifizierende Wachsemulsion Bayferrox® 318 M, Lanxess AG, DE, Eisenoxidpigment
Bayhydrol® U 2757, Covestro AG, DE, aliphatische, anionische hydroxyfunktionelle Polyurethan-Dispersion auf Basis einer Mischung von aromatischem Polyesterdiol und eines Polycarbonatdiols, co-lösungsmittelfrei. Bindemittel zur Herstellung von wasserverdünnbaren 2K-PUR-Lacken, ca. 52%ig in Wasser/N,N-Dimethylethanolamin, Hydroxylgehalt ca. 1,8% (rechnerisch) bezogen auf den nichtflüchtigen Anteil (1 g/1 h/125 °C) nach DIN EN ISO 3251, Angaben gemäß Datenblatt Ausgabe 2016-09-13.
Bayhydrol® UH 2606, Covestro AG, DE, aliphatische, polycarbonathaltige anionische Polyurethandispersion, co-lösungsmittelfrei. Bindemittel zur Herstellung von wasserverdünnbaren Beschichtungen für Kunststoffsubstrate und Holzwerkstoffe, ca. 35 %ig in Wasser, neutralisiert mit N-Ethyldiisopropylamin (als Salz gebunden) im Verhältnis: ca. 35 : 64 : 1, Angaben gemäß Datenblatt Ausgabe 2016-09-13.
Bayhydrol® UA 2856 XP, Covestro AG, DE, Aliphatische, acrylatmodifizierte Polyurethandispersion Bindemittel für wässrige, luft- und ofentrocknende Basislacke für 2- Schicht-Fahrzeuglackierung, Kunststofflackierung, Autoreparaturlackierung, Industrie lackierung sowie für niedertemperaturtrocknende Steinschlagfunktionsschichten.
Viskosität <100 mPa s bei 23 °C (ISO 3219/A.3), Angaben gemäß Datenblatt Ausgabe 2016-03-03
Bayhydur® XP 2655, Covestro AG, DE, hydrophiles Polyisocyanat auf Basis von Trimerisaten des Hexamethylendiisocyanats, NCO-Gehalt 20,8% (ISO 11909), Viskosität 3500 mPa s bei 23 °C (ISO 3219/A.3), Angaben gemäß Datenblatt Ausgabe 2017-06-01. Baysilone® Paint Additive OL 17, OMG Borchers, DE, polyethermodifiziertes Polysiloxan (Verlaufsadditiv)
Blanc fixe micro, Sachtleben Chemie GmbH, DE, Füllstoff Borchigel® PW 25, OMG Borchers, DE, Polyurethanverdicker Butylacetat (Essigsäure-n-butylester), Azelis Deutschland GmbH , Lösungsmittel Butylglykol (2-Butoxyethanol), BASF SE, DE, Lösungsmittel
Byk® 348, BYK Chemie GmbH, DE, Silikontensid zur Verbesserung der U ntergrundbenetzung
Desmodur® ultra N 3390, Covestro AG, DE, Aliphatisches Polyisocyanat (Trimerisaten des Hexamethylendiisocyanats). Als Härterkomponente für lichtechte Polyurethan-Lacksysteme.
NCO-Gehalt 19,6% (ISO 11909), Viskosität 500 mPa s bei 23 °C (ISO 3219/A.3), Angaben gemäß Datenblatt Ausgabe 2018-11-14.
Desmodur® ultra N 3600, Covestro AG, DE, Polyisocyanat auf Basis von Trimerisaten des Hexamethylendiisocyanats, NCO-Gehalt 23,0% (ISO 11909), Viskosität 1200 mPa s bei 23 °C (ISO 3219/A.3), Angaben gemäß Datenblatt Ausgabe 2017-06-01.
Desmophen® 670 BA, Covestro AG, DE, schwach verzweigter, hydroxylgruppenhaltiger Polyester für die Herstellung wetterfester, elastischer Lackierungen.
Viskosität 3000 mPa s bei 23 °C (ISO 3219/A.3), Angaben gemäß Datenblatt Ausgabe 2018- 03-01
Diacetonalkohol (DAA), Acros Organics, Lösungsmittel
Dibutylzinndilaurat, ISO-ELEKTRA - Elektrochemische Fabrik GmbH, Katalysator N,N-Dimethylethanolamin (DMEA), Sigma Aldrich Chemie, DE, Neutralisationsmittel Dispex® Ultra FA 4436, BASF SE, DE, Dispergierhilfsmittel Finntalc® M-15 AW, Mondo Minerals B.V., NL, Talkum l-Methoxy-2-propylacetat (MPA), BASF SE, DE, Lösungsmittel
R-KB-2, Sachtleben Chemie GmbH, DE, Weißpigment Setalux® DA 365 BA/X, Allnex Resins Germany GmbH, DE, funktionelles acrylatpolymerhaltiges Bindemittel
Setaqua 6801, Allnex Belgium SA/NV, nichtfunktionelles acrylathaltiges Copolymer
Solvent Naphtha 100 (Schwerbenzol), Azelis Deutschland GmbH, Lösungsmittel Stapa Hydrolan 2156 Nr. 55900/G Aluminium, Eckart GmbH, DE, Aluminium- Pigmentpaste
Surfynol® 104 E, Evonik Resource Efficiency GmbH, DE, nichtionisches Benetzungs-, Entschäumungs- und Dispergierhilfsmittel
Tinuvin® 292 und Tinuvin® 1130, BASF SE, DE, UV-Stabilisatoren
Lackformulierungen :
Primer (wässriger, zweikomponentiger Kunststoffprimer PCO-0148-PS gemäß der von der Covestro Deutschland AG veröffentlichten Startformulierung (Edition 2016-09-13)):
Zur Herstellung der Komponente 1 wurden zunächst die Bindemittel vorgelegt und anschließend die weiteren Bestandteile in der angegebenen Reihenfolge eingewogen, mit Glasperlen (2,85 - 3,45 mm) 1:1 (nach Volumen) versetzt und 30 Minuten mit einem Laborschüttler Skandex BA-S20 der Firma Lau angerieben. Anschließend wurden die Glasperlen abgesiebt. Unter Rühren mit einem Dissolver (Dissolverscheibe 5 cm, bei 800 U/min) wurde anschließend der Verdicker langsam zudosiert und weitere 5 Minuten eingerührt. Die Komponente 1 wurden dann mit demineralisiertem Wasser auf eine Auslaufzeit im 4 mm DIN Becher von 25 bis 30 s eingestellt.
Kurz vor Applikation wurde Komponente 2 unter Rühren mit einem Flügelrührer (5 min, 700 U/min) eingearbeitet und der gebrauchsfertige Primer innerhalb von 30min appliziert.
Tabelle 1
Wasserbasierter Metallic-Basislack (einkomponentiger Hydrobasislack HEBE 4134/1 gemäß der von der Covestro Deutschland AG veröffentlichten Startformulierung (Edition 2016-08-23): Zunächst wurde die Metallic-Paste (Tabelle 2, Teil 3) in einem separaten Gefäß angesetzt. Dazu wurden alle Bestandteile in Tabelle 2, Teil 3, in der angegebenen Reihenfolge unter Rühren mit einem Propeller-Rührer gemischt. Anschließend wurde der pH Wert getestet (Ziel: pH 8.0-8.5) und, falls notwendig, mit DMEA eingestellt. Nach erneutem Rühren für 30min bei ca. 10.5 m/s (maximale Erwärmung auf 50°C) war die Paste gebrauchsfertig. Für den Metallic-Basislack wurden Teil 1 und Teil 2 aus Tabelle 2 mit einem Propeller- Rührer bei ca. 5.2 m/s vermischt. Anschließend wurde Teil 3 zugegeben und für 30min bei etwa 10.5 m/s eingerührt. Zuletzt wurde Teil 4 zugegeben und erneut 5 min bei 5.2 m/s eingerührt. Vor der Applikation wurde der pH Wert des Lacks mit DMEA auf 8.0-8.5 eingestellt. Mit demineralisiertem Wasser wurde die Auslaufzeit auf 40s gemäß DIN cup 4 mm eingestellt und der Lack über ein 56pm Sieb abfiltriert.
Tabelle 2 Klarlack (lösungsmittelbasierter Klarlack RR 4822 gemäß der von der Covestro Deutschland AG veröffentlichten Startformulierung (Edition 2015-09-01):
Zur Herstellung der Komponente 1 wurden zunächst die Bindemittel vorgelegt. Unter Rühren mit einem Dissolver (Dissolverscheibe 5 cm, bei 800 U/min) alle weiteren Bestandteile in Tabelle 3, Teil 1, in der angegebenen Reihenfolge zudosiert und weitere 5-10 Minuten eingerührt.
Kurz vor Applikation wurde Komponente 2 unter Rühren mit einem Flügelrührer (5 min, 700 U/min) eingearbeitet und der gebrauchsfertige Klarlack innerhalb von 30min appliziert.
Tabelle 3
Lackierung der Substrat-Deckschicht- Laminate Das Vorgehen bei der Herstellung der Lackformulierungen und anschließenden Lackierung der Substratschicht-Deckschicht-Laminate ist u.a. in der zum Zeitpunkt der Anmeldung der vorliegenden Erfindung zum Patent noch unveröffentlichten Europäischen Patentanmeldung mit der Anmeldenummer 18213389.2 beschrieben. Zunächst wurde der wässrige, zweikomponentige Kunststoffprimer wie oben beschrieben angesetzt und vollflächig mit einer Fließbecherpistole Satajet RP, 1,3 mm, Luftdruck 2,1 bar in 1 Kreuzgang appliziert, um eine Schichtdicke (trocken) von 20-25 pm zu erzeugen. Nach Applikation wurde der Primer 10 min bei Zimmertemperatur, 30 min bei 80 °C im Umluftofen getrocknet und für 16 h bei Zimmertemperatur gelagert.
Anschließend wurde der einkomponentige Hydrobasislack wie oben beschrieben angesetzt und ebenfalls vollflächig mit einer Fließbecherpistole Satajet HVLP, 1,2 mm, Luftdruck 2,1 bar in 1 Kreuzgang appliziert, um eine Schichtdicke (trocken) von 9-12 pm zu erzeugen. Der Basislack wurde 10 min bei Zimmertemperatur, 30 min bei 80 °C im Umluftofen getrocknet und für 3 h bei Zimmertemperatur gelagert.
Zuletzt wurde der lösungsmittelbasierte Klarlack wie oben beschrieben hergestellt und unmittelbar nach Vermischen von Stammlack und Härter mit einer Fließbecherpistole Satajet HVLP, 1,2 mm, Luftdruck 2,1 bar in 1 Kreuzgang appliziert, um eine Schichtdicke (trocken) von 25-32 pm zu erzeugen. Der Klarlack wurde 10 min bei Zimmertemperatur, 45 min bei 80 °C im Umluftofen getrocknet.
Visuelle Beurteilung der lackierten Gesamtaufbauten:
Die visuelle Beurteilung der Oberfläche der Gesamtaufbauten aus Substratschicht, Deckschicht und Lack wurde nach Alterung der beschichteten Platten für mindestens 16 h bei 60 °C im Umluftofen gefolgt von 8 h Lagerung bei Zimmertemperatur vorgenommen. Die Ergebnisse der visuellen Beurteilung sind in Tabelle 5 aufgeführt.
Die Note „1“ wurde vergeben, wenn die lackierten Substratschicht-Deckschicht- Laminate frei von Blasen, Einfallstehen, Blistern oder Rissen war und wenn sich Fasern aus dem unter der Folie hegenden Substrat allenfalls minimal an der Oberfläche abzeichneten.
Die Note „2“ wurde vergeben, wenn die lackierten Substratschicht-Deckschicht-Laminate frei von Blasen, Einfallstellen, Blistern oder Rissen war, wenn sich aber Fasern aus dem unter der Folie hegenden Substrat an der Oberfläche abzeichneten.
Die Note „3“ wurde vergeben, wenn die wenn die lackierten Substratschicht-Deckschicht- Faminate Blasen, Einfallstellen, Blister und/oder Risse aufwiesen.
Es zeigte sich, dass die Noten 1 und 2 nur mit einer bestimmten Konzentration der Polyester- Komponenten Bl bis B4 in der Deckschicht erreicht werden konnten, wohingegen ohne Beimischung einer Polyester-Komponente (bei Verwendung der reinen Komponente A) stets Blasen, Einfallstellen, Blister und/oder Risse nach dem Lackieren auftraten (Beispiel 17, Note 3).
Bei Verwendung von PBT (Bl) und PET (B2) als Polyester- Komponente wurden bereits ab einem Gehalt von 18 Gew.% bezogen auf das Gesamtgewicht der Zusammensetzung der Deckschicht gute Lackierergebnisse erzielt (Beispiele 2-4 und 6-8). Bei Verwendung von PBT wurde zudem bereits ab 36 Gew.% der visuelle Eindruck der Oberflächen stark verbessert, indem sich Fasern aus dem unter der Folie liegenden Substrat weniger stark an der lackierten Oberfläche abzeichneten (Beispiel 3), während dieser Effekt bei der Verwendung von PET erst ab einer höheren Konzentration in der Deckschicht zu bemerken war (Beispiel 8).
Bei Verwendung von B3 als Polyester-Komponente wurden bereits ab einem Gehalt von 9 Gew.% bezogen auf das Gesamtgewicht der Zusammensetzung der Deckschicht gute Lackierergebnisse erzielt (Beispiele 9-12), wobei ab 36 Gew.% der visuelle Eindruck der Oberflächen stark verbessert war, da sich Fasern aus dem unter der Folie liegenden Substrat weniger stark an der lackierten Oberfläche abzeichneten (Beispiele 11 und 12).
Bei Verwendung von PEN (B4) als Polyester-Komponente wurden erst ab einem höheren Gehalt von 36 Gew.% bezogen auf das Gesamtgewicht der Zusammensetzung der Deckschicht gute Lackierergebnisse erzielt (Beispiele 15 und 16), wobei sich jedoch noch signifikant Fasern aus dem unter der Folie liegenden Substrat an der lackierten Oberfläche abzeichneten und die Note 1 entsprechend nicht erreicht werden konnte.
- 30 -
Tabelle 4 (E: erfindungsgemäßes Beispiel; V: Vergleichsbeispiel; alle Angaben in Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung):
Tabelle 5: (E: erfindungsgemäßes Beispiel; V: Vergleichsbeispiel)

Claims

Patentansprüche :
1. Schichtenverbund, umfassend eine Substratschicht S und eine mit der Substratschicht S wenigstens teilweise verbundene Deckschicht D, wobei das Material der Substratschicht S ein erstes thermoplastisches Polymer umfasst und das Material der Deckschicht D ebenfalls das erste thermoplastische Polymer umfasst, dadurch gekennzeichnet, dass das erste thermoplastische Polymer ein aromatisches Polycarbonat ist und in dem Material der Deckschicht D das erste thermoplastische Polymer als Blend mit einer Polyesterkomponente P vorliegt, wobei i) der Anteil dieser Polyesterkomponente P > 2 Gewichts-%, bevorzugt > 5
Gewichts-%, besonders bevorzugt > 8 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polycycloalkylenterephthalat umfasst oder daraus besteht, ii) der Anteil dieser Polyesterkomponente P > 10 Gewichts-%, bevorzugt > 15
Gewichts-%, besonders bevorzugt > 17 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polyalkylenterephthalat umfasst oder daraus besteht, iii) der Anteil dieser Polyesterkomponente P > 20 Gewichts-%, bevorzugt > 30
Gewichts-%, besonders bevorzugt > 35 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polyalkylennaphthalat umfasst oder daraus besteht, iv) der Anteil dieser Polyesterkomponente P > 2 Gewichts-%, bevorzugt > 5
Gewichts-%, besonders bevorzugt > 8 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P eine Mischung umfasst oder aus einer Mischung besteht aus mindestens 2 der folgenden Komponenten: mindestens ein Polycycloalkylenterephthalat, mindestens ein Polyalkylenterephthalat, mindestens ein Polyalkylennaphthalat.
2. Schichtenverbund gemäß Anspruch 1, wobei auf der der Substratschicht S abgewandten Seite der Deckschicht D weiterhin eine Lackschicht L vorliegt, welche wenigstens teilweise mit der Deckschicht D verbunden ist.
3. Schichtenverbund gemäß Anspruch 1 oder 2, wobei die Substratschicht S weiterhin Verstärkungsfasern umfasst.
4. Schichtenverbund gemäß Anspruch 3, wobei in der Substratschicht S eine Mehrzahl von Lagen jeweils unidirektional ausgerichteter Endlosfasern vorliegen und die Endlosfasern einer Lage nicht die gleiche Orientierung aufweisen wie Endlosfasern von unmittelbar angrenzenden Lagen.
5. Schichtenverbund gemäß einem der Ansprüche 1 bis 4, wobei das erste thermoplastische Polymer das Homopolycarbonat auf Basis von Bisphenol A, das Homopolycarbonat auf Basis von l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, ein Copolycarbonat auf Basis der Monomere Bisphenol A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan oder eine Mischung aus wenigstens zwei der vorgenannten Polymere ist.
7. Schichtenverbund gemäß einem der Ansprüche 1 bis 6, wobei das Material der Deckschicht D weiterhin einen Schlagzähmodifikator enthält.
8. Schichtenverbund gemäß einem der Ansprüche 1 bis 7, wobei die Deckschicht D eine Dicke < 500 pm aufweist.
9. Schichtenverbund gemäß einem der Ansprüche 2 bis 8, wobei die Lackschicht L wenigstens eine Gmndierungsschicht G, wenigstens eine Basislackschicht B und wenigstens eine Klarlackschicht K umfasst.
10. Schichtenverbund gemäß Anspruch 9, wobei wenigstens eine der von der Lackschicht L umfassten Schichten wasserbasiert ist.
11. Verfahren zur Herstellung eines Schichtenverbundes, umfassend den Schritt:
I) Verbinden einer Substratschicht S mit einer Deckschicht D, wobei das Material der Substratschicht S ein erstes thermoplastisches Polymer umfasst und das Material der Deckschicht D ebenfalls das erste thermoplastische Polymer umfasst, dadurch gekennzeichnet, dass das erste thermoplastische Polymer ein aromatisches Polycarbonat ist und in dem Material der Deckschicht D das erste thermoplastische Polymer als Blend mit einem Polyesterkomponente P vorliegt, wobei i) der Anteil dieser Polyesterkomponente P > 2 Gewichts-%, bevorzugt > 5
Gewichts-%, besonders bevorzugt > 8 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polycycloalkylenterephthalat umfasst oder daraus besteht, ii) der Anteil dieser Polyesterkomponente P > 10 Gewichts-%, bevorzugt > 15
Gewichts-%, besonders bevorzugt > 17 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polyalkylenterephthalat umfasst oder daraus besteht, iii) der Anteil dieser Polyesterkomponente P > 20 Gewichts-%, bevorzugt > 30
Gewichts-%, besonders bevorzugt > 35 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P mindestens ein Polyalkylennaphthalat umfasst oder daraus besteht, iv) der Anteil dieser Polyesterkomponente P > 2 Gewichts-%, bevorzugt > 5
Gewichts-%, besonders bevorzugt > 8 Gewichts-%, bezogen auf das
Gesamtgewicht des Materials der Deckschicht D, beträgt und wobei die Polyesterkomponente P eine Mischung umfasst oder aus einer Mischung besteht aus mindestens 2 der folgenden Komponenten: mindestens ein Polycycloalkylenterephthalat, mindestens ein Polyalkylenterephthalat, mindestens ein Polyalkylennaphthalat.
12. Verfahren gemäß Anspruch 11, weiterhin umfassend den Schritt: II) Aufträgen wenigstens einer Lackschicht L auf die der Substratschicht S abgewandten Seite der Deckschicht D in dem nach Schritt I) erhaltenen Schichtenverbund.
13. Verfahren gemäß Anspruch 11 oder 12, wobei die Substratschicht S weiterhin Verstärkungsfasern umfasst.
14. Verfahren gemäß einem der Ansprüche 12 oder 13, wobei die Lackschicht L wenigstens eine Grundierungsschicht G, wenigstens eine Basislackschicht B und wenigstens eine
Klarlackschicht K umfasst und wobei gegebenenfalls wenigstens eine der von der Lackschicht L umfassten Schichten wasserbasiert ist.
15. Automobilanbauteile, erhältlich unter Verwendung eines Schichtenverbundes gemäß einem der Ansprüche 1 bis 9.
EP20793725.1A 2019-10-28 2020-10-28 Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit Withdrawn EP4051497A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19205537.4A EP3815898A1 (de) 2019-10-28 2019-10-28 Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit
PCT/EP2020/080223 WO2021083925A1 (de) 2019-10-28 2020-10-28 Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit

Publications (1)

Publication Number Publication Date
EP4051497A1 true EP4051497A1 (de) 2022-09-07

Family

ID=68382243

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19205537.4A Ceased EP3815898A1 (de) 2019-10-28 2019-10-28 Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit
EP20793725.1A Withdrawn EP4051497A1 (de) 2019-10-28 2020-10-28 Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19205537.4A Ceased EP3815898A1 (de) 2019-10-28 2019-10-28 Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit

Country Status (6)

Country Link
US (1) US20220371309A1 (de)
EP (2) EP3815898A1 (de)
JP (1) JP2022554102A (de)
KR (1) KR20220095187A (de)
CN (1) CN114599518A (de)
WO (1) WO2021083925A1 (de)

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007996B (de) 1955-03-26 1957-05-09 Bayer Ag Verfahren zur Herstellung thermoplastischer Kunststoffe
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
GB1122003A (en) 1964-10-07 1968-07-31 Gen Electric Improvements in aromatic polycarbonates
NL152889B (nl) 1967-03-10 1977-04-15 Gen Electric Werkwijze ter bereiding van een lineair polycarbonaatcopolymeer, alsmede orienteerbare textielvezel van dit copolymeer.
FR1580834A (de) 1968-01-04 1969-09-12
GB1284755A (en) 1968-09-30 1972-08-09 Celanese Coatings Co Process for coating surfaces and compositions for use therein
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050C3 (de) 1970-12-22 1983-12-15 Bayer Ag, 5090 Leverkusen Verseifungsbeständige Polycarbonate, Verfahren zu deren Herstellung und deren Verwendung
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
US3953644A (en) 1974-12-20 1976-04-27 Ford Motor Company Powa--method for coating and product
NZ186925A (en) 1977-04-25 1979-12-11 Ici Ltd Top-coating based on a basecoat and top-coat compositions not requiring an intermediate baking operation
GB2012191B (en) 1977-09-29 1982-03-03 Kodak Ltd Coating process utilising cellulose esters such as cellulose acetate butyrate
EP0038127B1 (de) 1980-04-14 1984-10-17 Imperial Chemical Industries Plc Mehrschichtiges Überzugsverfahren unter Verwendung eines wässerigen thixotropen Grundschichtgemisches, das vernetzte Polymerpartikeln aufweist
DE3126549A1 (de) 1981-07-04 1983-01-20 Bollig & Kemper, 5000 Köln Verfahren zur herstellung von stabilen waessrigen dispersionen und deren verwendung als bindemittel zur herstellung von lacken, insbesondere zweischicht-metalleffektlacksystemen
DE3210051A1 (de) 1982-03-19 1983-09-29 Basf Farben + Fasern Ag, 2000 Hamburg Wasserverduennbares ueberzugsmittel zur herstellung der basisschicht eines mehrschichtueberzuges
DE3333072A1 (de) 1983-09-14 1985-03-21 Basf Farben + Fasern Ag, 2000 Hamburg Ueberzugsmasse, verfahren zur herstellung von ueberzuegen und beschichtetes substrat
US4719132A (en) 1984-09-21 1988-01-12 Ppg Industries, Inc. Process for the preparation of multi-layered coatings and coated articles derived therefrom
AT381499B (de) 1985-02-27 1986-10-27 Vianova Kunstharz Ag Wasserverduennbare ueberzugsmittel, verfahren zur herstellung und ihre verwendung fuer basisschichtenbei zweischicht-decklackierung
DE3545618A1 (de) 1985-12-21 1987-06-25 Basf Lacke & Farben Wasserverduennbares ueberzugsmittel zur herstellung der basisschicht eines mehrschichtueberzuges
US4804566A (en) * 1986-06-25 1989-02-14 General Electric Company Multilayer polyester structures and containers thereof
DE3628124A1 (de) 1986-08-19 1988-03-03 Herberts Gmbh Waessriges ueberzugsmittel, verfahren zu seiner herstellung und dessen verwendung
EP0320552A1 (de) 1987-12-18 1989-06-21 E.I. Du Pont De Nemours And Company Verfahren zur Verbesserung des Aussehens eines mehrschichtigen Überzugs
US4981759A (en) 1987-05-02 1991-01-01 Kansa Paint Co., Ltd. Coating method
DE3722005A1 (de) 1987-07-03 1989-01-12 Herberts Gmbh Verfahren zur herstellung eines mehrschichtueberzuges und hierfuer geeignetes waessriges ueberzugsmittel
BR8903379A (pt) 1988-07-11 1990-03-13 Ge Plastics Japan Ltd Processo para preparacao de policarbonatos
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
NO170326C (no) 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner
DE3903804C2 (de) 1989-02-09 2001-12-13 Bollig & Kemper Wäßrige Lackdispersionen und deren Verwendung
TW222292B (de) 1991-02-21 1994-04-11 Ciba Geigy Ag
DE4238123C2 (de) 1992-11-12 2000-03-09 Bayer Ag Verfahren zur Herstellung von thermoplastischen Polycarbonaten
AU3980395A (en) 1994-11-10 1996-06-06 Basf Aktiengesellschaft 2-cyanoacrylic acid esters
US5717057A (en) 1994-12-28 1998-02-10 General Electric Company Method of manufacturing polycarbonate
EP0839623B1 (de) 1996-10-30 2001-01-31 Ciba SC Holding AG Stabilisatorkombination für das Rotomolding-Verfahren
DE19933128A1 (de) 1999-07-19 2001-01-25 Bayer Ag Polycarbonat und dessen Formkörper
DE19933132A1 (de) 1999-07-19 2001-01-25 Bayer Ag Verfahren zur Herstellung von modifizierten Polycarbonaten
DE19948821A1 (de) 1999-10-09 2001-05-23 Basf Coatings Ag Elektrisch leitfähiger Hydroprimer für Kunststoffe
DE10300598A1 (de) 2003-01-10 2004-07-22 Bayer Ag Verfahren zur Herstellung von Polycarbonaten
DE102007050192A1 (de) * 2007-10-20 2009-04-23 Bayer Materialscience Ag Zusammensetzung mit UV-Schutz
TWI576389B (zh) * 2012-07-24 2017-04-01 三菱瓦斯化學股份有限公司 熱可塑性樹脂組成物及利用此組成物之片材
JP6567508B2 (ja) 2013-10-08 2019-08-28 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 繊維複合体、その使用およびその生産方法
US10815330B2 (en) 2016-04-22 2020-10-27 Covestro Deutschland Ag Thermolatently catalysed two-component system
KR20190010876A (ko) 2016-05-24 2019-01-31 바스프 코팅스 게엠베하 개선된 내오염성 및 (자기)세정 특성을 갖는 코팅제 및 그로부터 제조된 코팅 및 그의 용도
EP3464471B1 (de) 2016-06-03 2021-10-06 Covestro Intellectual Property GmbH & Co. KG Mehrschichtverbundwerkstoff enthaltend spezielle copolycarbonate als matrixmaterial
TWI764909B (zh) 2016-07-04 2022-05-21 德商科思創德意志股份有限公司 含特定聚碳酸酯組成物作為基質材料之多層複合材料
DE202017004083U1 (de) 2017-07-29 2017-08-11 Bond-Laminates Gmbh Faser-Matrix-Halbzeuge mit abdichtenden Decklagen

Also Published As

Publication number Publication date
JP2022554102A (ja) 2022-12-28
US20220371309A1 (en) 2022-11-24
EP3815898A1 (de) 2021-05-05
KR20220095187A (ko) 2022-07-06
CN114599518A (zh) 2022-06-07
WO2021083925A1 (de) 2021-05-06

Similar Documents

Publication Publication Date Title
EP2046906B1 (de) Wasserbasislacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
EP2459625B1 (de) Verbesserte haftung zwischen thermoplasten und polyurethan
EP0691201A2 (de) Hinterspritzte Laminate mit Farbschicht
EP3116926B1 (de) Schnelltrocknende, hart-elastische, kratzfeste und beständige beschichtungsmassen
WO2019046062A1 (en) COMPOSITE LAMINATE COMPRISING A THERMOPLASTIC POLYURETHANE FILM LAYER
WO2002074860A2 (de) Polycarbonat-zusammensetzungen mit verbesserter schaumhaftung
EP3058016A1 (de) Polycarbonatzusammensetzungen mit verbesserter haftung zu polyurethanschichten
EP3727851B1 (de) Kunststofffolien für id-dokumente mit verbesserter helligkeit von prägehologrammen
EP0398060B1 (de) Verwendung von Polyurethan-Mischungen als Klebstoffbindemittel zur Verklebung von SBS-Blockpolymerisaten.
WO2018122137A1 (de) Verbundbauteil
EP4051497A1 (de) Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit
WO2018122143A1 (de) Lagenweises fertigungsverfahren für einen gegenstand mit unterschiedlichem lagenmaterial und gegenstand mit unterschiedlichem lagenmaterial
WO2008092558A1 (de) Mehrschichtverbundwerkstoff mit einer schicht aus polycarbonat
DE112013001482B4 (de) Tiefschwarzer Mehrschichtbeschichtungsfilm und Bildungsverfahren davon
WO2010089042A1 (de) Folienmehrschichtverbund mit einer schicht aus polycarbonat
DE4446333A1 (de) Verfahren zur kontinuierlichen Kratzfestausrüstung von Polycarbonaten
TW201815961A (zh) 包括覆蓋層及pc/abs層之多層複合製品及其方法
EP2168783A1 (de) Verwendung einer Kunststoff-Folie im Farblaserdruck
WO2001044121A1 (de) Solare entsalzungsanlage enthaltend beschichtete transparente formkörper
EP0337206A2 (de) Mischungen von thermoplastischen Poly(ester)carbonaten mit thermoplastischen Polyurethanen
WO2008107133A1 (de) Erzeugnis mit verbesserter lackhaftung
EP2808354A1 (de) Schnelltrocknende, hart-elastische, kratzfeste und beständige Beschichtungsmassen
EP3794073B1 (de) Gefüllte polycarbonat-zusammensetzungen mit guter kratzfestigkeit und reduzierter vergilbung
WO2018007436A1 (de) Beschichtungssystem
WO2014122149A1 (en) Improved maximum processing temperature of plastic substrates using hard coats

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230811