EP4007832B1 - Procédé de fonctionnement d'un système de circulation et système de circulation - Google Patents

Procédé de fonctionnement d'un système de circulation et système de circulation Download PDF

Info

Publication number
EP4007832B1
EP4007832B1 EP19868154.6A EP19868154A EP4007832B1 EP 4007832 B1 EP4007832 B1 EP 4007832B1 EP 19868154 A EP19868154 A EP 19868154A EP 4007832 B1 EP4007832 B1 EP 4007832B1
Authority
EP
European Patent Office
Prior art keywords
water
temperature
pipe
part section
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19868154.6A
Other languages
German (de)
English (en)
Other versions
EP4007832A1 (fr
EP4007832C0 (fr
Inventor
Roberto BAWEY
Patric OPITZ
Olaf HEINECKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ltz Zentrum Fuer Luft und Trinkwasserhygiene GmbH
Original Assignee
Ltz Zentrum Fuer Luft und Trinkwasserhygiene GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ltz Zentrum Fuer Luft und Trinkwasserhygiene GmbH filed Critical Ltz Zentrum Fuer Luft und Trinkwasserhygiene GmbH
Priority to RS20240590A priority Critical patent/RS65643B1/sr
Priority to HRP20240755TT priority patent/HRP20240755T1/hr
Publication of EP4007832A1 publication Critical patent/EP4007832A1/fr
Application granted granted Critical
Publication of EP4007832C0 publication Critical patent/EP4007832C0/fr
Publication of EP4007832B1 publication Critical patent/EP4007832B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • E03B7/045Domestic or like local pipe systems diverting initially cold water in warm water supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0073Arrangements for preventing the occurrence or proliferation of microorganisms in the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0078Recirculation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps

Definitions

  • the invention relates to a method for operating a circulation system and to a tempered circulation system, each according to the features of the preambles of the independent claims.
  • DIN EN 806 and VDI guideline 6023 for drinking water installations in buildings require that the temperature of the cold drinking water (PWC) in all pipes of the installations be limited to a maximum of +25°C at all times.
  • PWC cold drinking water
  • the water temperature for cold water points should not exceed +25°C 30 seconds after a tap is fully opened.
  • VDI guideline 6023 also contains the recommendation to keep the temperature of the drinking water below +25°C if possible. It goes without saying that a water temperature limitation is often also considered necessary for other water installations, for example for industrial process water installations.
  • a method for operating a circulation system with a heat storage unit, a circulation pump, a control unit and at least two lines and with an otherwise unknown pipe network structure is known.
  • the lines each of which has a valve that can be adjusted via a motor drive, correspond to temperature sensors that are arranged in front of each mixing point between the lines.
  • the motor drives and/or the circulation pump are connected wirelessly or by cable to the control unit for data exchange.
  • the control unit is designed to carry out thermal hydraulic balancing and thermal disinfection by limiting the stroke of measured temperatures and/or adjusting the pump output depending on a difference between an actual temperature value and a target temperature value.
  • a drinking and service water supply system for a building with a house connection for cold water, which is connected to the public supply network, is known.
  • the supply system comprises at least one circulation line, which is provided with a pump and leads to at least one consumer.
  • a heat exchanger is provided in the circulation line, which extracts heat from the water.
  • EP 3 159 457 A1 is also a drinking and service water supply facility of the DE 20 2015 007 277 U1 known type, wherein the heat exchanger is formed by a latent heat accumulator and has a motor-operated flushing valve provided in the circulation line, which is connected for control purposes to a control device.
  • the flushing valve is arranged between the latent heat accumulator and an opening of the house connection in the circulation line and is arranged downstream of the latent heat accumulator in the direction of flow.
  • a hot water network has a similar problem to a cold water network.
  • the operating temperatures change, and a storage tank or heater is used instead of a cooling device.
  • the temperatures in the hot water network should be between 60 °C at the storage tank outlet and 55 °C at the storage tank inlet.
  • heat losses lead to a temperature decrease in the hot water network.
  • the object of the present invention is therefore to achieve in an effective manner that the water temperature remains in a desired temperature range for all sections and for all times during the operation of a circulation system.
  • the invention therefore also covers, with appropriate adaptations of the formulas used for calculation according to the model, the case where, instead of a cooling device, a tempering device, for example a heat exchanger, is used that can heat or cool the water.
  • a tempering device for example a heat exchanger
  • the tempering device is preferably designed as a heating device.
  • the method according to the invention relates in particular to a circulation system with a temperature control device with an inlet port and an outlet port for cooling water and with a line system with several strands, which have one or more sections with a given thermal coupling with an environment and are connected by means of nodes, wherein one or more of the lines of the line system are designed as a supply line, at least one individual supply line connected to a withdrawal point and at least one line designed as a circulation line is connected to the supply line or lines.
  • the method according to the invention for operating the circulation system is characterized in that, starting from a temperature starting value T MA * ⁇ T soll and a volume flow starting value V z * for the first section connected to the outlet port, a temperature change of the water between the start area and the end area is determined according to a model of the axial temperature change, a temperature change of the water between the start area and the end area is determined for each given further section connected to the first section according to the model of the temperature change, under the boundary condition that the water temperature in the start area of the given section is equal to the water temperature in the end area of the section to which the given section is connected in the direction of flow of the water and the value T a of the water temperature and the value V z of the volume flow at the outlet port are selected such that in the end area of each section of the circulation system the water temperature T ME ⁇ T soll and at the input port the water temperature is T b ⁇ T soll with T soll - T b ⁇ ⁇ , where ⁇ >0 is a predetermined value.
  • the determination consists in calculating according to the model the axial temperature change of the water between the start and end of the section, i.e. the corresponding pipe section, due to heat absorption from the area surrounding the section.
  • the entire system of sections is successively run through and the temperature in the entire system is therefore calculated.
  • the value T a of the water temperature and the value V z of the volume flow are determined at the output port, whereby it is achieved that in the end region of each section of the circulation system the water temperature is T ME ⁇ T soll and at the input port the water temperature is T b ⁇ T soll with T soll - T b ⁇ ⁇ , where ⁇ >0 is a predetermined value, determined, preferably calculated, by means of a modeling of the temperature and volume flows of the water circulating in the pipe system. This is preferably done for a state with a stationary Vz.
  • the temperature control device and, if necessary, a circulation pump of the circulation system are then adjusted so that the water temperature and the volume flow assume the determined values T a and V z .
  • a temperature is set at an output port, temperature changes are calculated based thereon and used for modeling according to the specifications of the characterizing part of claim 1.
  • the advantage of calculation is that no sensor is needed to measure something and that influencing factors can be evaluated and varied and possibly even predictions can be made.
  • the calculation offers the advantage that fewer measuring points are required and the system as a whole is less susceptible to vibration.
  • control according to the invention is carried out by means of an adjustment at the output port, whereby the controller design is based on the entire water pipe system with distributed parameters with a calculation of a large number of temperatures T ME . In principle, therefore, only one controller and only one temperature setting are required to provide the temperature Ta.
  • the invention therefore also covers the analogous case of a hot water network, where a storage tank or heater is used instead of a temperature control device.
  • the invention covers the case where a heat exchanger is used instead of a temperature control device, which can heat or cool the water.
  • strand refers to a line consisting of one or more sections between two nodes, with no other nodes between them. The strands are connected via nodes.
  • the boundary condition that the water temperature in the initial region of the given section is equal to the water temperature in the end region of the section to which the given section is connected refers only to the sections of one line.
  • the temperature and size of the volume flow leaving a node into a subsequent section depends on the temperatures and sizes of the incoming volume flows.
  • the invention preferably assumes that these are given by the design of the piping system.
  • the distribution of the volume flows flowing out of a node to the various outgoing lines or sections is preferably assumed in the invention to be given by the design of the line system.
  • mixing temperatures when strands are joined and temperatures when strands are split are calculated based on a percentage volume flow distribution.
  • the pipe system is assumed to be given, whereby it is understood that the pipe system is designed in accordance with the specifications of DIN 1988-300 for the design of pipe networks, whereby in particular certain nominal diameters of the PWC (Potable Water Cold) pipes and values of thermal coupling of the circulating water with the environment are prescribed. It is understood that in general the designs of the pipe network prescribed or recommended in other countries or regions can also be observed.
  • PWC Personal Water Cold
  • the highest permissible value according to the design of the pipe system is selected as the volume flow starting value V z *. This value is reduced until the temperature of the circulating water is close to T setpoint , since as the volume flow decreases, the temperature of the circulating water increases and therefore the temperature at the inlet port increases.
  • the value T MA * is varied and the highest value T a of the water temperature is selected at which the water temperature at the input port is T b ⁇ T set with T set - T b ⁇ ⁇ , where ⁇ >0 is a predetermined value.
  • T soll - T b ⁇ ⁇ ensures that the water temperature in the circulation system is not set too cold and the system is not operated in an energy-inefficient manner.
  • is in a range between 1°C and 5°C, but can also be in a different range.
  • the determination of the temperature change of the water between the beginning and end of each section can be carried out using models that are known per se, for example by simulation calculations or corresponding known formulas.
  • the circulation system is preferably operated in a state in which no water is removed and no water is taken in, because in this state a higher heating of the water is to be expected than in a state in which water is withdrawn and thus, when using the parameters T a and V z determined according to the method, a safety distance from a state with an undesirably high water temperature is ensured.
  • T a and V z determined by means of the method are advantageously used to model a given circulation system in which the piping system is designed in accordance with the legal provisions regarding nominal diameters and thermal coupling of the circulating water with the environment, and to operate it in such a way that the legal requirements regarding the temperature of the drinking water in the circulation system are met.
  • the parameters T a and V z determined by means of the method are advantageously used to determine the design of the temperature control device with regard to its cooling capacity in a given circulation system in which the pipe system is designed in accordance with the legal requirements with regard to nominal diameters and thermal coupling of the circulating water with the environment. Furthermore, the design of a circulation pump can be determined with regard to its pumping capacity.
  • the circulation line of the circulation system is a line downstream of a withdrawal point in the circuit in which water flows from the outlet port of a temperature control device back to the inlet port of the temperature control device if no further withdrawal point is connected to this line.
  • node is used for a line element to which lines are connected. At least two volume flows can flow into a node and exactly one volume flow can flow out, or exactly one volume flow can flow in and at least two volume flows can flow out.
  • a node corresponds to a branch.
  • exactly two volume flows flow into a node of the circulation system and one volume flow flows out, or exactly one volume flow flows in and exactly two volume flows flow out, as for example in a T-piece.
  • the outgoing volume flows are divided into equal-sized outgoing volume flows at each node. It goes without saying that other divisions are also possible.
  • a temperature change of the water between its initial area and their end section whereby the water temperature in the end section of a given section is chosen to be equal to the water temperature in the start section of the section closest to the given section in the direction of flow of the circulating water. Therefore, for each section of the circulation system, the temperature of the water in the end section of the respective section can be determined based on the temperature in the start section.
  • the temperature of the circulating water can be determined for each section starting from a temperature at the outlet port at a stationary volume flow, i.e. a value T a of the water temperature at the outlet port can also be determined as the initial temperature of the section adjoining the outlet port, at which the water temperature T ME ⁇ T soll for the end areas of all sections.
  • the values T a and V z are determined in an iterative approximation method in which, starting from a temperature start value T MA * ⁇ T soll and a volume flow start value V z * for the first section connected to the output port, the water temperature T ME in its end region is calculated for each given section, wherein the water temperature T MA ' in the start region of the next connected section is selected to be equal to the water temperature T ME in the end region of the given section.
  • the sections are axially uniform over the length between their start region and their end region with regard to their thermal coupling with the environment, and therefore do not change axially. This enables the calculations to be simplified.
  • equations 1-4 are used below.
  • equation 1 for the thermal resistance is inserted into equation 2 and the thermal resistance is thus determined.
  • the thermal transmittance coefficient equation 3 is calculated using the reciprocal of equation 2.
  • the heat transfer coefficient is a central component of equation 4 for calculating a temperature at the end of a section.
  • Equation 4 the respective initial and final temperatures of the cold water are determined for all relevant sections.
  • An iterative calculation by gradually increasing the volume flow is used to find the volume flow that operates the cold water installation with a desired/specified spread of, for example, 5 K (15°C / 20°C).
  • a water temperature can also be determined for any point in the pipe network under consideration.
  • the iterative approximation method is the well-known Excel goal search; see Excel and VBA: Introduction with practical applications in the natural sciences by Franz Josef Mehr, Maria Maria Victor Mehr, Wiesbaden 2015, section 8.1.
  • key data of the pipe system including the above-mentioned parameters of the sections, are entered into the program and the volume flow V z is determined by means of the target value search, at which the drinking water target temperature T b is reached; for example as follows
  • the calculated volume flow V z at which a target temperature Tb of 20° is reached at an inlet temperature T a of 15°C, is given in line MT4.
  • a circulation pump is integrated into the circulation system, with which a desired volume flow can be set.
  • a connection line is a line between a supply line and a drinking water installation or the circulation system.
  • a consumption line is a line that carries water from the main shut-off valve to the connections for the extraction point and, if necessary, to devices.
  • a collective supply line is a horizontal consumption line between the main shut-off valve and a riser.
  • a riser (drop) line runs from floor to floor and from which the floor lines or individual supply lines branch off.
  • a floor line is the line that branches off from the riser (drop) line within a floor and from which the individual supply lines branch off.
  • An individual supply line is the line leading to an extraction point.
  • At least one supply line is connected to at least one ring line.
  • At least one branch of the circulation line branches off from the at least one flow line.
  • At least one branch of the at least one circulation line branches off from the at least one ring line.
  • the at least one supply line comprises at least one riser and/or one floor line.
  • the at least one supply line comprises a collective supply line which is connected to a connection to a water supply network.
  • connection is connected to at least one connection line and/or at least one consumption line.
  • At least one static or dynamic flow divider is arranged in the at least one feed line and/or the at least one ring line, to which a water extraction point is preferably connected.
  • the volume flows are preferably divided into percentages: 95% at the outlet and 5% at the passage.
  • thermal energy is transferred from the circulating water to another material flow, preferably by means of a heat exchanger, whereby an optimization of the cooling process can be achieved by suitable selection of the other material flow, for example propane, and a reduction in the energy required to operate the cooling device.
  • the cooling device is thermally coupled to a refrigeration generator, preferably a heat pump, a chiller or a refrigeration supply network, which can also achieve a reduction in the energy required for the cooling process.
  • a refrigeration generator preferably a heat pump, a chiller or a refrigeration supply network
  • a value of 20°C +/- 5°C is selected for the temperature T soll and a value of 15°C +/- 5°C is selected for the water temperature T a at the output port.
  • At least one section of the pipe system is designed as an external circulation pipe, since external circulation pipes are usually installed in existing circulation systems.
  • at least one section is designed as an inliner circulation pipe, since these are often installed in newer or newer circulation systems.
  • a node K1 is connected via a flow line 4a to an output port 12b of a cooling device 12.
  • the cooling device 12 has connections on the cooling circuit side and a pump 13 on the cooling circuit side.
  • a branch is provided to a collecting line 4, a connecting line to a connection 1 to a water supply network and a consumption line 3, whereby the latter and the connecting line do not belong to the circulation system. Therefore, no volume flow distribution takes place at node K1.
  • the collective supply line 4 is connected to a riser 5 which ends in a node K2.
  • the node K2 branches into a floor line 6 and a riser 5 which ends in a node K3 and at which a branch to a floor line 6 and a riser 5 is made, is connected to a floor line 6 which ends in a node K4.
  • the node K2 is connected to a node K6 via a floor line 6.
  • the node K3 is connected to a node K5 via a floor line 6.
  • TS1 and TS2 which are explicitly marked as such, are connected via the node K4, whereby TS1 represents a section of the floor line 6 and TS2 represents a circulation line.
  • node K4 a branch is also made via an individual supply line 7 to a withdrawal point 9.
  • the individual supply lines and withdrawal points connected to nodes K2 and K3 are not provided with reference symbols. Since the circulation system according to the invention for carrying out the method according to the invention is operated in a state in which no water is withdrawn, nodes that are assigned to withdrawal points are excluded from consideration below and, with the exception of node K4, are not provided with reference symbols in the drawings.
  • the section TS2 is connected to a vertical circulation line 10a, which flows into the node K5.
  • the node K5 is connected to a circulation line 10a, which flows into the node K6.
  • the node K6 is connected to a vertical circulation line 10a, which is connected to a horizontal circulation line 10a, which in turn is connected to the circulation pump 10b via a vertical circulation line.
  • FIG. 1b The circulation system for warm drinking water PWC according to the invention shown has an analogous structure to that shown in Figure 1a shown system, but reference number 12 designates a heating device which is connected to the inlet port 12a via a connecting line 4' for cold drinking water PWC.
  • the outlet port 12b is connected to a riser 5.
  • Reference number 9 designates the last outlet point for hot water PWH.
  • the circulation line 10a of the circulation system PWH-C is connected to the inlet port 12a via the circulation pump 10b.
  • the heating device has heat circuit side connections and a heat circuit side pump 13.
  • Figure 1a A valve is provided in the node K1, which can temporarily block the water supply from connection 1, whereby drinking water can be heated, wherein reference numeral 12 designates a heating device or a tempering device.
  • FIG. 2 The circulation system shown has an analogous structure to the system of Figure 1a , however, 6 ring lines are provided in the floor lines, whereby for the sake of simplicity only the topmost in Figure 2 A reference number 8 is used for the ring line shown. An optional flow divider 8a is assigned to the ring line 8. Ring lines are assigned to nodes K21 to K32. It is understood that systems in which only one ring line is present are also covered by the invention.
  • FIG 3 another system with nodes K31 to K34 is shown, in which, however, the circulation lines 10a leading to the nodes K34 and K35 are routed parallel to the floor lines 6 originating from the nodes K32 and K33.
  • an optional decentralized cooling device 14 with an input port 14a and an output port 14b is arranged in the top floor line 6, whereby, to simplify the illustration, existing connections of a cold-side circuit and a corresponding pump are not shown.
  • heat exchanger 12 may be omitted, in which case one or more cooling devices 14 are mandatory, as in Figure 3b is shown.
  • Cooling devices can be installed in the risers 5 or the floor lines of the embodiments of the Figures 1 , 2 and 4 to 8, for example as in Figure 3 with a cooling device 12'.
  • Figure 4 shows a system with nodes K41 to K51 as in Figure 3 , however, ring lines 8 are provided in the floor lines.
  • Figure 5 shows a system with nodes K51 to K55, in which circulation lines 10 are routed parallel to the risers 5 connected to the nodes K52, K53.
  • Figure 6 shows a system with nodes K61 to K69b, with ring lines provided between nodes K63, K64, K66, K67 and K68, K69.
  • Figure 7 shows a system with nodes K71 to K75, with risers 5 connected to nodes K72 and K73.
  • Figure 8 shows a system with nodes K81 to K89b analogous to Figure 7 but with ring lines arranged between the nodes K89a, K89b, K88, K89 as well as K84 and K85.
  • Figure 9 shows a system with a device 12' connected to a water supply 1 via a line 2' with the input port 12a ⁇ .
  • the output port 12b ⁇ is connected to a collecting line 4a with the node K91 and risers 5.
  • the circulation line 10a is connected to the input port 12a'.
  • the device 12' can be designed as a cooling device, heating device or tempering device.
  • Figure 10 shows a system with a device 20 which is connected to a water supply 1 via a line 2' with the input port 20a'.
  • the output port 20b' is connected to a collecting line 4 with the node K101 and risers 5.
  • the circulation line 10a is connected downstream of the output port 20b'.
  • the device 20 can be designed as a cooling device, heating device or tempering device.
  • the system further comprises the device 12, the output port 12b of which is connected to a bus line 4a with the node K101 and risers 5.
  • the circulation line 10a is connected to the input port 12a.
  • the device 12 can be designed as a cooling device, heating device or tempering device.
  • the Figures 1 , 3 , 5 , 7 The embodiments shown can also only allow partial areas to circulate.
  • the partial sections can also represent, for example, installations in apartments that are not allowed to circulate due to various requirements (billing of water consumption). Water exchange to maintain the desired temperature would be possible here using dishwashers.
  • the method according to the invention is used in the systems of Figures 1 to 8 carried out in the manner described above, whereby starting from a temperature start value T MA * ⁇ T soll and a volume flow start value V z * for the first section connected to the output port (12b), a temperature change of the water between the start area and the end area is determined according to a model of the temperature change.
  • a temperature change of the water between the initial area and the final area is calculated for each given further section according to the model of the temperature change determined under the boundary condition that the water temperature in the initial area of the given section is equal to the water temperature in the final area of the section to which the given section is connected.
  • the model of axial temperature change described above is used, according to which the water temperature T ME in the end region of a section of length L is determined by the formula calculated.
  • the value T a of the water temperature and the value V z of the volume flow at the outlet port 12b are selected such that in the end region of each section of the circulation system the water temperature is T ME ⁇ T set and at the inlet port 12a the water temperature is T b ⁇ T set with T set - T b ⁇ ⁇ , where ⁇ >0 is a predetermined value.
  • circulation pump 10b is not always operated with a constant volume flow, regardless of whether the port inlet temperature 12a has exactly the set value or is even lower.
  • the flow rate of the circulation pump 10b could be reduced. This can be done automatically, for example, under temperature control. This would result in energy savings.
  • the delivery volume flow of the pump 13 can also be reduced in a temperature-controlled manner.
  • the flow temperature in the cooling circuit could also be adjusted. This would result in energy savings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Pipeline Systems (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Temperature (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (14)

  1. Procédé de fonctionnement d'un système de circulation (10) avec un dispositif de régulation de température avec un orifice d'entrée et un orifice de sortie pour la régulation de la température de l'eau et avec un système de conduites avec plusieurs branches, lesquelles présentent un ou plusieurs tronçons avec un couplage thermique donné avec un environnement et sont connectées au moyen de noeuds, dans lequel une ou plusieurs des conduites du système de conduites sont conçues en tant que conduite d'amenée (4, 5, 6), au moins une conduite d'alimentation individuelle (7) connectée à un point de prélèvement (9) et au moins une conduite conçue en tant que conduite de circulation (10a) est connectée à l'une ou aux plusieurs conduites d'amenée (4, 5, 6),
    avec les étapes consistant à
    - régler une température d'eau à l'orifice de sortie à une valeur Ta au moyen du dispositif de régulation de température
    - régler un débit volumétrique à l'orifice d'entrée à une valeur Vz
    caractérisé par les étapes suivantes consistant à
    - déterminer, en particulier calculer, une variation de température de l'eau entre la zone initiale et la zone finale conformément à un modèle de variation de température axiale pour le premier tronçon raccordé à l'orifice de sortie, à partir d'une valeur initiale de température TMA* et d'une valeur initiale de débit volumétrique Vz*,
    - déterminer, en particulier calculer, une variation de température de l'eau entre la zone initiale et la zone finale pour chaque tronçon donné supplémentaire conformément au modèle de variation de température, à condition que la température de l'eau dans la zone initiale du tronçon donné soit égale à la température de l'eau dans la zone finale du tronçon auquel le tronçon donné est raccordé, et
    - sélectionner la valeur Ta de la température de l'eau et la valeur Vz du débit volumétrique à l'orifice de sortie, de sorte que dans la zone finale de chaque tronçon, la température de l'eau TME se situe dans un intervalle de température prédéterminé autour de Tsoll,
    en particulier, la température de l'eau Tb < Tsoll est définie à l'orifice d'entrée avec Tsoll-Tb < θ,
    dans lequel θ>0 est une valeur prédéterminée, et
    en ce que le dispositif de régulation de température (12') est raccordé par son orifice d'entrée (12a') à la conduite de circulation (10a) et par l'intermédiaire d'une conduite (2') à une alimentation en eau (1) ou
    en ce qu'un dispositif pour refroidir de l'eau (20) est prévu, qui est raccordé à une alimentation en eau (1) par l'intermédiaire d'une conduite (2) avec un orifice d'entrée (20a), dans lequel la conduite de circulation (10a) est raccordée en aval d'un orifice de sortie (20b) du dispositif (20).
  2. Procédé selon la revendication 1, caractérisé en ce que les valeurs Ta et Vz sont déterminées par un procédé d'approximation itératif, dans lequel, à partir d'une valeur initiale de température TMA* et d'une valeur initiale de débit volumétrique Vz* pour le premier tronçon raccordé à l'orifice de sortie, la variation de température de l'eau entre la zone initiale et la zone finale est calculée pour chaque tronçon donné supplémentaire, à condition que la température de l'eau dans la zone initiale du tronçon donné soit égale à la température de l'eau dans la zone finale du tronçon auquel le tronçon donné est raccordé.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les tronçons sont conçus de manière uniforme sur la longueur entre leur zone initiale et leur zone finale concernant leur couplage thermique avec l'environnement.
  4. Procédé selon la revendication 3, caractérisé en ce que dans la zone finale d'au moins un tronçon de longueur L, la température de l'eau TME est déterminée au moyen de la formule T ME = T MA T Luft e ε L + T Luft
    Figure imgb0028
    ε = k R m M c pm = k R V M P M c pm
    Figure imgb0029
    dans lequel
    L = longueur du tronçon uniforme (Ts1) (m)
    TMA = température de l'eau dans la zone initiale (°C)
    TME = température de l'eau dans la zone finale (°C)
    TLuft = température de l'air ambiant (°C)
    kR = coefficient de transmission thermique de la tuyauterie (W/(m*K))
    mM = débit massique de l'eau dans le tronçon (kg/s)
    cp,m = capacité thermique spécifique de l'eau (J/(kg*K))
    VM = débit volumétrique de l'eau dans le tronçon (m3/s)
    pM = densité de l'eau (kg/m3)
  5. Procédé selon la revendication 4, caractérisé en ce que le coefficient de transmission thermique des tronçons est déterminé selon la formule 1 k R = 1 d i a i π + 1 Λ R + 1 d a a a π
    Figure imgb0030
    dans lequel
    1/kR = résistance thermique de la tuyauterie (m*K/W)
    ai = coefficient de transmission thermique intérieur (W/(m2*K))
    1/ΛR = résistance thermique (m*K/W)
    aa = coefficient de transmission thermique extérieur (W/(m2*K))
    da = diamètre extérieur (m)
    di = diamètre intérieur (m)
    et 1 Λ R = 1 2 π 1 λ r ln d aR d iR 1 λ D ln d aD d iD
    Figure imgb0031
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une pompe de circulation (10b) est intégrée dans le système de circulation (10).
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les paramètres Ta et Vz sont utilisés pour déterminer, pour un système de circulation donné dans lequel le système de conduites est conçu conformément aux dispositions légales concernant les diamètres nominaux et le couplage thermique de l'eau en circulation avec l'environnement, la conception du dispositif de régulation de température concernant sa capacité de refroidissement.
  8. Procédé selon la revendication 6 ou 7, caractérisé par
    - la détermination d'une caractéristique de consommation de la pompe de circulation (10b) en fonction du débit volumétrique transporté à partir de la pompe de circulation (10b)
    - la détermination d'une caractéristique de consommation du dispositif de régulation de température en fonction d'une température de l'eau à l'orifice de sortie
    - le réglage d'un débit volumétrique Vz et d'une température de l'eau Ta à l'orifice de sortie du dispositif de régulation de température, de sorte que la puissance absorbée de la pompe de circulation (10b) et du dispositif de régulation de température prend une valeur minimale relative ou absolue.
  9. Système de circulation avec un dispositif de régulation de température avec un orifice d'entrée, un orifice de sortie et un système de conduites avec plusieurs branches, lesquelles présentent un ou plusieurs tronçons avec un couplage thermique donné avec un environnement et sont couplées au moyen de noeuds,
    - dans lequel, avec une répartition prédéfinie des débits volumétriques sortant des noeuds, une température d'eau de mélange des débits volumétriques sortant des noeuds peut être déterminée en fonction des débits volumétriques entrant dans les noeuds,
    - dans lequel une ou plusieurs des conduites du système de conduites sont conçues en tant que conduite d'amenée (4, 5, 6), au moins une conduite d'alimentation individuelle (7) connectée à un point de prélèvement (9) et au moins une conduite conçue en tant que conduite de circulation (10a) est connectée à la ou aux conduites d'amenée (4, 5, 6),
    avec
    - des moyens de réglage de la température d'eau à l'orifice de sortie à une valeur Ta au moyen du dispositif de régulation de température
    - des moyens de réglage d'un débit volumétrique stationnaire d'eau en circulation à l'orifice d'entrée à une valeur Vz
    caractérisée par
    - des moyens de dispositif pour déterminer une variation de température de l'eau entre la zone initiale et la zone finale de chaque tronçon, à condition que la température de l'eau dans la zone finale d'un tronçon donné soit sélectionnée égale à la température de l'eau dans la zone initiale du tronçon raccordé au tronçon donné dans le sens d'écoulement de l'eau en circulation, et
    - des moyens de dispositifs pour sélectionner la valeur Ta de la température de l'eau et la valeur Vz du débit volumétrique à l'orifice de sortie, de sorte que dans la zone finale de chaque tronçon, la température de l'eau TME se situe dans un intervalle prédéterminé autour de Tsoll, en particulier que la température de l'eau Tb < Tsoll est définie à l'orifice d'entrée avec Tsoll-Tb < θ, dans lequel θ>0 est une valeur prédéterminée, et
    - en ce que le dispositif de régulation de température (12') est raccordé par son orifice d'entrée (12a') à la conduite de circulation (10a) et par l'intermédiaire d'une conduite (2') à une alimentation en eau (1)
    - ou
    - en ce qu'un dispositif pour refroidir de l'eau (20) est prévu, qui est raccordé à une alimentation en eau (1) par l'intermédiaire d'une conduite (2) avec un orifice d'entrée (20a), dans lequel
    - la conduite de circulation (10a) est raccordée en aval d'un orifice de sortie (20b) du dispositif (20).
  10. Système de circulation selon la revendication 9, caractérisé en ce que des moyens de dispositif sont prévus pour déterminer les valeurs Ta et Vz dans un procédé d'approximation itératif dans lequel, à partir d'une valeur initiale de température TMA* < Tsoll et d'une valeur initiale de débit volumétrique Vz* pour le premier tronçon raccordé à l'orifice de sortie (12b), pour chaque tronçon donné, la température de l'eau TME est calculée dans sa zone finale, dans lequel la température de l'eau TMA' dans la zone initiale du tronçon raccordé suivant est sélectionnée égale à la température de l'eau TME dans la zone finale du tronçon donné.
  11. Système de circulation selon la revendication 9 ou 10, caractérisé en ce que les tronçons sont conçus de manière uniforme sur la longueur entre leur zone initiale et leur zone finale concernant leur couplage thermique avec l'environnement.
  12. Système de circulation selon les revendications 1 à 11, caractérisé en ce qu'une pompe de circulation (7) est intégrée dans le système de circulation (10).
  13. Système de circulation selon l'une quelconque des revendications 9 à 12, caractérisé en ce que de l'énergie thermique peut être transmise de l'eau en circulation à un autre flux de matière au moyen du dispositif de régulation de température (12, 14), de préférence au moyen d'un échangeur de chaleur.
  14. Système de circulation selon l'une quelconque des revendications 9 à 13, caractérisé en ce que les paramètres Ta et Vz sont utilisés pour déterminer, pour un système de circulation donné dans lequel le système de conduites est conçu conformément aux dispositions légales concernant les diamètres nominaux et le couplage thermique de l'eau en circulation avec l'environnement, la conception du dispositif de régulation de température concernant sa capacité de refroidissement.
EP19868154.6A 2018-05-15 2019-11-21 Procédé de fonctionnement d'un système de circulation et système de circulation Active EP4007832B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RS20240590A RS65643B1 (sr) 2018-05-15 2019-11-21 Postupak za upravljanje cirkulacionog sistema i cirkulacioni sistem
HRP20240755TT HRP20240755T1 (hr) 2018-05-15 2019-11-21 Metoda upravljanja cirkulacijskim sustavom i cirkulacijski sustav

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018111579 2018-05-15
PCT/EP2019/062547 WO2019219785A1 (fr) 2018-05-15 2019-05-15 Procédé de fonctionnement d'un système de circulation et système de circulation
PCT/EP2019/000317 WO2020228921A1 (fr) 2018-05-15 2019-11-21 Procédé pour faire fonctionner un système de circulation thermorégulé ainsi que système de circulation thermorégulé

Publications (3)

Publication Number Publication Date
EP4007832A1 EP4007832A1 (fr) 2022-06-08
EP4007832C0 EP4007832C0 (fr) 2024-05-08
EP4007832B1 true EP4007832B1 (fr) 2024-05-08

Family

ID=66810752

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19729444.0A Active EP3601688B1 (fr) 2018-05-15 2019-05-15 Procédé de fonctionnement d'un système de circulation et système de circulation
EP19868154.6A Active EP4007832B1 (fr) 2018-05-15 2019-11-21 Procédé de fonctionnement d'un système de circulation et système de circulation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19729444.0A Active EP3601688B1 (fr) 2018-05-15 2019-05-15 Procédé de fonctionnement d'un système de circulation et système de circulation

Country Status (23)

Country Link
US (3) US11525247B2 (fr)
EP (2) EP3601688B1 (fr)
JP (2) JP7393012B2 (fr)
KR (2) KR20210029717A (fr)
CN (2) CN112585324B (fr)
AU (2) AU2019270362A1 (fr)
BR (2) BR112020023043A2 (fr)
CA (2) CA3100102A1 (fr)
CY (1) CY1124377T1 (fr)
DK (1) DK3601688T3 (fr)
ES (1) ES2879912T3 (fr)
HR (2) HRP20240755T1 (fr)
HU (2) HUE055249T2 (fr)
IL (2) IL278651B (fr)
LT (1) LT3601688T (fr)
MX (2) MX2020012082A (fr)
PL (1) PL3601688T3 (fr)
PT (1) PT3601688T (fr)
RS (2) RS62102B1 (fr)
SA (2) SA520420530B1 (fr)
SG (2) SG11202011254SA (fr)
SI (1) SI3601688T1 (fr)
WO (2) WO2019219785A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS62102B1 (sr) * 2018-05-15 2021-08-31 Ltz Zentrum Fuer Luft Und Trinkwasserhygiene Gmbh Postupak za upravljanje cirkulacionog sistema i cirkulacioni sistem

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316367A (en) * 1978-10-06 1982-02-23 Yaeger Ronald J Heat recovery and hot water circulation system
DE3522344A1 (de) * 1985-06-22 1987-01-02 Meyer Fa Rud Otto Verfahren zur regelung der temperatur des an ein warmwasser-versorgungssystem mit zirkulationsleitung angeschlossenen verbrauchern zufliessenden warmwassers und warmwasserversorgungssystem zur durchfuehrung des verfahrens
JP2001132037A (ja) 1999-11-02 2001-05-15 Ito Hironari 中高層建築物用ミネラルウォーター供給装置
DE20217305U1 (de) * 2002-11-09 2003-03-27 DMS Wasser-Wärmetechnik GmbH, 22113 Oststeinbek Desinfektion des gesamten Zirkulations-Volumenstromes
ATE349037T1 (de) * 2003-05-22 2007-01-15 Kwc Ag Verfahren und vorrichtung zur regelung des warmwasserzulaufs zu einem behälter
JP2005076960A (ja) * 2003-08-29 2005-03-24 Nishihara Engineering Co Ltd 給湯システム
DE102004039232A1 (de) 2004-08-12 2006-02-23 Thomas Bauer Verfahren und System zur Behandlung von Wasser
JP2008155190A (ja) 2006-12-22 2008-07-10 Uerushii:Kk 上質活性飲料水供給システムとその装置
US20090020172A1 (en) * 2007-07-20 2009-01-22 Walker Robert E Method and Apparatus for Water Distribution
KR101018774B1 (ko) * 2008-06-24 2011-03-07 주식회사 경동네트웍 온수 온도를 일정하게 유지시키기 위한 온수 공급 시스템
ES2655295T3 (es) * 2008-09-25 2018-02-19 Zeonda Ab Sistema de circulación de agua para prevenir el crecimiento de microorganismos
IL198341A0 (en) 2009-04-23 2011-07-31 Shay Popper Water supply system and method
SE0950809A1 (sv) * 2009-10-30 2011-05-01 Erik Abbing Besparing av tappvätska i ett vätskefördelningssystem
DE102011010840B4 (de) * 2011-02-10 2019-08-14 Oventrop Gmbh & Co. Kg Trink- oder Brauchwassersystem
JP5806530B2 (ja) 2011-07-07 2015-11-10 株式会社日立製作所 冷却システム
JP5984703B2 (ja) * 2013-01-31 2016-09-06 三菱重工業株式会社 熱源システム及び冷却水供給装置の制御装置並びに制御方法
DE202014103193U1 (de) * 2014-07-11 2015-07-15 Better Place GmbH Zirkulationsleitung für Kaltwasser
DE102014013464A1 (de) 2014-09-17 2016-03-17 Huu-Thoi Le Betrieb einer Zirkulationsanlage
CN204809195U (zh) * 2015-05-05 2015-11-25 中芯国际集成电路制造(北京)有限公司 一种机台供水循环系统
DE202015007277U1 (de) 2015-10-20 2017-01-23 Gebr. Kemper Gmbh + Co. Kg Metallwerke Trink- und Brauchwasserversorgungseinrichtung
DE202016106313U1 (de) * 2016-11-11 2018-02-14 Gebr. Kemper Gmbh + Co. Kg Metallwerke Wassersystem mit einem Durchflusserwärmer und einer Spülstation
CN106678944B (zh) * 2016-12-12 2019-10-22 威能(中国)供热制冷环境技术有限公司 水循环模块及采用该水循环模块的热水系统
DE102017101532A1 (de) * 2017-01-26 2018-07-26 Solvis GmbH Warmwasserversorgungsanlage und Verfahren zum Betrieb dieser Warmwasserversorgungsanlage
RS62102B1 (sr) * 2018-05-15 2021-08-31 Ltz Zentrum Fuer Luft Und Trinkwasserhygiene Gmbh Postupak za upravljanje cirkulacionog sistema i cirkulacioni sistem

Also Published As

Publication number Publication date
EP4007832A1 (fr) 2022-06-08
ES2879912T3 (es) 2021-11-23
HUE055249T2 (hu) 2021-11-29
EP3601688B1 (fr) 2021-03-24
HRP20240755T1 (hr) 2024-09-13
US12077949B2 (en) 2024-09-03
JP7393012B2 (ja) 2023-12-06
IL288025A (en) 2022-01-01
US11525247B2 (en) 2022-12-13
PT3601688T (pt) 2021-06-30
WO2019219785A1 (fr) 2019-11-21
PL3601688T3 (pl) 2021-11-29
JP2022533083A (ja) 2022-07-21
BR112020023043A2 (pt) 2021-02-02
HUE066980T2 (hu) 2024-09-28
CN114127371A (zh) 2022-03-01
HRP20210994T1 (hr) 2021-09-17
EP4007832C0 (fr) 2024-05-08
AU2019446081A1 (en) 2022-01-06
SG11202011254SA (en) 2020-12-30
US20220205647A1 (en) 2022-06-30
CN112585324B (zh) 2023-01-03
US20210189701A1 (en) 2021-06-24
DK3601688T3 (da) 2021-06-28
SG11202112646XA (en) 2021-12-30
SI3601688T1 (sl) 2021-09-30
CA3100102A1 (fr) 2019-11-21
KR20210029717A (ko) 2021-03-16
SA520420530B1 (ar) 2022-10-25
EP3601688A1 (fr) 2020-02-05
KR20220062229A (ko) 2022-05-16
IL278651B (en) 2022-06-01
WO2020228921A1 (fr) 2020-11-19
RS62102B1 (sr) 2021-08-31
CA3140513A1 (fr) 2020-11-19
SA521430822B1 (ar) 2023-10-12
BR112021022701A2 (pt) 2022-01-18
MX2021013831A (es) 2022-03-22
JP2021523314A (ja) 2021-09-02
US20230130061A1 (en) 2023-04-27
AU2019270362A1 (en) 2021-01-07
CY1124377T1 (el) 2022-07-22
CN112585324A (zh) 2021-03-30
LT3601688T (lt) 2021-09-10
RS65643B1 (sr) 2024-07-31
MX2020012082A (es) 2021-06-23

Similar Documents

Publication Publication Date Title
EP2912384B1 (fr) Procédé de fonctionnement d&#39;une installation de chauffage
DE1679488B2 (de) Anlage zum heizen und kuehlen von mehreren raeumen
EP2157376A2 (fr) Système de refroidissement ou de chauffage et agencement d&#39;égalisation hydraulique d&#39;un système transportant de l&#39;eau ou de la vapeur pour le refroidissement ou le chauffage
DE202012012915U1 (de) Heiz- und/oder Kühlanlage
EP4007832B1 (fr) Procédé de fonctionnement d&#39;un système de circulation et système de circulation
DE202016106313U1 (de) Wassersystem mit einem Durchflusserwärmer und einer Spülstation
DE102008033063B4 (de) Verfahren und Vorrichtung zur zentralen Warmwasserversorgung
EP3617601A1 (fr) Système d&#39;eau chaude, en particulier installation de chauffage d&#39;eau potable et de conduites d&#39;eau potable
EP1074795B1 (fr) Procédé pour calibrer hydrauliquement une installation de chauffage
DE102010014431B4 (de) Verfahren und Vorrichtung zur Nutzung der Wärmeenergieresourcen eines Gebäudes
DE102014013464A1 (de) Betrieb einer Zirkulationsanlage
EP4056768B1 (fr) Installation d&#39;eau potable
DE102016106817A1 (de) Verfahren und Anlage zur Steuerung des Betriebes und der thermischen Desinfektion von Warmwasser-Zirkulationsanlagen
DE102015008758A1 (de) Verfahren zur Einstellung von energiesparenden Heizungssystemen
EP3670765B1 (fr) Alimentation de chauffe-eau
DE10259279B3 (de) Versorgungssystem für Heiz-oder Kühlwasser sowie Verfahren zum Betreiben desselben
EP2910861A1 (fr) Système de refroidissement ou de chauffage et dispositif d&#39;équilibrage d&#39;un circuit de circulation d&#39;eau ou de vapeur de refroidissement ou de chauffage
EP3367005B1 (fr) Système de chauffage
EP3513128A1 (fr) Procédé de chauffage ou de refroidissement de pièces d&#39;un bâtiment
EP3783269B1 (fr) Procédé de fonctionnement d&#39;une installation d&#39;eau potable, installation d&#39;eau potable et dispositif de commande
DE202014104134U1 (de) Wohnungsstation
DE102014008319B4 (de) Raumtemperatur-Regelung für eine Flächenheizung
DE202016004616U1 (de) System zur flächenmäßigen Wärmeübertragung und Verteiler eines solchen Systems
DE102011115101B4 (de) Verfahren und System zur Regelung von Einrohrheizungssystemen
DE102023105698A1 (de) Vorrichtung und Verfahren sowie deren Verwendung zum Aufrechterhalten einer Temperatur einer Wohnungsstation, insbesondere eines Primärvorlaufs in einer Wohnungsstation, für eine Warmwasserbereitung

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20240755T

Country of ref document: HR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231002

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019011252

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240604

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240611

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_34074/2024

Effective date: 20240606

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20240401340

Country of ref document: GR

Effective date: 20240716

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 44250

Country of ref document: SK

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20240755

Country of ref document: HR

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E066980

Country of ref document: HU