EP4025788A1 - Procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage et système de pompe associé - Google Patents

Procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage et système de pompe associé

Info

Publication number
EP4025788A1
EP4025788A1 EP20804455.2A EP20804455A EP4025788A1 EP 4025788 A1 EP4025788 A1 EP 4025788A1 EP 20804455 A EP20804455 A EP 20804455A EP 4025788 A1 EP4025788 A1 EP 4025788A1
Authority
EP
European Patent Office
Prior art keywords
pump
determined
power consumption
motor
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20804455.2A
Other languages
German (de)
English (en)
Inventor
Stefan Gschiel
Helmut Wimmer
Dietmar Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Austria GmbH
Original Assignee
Siemens Energy Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Austria GmbH filed Critical Siemens Energy Austria GmbH
Publication of EP4025788A1 publication Critical patent/EP4025788A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • F04B47/022Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level driving of the walking beam
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • E21B47/009Monitoring of walking-beam pump systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/121Load on the sucker rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1211Position of the walking beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0202Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0207Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0208Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Definitions

  • the invention relates to a method for determining operating properties of a rod pump, comprising a pump head which is connected to a kinematic converter via a rod, and the kinematic converter is driven by an electric motor.
  • the invention relates to a pumping system with a rod pump, comprising a pump head which is connected to a kinematics converter via a rod and the kinematics converter is driven by an electric motor.
  • the invention also relates to a computer-implemented method for determining operating properties of a rod pump.
  • Deep pumps are used as conveying devices for the extraction of liquids stored underground if the storage pressure is not sufficient for them to reach the surface independently or in sufficient quantities. Most of them are used to produce crude oil. Other areas of application are the promotion of brine and medicinal waters.
  • the image of most oil fields is dominated by rod pumps, which because of their appearance and movement are also known as horse head pumps, nickers or nickers.
  • the actual pumping mechanism - a piston with check valves - is located in a separate pipe string in the borehole near the oil-bearing layer.
  • the piston is set in a continuous up and down movement by means of a screwable rod from a pump bracket located on the earth's surface. This is done by what is known as the horse's head. This consists of one at the end of an as Balancing arranged circular arc segment to which a steel cable or chain pair is clamped at the top.
  • the drive is mostly electric. In the presence of sufficient energy-containing gases dissolved in the petroleum, however, some of these gases can be separated from the material to be conveyed on site by means of a degasser and fed to a gas engine that drives the pump.
  • the working stroke is 1 to 5 m. Two and a half to twelve strokes per minute are common.
  • the rod-type deep pump can be used economically up to a delivery depth of around 2500 m. For greater depths, other pump systems are better suited due to the great weight of the liquid column to be lifted.
  • the "Mark II" pump type from the Texan manufacturer Lufkin Industries is particularly suitable for high pumping rates from great depths thanks to its special movement geometry.
  • the "Sucker Rod” type of pump has a sucker rod, a steel rod typically between 25 and 30 feet long and threaded at both ends, used in the oil industry to move the surface and downhole components of an oil well installed reciprocating pump to connect with each other.
  • An extremely valuable tool for analyzing downhole performance is a downhole test rig, which measures the load on the polished rod in relation to the position of the polished rod.
  • the rod position and rod load can be recorded over time.
  • the load measuring part of the dynamometer is attached to the polished rod so that the load can be recorded and sent to a recorder.
  • An accompanying part of the dynamometer attached to the walking beam records the position of the polished rod and sends it to same recorder.
  • the generated graphic is referred to as a Dynagraph or more often as a dynamometer or Dynagraph map and corresponds to a load-displacement diagram.
  • Dynamometer cards taken from the surface can rarely be used directly to record the operating conditions of the downhole pump, as they also reflect all forces (static and dynamic) that occur from the pump to the wellhead. However, if there is a dynamometer directly above the pump, the recorded map is a real indicator of the pump's operation.
  • Gilbert's Dynagraph (a mechanical dynamometer) succeeded in doing this in the 1930s. Rod loads immediately above the pump, recorded as a function of the pump position, give Dynagraph maps a name that distinguishes them from surface maps.
  • sensors have been used to record the operating conditions of a rod-type deep pump, which record the forces acting or the current position (inclination) of the beam (English “beam” or “cranck arm”), for example by means of force sensors, Hall Sensors or proximity sensors.
  • the position of the boom is calculated from this.
  • it is time-consuming to calibrate the respective sensors with one another.
  • inaccurate calibration can lead to errors that can adversely affect the measurement data evaluation.
  • the object of the invention is achieved by a method of the type mentioned above, wherein a detection means is also provided to detect the power consumption of the motor during its operation, comprising the steps: a) Detection of the current consumption and the operating voltage of the motor in the form of discrete measuring points over at least one pumping cycle, to which four operating phases of the deep pump can be assigned, and from this Be agreeing the power consumption of the motor, b) determining for a pumping cycle a period and a maximum of the power consumption, which corresponds to the maximum torque of the deep pump, c) Determination of a reference phase angle for the kinematic converter using the properties of the kinematic converter and the power consumption of the motor, which describes the relationship between the maximum power consumption and the maximum force acting on the linkage of the low pump
  • the invention recognizes that the operating properties of the feed pump can also be determined without taking into account the motor speed.
  • the invention is based on the surprising finding that the operating properties of the feed pump can also be determined by means of the torque curve, the period duration and the reference phase angle.
  • the invention makes it possible to determine the operating properties of feed pumps much more easily, flexibly and robustly. In addition, the accuracy in determining the operating characteristics of the feed pump can be increased.
  • the discrete measuring points of the current consumption of the motor are recorded with a sufficiently high sampling frequency.
  • the operating voltage supply for the motor can have one or more phases.
  • the period duration is determined with the aid of an approximated polynomial through the power values of the measuring points.
  • the period duration is determined with the aid of a polynomial which takes into account statistical mean values of the power values of the respective measuring points over at least five, preferably at least ten, particularly preferably at least fifty pump cycles for support points of the polynomial.
  • a reference value is determined for the measuring points at which a maximum value for the change in the respective power value between two immediately successive measuring points mum is present and the period is determined using the reference value.
  • the determination of the operating properties of the delivery pump takes place with the aid of a load-displacement diagram, which is derived from the torque curve determined in step d) using the period duration determined in step b) and the is determined in step c) certain reference phase angle.
  • the reference phase angle is determined with respect to the absolute maximum of the power values of the measuring points within a pump cycle.
  • the object of the invention is also achieved by a pumping system of the type mentioned at the outset, with a detection means also being provided which is configured to detect the power consumption of the motor during its operation, and a computing device with a memory is provided which is used for this purpose is set up to carry out the method according to the invention with the aid of the detection means.
  • a further object of the invention is to specify a computer implemented method.
  • the object of the invention which is directed to a computer-implemented method, is achieved by the features of claim 8.
  • the invention is explained in more detail using an exemplary embodiment shown in the accompanying drawings. In the drawings shows
  • Fig. 1 shows an embodiment of a Sys system according to the invention with a rod deep pump
  • Fig. 2 shows an embodiment of a pump head of a Ge rod deep pump
  • FIG. 3 shows an exemplary embodiment for a flow chart of the method according to the invention
  • FIG. 7 shows a time representation of a current curve of an electric drive motor for a rod pump.
  • Fig. 1 shows an embodiment of a pump system 100 according to the invention with a rod pump 1 of the type of a sucker rod pump.
  • the pump system 100 comprises a pump head 110 which is connected to a kinematic converter 120 via a linkage 5, 10.
  • the linkage 5, 10 forms a so-called "rod cord” and runs through a borehole head 6, with which a through-flow line 7 is connected for discharging a conveyed medium 14.
  • a jacket 8 adjoins the wellhead 6, in which a tube 9 runs which guides the rods 5 and 10, respectively.
  • the pump head 110 which includes a piston 11 in a barrel 12, is fastened to the lower end of the rod 10. A movement of the piston 11 leads to the conveying medium 14 being pumped out.
  • the jacket 8 is formed in a borehole 13.
  • the kinematic converter 120 is driven, for example, by a drive machine in the form of an electric motor 3 via a reduction gear 4.
  • the kinematic converter 120 can additionally comprise a hydraulic power amplifier.
  • the mechanical connection of the kinematic converter 120 takes place in this example via a running bar 2, but can vary depending on the type of pump used.
  • Such kinematic converters are familiar to those skilled in the art, as is their description in the form of “properties of a kinematic converter” through the transformation function of mechanical movements and forces.
  • the kinematic converter 120 converts a rotary movement of the motor 3 into a linear movement of the linkage 5, 10.
  • the properties of the kinematic converter 120 can, for example, be described using leverage and gear ratios, as well as the electrical drive power and moving masses. It should be noted that the position of a flywheel along a rotary movement and the corresponding force on the linkage 10 is related to time, which is referred to as the reference phase angle. A reference phase can be used for each pump arrangement. senwinkel be determined using the kinematics principles of mechanics, as known to those skilled in the art.
  • a detection means 110 is provided, which is directed to the current consumption and the operating voltage of the individual phases of the motor 3 during its operation to he grasp. This can be done, for example, by an ammeter or voltmeter which, in particular, detects discrete measuring points with current or voltage values with a high resolution in terms of time.
  • the recorded current and operating voltage values can be used to determine the effective power consumption and the apparent power consumption.
  • a computing device 140 with a memory 150 is provided, which is set up to carry out the method according to the invention with the aid of the detection means 130.
  • FIG. 2 shows a further, more detailed example of a prior art pump head 111.
  • the rod cord or the linkage 10 is driven according to FIG. 1 and set in an up and down linear movement.
  • a cover tube 15 with vertical grooves is arranged in the borehole 13, which leads within the cover tube 15 via a Garvorrich device 16 and a self-aligning bearing 17, a rotating tube 18 with spiral grooves.
  • a receiving tube 19 is connected via a wing nut 20 to a piston assembly 21 which is located in a pump lining 22.
  • a calibrated rod 23 is connected to the rod 10 via a pin 24 and a holding device 25, which drives the piston arrangement by the linear movement.
  • Fig. 3 shows an embodiment of a flowchart of the method according to the invention with the following steps: a) Detection of the current consumption and the operating voltage of the motor 3 with a sampling frequency over at least one pump cycle, which can be assigned to four operating phases of the deep pump 1, in the form of diskre th measurement points with current values, and from this determining the power consumption 72 of the motor 3 with power values, b) determining a period 85 and a maximum 82 of the power consumption 72 for a pump cycle, which corresponds to the maximum torque of the deep pump 1, c) determining a reference phase angle for the kinematic converter 120 with the aid of the properties of the kinematic converter 120 and the power consumption of the motor 3, which describes the relationship between the maximum 82 of the power consumption and the maximum of the force acting on the linkage of the deep pump 1, d) determining a torque Progress from the power consumption d es motor 3 with the help of the properties of the kinematic converter 120, e) determining the operating properties of the feed pump
  • the power values can be determined by the product of the discrete current values and the operating voltage.
  • the period 85 can be determined, for example, with the aid of an ap proximated polynomial 80 through the power values of the measurement points.
  • the period 85 can, for example, also be determined with the aid of a polynomial 80 which takes into account statistical mean values of the power values of the respective measuring points over at least five, preferably at least ten, particularly preferably at least fifty pump cycles for support points of the polynomial.
  • a reference value 81 can be determined for the measurement points, at which there is a maximum for the change in the respective power value between two immediately successive measurement points, and the period 85 is determined with the aid of the reference value 81.
  • the operating properties of the feed pump 1 can be determined with the aid of a load-displacement diagram 30, 50, 54, 57, 60-65, which is derived from the torque curve determined in step d) using the curve determined in step b) Period duration and the reference phase angle determined in step c) is determined.
  • the reference phase angle can be determined with respect to the absolute maximum of the power values of the measuring points within a pump cycle.
  • FIG. 4 shows examples of load-displacement diagrams, which are often used to determine the operating properties of rod pumps.
  • a load-displacement diagram 30 is shown in FIG. 4.
  • a lowest point of the pump stroke 33 and a highest point of the pump stroke 34 can be seen.
  • a tip of the polished rod 35 is Darge provides.
  • a map 36 of the polished rod for pumping speed equal to zero is shown in dashed lines.
  • a map 37 of the polished rod for Pumpge speed is greater than zero.
  • a minimum load on the polished rod 38 (MPRL) is shown.
  • a gross piston load 39 can also be read off.
  • a weight of the rods in the fluid 40 can be determined, as well as forces 41 and 42, and a pump stroke or pump path 43.
  • FIG. 5 shows load-displacement diagrams 50 with the rod load at the setpoint value as a function of the load 32 of the polished rod over the respective position 31 of the polished rod.
  • a load-displacement diagram 51 shows operation at full pump output.
  • a load-displacement diagram 52 shows operation when the conveying medium has been pumped empty.
  • a respective nominal value 53 can be seen.
  • load-displacement diagrams 54 with the rod load in the event of a change of operation are shown as a function of the load 32 of the polished rod over the respective position 31 of the polished rod, with respective angles 55, 56 being able to be read off.
  • load-displacement diagrams 57 are shown with rod load with the respective mechanical work of the rods.
  • load-travel diagrams 60-65 are shown operating states for different loading.
  • Diagram 60 shows load-displacement diagrams in normal operation.
  • Diagram 61 shows load-displacement diagrams for a fluid store
  • Diagram 62 shows load-displacement diagrams with exposure to gas in the underground store.
  • Diagram 63 shows a load-displacement diagram for a stuck piston.
  • Diagram 64 shows the load-displacement diagram in the event of a leak through a stationary valve.
  • a diagram 65 shows a load-displacement diagram in the event of a leak through a moving valve.
  • Fig. 7 shows an example of a time representation of a power curve of an electric drive motor for a rod pump, which was determined from the power consumption and operating voltage of the motor 3 Be.
  • the illustration has a time axis 70 and an axis 71 for the amplitude of the current or power consumption.
  • a power consumption 72 is shown for which a zero point or zero axis 80 and a polynomial for averaged power consumption 81 can be determined.
  • a maximum value of the averaged power consumption 82 and zero crossings of the averaged power consumption 83, 84 can be determined for the polynomial 80.
  • a period 85 of the mean power consumption can be determined for the polynomial 80.
  • phase angle 86 of the averaged power consumption can be determined, which describes the relationship between the rotational movement of the motor 3 and the linkage 10 of the pump 1.
  • a corresponding load-path diagram can be determined from the determined values in order to derive the operating properties of the rod pump 1 in a simple manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

L'invention se rapporte à un procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage (1), comprenant une tête de pompe (110), qui est reliée à un convertisseur cinématique (120) par le biais d'une tige de forage (5, 10), et le convertisseur cinématique (120) est entraîné par un moteur électrique (3) et, en outre, un moyen de mesure (130) est utilisé pour mesurer la consommation d'énergie du moteur (3) pendant fonctionnement de celui-ci, ledit procédé comprenant les étapes consistant : a) à mesurer la consommation de courant et la tension de fonctionnement du moteur (3) sur au moins un cycle de pompage, avec lequel quatre phases de fonctionnement de la pompe de forage (1) peuvent être associées dans chaque cas, et à déterminer la consommation d'énergie du moteur (3) à partir de celles-ci ; b) à déterminer, pour un cycle de pompe, une période et un maximum de la consommation d'énergie qui correspond au maximum de couple de la pompe de forage (1) ; c) à déterminer un angle de phase de référence pour le convertisseur cinématique (120) à l'aide des propriétés du convertisseur cinématique (120) et de la consommation d'énergie du moteur (3) ; d) à déterminer une courbe de couple à partir de la consommation d'énergie du moteur (3) à l'aide des propriétés du convertisseur cinématique (120) ; e) à déterminer les propriétés de fonctionnement de la pompe de refoulement (1) à partir de la courbe de couple à l'aide de la période et de l'angle de phase de référence.
EP20804455.2A 2019-10-30 2020-10-28 Procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage et système de pompe associé Pending EP4025788A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19206209.9A EP3816444A1 (fr) 2019-10-30 2019-10-30 Procédé de détermination des propriétés de fonctionnement d'une pompe de forage à piston ainsi que système de pompe associé
PCT/EP2020/080274 WO2021083953A1 (fr) 2019-10-30 2020-10-28 Procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage et système de pompe associé

Publications (1)

Publication Number Publication Date
EP4025788A1 true EP4025788A1 (fr) 2022-07-13

Family

ID=68424609

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19206209.9A Withdrawn EP3816444A1 (fr) 2019-10-30 2019-10-30 Procédé de détermination des propriétés de fonctionnement d'une pompe de forage à piston ainsi que système de pompe associé
EP20804455.2A Pending EP4025788A1 (fr) 2019-10-30 2020-10-28 Procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage et système de pompe associé

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19206209.9A Withdrawn EP3816444A1 (fr) 2019-10-30 2019-10-30 Procédé de détermination des propriétés de fonctionnement d'une pompe de forage à piston ainsi que système de pompe associé

Country Status (4)

Country Link
US (1) US20240125316A1 (fr)
EP (2) EP3816444A1 (fr)
CA (1) CA3159532A1 (fr)
WO (1) WO2021083953A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021127488A1 (de) 2021-10-22 2023-04-27 Ifm Electronic Gmbh Gestängetiefpumpe mit einem Sensor zur Funktionsüberwachung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325142B1 (en) * 1998-01-05 2001-12-04 Capstone Turbine Corporation Turbogenerator power control system
JP4626057B2 (ja) * 1999-04-28 2011-02-02 株式会社安川電機 ポンプジャックのポンプオフ制御方法及び装置
CA2614817C (fr) * 2002-09-27 2010-03-23 Unico, Inc. Systeme de commande de pompe a tiges comprenant un estimateur de parametres
US7212923B2 (en) * 2005-01-05 2007-05-01 Lufkin Industries, Inc. Inferred production rates of a rod pumped well from surface and pump card information
US9353617B2 (en) * 2012-11-06 2016-05-31 Unico, Inc. Apparatus and method of referencing a sucker rod pump
US9903193B2 (en) * 2016-04-22 2018-02-27 Kelvin Inc. Systems and methods for sucker rod pump jack visualizations and analytics
US10408205B2 (en) * 2016-08-04 2019-09-10 Schneider Electric Systems Canada Inc. Method of determining pump fill and adjusting speed of a rod pumping system

Also Published As

Publication number Publication date
EP3816444A1 (fr) 2021-05-05
WO2021083953A8 (fr) 2021-11-04
WO2021083953A1 (fr) 2021-05-06
CA3159532A1 (fr) 2021-05-06
US20240125316A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
DE60132115T2 (de) Absenkungsvorrichtung und -verfahren zur in-situ-analyse von formationsfluiden
DE2136670C3 (de) Pumpvorrichtung für Bohrlöcher
DE102007062229B4 (de) Fluidpumpensystem für ein Bohrlochwerkzeug, Verfahren zum Steuern einer Pumpe eines Bohrlochwerkzeugs sowie Verfahren zum Betreiben eines Pumpensystems für ein Bohrlochwerkzeug
DE2734845A1 (de) Verfahren zum messen von volumen und dichte von schlamm in schlammkulen in einem bohrfluidsystem und vorrichtung zur durchfuehrung des verfahrens
DE3538482C2 (de) Vorrichtung zum Bestimmen der Dichte einer zwei-phasigen Strömung und Verfahren zum Bestimmen der Qualität eines injizierten Dampfes
EP4025788A1 (fr) Procédé permettant de déterminer des propriétés de fonctionnement d'une pompe de forage à tige de forage et système de pompe associé
EP0195308A1 (fr) Balance de quene de modèle pour études aérodynamiques de modèles en soufflerie
CN106351645A (zh) 一种抽油机井动液面连续测量方法及装置
EP3124740B1 (fr) Dispositif de forage et procédé d'établissement d'un forage depuis une plateforme flottante
EP4083373A1 (fr) Procédé et agencement permettant de faire fonctionner un transport dans un trou de forage
EP3985223A1 (fr) Procédé mise en uvre par ordinateur permettant de déterminer une propriété fonctionnelle d'un chevalet de pompage à pistons, dispositif d'analyse et système de pompe correspondant
EP3985222A1 (fr) Procédé mise en uvre par ordinateur permettant de déterminer une propriété de fonctionnement d'une pompe de forage à tringlerie, dispositif d'analyse et système de pompage associé
EP1942247B1 (fr) Méthode et dispositif pour forer dans le sol par refoulement
EP3988761A1 (fr) Procédé, dispositif d'analyse et système de pompe permettant de détecter une fuite d'huile dans une pompe de sondage à maîtresse tige
WO2022078736A1 (fr) Procédé mis en œuvre par ordinateur pour déterminer une propriété de fonctionnement d'une pompe de puits de forage à tige de forage, dispositif d'analyse et système de pompe correspondant
DE60302313T2 (de) Verfahren und Einrichtung zum Messen der Tragfähigkeit eines in den Boden durch Schwingung eingeführten Objektes
CN108444893A (zh) 一种可检测不同地层的造林地土壤水分入渗检测装置
Frikha et al. Auto‐Controlled Ménard Pressuremeter: A Novel Tool for Optimal Use of the Pressuremeter
CN209324256U (zh) 4-3/4英寸旋转导向工具
SU1768752A1 (ru) Способ определения координат исполнительного органа буровой установки при проходке стволов 2
JP4107586B2 (ja) 杭打ち機の圧入力検出装置
DE1948134A1 (de) Inspektionsvorrichtung fuer Bohrgestaenge od.dgl.
DE4413983C2 (de) Einbohrlochversuch zur Bestimmung von Transmissivität und Speicherkoeffizient
DE102013204860B4 (de) Verfahren zum Bestimmen einer ein Verdrängervolumen je Arbeitsspiel bestimmenden Kenngröße einer verstellbaren hydraulischen Verdrängermaschine
DE102019112351A1 (de) Messvorrichtung zur Untersuchung eines Brunnenschachts oder eines Bohrlochs

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN