EP3983484A1 - Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation - Google Patents
Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisationInfo
- Publication number
- EP3983484A1 EP3983484A1 EP20743201.4A EP20743201A EP3983484A1 EP 3983484 A1 EP3983484 A1 EP 3983484A1 EP 20743201 A EP20743201 A EP 20743201A EP 3983484 A1 EP3983484 A1 EP 3983484A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polyamide
- weight
- equal
- polyolefin
- use according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/28—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0005—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2077/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
Definitions
- TITLE POLYAMIDE COMPOSITIONS WITH HIGH MODULE AND LOW MODULE
- the present invention relates to the use of a mixture of solid and hollow glass reinforcements with an alloy consisting of at least one polyamide and at least one polyolefin for the manufacture of compositions having a high modulus and a low dielectric constant, their manufacturing process as well as said compositions.
- OEM original equipment
- the advantage of such an integrated material, for example, in the casing of a mobile phone is to guarantee the integrity of the signal in an antenna application to ensure complete and high speed signal transmission.
- the dielectric constant must be as low as possible in order to have the fastest possible data exchange.
- the present invention which therefore relates to the use of a mixture of solid and hollow glass reinforcements with an alloy consisting of at least one polyamide and at least one polyolefin, said mix of solid and hollow glass reinforcements comprising 5 to 50% by weight of hollow glass beads relative to the total of solid and hollow glass reinforcements, in particular 5 to 35% by weight of hollow glass beads relative to the total of solid and hollow glass reinforcements ,
- composition having a modulus, dry at 23 ° C, at least equal to 8GPa, in particular at least equal to 10 GPa, in particular at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3, 5, in particular less than or equal to 3.3, in particular less than or equal to 3.2 as measured according to ASTM D-2520-13, at a frequency of at least 1 GHz, in particular at a frequency of at least 2 GHz, especially at a frequency of at least 3 GHz, at 23 ° C, under 50% RH.
- the present invention relates to the use of a mixture of solid and hollow glass reinforcements with an alloy consisting of at least one polyamide and at least one polyolefin, said mixture of solid glass reinforcements and hollow comprising 5 to 50% by weight of hollow glass beads relative to the total of solid and hollow glass reinforcements, in particular 5 to 35% by weight of hollow glass beads relative to the total of solid glass reinforcements and hollow,
- said modulus, dry at 23 ° C, of said composition being at least equal to 8GPa, in particular at least equal to 10 GPa, in particular at least equal to llGPa, and said dielectric constant of said composition being less than or equal to 3.5, in particular less than or equal to 3.3, in particular less than or equal to 3.2 as measured according to ASTM D-2520-13, at a frequency of at least 1 GHz, in particular at a frequency of at least 2 GHz, in particular at a frequency of at least 3 GHz, at 23 ° C, under 50% RH.
- the composition of the invention is devoid of polyamide 6 and 66.
- the inventors have therefore unexpectedly found that the association of solid and hollow glass reinforcements with an alloy consisting of at least one polyamide and at least one polyolefin, which in addition with a specific proportion of hollow glass beads per ratio to the total of the solid and hollow glass reinforcements allowed the preparation of a composition having both a high modulus at least equal to 8GPa, in particular at least equal to 10 GPa, in particular at least equal to llGPa, and a dielectric constant Dk low, less than or equal to 3.5, in particular less than or equal to 3.3, in particular less than or equal to 3.2, thus making it possible to have a rigid material capable of ensuring complete transmission of the signal and at high speed or to have the fastest possible data exchange.
- moduli for example tensile modulus, flexural modulus, etc.
- These modules can be impacted by temperature and by the humidity level contained in the sample.
- the modulus defined above corresponds to both the flexural modulus and the tensile modulus, the flexural modulus being measured according to the ISO 178: 2010 standard and the tensile modulus (or modulus of elasticity E) being measured according to ISO 527-1 and 2: 2012.
- the modulus defined above corresponds to the flexural modulus and is measured as above.
- the modulus defined above corresponds to the tensile modulus and is measured as above.
- the dielectric constant is defined as the ratio between the permittivity e of the material considered and the permittivity of the vacuum. It is denoted k or Dk and is measured according to ASTM D-2520-13. It is therefore the relative permittivity.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a dry modulus at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to tensile modulus and flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus and the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a dry modulus at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the flexural modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a dry modulus at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency of at least 1 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.5, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.3, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to 8GPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to lOGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- said composition has a modulus, dry at 23 ° C, at least equal to llGPa, and a dielectric constant Dk, less than or equal to 3.2, at a frequency up to 2.4 GHz, under 50% RH, said modulus corresponding to the tensile modulus.
- the dielectric loss (tan delta) of said composition is less than or equal to 0.01, as measured on a dry sample, at 23 ° C, under 50% RH, at a frequency of at least 1 GHz, in particularly a frequency up to 2.4 GHz, according to ASTM D-2520-13.
- the sample is therefore dried beforehand, in particular at 80 ° C. for 5 days and then tested at 23 ° C., under 50% RH.
- said composition has a modulus, dry at 23 ° C and a dielectric constant Dk, as defined above in the different embodiments, and a dielectric loss (tan delta) less than or equal to 0 , 01, as measured at 23 ° C on a dry sample, at 23 ° C, under 50% RH, at the same frequency as said dielectric constant in said embodiment.
- Solid glass reinforcements correspond to a fibrous glass material whose structure is solid (as opposed to hollow) and which can have any shape as long as that shape is full.
- These shapes can be circular or non-circular in section.
- a shape with a circular section is defined as a shape having at any point of its circumference a distance equal to the center of the shape and therefore represents a perfect or almost perfect circle. Any glass shape that does not have this perfect or almost perfect circle is therefore defined as a shape with a flat section.
- a flat section shape examples include flat shapes e.g. elliptical, oval or cocoon shape, star shapes, flake shapes, cruciforms, polygon and a ring.
- the solid glass forms can in particular be solid and short glass fibers which, preferably, have a length of between 2 and 13 mm, preferably of 3 to 8 mm before use of the compositions.
- Solid fiberglass can be:
- L and D can be measured by electron microscopy at
- the hollow glass reinforcements correspond to a fibrous glass material whose structure is hollow (as opposed to solid) and which can have, in the same way as for the solid glass reinforcement, any shape from the moment when this shape is hollow.
- the hollow glass shapes can in particular be short, hollow glass fibers which preferably have a length of between 2 and 13 mm, preferably 3 to 8 mm, before the compositions are used.
- hollow glass fiber glass fibers whose hollow (or hole or lumen) inside the fiber is not necessarily concentric with respect to the external diameter of said fiber.
- Hollow fiberglass can be:
- the diameter of the hollow (the term “hollow” can also be referred to as either hole or lumen) is not equal to the outside diameter of the hollow fiberglass.
- the diameter of the hollow (or hole or lumen) represents from 10% to 80%, in particular from 60 to 80% of the outside diameter of the hollow fiber.
- L and D can be measured by electron microscopy at
- Said mixture of solid and hollow glass reinforcements comprises 5 to 50% by weight of hollow glass beads relative to the total of solid and hollow glass reinforcements, in particular 5 to 35% by weight of hollow glass beads relative to the total. in total solid and hollow glass reinforcements.
- said mixture of solid and hollow glass reinforcements comprises 10 to 50% by weight of hollow glass beads relative to the total of solid and hollow glass reinforcements, in particular 10 to 35% by weight of hollow glass. hollow glass balls in relation to the total of solid and hollow glass reinforcements.
- said mixture of solid and hollow glass reinforcements in addition to the hollow glass balls, comprises solid glass fibers selected from circular section glass fibers, flat section glass fibers and a mixture of these.
- said mixture of solid and hollow glass reinforcements comprises 5 to 50% by weight of hollow glass beads relative to the total of solid and hollow glass reinforcements, in particular 5 to 35% by weight of hollow glass.
- hollow glass balls relative to the total of solid and hollow glass reinforcements, said hollow glass balls representing the totality of the proportion of hollow reinforcements.
- said mixture of solid and hollow glass reinforcements in addition to the hollow glass balls constituting all of the hollow reinforcements, comprises solid glass fibers chosen from glass fibers with a circular section, glass fibers with flat sections and a mixture of these.
- said mixture of glass reinforcements consists of 50 to 95% by weight of solid glass fibers and of 5 to 50% by weight of hollow glass balls, in particular of 65 to 95% by weight of solid glass fibers and 5 to 35% by weight of hollow glass beads.
- said mixture of glass reinforcements consists of 50 to 90% by weight of solid glass fibers and 10 to 50% by weight of hollow glass beads, in particular 65 to 90% by weight of solid glass fibers. and 10 to 35% by weight of hollow glass beads.
- said solid fiberglass is a fiberglass with a non-circular cross section.
- the solid glass reinforcement is a glass fiber having a Dk> 5 at a frequency ranging from 1 MHz to 5 GHz and in particular a Dk> 5 and a Df ⁇ 0.005 at a frequency of 1 GHz.
- the solid glass reinforcement is a glass fiber with a non-circular cross section and has an elastic modulus of less than 76 GPa as measured according to ASTM C1557-03.
- said alloy consisting of at least one polyamide and at least one polyolefin
- said alloy consists of at least one polyamide and at least one polyolefin, the polyamide / polyolefin weight ratio of which is included from 95/5 to 50/50.
- the polyolefin of said composition may be a grafted (or functionalized) or ungrafted (or non-functionalized) polyolefin or a mixture thereof.
- the graft polyolefin can be an alpha olefin polymer having reactive units (functionalities); such reactive units are acid, anhydride or epoxy functions.
- reactive units functionalities
- acid, anhydride or epoxy functions are acid, anhydride or epoxy functions.
- unsaturated epoxides such as glycidyl (meth) acrylate
- carboxylic acids or the corresponding salts or esters such as as (meth) acrylic acid (which can be totally or partially neutralized by metals such as Z
- the grafted polyolefin is chosen from esters of unsaturated carboxylic acids such as, for example, alkyl acrylates or alkyl methacrylates, preferably said alkyls having from 1 to 24 carbon atoms, examples of acrylate or alkyl methacrylate are especially methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate;
- vinyl esters of saturated carboxylic acids such as, for example, vinyl acetate or propionate.
- said grafted polyolefin defined above is based on polypropylene.
- An ungrafted polyolefin is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, 1-pentene, 3-methyl-1-butene, 1-hexene.
- compatible and functional compatibilizer for example a polyethylene mixed with a maleized Lotader ® or a maleized polyethylene, isoprene or 1,4-hexadiene.
- the alpha olefin homopolymer is chosen from low density polyethylenes (LDPE, low density polyethylene), high density polyethylenes (HDPE), linear low density polyethylenes (LLDPE, linear low density polyethylene), very low polyethylene density (VLDPE, very low density polyethylene)) and metallocene polyethylene;
- the copolymers of alpha olefins or of diolefins are chosen from ethylene / alpha olefin polymers such as ethylene-propylene, ethylene-butylene, ethylene-propylene-diene monomer, ethylene-octene, alone or as a mixture with a polyethylene (PE);
- said ungrafted polyolefin defined above is based on polypropylene.
- the polyolefin of the composition can also be crosslinked or uncrosslinked or be a mixture of at least one crosslinked and / or at least one noncrosslinked.
- the polyolefin of said composition according to the invention can be an uncrosslinked polyolefin and / or a crosslinked polyolefin, said uncrosslinked polyolefin and / or a crosslinked being presented as a phase dispersed in the matrix formed by the polyamide (s). .
- Said crosslinked polyolefin results from the reaction of two or at least two products having groups reactive with each other.
- said polyolefin when said polyolefin is a crosslinked polyolefin, it is obtained from at least one product (A) comprising an unsaturated epoxide and at least one product (B) comprising an unsaturated carboxylic acid anhydride.
- Product (A) is advantageously a polymer comprising an unsaturated epoxide, this unsaturated epoxide being introduced into said polymer, either by grafting or by copolymerization.
- the unsaturated epoxide can in particular be chosen from the following epoxides:
- aliphatic glycidyl esters and ethers such as allylglycidyl ether, vinylglycidyl ether, glycidyl maleate and itaconate, glycidyl acrylate and methacrylate, and
- alicyclic glycidyl esters and ethers such as 2-cyclohexene-l-glycidylether, cyclohexene-4,5-diglycidyl carboxylate, cyclohexene-4-glycidyl carboxylate, 5-norbornene-2-methyl-2-glycidyl carboxylate and endocis-bicyclo (2,2, 1) -5-heptene-2,3-diglycidyl dicarboxylate.
- the product (A) is a polyolefin grafted with an unsaturated epoxide.
- polyolefin is understood to mean a homopolymer or copolymer comprising one or more olefin units such as ethylene, propylene, butene-1 units or any other alpha-olefin.
- olefin units such as ethylene, propylene, butene-1 units or any other alpha-olefin.
- a polyolefin there may be mentioned:
- - polyethylene and, in particular, low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and very low density polyethylene (VLDPE); polypropylene; ethylene / propylene copolymers; elastomeric polyolefins such as ethylene-propylene (EPR or EPM) or ethylene-propylene-diene monomer (EPDM); or else metallocene polyethylenes obtained by single-site catalysis; - styrene / ethylene-butene / styrene (SEBS) block copolymers; styrene / butadiene / styrene (SBS) block copolymers; styrene / isoprene / styrene block copolymers (SIS); or else styrene / ethylene-propylene / styrene block copolymers;
- EPR or EPM
- the polyolefin can in particular be a copolymer of ethylene and of alkyl (meth) acrylate or a copolymer of ethylene and of vinyl acetate.
- the product (A) is a copolymer of alpha-olefin and of an unsaturated epoxide and, advantageously, a copolymer of ethylene and of an unsaturated epoxide.
- the amount of unsaturated epoxide can represent up to 15% by weight of the copolymer (A), the amount of ethylene for its part representing at least 50% by weight of the copolymer (A).
- copolymers of ethylene of a vinyl ester of saturated carboxylic acid and of an unsaturated epoxide, as well as copolymers of ethylene, of a
- alkyl (meth) acrylate and an unsaturated epoxide Preferably, the alkyl of the (meth) acrylate comprises from 2 to 10 carbon atoms.
- alkyl acrylates or methacrylates which can be used are in particular methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and methyl acrylate. 2-ethylhexyl.
- the product (A) is a copolymer of ethylene, of methyl acrylate and of glycidyl methacrylate or a copolymer of ethylene, of n-butyl acrylate and of glycidyl methacrylate .
- Use may in particular the product marketed by Arkema under the name LOTADER® ® AX8900.
- the product (A) is a product having two epoxy functions, such as for example the diglycidyl ether of bisphenol A (DGEBA).
- DGEBA diglycidyl ether of bisphenol A
- Product (B) is advantageously a polymer comprising an unsaturated carboxylic acid anhydride, this unsaturated carboxylic acid anhydride being introduced into said polymer, either by grafting or by copolymerization.
- unsaturated dicarboxylic acid anhydrides which can be used as constituents of product (B) are in particular maleic anhydride, itaconic anhydride, citraconic anhydride and tetrahydrophthalic anhydride.
- the product (B) is a polyolefin grafted with an unsaturated carboxylic acid anhydride.
- a polyolefin is a homopolymer or copolymer comprising one or more olefin units such as ethylene, propylene, butene-1 or any other alpha-olefin units.
- This polyolefin can in particular be chosen from examples of polyolefins listed above for product (A), when the latter is a polyolefin grafted with an unsaturated epoxide.
- the product (B) is a copolymer of alpha-olefin and of an unsaturated carboxylic acid anhydride and, advantageously, a copolymer of ethylene and of an unsaturated carboxylic acid anhydride.
- the amount of unsaturated carboxylic acid anhydride can represent up to 15% by weight of the copolymer (B), the amount of ethylene for its part representing at least 50% by weight of the copolymer (B).
- alkyl and an unsaturated carboxylic acid anhydride Preferably, the alkyl of the (meth) acrylate comprises from 2 to 10 carbon atoms.
- the alkyl acrylate or methacrylate can be chosen from those mentioned above for the product (A).
- the product (B) is a copolymer of ethylene, of an alkyl (meth) acrylate and of an unsaturated carboxylic anhydride.
- product (B) is a copolymer of ethylene, ethyl acrylate and maleic anhydride or a copolymer of ethylene, butyl acrylate and maleic anhydride.
- [A] and [B] respectively are such that the ratio [B] / [A] is between 3 and 14 and, advantageously, between 4 and 9.
- the crosslinked polyolefin can also be obtained from products (A), (B) as described above and from at least one product (C), this product (C) comprising a unsaturated carboxylic acid or alpha-omega-aminocarboxylic acid.
- Product (C) is advantageously a polymer comprising an unsaturated carboxylic acid or an alpha-omega-aminocarboxylic acid, one or the other of these acids being introduced into said polymer by copolymerization.
- Examples of unsaturated carboxylic acids which can be used as constituents of product (C) are in particular acrylic acid, methacrylic acid, the carboxylic acid anhydrides mentioned above as constituents of product (B), these anhydrides being totally hydrolyzed.
- alpha-omega-aminocarboxylic acids which can be used as constituents of product (C) are in particular 6-aminohexanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
- the product (C) can be a copolymer of alpha-olefin and of an unsaturated carboxylic acid and, advantageously, a copolymer of ethylene and of an unsaturated carboxylic acid. Mention may in particular be made of the fully hydrolyzed copolymers of product (B).
- the product (C) is a copolymer of ethylene and (meth) acrylic acid or a copolymer of ethylene, of an alkyl (meth) acrylate and of (meth) acrylic acid.
- the amount of (meth) acrylic acid can represent up to 10% by weight and, preferably, from 0.5 to 5% by weight of the copolymer (C).
- the amount of alkyl (meth) acrylate is generally between 5 and 40% by weight of the copolymer (C).
- product (C) is a copolymer of ethylene, butyl acrylate and acrylic acid such as Escor TM 5000 from ExxonMobil.
- the product (C) is a copolymer of ethylene, of butyl acrylate and of acrylic acid.
- Use may in particular the product marketed by BASF under the name LUCALENE ® 3110.
- the dispersed phase of crosslinked polyolefin can of course originate from the reaction of one or more products (A) with one or more products (B) and, where appropriate, with one or more products (C).
- catalysts making it possible to accelerate the reaction between the reactive functions of products (A) and (B).
- the weight contents of product (A), of product (B), of product (C) which are denoted respectively by [A], [B] and [C] are such that the ratio [B] / ([ A] + [C]) is between 1.5 and 8, the weight contents of products (A) and (B) being such that [C] ⁇ [A]
- the [B] / ([A] + [C]) ratio is between 2 and 7.
- composition according to the invention can comprise at least one uncrosslinked polyolefin, said uncrosslinked polyolefin being presented as a phase dispersed in the matrix formed by the semi-crystalline polyamide (s).
- uncrosslinked polyolefin means a homopolymer or copolymer comprising one or more olefin units such as ethylene, propylene, butene-1 units or any other alpha-olefin as defined above.
- said composition comprises at least one crosslinked polyolefin as defined above and at least one uncrosslinked polyolefin as defined above.
- said alloy consists of at least one polyamide and of a mixture of a grafted polyolefin based on polypropylene and an ungrafted polyolefin based on polypropylene.
- Said at least one polyamide is chosen from semi-crystalline polyamides, amorphous polyamides and a mixture thereof.
- said at least one polyamide is chosen from a single amorphous polyamide, a semi-crystalline polyamide, and a mixture of two semi-crystalline polyamides.
- a semi-crystalline polyamide within the meaning of the invention, denotes a polyamide which exhibits a glass transition temperature in DSC according to standard ISO 11357-2: 2013 as well as a melting point (Tm) in DSC according to ISO standard 11357-3: 2013, and an enthalpy of crystallization during the cooling step at a speed of 20K / min in DSC measured according to standard ISO 11357-3 of 2013 greater than 30 J / g, preferably greater than 40 J / g.
- An amorphous polyamide within the meaning of the invention, denotes a polyamide exhibiting only a glass transition temperature (no melting point (Tm)) in DSC according to the ISO 11357-2: 2013 standard, or a very low crystalline polyamide having a glass transition temperature in DSC according to ISO 11357-2: 2013 and a melting point such as the enthalpy of crystallization during the cooling step at a speed of 20K / min in differential scanning calorimetry ("Differential Scanning Calorimetry »DSC) measured according to the ISO 11357-3: 2013 standard is less than 30 J / g, in particular less than 20 J / g, preferably less than 15 J / g.
- said alloy consists of a single polyamide which is an amorphous polyamide and of at least one polyolefin.
- Said amorphous polyamide can be a polyamide of formula A / XY, in which:
- A is an aliphatic repeating unit obtained by polycondensation:
- Cis amino acid preferably C 6 to Cu, more preferably Cio to C12, or
- Cis lactam preferably C 6 to C12, more preferably Cio to C12, or of at least one C4-C36 aliphatic diamine Ca, preferably C6-C18, preferably C 6 - C12, more preferably C10-C12, with at least one Cb C4-C36 dicarboxylic acid,
- C6-C18 preferably C6-C12, more preferably C8-C12;
- XY is an aliphatic repeating unit obtained by polycondensation:
- amino acid may in particular be chosen from 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular N-heptyl-11-aminoundecanoic acid, in particular 11-aminoundecanoic acid.
- Said lactam can in particular be chosen from pyrrolidinone, 2-piperidinone, caprolactam, enantholactam, caprylolactam, pelargolactam, decanolactam, undecanolactam, and lauryllactam, in particular lauryllactam.
- Said C4-C36 aliphatic diamine Ca is linear or branched and is chosen in particular from butanediamine, 1,5-pentamethyldiamine, 2-methyl-l, 5-pentanediamine, 1,6-hexamethylenediamine and 1,7-heptanediamine , 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-l, 8-octane-diamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,10 -decanediamine, 1,11-undecanediamine, 2-butyl-2-ethyl-
- 1,5-pentanediamine 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine, 1,20-eicosanediamine, 1 , 22-docosanediamine and fatty acid dimers.
- Said C6-C18 aliphatic diamine Ca is linear or branched and is chosen in particular from 1,6-hexamethylenediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1 , 8-octane-diamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,10-decanediamine, 1,11-undecanediamine, 2-butyl-2-ethyl-
- 1,5-pentanediamine 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine.
- Said C6-C12 aliphatic diamine Ca is linear or branched and is chosen in particular from 1,6-hexamethylenediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1 , 8-octane-diamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,10-decanediamine, 1,11-undecanediamine, 2-butyl-2-ethyl-
- Said C10-C12 aliphatic diamine Ca is linear or branched and is chosen in particular from 1,10-decanediamine, 1,11-undecanediamine, 2-butyl-2-ethyl-l, 5-pentanediamine, 1,12- dodecanediamine.
- Said dicarboxylic acid Cb C4-C36 preferably C6-C18, preferably C6-C12, more preferably C8-C12;
- Said Cb C4-C36 dicarboxylic acid is aliphatic and linear and is in particular chosen from succinic acid, pentanedioic acid, adipic acid, heptanedioic acid, suberic acid, azelaic acid, acid sebacic, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid and docosanedioic acid.
- Said Cb C6-C18 dicarboxylic acid is aliphatic and linear and is chosen in particular from adipic acid, heptanedioic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioiic acid, octadecanedioic acid.
- Said Cb C6-C12 dicarboxylic acid is aliphatic and linear and is chosen in particular from adipic acid, heptanedioic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic.
- Said dicarboxylic acid Cb C8-C12 is aliphatic and linear and is especially selected from suberic acid, azelaic acid, sebacic acid, undecanedioic acid and
- said diamine X can in particular be a cycloaliphatic diamine chosen from bis (3,5-dialkyl-4-aminocyclohexyl) methane, bis (3,5-dia Ikyl-4-aminocyclohexyl) ethane, bis (3,5-dialkyl-4-aminocyclo-hexyl) propane, bis (3,5-dialkyl-4-aminocyclo-hexyl) butane, bis- (3-methyl-4-aminocyclohexyl) -methane (BMACM or MACM), p-bis (aminocyclohexyl) -methane (PACM) and risopropylidenedi (cyclohexylamine) (PACP), isophoronediamine, piperazine, amino-ethylpiperazine.
- a cycloaliphatic diamine chosen from bis (3,5-dialkyl-4-aminocyclohexyl) me
- said XY diamine can in particular be an aliphatic diamine that is linear or branched and is chosen from that defined above for the diamine in Ca.
- the diacid Y can be an aromatic dicarboxylic acid chosen from terephthalic (denoted T), isophthalic (denoted I) and diacids.
- the Y diacid can be an Y aliphatic dicarboxylic acid and is chosen from that defined above for the Cb diacid.
- A is an aliphatic repeating unit obtained by polycondensation of at least one C 5 to Cis amino acid, preferably C 6 to Cu, more preferably Cio to C12, or of at least one C 5 to Cis lactam, preferably C 6 to C12, more preferably C10 to C12.
- XY is an aliphatic repeating unit obtained by polycondensation of at least one cycloaliphatic diamine, and of at least one aromatic dicarboxylic acid or of at least one aliphatic dicarboxylic acid Y.
- A is an aliphatic repeating unit obtained by polycondensation of at least one C 5 to Cis amino acid, preferably C 6 to C12, more preferably Cio to C12, or of at least one C 5 to Cis lactam, preferably C 6 to C12, more preferably Cio to C12 and
- XY is an aliphatic repeating unit obtained by polycondensation of at least one cycloaliphatic diamine, and of at least one aromatic dicarboxylic acid or of at least one aliphatic dicarboxylic acid Y .
- A is an aliphatic repeating unit obtained by polycondensation of at least one Cio to C12 amino acid, or of at least one Cio to C12 lactam and
- XY is an aliphatic repeating unit obtained by polycondensation of at least one cycloaliphatic diamine , and at least one aromatic dicarboxylic acid or at least one aliphatic dicarboxylic acid Y.
- said amorphous polyamide is chosen from among 11 / B10, 12 / B10, 11 / BI / BT, 11 / BI in particular 11 / B10.
- A is an aliphatic repeating unit obtained by polycondensation of at least one Cio to C12 amino acid, or of at least one Cio to C12 lactam and XY is an aliphatic repeating unit obtained by polycondensation of at least one cycloaliphatic diamine , and at least one aromatic dicarboxylic acid.
- said amorphous polyamide is chosen from 11 / BI / BT and 11 / BI.
- A is an aliphatic repeating unit obtained by polycondensation of at least one Cio to C12 amino acid, or of at least one Cio to C12 lactam and
- XY is an aliphatic repeating unit obtained by polycondensation of at least one cycloaliphatic diamine , and at least one aliphatic dicarboxylic acid Y.
- said amorphous polyamide is chosen from 11 / B10, 12 / B 10, in particular 11 / B10.
- said alloy consists of a single polyamide which is an amorphous polyamide and of a mixture of a grafted polyolefin based on polypropylene and an ungrafted polyolefin based on polypropylene.
- said alloy consists of a single semi-crystalline polyamide or of a mixture of two semi-crystalline polyamides and at least one polyolefin.
- the polyolefin is as defined above.
- the semi-crystalline polyamide may be chosen from aliphatic polyamides, in particular long chain polyamides, arylaliphatic polyamides and semi-aromatic polyamides.
- aliphatic polyamide means a homopolyamide or a copolyamide. It is understood that this may be a mixture of aliphatic polyamides.
- long chain means that the average number of carbon atoms per nitrogen atom is greater than 8, in particular between 9 and 18.
- said mixture of polyamides is a mixture of an aliphatic polyamide, in particular of a long chain, with an aryl-aliphatic polyamide.
- the aliphatic polyamide can be obtained from the polycondensation of a lactam, said lactam can be chosen from pyrrolidinone, 2-piperidinone, caprolactam,
- enantholactam caprylolactam, pelargolactam, decanolactam, undecanolactam, and lauryllactam, in particular lauryllactam.
- the aliphatic polyamide can be obtained from the polycondensation of an amino acid which can be selected from 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular N-heptyl-11-aminoundecanoic acid, in particular 11-aminoundecanoic acid.
- an amino acid which can be selected from 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular N-heptyl-11-aminoundecanoic acid, in particular 11-aminoundecanoic acid.
- the aliphatic polyamide can be obtained from the polycondensation of a unit X1Y1, XI representing a diamine and Y representing a dicarboxylic acid.
- XI can be a linear or branched C5 to C18 aliphatic diamine, and can in particular be chosen from 1,5-pentamethyldiamine, 2-methyl-l, 5-pentanediamine, 1,6-hexamethylenediamine and 1,7 -heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-l, 8-octane-diamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1 , 10-decanediamine, 1,11-undecanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1, 16-hexadecanediamine and 1,18-octadecanediamine.
- the diamine XI used is C6 to C12, in particular chosen from 2-methyl-l, 5-pentanediamine, 1,6-hexamethylenediamine, 1,7-heptanediamine, 1,8-octanediamine, 1, 9- nonanediamine, 2-methyl-l, 8-octane-diamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,10-decanediamine, 1,11-undecanediamine, 2 -butyl-2-ethyl-1,5-pentanediamine, 1,12-dodecanediamine.
- the diamine XI used is C10 to C12, in particular chosen from 1,10-decanediamine, 1,11-undecanediamine, 2-butyl-2-ethyl-l, 5-pentanediamine and 1,12-dodecanediamine ,
- Y1 can be C6 to C18 aliphatic dicarboxylic acid, in particular C6 to C12, especially C10 to C12.
- the C6 to C18 aliphatic dicarboxylic acid Y1 can be chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, l 'tetradecanedioic acid, pentadecanedioic acid,
- the C6 to C12 aliphatic dicarboxylic acid Y1 can be chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid.
- the C10 to C12 aliphatic dicarboxylic acid Y1 can be chosen from sebacic acid, undecanedioic acid and dodecanedioic acid.
- said aliphatic polyamide is chosen from PA6, PA66, PA610, PA612,
- aryl-aliphatic polyamide means a polyamide obtained from
- Said aryldiamine X2 can be chosen from meta-xylylenediamine (MXD) and para-xylylenediamine (PXD).
- said aryl-aliphatic polyamide is chosen from MXD6, MXD10, MXD12.
- said arylaliphatic polyamide is chosen from MXD10, MXD12.
- said mixture of two semi-crystalline polyamides is a mixture of an aliphatic polyamide with an arylaliphatic polyamide.
- said mixture of two semi-crystalline polyamides is a mixture of an aliphatic polyamide chosen from PA6, PA66, PA610, PA612, PA1010, PA1012, PA1212, PAU and PA 12, in particular PA1010, PA1012, PA1212, PAU and PA 12, with an arylaliphatic polyamide chosen from MXD6, MXD10, MXD12.
- said mixture of two semi-crystalline polyamides is a mixture of an aliphatic polyamide chosen from PA1010, PA1012, PA1212, PAU and PA 12, with an arylaliphatic polyamide chosen from MXD10, MXD12.
- semi-aromatic polyamide means in particular a semi-aromatic polyamide of formula as described in EP1505099, in particular a semi-aromatic polyamide of formula B / ZT in which B is chosen from a unit obtained from the polycondensation of d an amino acid as defined above, a unit obtained from the polycondensation of a lactam as defined above and a unit corresponding to the formula X2Y2, with X2 and Y2 being as defined above;
- ZT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 4 and 36, advantageously between 6 and 18, preferably between 6 and 12,
- a polyamide of formula A / 6T, A / 9T, A / 10T or A / 11T A being as defined above, in particular a polyamide PA 6 / 6T, a PA 66 / 6T , a PA 6I / 6T, a PA 11 / 9T, a PA 11 / 10T, a PA 11 / 12T, a PA 12 / 9T, a PA 12 / 10T, a PA 12 / 12T, a PA MPMDT / 6T, a PA MXDT / 6T, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 10T, a PA 11 / MPMDT / 10T, a PA 11 / MXDT / 10T and a PA 11 / M
- T corresponds to terephthalic acid
- MXD corresponds to m-xylylenediamine
- MPMD corresponds to methylpentamethylene diamine
- BAC corresponds to bis (aminomethyl) cyclohexane (1.3 BAC and / or 1, 4 BAC).
- the semi-aromatic polyamide is chosen from PA11 / 9T, PA11 / 10T, PA 11 / 12T, PA12 / 9T, PA12 / 10T, PA12 / 12T.
- said at least one polyamide is chosen from a single amorphous polyamide, an aryl-aliphatic polyamide, a mixture of an aliphatic polyamide, in particular a long-chain polyamide, with an aryl-aliphatic polyamide and a mixture of an aliphatic polyamide, in particular with long chain with a semi-aromatic polyamide.
- said alloy consists of a mixture of two semi-crystalline polyamides and of a mixture of a grafted polyolefin based on polypropylene and an ungrafted polyolefin is based on polypropylene.
- the present invention relates to the use as defined above, in which the composition comprises additives.
- the additives can be present up to 2% by weight relative to the total weight of the composition, in particular they are present from 1 to 2% by weight relative to the total weight of the composition.
- the additive can be selected from a catalyst, an antioxidant, a heat stabilizer, a UV stabilizer, a light stabilizer, a lubricant, a flame retardant, a nucleating agent, a chain extender and a colorant.
- catalyst denotes a polycondensation catalyst such as an inorganic or organic acid.
- the proportion by weight of catalyst is from about 50 ppm to about 5000 ppm, in particular from about 100 to about 3000 ppm relative to the total weight of the composition.
- the catalyst is chosen from phosphoric acid (H3PO4), phosphorous acid (H3PO3), hypophosphorous acid (H3PO2), or a mixture of these.
- the antioxidant can in particular be an antioxidant based on a copper complex of 0.05 to 5% by weight, preferably from 0.05 to 1% by weight, preferably from 0.1 to 1%.
- copper complex denotes in particular a complex between a monovalent or divalent salt of copper with an organic or inorganic acid and an organic ligand.
- the copper salt is chosen from cupric (Cu (II)) salts of hydrogen halide, cuprous (Cu (l)) salts of hydrogen halide and salts of aliphatic carboxylic acids.
- the copper salts are chosen from CuCl, CuBr, Cul, CuCN, CuCl2, Cu (OAc) 2, cupric stearate.
- Said copper-based complex may further comprise a ligand chosen from phosphines, in particular triphenylphosphines, mercaptobenzimidazole, EDTA, acetylacetonate, glycine, ethylene diamine, oxalate, diethylene diamine, triethylene tetraamine, pyridine, tetrabromobisphenyl-A, tetrabisphenyl-A derivatives, such as epoxy derivatives, and chloro dimethanedibenzo (a, e) cyclooctene derivatives and mixtures thereof.
- Phosphines denote alkylphosphines, such as tributylphosphine or arylphosphines such as triphenylphosphine (TPP).
- alkylphosphines such as tributylphosphine or arylphosphines such as triphenylphosphine (TPP).
- TPP triphenylphosphine
- said ligand is triphenylphosphine.
- the amount of copper in the composition of the invention is from 10 ppm to 1000 ppm by weight, in particular from 20 ppm to 70 ppm, in particular from 50 to 150 ppm relative to the total weight of the composition.
- said copper-based complex further comprises a halogenated organic compound.
- the halogenated organic compound can be any halogenated organic compound.
- said halogenated organic compound is a bromine-based compound and / or an aromatic compound.
- said aromatic compound is chosen in particular from decabromediphenyl, decabromodiphenyl ether, oligomers of bromo or chloro styrene, polydibromostyrene,
- said halogenated organic compound is a compound based on bromine.
- Said halogenated organic compound is added to the composition in a proportion of 50 to 30,000 ppm by weight of halogen relative to the total weight of the composition, in particular from 100 to 10,000, in particular from 500 to 1,500 ppm.
- the copper: halogen molar ratio is from 1: 1 to 1: 3000, in particular from 1: 2 to 1: 100.
- said ratio is from 1: 1.5 to 1:15.
- the antioxidant based on a copper complex.
- the heat stabilizer can be an organic stabilizer or more generally a combination of organic stabilizers, such as a primary antioxidant of phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
- a primary antioxidant of phenol type for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba
- a secondary antioxidant of phosphite type such as a primary antioxidant of phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
- the UV stabilizer can be a HALS, which means Hindered Amine Light Stabilizer or an anti-UV (for example Tinuvin 312 from the company Ciba).
- the light stabilizer may be of the hindered amine type (for example Tinuvin 770 from the company Ciba), a phenolic or phosphorus-based stabilizer.
- the lubricant can be a fatty acid type lubricant such as stearic acid.
- the flame retardant can be a halogen-free flame retardant, as described in US
- a phosphorus-based fire-retardant for example a metal salt chosen from a metal salt of phosphinic acid, in particular salts of dialkyl phosphinate, in particular diethylphosphinate aluminum salt or
- a metal salt of diphosphinic acid a mixture of flame retardant based on aluminum phosphinate and a synergist of nitrogen or a mixture of flame retardant based on aluminum phosphinate and 'a phosphorus synergist
- a polymer containing at least one metal salt of phosphinic acid in particular on an ammonium base such an ammonium polyphosphate, sulfamate or pentaborate, or on a melamine base such as melamine, melamine salts, melamine pyrophosphates and melamine cyanurates, or on a cyanuric acid base
- a polymer containing at least one metal salt of diphosphinic acid or red phosphorus an oxide of antimony, an oxide of zinc, an oxide of iron, an oxide of magnesium or metal borates such as zinc borate, or phosphazene, phospham or a phosphoxynitride or a mixture
- the nucleating agent can be silica, alumina, clay or talc, in particular talc.
- Suitable chain regulators are monoamines, acids, and acids
- tricarboxylic acids tetraamines, tetracarboxylic acids and, oligoamines or oligocarboxylic acids having in each case 5 to 8 amino or carboxy groups respectively and in particular dicarboxylic acids, tricarboxylic acids or a mixture of dicarboxylic acids and tricarboxylic acids .
- dodecanedicarboxylic acid as dicarboxylic acid and trimellitic acid as tricarboxylic acid.
- the present invention relates to the use as defined above, in which the composition comprises at least one prepolymer, in particular
- the composition comprises a single prepolymer.
- the prepolymer can be present up to 11% by weight relative to the total weight of the composition, in particular from 0.1% to 11% by weight relative to the total weight of the composition.
- the prepolymer is different from the nucleating agent used as an additive.
- prepolymer refers to polyamide oligomers necessarily of lower number average molecular weight than that of the polyamides used in the composition, in particular said prepolymer with a number average molecular weight of from 1000 to 15000 g / mole, in particular. in particular from 1000 to 10000 g / mole.
- the prepolymer can be chosen from oligomers of aliphatic, linear or branched polyamides, oligomers of cycloaliphatic polyamides, oligomers of semi-aromatic polyamides, oligomers of aromatic polyamides, aliphatic, linear or branched polyamides, cycloaliphatic, semi-aromatic and aromatics having the same definition as above.
- the prepolymer or oligomer therefore results from the condensation:
- the prepolymer or oligomer therefore cannot correspond to the condensation of a diamine with a lactam or an amino acid.
- the prepolymer can also be a copolyamide oligomer or a mixture of polyamide and copolyamide oligomers.
- the prepolymer is monofunctional NH2, monofunctional CO2H, or difunctional CO2H or NH2.
- the prepolymer can therefore be mono or difunctional, acid or amine, that is to say that it has a single terminal amine or acid function, when it is monofunctional (in this case the other termination is non-functional, in particular CH3), or two terminal amine functions or two terminal acid functions, when it is difunctional.
- the prepolymer is monofunctional, preferably NH2 or CO2H.
- the present invention relates to the use as defined above, in which the composition comprises:
- the present invention relates to the use as defined above, in which the composition consists of:
- the present invention relates to the use as defined above, in which the composition comprises:
- the present invention relates to the use as defined above, in which the composition consists of:
- the present invention relates to a composition useful in particular for injection molding, comprising:
- said composition in particular useful for injection molding, consists of:
- polyamide / polyolefin being comprised from 95/5 to 50/50;
- said composition useful in particular for injection molding is comprises:
- polyamide / polyolefin being comprised from 95/5 to 50/50;
- said composition useful in particular for injection molding consists of:
- polyamide / polyolefin being comprised from 95/5 to 50/50;
- said composition is devoid of polyamide 6 and 66.
- the composition can moreover also comprise fillers.
- the fillers envisaged include conventional mineral fillers, such as kaolin, magnesia, slags, carbon black, expanded or non-expanded graphite, wollastonite, pigments such as titanium oxide and zinc sulphide, antistatic charges.
- said composition in particular useful for injection molding, consists of:
- the present invention relates to the use of a composition as defined above, for the manufacture of an article in particular for electronics, for telecom applications or for the exchange of data, such as for an autonomous vehicle or for applications connected to each other.
- said article is produced by injection molding.
- the present invention relates to a method of preparing an article in particular for electronics, for telecom applications or for the exchange of data, such as for an autonomous vehicle or for applications connected to each other comprising a step, in particular by injection molding, of a composition as defined above.
- the present invention relates to an article obtained by injection molding with a composition as defined above.
- the various polyamides and copolyamides of the invention were prepared according to the usual technique for the synthesis of polyamides and copolyamides.
- the monomers aminoundecanoic acid, decanediamine and terepthalic acid are loaded together into the reactor according to the desired mass ratio.
- the medium is first inerted in order to remove the oxygen which can generate yellowing or side reactions. Water can also be charged to improve heat exchange. Two stages of temperature and pressure rise are achieved. The temperature (T °) and pressure conditions are chosen in order to allow the medium to be in the molten state. After reaching the maintenance conditions, degassing takes place to allow the polycondensation reaction. The medium gradually becomes viscous and the water of reaction formed is entrained by flushing with nitrogen or placed under vacuum. When the stop conditions are reached, in relation to the desired viscosity, the agitation is stopped and the extrusion and the granulation can start.
- compositions in Table 1 were prepared (% by weight) according to the following general protocol:
- Plates 100x100x2 mm3 were produced by injection molding for the measurements of the dielectric properties. The following parameters were used:
- Dumbbells according to ISO 527-2 IA were produced by injection molding for the measurements of the mechanical properties in traction. The following parameters were used:
- Polypropylene PPH 5060 ungrafted polypropylene homopolymer from Total
- Orevac CA 100 polypropylene grafted maleic anhydride (Arkema)
- PA oligo PAU mono NH2
- Antioxidant corresponds to an antioxidant of the phenolic type.
- Secondary antioxidant corresponds to an antioxidant of the phosphite type.
- NE glass fibers solid glass fibers with flat section NE Nitto Boseki
- Glass fibers E solid glass fibers with circular cross section
- E Nitto Boseki or Nippon Electric Glass FIM glass fibers solid fibers with circular cross section from AGY (high modulus glass fibers)
- the tensile modulus (or modulus of elasticity E) is measured according to ISO standard 527-1 and 2: 2012.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
La présente invention concerne l'utilisation d'un mélange de renforts de verre plein et creux avec un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, ledit mélange de renforts de verre plein et creux comprenant de 5 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 5 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, pour préparer une composition présentant un module, à sec à 23°C, au moins égal à 8GPa, en particulier au moins égal à 10 GPa, en particulier au moins égal à 11GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, notamment inférieure ou égale à 3,3, en particulier inférieure ou égale à 3,2 telle que mesurée selon ASTM D-2520-13, à une fréquence d'au moins 1 GHz, notamment à une fréquence d'au moins 2 GHz, en particulier à une fréquence d'au moins 3 GHz, à 23°C, sous 50%RH.
Description
DESCRIPTION
TITRE : COMPOSITIONS DE POLYAMIDE PRESENTANT UN MODULE ELEVE ET UNE FAIBLE
CONSTANTE DIELECTRIQUE ET LEUR UTILISATION
[Domaine technique]
La présente invention concerne l'utilisation d'un mélange de renforts de verre plein et creux avec un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine pour la fabrication de compositions présentant un module élevé et une faible constante diélectrique, leur procédé de fabrication ainsi que lesdites compositions.
[Technique antérieure]
Les fabricants d'équipements d'origine (OEM), notamment pour l'électronique, pour des applications télécom ou pour l'échange de données, tel que pour un véhicule autonome ou pour des applications connectées entre elles, sont de plus en plus intéressés par des matériaux utilisés dans la protection ou l'habillage de ces équipements qui présentent une faible constante diélectrique.
En effet, l'avantage d'un tel matériau intégré, par exemple, dans le boîtier d'un téléphone portable est de garantir l'intégrité du signal dans une application d'antenne pour assurer une transmission du signal complète et à haute vitesse.
Par ailleurs, dans la cadre des échanges de données, la constante diélectrique doit être la plus faible possible pour avoir un échange de données le plus rapide possible.
Les principaux challenges pour de telles applications sont donc de présenter des propriétés diélectriques les plus faibles tout en conservant un matériau de protection ou d'habillage très rigide. Néanmoins, pour obtenir un matériau de protection ou d'habillage rigide, il est souvent nécessaire d'utiliser des fibres de verre qui vont conférer au matériau un module plus élevé et donc une rigidité plus élevée.
Néanmoins, il est connu que la présence de fibres de verre standard, par exemple dans une coque de téléphone, qui permet d'obtenir une bonne rigidité de ladite coque, augmente aussi de manière drastique la constante diélectrique, et va donc perturber la transmission du signal.
Il est donc nécessaire de disposer d'un matériau qui présente à la fois des propriétés de rigidité et donc de module élevé tout en conservant une constante diélectrique faible de manière à assurer une transmission du signal complète et à haute vitesse ou avoir un échange de données le plus rapide possible.
Le problème énoncé ci-dessus a donc été résolu par la présente invention qui concerne donc l'utilisation d'un mélange de renforts de verre plein et creux avec un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, ledit mélange de renforts de verre plein et creux
comprenant de 5 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 5 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux,
pour préparer une composition présentant un module, à sec à 23°C, au moins égal à 8GPa, en particulier au moins égal à 10 GPa, en particulier au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, notamment inférieure ou égale à 3,3, en particulier inférieure ou égale à 3,2 telle que mesurée selon ASTM D-2520-13, à une fréquence d'au moins 1 GHz, notamment à une fréquence d'au moins 2 GHz, en particulier à une fréquence d'au moins 3 GHz, à 23°C, sous 50%RH.
En d'autre termes, la présente invention concerne l'utilisation d'un mélange de renforts de verre plein et creux avec un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, ledit mélange de renforts de verre plein et creux comprenant de 5 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 5 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux,
pour au moins conserver le module et diminuer la constante diélectrique d'une composition comprenant ledit mélange avec le dit alliage par rapport à une composition comprenant ledit alliage et des renforts de verre dépourvus de renfort de verre plein ou ledit alliage et des renforts de verre dépourvus de renfort de verre creux, ledit module, à sec à 23°C, de ladite composition étant au moins égal à 8GPa, en particulier au moins égal à 10 GPa, en particulier au moins égal à llGPa, et ladite constante diélectrique de ladite composition étant inférieure ou égale à 3,5, notamment inférieure ou égale à 3,3, en particulier inférieure ou égale à 3,2 telle que mesurée selon ASTM D- 2520-13, à une fréquence d'au moins 1 GHz, notamment à une fréquence d'au moins 2 GHz, en particulier à une fréquence d'au moins 3 GHz, à 23°C, sous 50%RH.
Dans un mode de réalisation, la composition de l'invention est dépourvue de polyamide 6 et 66.
Les Inventeurs ont donc trouvé de manière inattendue que l'association de renforts de verre plein et creux avec un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, qui plus est avec une proportion spécifique de billes de verre creuses par rapport au total des renforts de verre plein et creux permettait la préparation d'une composition présentant aussi bien un module élevé au moins égal à 8GPa, en particulier au moins égal à 10 GPa, en particulier au moins égal à llGPa, et une constante diélectrique Dk faible, inférieure ou égale à 3,5, notamment inférieure ou égale à 3,3, en particulier inférieure ou égale à 3,2, permettant ainsi de disposer d'un matériau rigide capable d'assurer une transmission du signal complète et à haute vitesse ou d'avoir un échange de données le plus rapide possible.
On distingue différents modules (par exemple module de traction, module de flexion, etc.). Si l'on considère le module de flexion, celui-ci est toujours inférieur au module de traction.
Ces modules peuvent être impactés par la température et par le taux d'humidité contenu dans l'échantillon.
Dans un mode de réalisation, le module ci-dessus défini correspond aussi bien au module de flexion qu'au module de traction, le module de flexion étant mesuré selon la norme ISO 178 :2010 et le module de traction (ou module d'élasticité E) étant mesuré selon la norme ISO 527-1 et 2 :2012.
Dans un autre mode de réalisation, le module ci-dessus défini correspond au module de flexion et est mesuré comme ci-dessus.
Dans un autre mode de réalisation, le module ci-dessus défini correspond au module de traction et est mesuré comme ci-dessus.
La constante diélectrique se définit comme le rapport entre la permittivité e du matériau considéré et la permittivité du vide. Elle est notée k ou Dk et est mesurée selon ASTM D-2520-13. Il s'agit donc de la permittivité relative.
Elle est mesurée sous 50% d'humidité relative (RH) à 23°C sur un échantillon préalablement séché, notamment à 80°C pendant 5 jours.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction et au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de flexion.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence d'au moins 1 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,3, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à 8GPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à lOGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C, au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,2, à une fréquence jusqu'à 2,4 GHz, sous 50%RH, ledit module correspondant au module de traction.
La mesure de la perte diélectrique (tan delta ou tan(5)) (ou facteur de puissance (tan delta ou tan(5)) permet de déterminer l’état de l’isolation de la composition.
Avantageusement, la perte diélectrique (tan delta) de ladite composition est inférieure ou égale à 0,01, telle que mesurée sur un échantillon sec, à 23°C, sous 50%RH, à une fréquence d'au moins 1 GHz, en particulier une fréquence jusqu'à 2,4 GHz, selon ASTM D-2520-13.
L'échantillon est donc préalablement séché, notamment à 80°C pendant 5 jours puis testé à 23°C, sous 50%RH.
Dans un mode de réalisation, ladite composition présente un module, à sec à 23°C et une constante diélectrique Dk, tels que définis ci-dessus dans les différents modes de réalisation, et une perte diélectrique (tan delta) inférieure ou égale à 0,01, telle que mesurée à 23°C sur un échantillon sec, à 23°C, sous 50%RH, à la même fréquence que ladite constante diélectrique dans ledit mode de réalisation.
S'agissant des renforts de verre plein et creux
Renforts de verre plein
Les renforts de verre plein correspondent à un matériau fibreux en verre dont la structure est pleine (par opposition à creux) et qui peut avoir n'importe quelle forme à partir du moment où cette forme est pleine.
Ces formes peuvent être à section circulaire ou non circulaire.
Une forme à section circulaire est définie comme une forme présentant en tout point de sa circonférence une distance égale au centre de la forme et représente donc un cercle parfait ou quasi parfait.
Toute forme de verre ne présentant pas ce cercle parfait ou quasi parfait est donc défini comme une forme à section plate.
Des exemples de forme à section plate, sans être limité à celles-ci, sont les formes plates, par exemple une forme elliptique, ovale ou en cocon, les formes en étoile, les formes en flocon (flake), les cruciformes, un polygone et un anneau.
Les formes de verre pleines peuvent notamment être des fibres de verre pleines et courtes qui, de préférence, présentent une longueur comprise entre 2 et 13 mm, de préférence de 3 à 8mm avant mise en oeuvre des compositions.
La fibre de verre pleine peut être :
- soit à section circulaire de diamètre compris de 4 pm et 25 pm, de préférence de 4 à 15 pm.
- soit à section non circulaire avec un ratio L/D (L représentant la plus grande dimension de la section transverse de la fibre et D la plus petite dimension de la section transverse de ladite fibre) compris de 2 à 8, en particulier de 2 à 4. L et D peuvent être mesurés par microscopie électronique à
balayage (MEB).
Renforts de verre creux
Les renforts de verre creux correspondent à un matériau fibreux en verre dont la structure est creuse (par opposition à pleine) et qui peut avoir, de la même manière que pour le renfort de verre plein, n'importe quelle forme à partir du moment où cette forme est creuse.
Les formes de verre creuses peuvent notamment être des fibres de verre creuse et courtes qui, de préférence, présentent une longueur comprise entre 2 et 13 mm, de préférence de 3 à 8 mm avant mise en oeuvre des compositions.
Par fibre de verre creuse, il faut entendre des fibres de verre dont le creux (ou trou ou lumière) à l'intérieur de la fibre n'est pas obligatoirement concentrique par rapport au diamètre externe de ladite fibre.
La fibre de verre creuse peut être :
- soit à section circulaire de diamètre extérieur compris de 7,5 à 75 pm, préférentiellement de 9 à 25 pm, plus préférentiellement de 10 à 12 pm.
Il est bien évident que le diamètre du creux (le terme « creux » peut être également dénommé ou trou ou lumière) n'est pas égal au diamètre extérieur de la fibre de verre creuse.
Avantageusement, le diamètre du creux (ou trou ou lumière) représente de 10% à 80%, en particulier de 60 à 80% du diamètre extérieur de la fibre creuse.
- soit à section non circulaire avec un ratio L/D (L représentant la plus grande dimension de la section transverse de la fibre et D la plus petite dimension de la section transverse de ladite fibre) compris de
2 à 8, en particulier de 2 à 4. L et D peuvent être mesurés par microscopie électronique à
balayage (MEB).
Ledit mélange de renforts de verre plein et creux comprend de 5 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 5 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux.
Dans un mode de réalisation, ledit mélange de renforts de verre plein et creux comprend de 10 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 10 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux.
Dans un mode de réalisation, ledit mélange de renforts de verre plein et creux, outre les billes de verre creuses, comprend des fibres de verres pleines choisies parmi les fibres de verre à section circulaire, les fibres de verre à section plates et un mélange de celles-ci.
Dans un mode de réalisation, ledit mélange de renforts de verre plein et creux comprend de 5 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 5 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, lesdites billes de verre creuse représentant la totalité de la proportion de renforts creux.
Dans ce dernier mode de réalisation, ledit mélange de renforts de verre plein et creux, outre les billes de verre creuses constituant la totalité des renforts creux, comprend des fibres de verres pleines choisies parmi les fibres de verre à section circulaire, les fibres de verre à section plates et un mélange de celles-ci.
Avantageusement, ledit mélange de renforts de verre est constitué de 50 à 95% en poids de fibres de verre pleines et de 5 à 50% en poids de billes de verre creuses, en particulier de 65 à 95% en poids de fibres de verre pleines et 5 à 35% en poids de billes de verre creuses.
Avantageusement, ledit mélange de renforts de verre est constitué de 50 à 90% en poids de fibres de verre pleines et de 10 à 50% en poids de billes de verre creuses, en particulier de 65 à 90% en poids de fibres de verre pleines et 10 à 35% en poids de billes de verre creuses.
Avantageusement, ladite fibre de verre pleine est une fibre de verre à section transversale non circulaire.
Dans un mode de réalisation, le renfort de verre plein est une fibre de verre présentant une Dk > 5 à une fréquence comprise de 1 MHz à 5 GHz et notamment une Dk > 5 et une Df < 0.005 à une fréquence de 1 GHz.
Avantageusement le renfort de verre plein est une fibre de verre à section transversale non circulaire et présente un module élastique inférieur à 76 GPa tel que mesuré selon ASTM C1557-03.
S'agissant de l'alliage constitué d'au moins un polyamide et d'au moins une polyoléfine Avantageusement, ledit alliage est constitué d'au moins un polyamide et d'au moins une polyoléfine dont le ratio en poids polyamide/polyoléfine est compris de 95/5 à 50/50.
La polyoléfine :
La polyoléfine de ladite composition peut être une polyoléfine greffée (ou fonctionnalisée) ou non greffée (ou non fonctionnalisée) ou un mélange de celles-ci.
La polyoléfine greffée peut être un polymère d’alpha oléfines ayant des motifs réactifs (les fonctionnalités); de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d’exemple, on peut citer les polyoléfines non greffées précédentes mais qui sont greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l’acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d’acides carboxyliques tels que l’anhydride maléique.
Avantageusement, la polyoléfine greffée est choisie parmi les esters d'acides carboxyliques insaturés tels que par exemple les acrylates d'alkyle ou les méthacrylates d'alkyle, de préférence lesdits alkyles ayant de 1 à 24 atomes de carbone, des exemples d'acrylate ou méthacrylate d'alkyle sont notamment le méthacrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle ;
les esters vinyliques d'acides carboxyliques saturés tels que par exemple l'acétate ou le propionate de vinyle.
Avantageusement, ladite polyoléfine greffée définie ci-dessus est à base de polypropylène.
Une polyoléfine non greffée est classiquement un homo polymère ou copolymère d’alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1, le 1-pentène, le 3-méthyl-l- butène, le 1-hexène, le 4-méthyl-l-pentène, le 3-méthyl-l-pentène, octène-1, le 1-décène, le 1- dodécène, le 1-tétradécène, le 1-hexadécène, le 1-octadécène, le 1-eicocène, le 1-dococène, 1 le - tétracocène, le 1-hexacocène, le 1-octacocène et le 1-triacontène, de préférence le propylène ou l'éthylène ou les diènes tels que par exemple le butadiène qui peut être mélangée à un
compatibilisant compatible et fonctionnel, par exemple un polyéthylène mélangé à un Lotader® maléisé ou à un polyéthylène maléisé, l'isoprène ou le 1,4-hexadiène.
En particulier l'homopolymère d'alpha oléfine est choisi parmi les polyéthylènes basse densité (LDPE, low density polyethylene), les polyéthylènes haute densité (HDPE), les polyéthylènes basse densité linéaire (LLDPE, linear low density polyethylene), le polyéthylène très basse densité (VLDPE, very low density polyethylene)) et le polyéthylène métallocène ;
En particulier, les copolymères d'alpha oléfines ou de dioléfines sont choisi parmi les polymères éthylène/alpha oléfines tels qu'éthylène-propylène, éthylène-butylène, éthylène-propylène- monomère diénique, éthylène-octène, seuls ou en mélange avec un polyéthylène (PE);
Avantageusement, ladite polyoléfine non greffée définie ci-dessus est à base de polypropylène.
La polyoléfine de la composition peut aussi être réticulée ou non réticulée ou être un mélange d’au moins une réticulée et/ou d’au moins une non réticulée.
Polyoléfine réticulée
La polyoléfine de ladite composition selon l'invention peut être une polyoléfine non réticulée et/ou une polyoléfine réticulée, ladite polyoléfine non réticulée et/ou une réticulée se présentant comme une phase dispersée dans la matrice formée par le(s) polyamide(s).
Ladite polyoléfine réticulée provient de la réaction de deux ou d’au moins deux produits ayant des groupes réactifs entre eux.
Plus particulièrement, lorsque ladite polyoléfine est une polyoléfine réticulée, elle est obtenue à partir d’au moins un produit (A) comprenant un époxyde insaturé et d’au moins un produit (B) comprenant un anhydride d’acide carboxylique insaturé.
Le produit (A) est avantageusement un polymère comprenant un époxyde insaturé, cet époxyde insaturé étant introduit dans ledit polymère, soit par greffage, soit par copolymérisation.
L’époxyde insaturé peut notamment être choisi parmi les époxydes suivants :
- les esters et éthers de glycidyle aliphatiques tels que l’allylglycidyléther, le vinylglycidyléther, le maléate et l’itaconate de glycidyle, l’acrylate et le méthacrylate de glycidyle, et
- les esters et éthers de glycidyle alicycliques tels que le 2-cyclohexène-l-glycidyléther, le cyclohexène-4,5-diglycidyl carboxylate, le cyclohexène-4-glycidyl carboxylate, 5-norbornène-2- méthyl-2-glycidyl carboxylate et endocis-bicyclo(2,2,l)-5-heptène-2,3-diglycidyl dicarboxylate.
Selon une première forme, le produit (A) est une polyoléfine greffée par un époxyde insaturé. On entend par polyoléfine, un homopolymère ou copolymère comprenant un ou plusieurs motifs oléfines tels que des motifs éthylène, propylène, butène-1 ou toute autre alpha-oléfine. A titre d’exemple de polyoléfine, on peut citer :
- le polyéthylène et, notamment, le polyéthylène basse densité (LDPE), le polyéthylène haute densité (HDPE), le polyéthylène à basse densité linéaire (LLDPE) et le polyéthylène très basse densité (VLDPE) ; le polypropylène ; les copolymères éthylène/propylène ; les polyoléfines élastomères comme l’éthylène-propylène (EPR ou EPM) ou l’éthylène-propylène-diène monomère (EPDM) ; ou encore les polyéthylènes métallocènes obtenus par catalyse monosite ;
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS) ; les copolymères blocs styrène/butadiène/styrène (SBS) ; les copolymères blocs styrène/isoprène/styrène (SIS) ; ou encore les copolymères blocs styrène/éthylène-propylène/styrène ;
- les copolymères de l'éthylène et d'au moins un produit choisi parmi les sels d'acides carboxyliques insaturés, les esters d'acides carboxyliques insaturés et les esters vinyliques d'acides carboxyliques saturés. La polyoléfine peut notamment être un copolymère d'éthylène et de (méth)acrylate d'alkyle ou un copolymère d'éthylène et d'acétate de vinyle.
Selon une deuxième forme, le produit (A) est un copolymère d'alpha-oléfine et d'un époxyde insaturé et, avantageusement, un copolymère de l'éthylène et d'un époxyde insaturé.
Avantageusement, la quantité d'époxyde insaturé peut représenter jusqu'à 15% en poids du copolymère (A), la quantité d'éthylène représentant quant à elle au moins 50% en poids du copolymère (A).
On peut plus particulièrement citer les copolymères de l'éthylène, d'un ester vinylique d'acide carboxylique saturé et d'un époxyde insaturé ainsi que les copolymères de l'éthylène, d'un
(méth)acrylate d'alkyle et d'un époxyde insaturé. De préférence, l'alkyle du (méth)acrylate comprend de 2 à 10 atomes de carbone. Des exemples d'acrylates ou méthacrylates d'alkyle utilisables sont notamment l'acrylate de méthyle, le méthacrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n- butyle, l'acrylate d'isobutyle et l'acrylate de 2-éthylhexyle.
Selon une version avantageuse de l'invention, le produit (A) est un copolymère d'éthylène, d'acrylate de méthyle et de méthacrylate de glycidyle ou un copolymère d'éthylène, d'acrylate de n-butyle et de méthacrylate de glycidyle. On pourra notamment utiliser le produit commercialisé par la société ARKEMA sous la dénomination LOTADER® AX8900.
Selon une autre forme de l'invention, le produit (A) est un produit ayant deux fonctions époxyde, tel que par exemple le diglycidyl éther du bisphénol A (DGEBA).
Le produit (B) est avantageusement un polymère comprenant un anhydride d'acide carboxylique insaturé, cet anhydride d'acide carboxylique insaturé étant introduit dans ledit polymère, soit par greffage, soit par copolymérisation.
Des exemples d'anhydrides d'acide dicarboxylique insaturé utilisables comme constituants du produit (B) sont notamment l'anhydride maléique, l'anhydride itaconique, l'anhydride citraconique et l'anhydride tétrahydrophtalique.
Selon une première forme, le produit (B) est une polyoléfine greffée par un anhydride d'acide carboxylique insaturé. Comme on l'a vu ci-dessus, une polyoléfine est un homopolymère ou copolymère comprenant un ou plusieurs motifs oléfines tels que des motifs éthylène, propylène, butène-1 ou toute autre alpha-oléfine. Cette polyoléfine peut être notamment choisie parmi les
exemples de polyoléfines listés plus haut pour le produit (A), lorsque ce dernier est une polyoléfine greffée par un époxyde insaturé.
Selon une deuxième forme, le produit (B) est un copolymère d'alpha-oléfine et d'un anhydride d'acide carboxylique insaturé et, avantageusement, un copolymère de l'éthylène et d'un anhydride d'acide carboxylique insaturé. Avantageusement, la quantité d'anhydride d'acide carboxylique insaturé peut représenter jusqu'à 15% en poids du copolymère (B), la quantité d'éthylène représentant quant à elle au moins 50% en poids du copolymère (B).
On peut plus particulièrement citer les copolymères de l'éthylène, d'un ester vinylique d'acide carboxylique saturé et d'un anhydride d'acide carboxylique insaturé ainsi que les copolymères de l'éthylène, d'un (méth)acrylate d'alkyle et d'un anhydride d'acide carboxylique insaturé. De préférence, l'alkyle du (méth)acrylate comprend de 2 à 10 atomes de carbone. L'acrylate ou le méthacrylate d'alkyle peut être choisi parmi ceux cités plus haut pour le produit (A).
Selon une version avantageuse de l'invention, le produit (B) est un copolymère de l'éthylène, d'un (méth)acrylate d'alkyle et d'un anhydride carboxylique insaturé. Préférentiellement, le produit (B) est un copolymère d'éthylène, d'acrylate d'éthyle et d'anhydride maléique ou un copolymère d'éthylène, d'acrylate de butyle et d'anhydride maléique. On pourra notamment utiliser les produits
commercialisés par la société ARKEMA sous les dénominations LOTADER® 4700 et LOTADER® 3410. On ne sortirait pas du cadre de l'invention si une partie de l'anhydride maléique du produit (B), selon les première et deuxième formes qui viennent d'être décrites, était en partie hydrolysée.
Avantageusement, les teneurs pondérales en produit (A) et en produit (B), que l'on note
respectivement [A] et [B], sont telles que le rapport [B] / [A] est compris entre 3 et 14 et, avantageusement, entre 4 et 9.
Dans la composition selon l'invention, la polyoléfine réticulée peut également être obtenue à partir des produits (A), (B) tels que décrits ci-dessus et d'au moins un produit (C), ce produit (C) comprenant un acide carboxylique insaturé ou un acide alpha-oméga-aminocarboxylique.
Le produit (C) est avantageusement un polymère comprenant un acide carboxylique insaturé ou un acide alpha-oméga-aminocarboxylique, l'un ou l'autre de ces acides étant introduit dans ledit polymère par copolymérisation.
Des exemples d'acides carboxyliques insaturés utilisables comme constituants du produit (C) sont notamment l'acide acrylique, l'acide méthacrylique, les anhydrides d'acide carboxylique cités plus haut comme constituants du produit (B), ces anhydrides étant totalement hydrolysés.
Des exemples d'acides alpha-oméga-aminocarboxyliques utilisables comme constituants du produit (C) sont notamment l'acide 6-aminohexanoïque, l'acide 11-aminoundécanoïque et l'acide 12- aminododécanoïque.
Le produit (C) peut être un copolymère d'alpha-oléfine et d'un acide carboxylique insaturé et, avantageusement, un copolymère de l'éthylène et d'un acide carboxylique insaturé. On peut notamment citer les copolymères totalement hydrolysés du produit (B).
Selon une version avantageuse de l'invention, le produit (C) est un copolymère de l'éthylène et de l'acide (méth)acrylique ou un copolymère de l'éthylène, d'un (méth)acrylate d'alkyle et de l'acide (méth)acrylique. La quantité d'acide (méth)acrylique peut représenter jusqu'à 10% en poids et, de préférence, de 0,5 à 5% en poids du copolymère (C). La quantité de (méth)acrylate d'alkyle est généralement comprise entre 5 et 40% en poids du copolymère (C).
Avantageusement, le produit (C) est un copolymère d'éthylène, d'acrylate de butyle et d'acide acrylique tel que l'Escor™ 5000 d'ExxonMobil.
Préférentiellement, le produit (C) est un copolymère d’éthylène, d'acrylate de butyle et d'acide acrylique. On pourra notamment utiliser le produit commercialisé par la société BASF sous la dénomination LUCALENE® 3110.
La phase dispersée de polyoléfine réticulée peut bien entendu provenir de la réaction d'un ou plusieurs produits (A) avec un ou plusieurs produits (B) et, le cas échéant, avec un ou plusieurs produits (C).
Comme déjà décrit dans le document WO 2011/015790, on peut utiliser des catalyseurs permettant d'accélérer la réaction entre les fonctions réactives des produits (A) et (B). On se reportera donc à l'enseignement de ce document pour ce qui concerne des exemples de catalyseurs, ceux-ci pouvant être utilisés dans une teneur pondérale comprise entre 0,1 et 3% et, avantageusement, entre 0,5 et 1% du poids total des produits (A), (B) et, le cas échéant, (C).
Avantageusement, les teneurs pondérales en produit (A), en produit (B), en produit (C) que l'on note respectivement [A], [B] et [C] sont telles que le rapport [B] / ([A]+[C]) est compris entre 1,5 et 8, les teneurs pondérales en produits (A) et (B) étant telles que [C] < [A]
De manière avantageuse, le rapport [B] / ([A]+[C]) est compris entre 2 et 7.
Polyoléfine non réticulée
La composition selon l'invention peut comprendre au moins une polyoléfine non réticulée, ladite polyoléfine non réticulée se présentant comme une phase dispersée dans la matrice formée par le(s) polyamide(s) semi-cristallin(s).
On entend par polyoléfine non réticulée, un homopolymère ou copolymère comprenant un ou plusieurs motifs oléfines tels que des motifs éthylène, propylène, butène-1 ou toute autre alpha- oléfine tel que défini ci-dessus.
Avantageusement, ladite composition comprend au moins une polyoléfine réticulée telle que définie ci-dessus et au moins une polyoléfine non réticulée telle que définie ci-dessus.
Dans un mode de réalisation, ledit alliage est constitué d'au moins un polyamide et d'un mélange d'une polyoléfine greffée à base de polypropylène et d'une polyoléfine non greffée à base de polypropylène.
Le polyamide :
Ledit au moins un polyamide est choisi parmi les polyamides semi-cristallins, les polyamides amorphes et un mélange de ceux-ci.
Avantageusement, ledit au moins un polyamide est choisi parmi un polyamide unique amorphe, un polyamide semi-cristallin, et un mélange de deux polyamides semi-cristallins.
Un polyamide semi-cristallin, au sens de l'invention, désigne un polyamide qui présente une température de transition vitreuse en DSC selon la norme ISO 11357-2 :2013 ainsi qu'une température de fusion (Tf) en DSC selon la norme ISO 11357-3 :2013, et une enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min en DSC mesurée selon la norme ISO 11357-3 de 2013 supérieure à 30 J/g, de préférence supérieure à 40 J/g.
Un polyamide amorphe, au sens de l'invention, désigne un polyamide présentant seulement une température de transition vitreuse (pas de température de fusion (Tf)) en DSC selon la norme ISO 11357-2 :2013, ou un polyamide très peu cristallin ayant une température de transition vitreuse en DSC selon la norme ISO 11357-2 :2013 et un point de fusion tel que l'enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min en analyse calorimétrique différentielle (« Differential Scanning Calorimetry » DSC en anglais) mesurée selon la norme ISO 11357-3 :2013 est inférieure à 30 J/g, notamment inférieure à 20 J/g, de préférence inférieure à 15 J/g.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1:2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l'homme du métier.
Dans une première variante, ledit alliage est constitué d'un seul polyamide qui est un polyamide amorphe et d'au moins une polyoléfine.
Le polyamide amorphe :
Ledit polyamide amorphe peut être un polyamide de formule A/XY, dans laquelle :
A est un motif répétitif aliphatique obtenu par polycondensation :
d'au moins un aminoacide en C5 à Cis, préférentiellement en C6 à Cu, plus préférentiellement en Cio à C12, ou
d'au moins un lactame en C5 à Cis, préférentiellement en C6 à C12, plus préférentiellement en Cio à C12, ou
d'au moins une diamine aliphatique Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6- C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36,
préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C8-C12,;
XY est un motif répétitif aliphatique obtenu par polycondensation :
d'au moins une diamine cycloaliphatique, ou d'au moins une diamine aliphatique linéaire ou ramifiée X et
d'au moins un acide dicarboxylique aromatique ou d'au moins un acide dicarboxylique aliphatique Y. Ledit aminoacide peut être notamment choisi parmi l’acide 9-aminononanoïque, l’acide 10- aminodécanoïque, l’acide 10-aminoundécanoïque, l’acide 12-aminododécanoïque et l’acide 11- aminoundécanoïque ainsi que ses dérivés, notamment l’acide N-heptyl-ll-aminoundécanoïque, en particulier l’acide 11-aminoundécanoïque.
Ledit lactame peut être notamment choisi parmi la pyrrolidinone, la 2-pipéridinone, le caprolactame, l'énantholactame, le caprylolactame, le pelargolactame, le décanolactame, l'undecanolactame, et le lauryllactame, en particulier le lauryllactame.
Ladite diamine aliphatique Ca en C4-C36 est linéaire ou ramifiée et est notamment choisi parmi la butanediamine, la 1,5-pentaméthyldiamine, la 2-méthyl-l,5-pentanediamine, la 1,6- hexaméthylènediamine la 1,7-heptanediamine, la 1,8-octanediamine, la 1,9-nonanediamine, la 2- méthyl-l,8-octane-diamine, la 2,2,4-triméthylhexamethylenediamine, la 2,4,4- triméthylhexamethylenediamine, la 1,10-décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl-
1,5-pentanediamine, la 1,12-dodécanediamine, la 1,13-tridécanediamine, la 1,14- tétradécanediamine, la 1,16-hexadécanediamine, la 1,18-octadécanediamine, la 1,20- eicosanediamine, la 1,22-docosanediamine et les dimère d'acide gras.
Ladite diamine aliphatique Ca en C6-C18 est linéaire ou ramifiée et est notamment choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptanediamine, la 1,8-octanediamine, la 1,9-nonanediamine, la 2- méthyl-l,8-octane-diamine, la 2,2,4-triméthylhexamethylenediamine, la 2,4,4- triméthylhexamethylenediamine, la 1,10-décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl-
1,5-pentanediamine, la 1,12-dodécanediamine, la 1,13-tridécanediamine, la 1,14- tétradécanediamine, la 1,16-hexadécanediamine, la 1,18-octadécanediamine.
Ladite diamine aliphatique Ca en C6-C12 est linéaire ou ramifiée et est notamment choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptanediamine, la 1,8-octanediamine, la 1,9-nonanediamine, la 2- méthyl-l,8-octane-diamine, la 2,2,4-triméthylhexamethylenediamine, la 2,4,4- triméthylhexamethylenediamine, la 1,10-décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl-
1,5-pentanediamine, la 1,12-dodécanediamine.
Ladite diamine aliphatique Ca en C10-C12 est linéaire ou ramifiée et est notamment choisi parmi la 1,10-décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl-l,5-pentanediamine, la 1,12- dodécanediamine.
Ledit acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C8-C12,;
Ledit acide dicarboxylique Cb en C4-C36 est aliphatique et linéaire et est notamment choisi parmi l'acide succinique, l'acide pentanedioïque, l'acide adipique, l’acide heptanedioïque, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradecanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioiïque, l'acide octadécanedioïque, l’acide eicosanedioïque et l’acide docosanedioïque.
Ledit acide dicarboxylique Cb en C6-C18 est aliphatique et linéaire et est notamment choisi parmi l'acide adipique, l’acide heptanedioïque, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradecanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioiïque, l'acide octadécanedioïque.
Ledit acide dicarboxylique Cb en C6-C12 est aliphatique et linéaire et est notamment choisi parmi l'acide adipique, l’acide heptanedioïque, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque.
Ledit acide dicarboxylique Cb en C8-C12, est aliphatique et linéaire et est notamment choisi parmi l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque et l'acide
dodécanedioïque.
Dans ledit motif répétitif aliphatique XY, ladite diamine X peut être notamment une diamine cycloaliphatique choisie parmi la bis(3,5-dialkyl-4-aminocyclohexyl)methane, la bis(3,5-dia Ikyl- 4-aminocyclohexyl)ethane, la bis(3,5-dialkyl-4-aminocyclo-hexyl)propane, la bis(3,5-dialkyl- 4-aminocyclo-hexyl)butane, la bis-(3-méthyl-4-aminocyclohexyl)-méthane (BMACM ou MACM), la p-bis(aminocyclohexyl)-methane (PACM) et risopropylidenedi(cyclohexylamine) (PACP), l'isophoronediamine, la pipérazine, l'amino-éthylpipérazine.
Elle peut également comporter les squelettes carbonés suivants : norbornyl méthane, cyclohexylméthane, dicyclohexylpropane, di(méthylcyclohexyl), di(methylcyclohexyl) propane. Une liste non-exhaustive de ces diamines cycloaliphatiques est donnée dans la publication "Cycloaliphatic Amines" (Encyclopaedia of Chemical Technology, Kirk-Othmer, 4th Edition (1992), pp. 386-405).
Dans ledit motif répétitif aliphatique XY, ladite diamine X peut être notamment une diamine aliphatique est linéaire ou ramifiée et est choisi parmi celle définie ci-dessus pour la diamine en Ca.
Dans ledit motif répétitif aliphatique XY, le diacide Y peut être un acide dicarboxylique aromatique choisi parmi l'acide téréphtalique (noté T), isophtalique (noté I) et les diacides
naphtaléniques.
Dans ledit motif répétitif aliphatique XY, le diacide Y peut être un acide dicarboxylique aliphatique Y et est choisi parmi celui défini ci-dessus pour le diacide en Cb.
Il est bien évident que le motif XY est différent du motif diamine en Ca. diacide en Cb.
Avantageusement, A est un motif répétitif aliphatique obtenu par polycondensation d'au moins un aminoacide en C5 à Cis, préférentiellement en C6 à Cu, plus préférentiellement en Cio à C12, ou d'au moins un lactame en C5 à Cis, préférentiellement en C6 à C12, plus préférentiellement en Cio à C12.
Avantageusement, XY est un motif répétitif aliphatique obtenu par polycondensation d'au moins une diamine cycloaliphatique, et d'au moins un acide dicarboxylique aromatique ou d'au moins un acide dicarboxylique aliphatique Y.
Avantageusement, A est un motif répétitif aliphatique obtenu par polycondensation d'au moins un aminoacide en C5 à Cis, préférentiellement en C6 à C12, plus préférentiellement en Cio à C12, ou d'au moins un lactame en C5 à Cis, préférentiellement en C6 à C12, plus préférentiellement en Cio à C12 et XY est un motif répétitif aliphatique obtenu par polycondensation d'au moins une diamine cycloaliphatique, et d'au moins un acide dicarboxylique aromatique ou d'au moins un acide dicarboxylique aliphatique Y.
Avantageusement, A est un motif répétitif aliphatique obtenu par polycondensation d'au moins un aminoacide en Cio à C12, ou d'au moins un lactame en Cio à C12 et XY est un motif répétitif aliphatique obtenu par polycondensation d'au moins une diamine cycloaliphatique, et d'au moins un acide dicarboxylique aromatique ou d'au moins un acide dicarboxylique aliphatique Y.
Avantageusement, ledit polyamide amorphe est choisi parmi 11/B10, 12/B10, 11/BI/BT, 11/BI notamment 11/B10.
Avantageusement, A est un motif répétitif aliphatique obtenu par polycondensation d'au moins un aminoacide en Cio à C12, ou d'au moins un lactame en Cio à C12 et XY est un motif répétitif aliphatique obtenu par polycondensation d'au moins une diamine cycloaliphatique, et d'au moins un acide dicarboxylique aromatique.
Avantageusement, ledit polyamide amorphe est choisi parmi 11/BI/BT et 11/BI.
Avantageusement, A est un motif répétitif aliphatique obtenu par polycondensation d'au moins un aminoacide en Cio à C12, ou d'au moins un lactame en Cio à C12 et XY est un motif répétitif aliphatique obtenu par polycondensation d'au moins une diamine cycloaliphatique, et d'au moins un acide dicarboxylique aliphatique Y.
Avantageusement, ledit polyamide amorphe est choisi parmi 11/B10, 12/ B 10, notamment 11/B10. Avantageusement, ledit alliage est constitué d'un seul polyamide qui est un polyamide amorphe et d'un mélange d'une polyoléfine greffée à base de polypropylène et d'une polyoléfine non greffée à base de polypropylène.
Dans une seconde variante, ledit alliage est constitué d'un seul polyamide semi-cristallin ou d'un mélange de deux polyamides semi-cristallins et d'au moins une polyoléfine.
La polyoléfine est telle que définie ci-dessus.
Le polyamide semi-cristallin :
Le polyamide semi-cristallin peut être choisi parmi les polyamides aliphatiques, notamment à longue chaîne, les polyamides aryl-aliphatiques et les polyamides semi-aromatiques.
L'expression « polyamide aliphatique » signifie un homopolyamide ou un copolyamide. Il est bien entendu qu'il peut s'agir d'un mélange de polyamides aliphatiques.
L'expression « longue chaîne » signifie que le nombre moyen d'atome de carbone par atome d'azote est supérieur à 8, notamment compris de 9 à 18.
Dans un mode de réalisation, ledit mélange de polyamides est un mélange d'un polyamide aliphatique, notamment à longue chaîne, avec un polyamide aryl-aliphatique.
Le polyamide aliphatique peut être obtenu à partir de la polycondensation d'un lactame, ledit lactame peut être choisi parmi la pyrrolidinone, la 2-pipéridinone, le caprolactame,
l'énantholactame, le caprylolactame, le pelargolactame, le décanolactame, l'undecanolactame, et le lauryllactame, en particulier le lauryllactame.
Le polyamide aliphatique peut être obtenu à partir de la polycondensation d'un aminoacide qui peut être choisi parmi l’acide 9-aminononanoïque, l’acide 10-aminodécanoïque, l’acide 10- aminoundécanoïque, l’acide 12-aminododécanoïque et l’acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l’acide N-heptyl-ll-aminoundécanoïque, en particulier l’acide 11- aminoundécanoïque.
Le polyamide aliphatique peut être obtenu à partir de la polycondensation d'un motif X1Y1, XI représentant une diamine et Y représentant un acide dicarboxylique.
XI peut être une diamine aliphatique en C5 à C18, linéaire ou ramifiée, et peut être en particulier choisi parmi la 1,5-pentaméthyldiamine, la 2-méthyl-l,5-pentanediamine, la 1,6- hexaméthylènediamine la 1,7-heptanediamine, la 1,8-octanediamine, la 1,9-nonanediamine, la 2- méthyl-l,8-octane-diamine, la 2,2,4-triméthylhexamethylenediamine, la 2,4,4- triméthylhexamethylenediamine, la 1,10-décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl- 1,5-pentanediamine, la 1,12-dodécanediamine, la 1,13-tridécanediamine, la 1,14- tétradécanediamine, la 1,16-hexadécanediamine et la 1,18-octadécanediamine.
Avantageusement, la diamine XI utilisée est en C6 à C12, en particulier choisi parmi la 2-méthyl-l,5- pentanediamine, la 1,6- hexaméthylènediamine la 1,7-heptanediamine, la 1,8-octanediamine, la 1,9- nonanediamine, la 2-méthyl-l,8-octane-diamine, la 2,2,4-triméthylhexamethylenediamine, la 2,4,4- triméthylhexamethylenediamine, la 1,10-décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl- 1,5-pentanediamine, la 1,12-dodécanediamine.
Avantageusement, la diamine XI utilisée est en CIO à C12, en particulier choisi parmi la 1,10- décanediamine, 1,11-undécanediamine, la 2-butyl-2-éthyl-l,5-pentanediamine et la 1,12- dodécanediamine,
Y1 peut être acide dicarboxylique aliphatique en C6 à C18, en particulier en C6 à C12, notamment en CIO à C12.
L'acide dicarboxylique aliphatique Y1 en C6 à C18 peut être choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradecanedioïque, l'acide pentadécanedioïque, l'acide
hexadécanedioiïque, l'acide octadécanedioïque.
L'acide dicarboxylique aliphatique Y1 en C6 à C12 peut être choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque. L'acide dicarboxylique aliphatique Y1 en CIO à C12 peut être choisi parmi l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque.
Avantageusement, ledit polyamide aliphatique est choisi parmi les PA6, PA66, PA610, PA612,
PA1010, PA1012, PA1212, PAU et le PA 12, en particulier PA1010, PA1012, PA1212, PAU et PA 12. L'expression « polyamide aryl-aliphatique » signifie un polyamide obtenu à partir de la
polycondensation d'un motif X2Y1, X2 représentant une aryldiamine et Y1 représentant un acide dicarboxylique aliphatique tel que défini ci-dessus.
Ladite aryldiamine X2 peut être choisie parmi la meta-xylylène diamine (MXD) et la para-xylylène diamine (PXD).
Avantageusement, ledit polyamide aryl-aliphatique est choisi parmi MXD6, MXD10, MXD12.
Avantageusement, ledit polyamide aryl-aliphatique est choisi parmi MXD10, MXD12.
Avantageusement, ledit mélange de deux polyamides semi-cristallins est un mélange d'un polyamide aliphatique avec un polyamide arylaliphatique.
Avantageusement, ledit mélange de deux polyamides semi-cristallins est un mélange d'un polyamide aliphatique choisi parmi les PA6, PA66, PA610, PA612, PA1010, PA1012, PA1212, PAU et le PA 12, en particulier PA1010, PA1012, PA1212, PAU et PA 12, avec un polyamide arylaliphatique choisi parmi MXD6, MXD10, MXD12.
Avantageusement, ledit mélange de deux polyamides semi-cristallins est un mélange d'un polyamide aliphatique choisi parmi PA1010, PA1012, PA1212, PAU et PA 12, avec un polyamide arylaliphatique choisi parmi MXD10, MXD12.
L'expression « polyamide semi-aromatique » signifie notamment un polyamide semi-aromatique de formule telle que décrite dans EP1505099, notamment un polyamide semi-aromatique de formule B/ZT dans laquelle B est choisi parmi un motif obtenu à partir de la polycondensation d’un aminoacide tel que défini ci-dessus, un motif obtenu à partir de la polycondensation d'un lactame tel que défini ci-dessus et un motif répondant à la formule X2Y2, avec X2 et Y2 étant tels que définis ci- dessus;
ZT désigne un motif obtenu à partir de la polycondensation d’une diamine en Cx et de l'acide téréphtalique, avec x représentant le nombre d'atomes de carbone de la diamine en Cx, x étant compris entre 4 et 36, avantageusement entre 6 et 18, avantageusement entre 6 et 12,
avantageusement entre 10 et 12, notamment un polyamide de formule A/6T, A/9T, A/10T ou A/11T, A étant tel que défini ci-dessus, en particulier un polyamide PA 6/6T, un PA 66/6T, un PA 6I/6T, un PA 11/9T, un PA 11/10T, un PA 11/12T, un PA 12/9T, un PA 12/10T, un PA 12/12T, un PA MPMDT/6T, un PA MXDT/6T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/10T, un PA 11/MPMDT/10T et un PA 11/MXDT/10T, et les copolymères blocs, notamment polyamide/polyéther (PEBA).
T correspond à l'acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane (1,3 BAC et/ou 1, 4 BAC).
Avantageusement, le polyamide semi-aromatique est choisi parmi PA11/9T, PA11/10T, PA 11/12T, PA12/9T, PA12/10T, PA12/12T.
Avantageusement, ledit au moins un polyamide est choisi parmi un polyamide unique amorphe, un polyamide aryl-aliphatique, un mélange d'un polyamide aliphatique, notamment à longue chaîne avec un polyamide aryl-aliphatique et un mélange d'un polyamide aliphatique, notamment à longue chaîne avec un polyamide semi-aromatique.
Avantageusement, ledit alliage est constitué d'un mélange de deux polyamides semi-cristallins et d'un mélange d'une polyoléfine greffée à base de polypropylène et d'une polyoléfine non greffée est à base de polypropylène.
Dans un mode de réalisation, la présente invention concerne l'utilisation telle que définie ci-dessus, dans laquelle la composition comprend des additifs.
Les additifs
Les additifs peuvent être présents jusqu'à 2% en poids par rapport au poids total de la composition, en particulier ils sont présents de 1 à 2% en poids par rapport au poids total de la composition. L'additif peut être choisi parmi un catalyseur, un antioxydant, un stabilisant thermique, un stabilisant UV, un stabilisant à la lumière, un lubrifiant, un agent ignifugeant, un agent nucléant, un allongeur de chaîne et un colorant.
Le terme « catalyseur » désigne un catalyseur de polycondensation tel qu'un acide minéral ou organique.
Avantageusement, la proportion en poids de catalyseur est comprise d'environ 50 ppm à environ 5000 ppm, en particulier d'environ 100 à environ 3000 ppm par rapport au poids total de la composition.
Avantageusement, le catalyseur est choisi parmi l'acide phosphorique (H3P04), l'acide phosphoreux (H3P03), l'acide hypophosphoreux (H3P02), ou un mélange de ceux-ci.
L'antioxydant peut notamment être un antioxydant à base de complexe de cuivre de 0,05 à 5% en poids, de préférence de 0,05 à 1% en poids de préférence de 0,1 à 1%.
L'expression complexe de cuivre désigne notamment un complexe entre un sel monovalent ou divalent de cuivre avec un acide organique ou inorganique et un ligand organique.
Avantageusement, le sel de cuivre est choisi parmi les sels cuivriques (Cu(ll)) d'halogénure d'hydrogène, les sels cuivreux (Cu(l)) d'halogénure d'hydrogène et les sels d'acides carboxyliques aliphatiques.
En particulier, les sels de cuivre sont choisis parmi CuCI, CuBr, Cul, CuCN, CuCI2, Cu(OAc)2, le stéarate cuivrique.
Des complexes de cuivre sont notamment décrits dans US3505285.
Ledit complexe à base de cuivre peut de plus comprendre un ligand choisi parmi les phosphines, en particulier les triphenylphosphines, le mercaptobenzimidazole, l'EDTA, l'acétylacétonate, la glycine, l'éthylène diamine, l'oxalate, la diéthylène diamine, la triéthylène tetraamine, la pyridine, la tetrabromobisphenyl-A, les dérivés de tetrabisphenyl-A, tels que les dérivés epoxy, et les dérivés de chloro dimethanedibenzo(a,e)cyclooctène et leurs mélanges. diphosphone et le dipyridyl ou leurs mélanges, en particulier la triphénylphosphine et/ou le mercaptobenzimidazole.
Les phosphines désignent les alkylphosphines, telle que la tributylphosphine ou les arylphosphines telle que la triphénylphosphine (TPP).
Avantageusement, ledit ligand est la triphénylphosphine.
Des exemples de complexes ainsi que leur préparation sont décrits dans le brevet CA 02347258.
Avantageusement, la quantité de cuivre dans la composition de l'invention est comprise de 10 ppm à 1000 ppm en poids, notamment de 20 ppm à 70 ppm, en particulier de 50 à 150 ppm par rapport au poids total de la composition.
Avantageusement, ledit complexe à base de cuivre comprend de plus un composé organique halogéné.
Le composé organique halogéné peut être tout composé organique halogéné.
Avantageusement, ledit composé organique halogéné est un composé à base de brome et/ou un composé aromatique.
Avantageusement, ledit composé aromatique est notamment choisi parmi le decabromediphenyl, decabromodiphenyl ether, les oligomères de bromo ou chloro styrène, le polydibromostyrene, le Avantageusement, ledit composé organique halogéné est un composé à base de brome.
Ledit composé organique halogéné est ajouté à la composition en une proportion de 50 à 30 000 ppm en poids d'halogène par rapport au poids total de la composition, notamment de 100 à 10000 en particulier de 500 à 1500 ppm.
Avantageusement, le ratio molaire cuivre:halogène est compris de 1 :1 à 1 :3000, notamment de 1 :2 à 1 :100.
En particulier, ledit ratio est compris de 1 :1,5 à 1:15.
Avantageusement, l'antioxydant à base de complexe de cuivre.
Le stabilisant thermique peut être un stabilisant organique ou plus généralement une combinaison de stabilisants organiques, tel un antioxydant primaire de type phénol (par exemple du type de celle de l’irganox 245 ou 1098 ou 1010 de la société Ciba), un antioxydant secondaire de type phosphite.
Le stabilisant UV peut être un HALS, ce qui signifie Hindered Amine Light Stabiliser ou un anti-UV (par exemple le Tinuvin 312 de la société Ciba).
Le stabilisant à la lumière peut être de type amine encombrée (par exemple le Tinuvin 770 de la société Ciba), un stabilisant phénolique ou à base de phosphore.
Le lubrifiant peut être un lubrifiant de type acide gras tel que l'acide stéarique.
L'agent ignifugeant peut être un agent ignifugeant sans halogène, tels que décrit dans US
2008/0274355 et notamment un agent ingifugeant à base de phosphore, par exemple un sel métallique choisi parmi un sel métallique de l'acide phosphinique, en particulier des sels de phosphinate de dialkyle, notamment du diéthylphosphinate sel d'aluminium ou du
diéthylphosphinate d'aluminium, un sel métallique de l'acide diphosphinique, un mélange d'agent ignifugeant à base de phosphinate d'aluminium et d'un synergiste d'azote ou un mélange d'agent ignifugeant à base phosphinate d'aluminium et d'un synergiste de phosphore, un polymère contenant au moins un sel métallique de l'acide phosphinique, notamment sur base ammonium tels
qu'un ammonium polyphosphate, sulfamate ou pentaborate, ou sur base mélamine tels que de la mélamine, des sels de mélamine, des pyrophosphates de mélamine et des cyanurates de mélamine, ou sur base d'acide cyanurique, encore un polymère contenant au moins un sel métallique de l'acide diphosphinique ou du phosphore rouge, un oxyde d'antimoine, un oxyde de zinc, un oxyde de fer, un oxyde de magnésium ou des borates métalliques tels que un borate de zinc, ou des phosphazene, un phospham ou un phosphoxynitride ou un mélange de ceux-ci. Ils peuvent également être des agents ignifugeants halogénés tels qu'un polystyrène bromé ou polybromé, un polycarbonate bromé ou un phénol bromé.
L'agent nucléant peut être de la silice, de l’alumine, de l’argile ou du talc, en particulier du talc.
Des exemples de régulateurs de chaîne appropriés sont des monoamines, des acides
monocarboxyliques, des diamines, des triamines, des acides dicarboxyliques, des acides
tricarboxyliques, des tétraamines, des acides tétracarboxyliques et, des oligoamines ou des acides oligocarboxyliques ayant respectivement dans chaque cas 5 à 8 groupes amino ou carboxy et en particulier des acides dicarboxyliques, des acides tricarboxyliques ou un mélange d’acides dicarboxyliques et d’acides tricarboxyliques. A titre d’exemple, il est possible d’utiliser l’acide dodécanedicarboxylique sous forme d’acide dicarboxylique et de l’acide triméllitique comme acide tricarboxylique.
Dans un autre mode de réalisation, la présente invention concerne l'utilisation telle que définie ci- dessus, dans laquelle la composition comprend au moins un prépolymère, notamment
monofonctionnel NH2, en particulier à base PAU.
Avantageusement, la composition comprend un seul prépolymère.
Le prépolymère
Le prépolymère peut être présent jusqu'à 11% en poids par rapport au poids total de la composition, en particulier de 0,1% à 11% en poids par rapport au poids total de la composition.
Le prépolymère est différent de l'agent nucléant utilisé comme additif.
Le terme « prépolymère » fait référence à des oligomères de polyamides nécessairement de masse moléculaire moyenne en nombre inférieure à celle des polyamides utilisés dans la composition, en particulier ledit prépolymère à une masse moléculaire moyenne en nombre comprise de 1000 à 15000 g /mole, en particulier de 1000 à 10000 g/mole.
Le prépolymère peut être choisi parmi les oligomères de polyamides aliphatiques, linéaires ou ramifiés, les oligomères de polyamides cycloaliphatiques, les oligomères de polyamides semi- aromatiques, les oligomères de polyamides aromatiques, les polyamides aliphatiques, linéaires ou ramifiés, cycloaliphatiques, semi-aromatiques et aromatiques ayant la même définition que ci- dessus.
Le prépolymère ou oligomère est par conséquent issu de la condensation :
- d'au moins un lactame, ou
- d'au moins un amino acide, ou
- d'au moins une diamine avec au moins un acide dicarboxylique, ou un mélange de ceux-ci.
Le prépolymère ou oligomère ne peut donc pas correspondre à la condensation d'une diamine avec un lactame ou un amino acide.
Le prépolymère peut également être un oligomère de copolyamide ou un mélange d'oligomères de polyamides et de copolyamide.
Par exemple, le prépolymère est monofonctionnel NH2, monofonctionnel C02H ou difonctionnel C02H ou NH2.
Le prépolymère peut donc être mono ou difonctionnel, acide ou amine, c'est-à-dire qu'il présente une seule fonction terminale amine ou acide, lorsqu'il est monofonctionnel (dans ce cas l'autre terminaison est non fonctionnel, notamment CH3), ou deux fonctions terminales amine ou deux fonctions terminales acide, lorsqu'il est difonctionnel.
Avantageusement, le prépolymère est monofonctionnel, de préférence NH2 ou C02H.
Il peut également être non fonctionnel aux deux terminaisons, notamment diCH3.
Dans un mode de réalisation, la présente invention concerne l'utilisation telle que définie ci-dessus, dans laquelle la composition comprend :
30 à 70%, en particulier 35 à 60%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
30 à 70%, en particulier 40 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2%, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Dans un autre mode de réalisation, la présente invention concerne l'utilisation telle que définie ci- dessus, dans laquelle la composition est constituée de:
30 à 70 %, en particulier 35 à 60%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
30 à 70%, en particulier 40 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2%, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Dans un mode de réalisation, la présente invention concerne l'utilisation telle que définie ci-dessus, dans laquelle la composition comprend :
30 à 50%, en particulier 35 à 50%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
50 à 70%, en particulier 50 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2%, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Dans encore un autre mode de réalisation, la présente invention concerne l'utilisation telle que définie ci-dessus, dans laquelle la composition est constituée de:
30 à 50%, en particulier 35 à 50%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
50 à 70%, en particulier 50 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2%, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Selon un autre aspect, la présente invention concerne une composition notamment utile pour le moulage par injection, comprenant :
30 à 70%, en particulier 35 à 60%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
30 à 70%, en particulier 40 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Avantageusement, ladite composition notamment utile pour le moulage par injection, est constituée de:
30 à 70%, en particulier 35 à 60%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio
polyamide/polyoléfine étant compris de 95/5 à 50/50;
30 à 70%, en particulier 40 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Dans un mode de réalisation, ladite composition notamment utile pour le moulage par injection, est comprend:
30 à 50%, en particulier 35 à 50%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio
polyamide/polyoléfine étant compris de 95/5 à 50/50;
50 à 70%, en particulier 50 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2%, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Dans un autre mode de réalisation, ladite composition notamment utile pour le moulage par injection, est constituée de:
30 à 50%, en particulier 35 à 50%, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio
polyamide/polyoléfine étant compris de 95/5 à 50/50;
50 à 70%, en particulier 50 à 65%, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% de charges et
0 à 2%, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Dans un mode de réalisation, ladite composition est dépourvue de polyamide 6 et 66.
Toutes les caractéristiques définies ci-dessus pour l'utilisation définie ci-dessus sont valables pour la composition en tant que telle.
S'agissant des charges
La composition peut par ailleurs comporter également des charges. Les charges envisagées incluent les charges minérales classiques, telles que le kaolin, la magnésie, les scories, le noir de carbone, le graphite expansé ou non, la wollastonite, les pigments tels que l’oxyde de titane et le sulfure de zinc, les charges antistatiques.
Avantageusement, ladite composition notamment utile pour le moulage par injection, est constituée de :
30 à 70 % en poids, en particulier 35 à 60% en poids, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini ci-dessus, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
30 à 70% en poids, en particulier 40 à 65% en poids, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini ci-dessus ; et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11% en poids;
0 à 5% en poids de charges et
0 à 2% en poids, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Selon un autre aspect, la présente invention concerne l'utilisation d'une composition telle que définie ci-dessus, pour la fabrication d'un article notamment pour l'électronique, pour des applications télécom ou pour l'échange de donnée, tel que pour un véhicule autonome ou pour des applications connectées entre elles.
Avantageusement, ledit article est fabriqué par moulage par injection.
En d'autres termes, la présente invention concerne un procédé de préparation d'un article notamment pour l'électronique, pour des applications télécom ou pour l'échange de donnée, tel que pour un véhicule autonome ou pour des applications connectées entre elles comprenant une étape, notamment par moulage par injection, d'une composition telle que définie ci-dessus.
Selon un autre aspect, la présente invention concerne un article obtenu par moulage par injection avec une composition telle que définie ci-dessus.
[Exemples]
La présente invention va maintenant être illustrée plus en détail au moyen des exemples suivants sans pour autant être limité à ceux-ci.
Les différents polyamides et copolyamides de l'invention ont été préparés selon la technique habituelle de synthèse de polyamides et copolyamides.
Synthèse de CoPa 11/10T représentative des différents copolyamides :
les monomères acide aminoundecanoïque, decanediamine et acide térépthalique sont chargés ensemble dans le réacteur selon le ratio massique souhaité. Le milieu est d'abord inerté afin d'enlever l'oxygène pouvant générer du jaunissement ou des réactions secondaires. De l'eau peut aussi être chargée pour améliorer l'échange thermique. Deux paliers de montée en température et pression sont réalisés. Les conditions de température (T°) et pression sont choisies afin de permettre que le milieu soit à l'état fondu. Après avoir atteint les conditions de maintien, le dégazage a lieu pour permettre la réaction de polycondensation. Le milieu devient peu à peu visqueux et l'eau de réaction formée est entraînée par le balayage d'azote ou mise sous vide. Lorsque les conditions d'arrêt sont atteintes, en lien avec la viscosité souhaitée, l'agitation est arrêtée et l'extrusion et la granulation peuvent démarrer.
Les compositions du tableau 1 ont été préparées (% en poids) selon le protocole général suivant:
Compoundage pour préparation des granulés des dites formulations :
Extrudeuse bi-vis de type Coperion ZSK 26 MC avec au moins 1 voie d'introduction latérale des matières premières
Température machine : 270C
Vitesse de vis : 250 tr/min
Débit en sortie d'extrudeuse : 16 kg/h
Transformation :
Des plaques 100x100x2 mm3 ont été réalisés par injection moulage pour les mesures des propriétés diélectriques. Les paramètres suivants ont été utilisés:
- Presse hydraulique ENGEL VICTORY 500, 160T
- Température d'injection (alimentation/buse) : 265C/280C
- Température du moule : 100C
- Temps de maintien : 10s
- Pression de maintien de la matière : 700 bars
- Temps de refroidissement : 35s
Des haltères suivant ISO 527-2 IA ont été réalisés par injection moulage pour les mesures des propriétés mécaniques en traction. Les paramètres suivants ont été utilisés:
- Presse hydraulique ENGEL VICTORY 500, 160T
- Température d'injection (alimentation/buse) : 285C/295C
- Température du moule : 100C
- Temps de maintien : 10s
- Pression de maintien de la matière : 700 bars
- Temps de refroidissement : 15s
Les résultats obtenus des compositions de l'invention sont indiqués dans le tableau 1 et tableau 2 suivants :
[Tableau 1]
[Tableau 2]
Les compositions comparatives sont présentées dans le tableau 3 suivant :
[Tableau 3]
Il à 19 : Invention 1 à 9
Cl à C13 : Compositions comparatives Cl à C13
N/A : Non testé
PAU : Rilsan (Arkema)
PA11/10T (28/72 en poids)
PA11/B10 (10/90 en poids)
Polypropylène PPH 5060 : polypropylène non greffé homopolymère de Total
Orevac CA 100 : polypropylène greffé anhydride maléique (Arkema)
PA oligo : PAU mono NH2
Antioxydant correspond à un antioxydant de type phénolique.
Antioxydant secondaire correspond à un antioxydant de type phosphite.
Fibres de verre NE : fibres de verre pleines à section plate NE Nitto Boseki
Fibres de verre E : fibres de verre pleines à section circulaire E Nitto Boseki ou Nippon Electric Glass Fibres de verre FIM : fibres pleines à section circulaire de AGY (fibres de verre haut module)
Billes de verre : billes de verre creuses Flollowlite
Dk, tan delta sont mesurés selon la norme ASTM D-2520-13
Le module de traction (ou module d'élasticité E) est mesuré selon la norme ISO 527-1 et 2 :2012.
Claims
1. Utilisation d'un mélange de renforts de verre plein et creux avec un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, ledit mélange de renforts de verre plein et creux comprenant de 5 à 50% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux, en particulier de 5 à 35% en poids de billes de verre creuses par rapport au total des renforts de verre plein et creux,
à l'exclusion de polyamide 6 et 66,
pour préparer une composition présentant un module, à sec à 23°C, au moins égal à 8GPa, en particulier au moins égal à 10 GPa, en particulier au moins égal à llGPa, et une constante diélectrique Dk, inférieure ou égale à 3,5, notamment inférieure ou égale à 3,3, en particulier inférieure ou égale à 3,2 telle que mesurée selon ASTM D-2520-13, à une fréquence d'au moins 1 GHz, notamment à une fréquence d'au moins 2 GHz, en particulier à une fréquence d'au moins 3 GHz, à 23°C, sous 50%RH.
2. Utilisation selon la revendication 1, dans laquelle la perte diélectrique (tan delta) de ladite composition est inférieure ou égale à 0,01, telle que mesurée sur un échantillon sec, à 23°C, sous 50%RH, à une fréquence d'au moins 1 GHz, en particulier une fréquence jusqu'à 2,4 GHz, selon ASTM D-2520-13.
3. Utilisation selon la revendication 1 ou 2, dans laquelle ledit mélange de renforts de verre plein et creux, outre les billes de verre creuses, comprend des fibres de verres
pleines choisies parmi les fibres de verre à section circulaire, les fibres de verre à section plates et un mélange de celles-ci.
4. Utilisation selon la revendication 3, dans laquelle le mélange de renforts de verre est
constitué de 50 à 95% en poids de fibres de verre pleines et de 5 à 50% en poids de billes de verre creuses, en particulier de 65 à 95% en poids de fibres de verre pleines et 5 à 35% en poids de billes de verre creuses.
5. Utilisation selon l'une des revendications 1 à 4, dans laquelle ledit alliage est constitué d'au moins un polyamide et d'au moins une polyoléfine dont le ratio en poids
polyamide/polyoléfine est compris de 95/5 à 50/50.
6. Utilisation selon l'une des revendications 1 à 5, dans laquelle ladite au moins une polyoléfine est choisie parmi les polyoléfines greffées et les polyoléfines non greffées et un mélange de celles-ci, en particulier un mélange de celles-ci.
7. Utilisation selon la revendication 6, dans laquelle les motifs réactifs de la polyoléfine greffée sont choisis parmi les esters d'acides carboxyliques insaturés tels que par exemple les acrylates d'alkyle ou les méthacrylates d'alkyle, de préférence lesdits alkyles ayant de 1 à 24 atomes de carbone, des exemples d'acrylate ou méthacrylate d'alkyle sont notamment le méthacrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle ;
les esters vinyliques d'acides carboxyliques saturés tels que par exemple l'acétate ou le propionate de vinyle.
8. Utilisation selon la revendication 6 ou 7, dans laquelle la polyoléfine greffée est à base de propylène.
9. Utilisation selon la revendication 6, dans laquelle la polyoléfine non greffée est choisie parmi l'éthylène, le propylène, le 1-butène, le 1-pentène, le 3-méthyl-l-butène, le 1-hexène, le 4- méthyl-l-pentène, le 3-méthyl-l-pentène, le 1-octène, le 1-décène, le 1-dodécène, le 1- tétradécène, le 1-hexadécène, le 1-octadécène, le 1-eicocène, le 1-dococène, 1 le - tétracocène, le 1-hexacocène, le 1-octacocène et le 1-triacontène, de préférence le propylène ou l'éthylène ou les diènes tels que par exemple le butadiène, l'isoprène ou le 1,4- hexadiène .
10. Utilisation selon l'une des revendication 6 et 9, dans laquelle la polyoléfine non greffée est à base de propylène.
11. Utilisation selon l'une des revendications 5 à 10, dans laquelle ledit alliage est constitué d'au moins un polyamide et d'un mélange d'une polyoléfine greffée à base de polypropylène et d'une polyoléfine non greffée à base de polypropylène.
12. Utilisation selon l'une des revendications 1 à 11, dans laquelle ledit au moins un polyamide est choisi parmi les polyamides semi-cristallins, les polyamides amorphes et un mélange de ceux-ci.
13. Utilisation selon l'une des revendications 1 à 12, dans laquelle ledit alliage est constitué d'un seul polyamide qui est un polyamide amorphe et d'au moins une polyoléfine.
14. Utilisation selon la revendication 13 dans laquelle ledit polyamide amorphe est un polyamide de formule A/XY, dans laquelle :
A est un motif répétitif aliphatique obtenu par polycondensation :
d'au moins un aminoacide en C6 à Cis, préférentiellement en C6 à Cu, plus préférentiellement en Cio à C12, ou
d'au moins un lactame en C6 à Cis, préférentiellement en C6 à C12, plus préférentiellement en Cio à C12, ou
d'au moins une diamine aliphatique Ca en C4-C36, préférentiellement C6-C18,
préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C8-C12,;
XY est un motif répétitif aliphatique obtenu par polycondensation :
d'au moins une diamine cycloaliphatique, ou d'au moins une diamine aliphatique linéaire ou ramifiée X et
d'au moins un acide dicarboxylique aromatique ou d'au moins un acide dicarboxylique aliphatique Y.
15. Utilisation selon la revendication 13 ou 14, dans laquelle ledit polyamide amorphe est choisi parmi 11/B10, 12/B10, 11/BI/BT, 11/BI notamment 11/B10.
16. Utilisation selon l'une des revendications 1 à 12, dans laquelle ledit alliage est constitué d'un seul polyamide semi-cristallin ou d'un mélange de deux polyamides semi-cristallins et d'au moins une polyoléfine.
17. Utilisation selon la revendication 16, dans laquelle le polyamide semi-cristallin est choisi parmi les polyamides aliphatiques, notamment à longue chaîne, les polyamides aryl- aliphatiques et les polyamides semi-aromatiques.
18. Utilisation selon la revendication 16 ou 17, dans laquelle ledit mélange de polyamides est un mélange d'un polyamide aliphatique, notamment à longue chaîne, avec un polyamide aryl- aliphatique.
19. Utilisation selon la revendication 17 ou 18, dans laquelle le polyamide aliphatique est choisi parmi les PA610, PA612, PA1010, PA1012, PA1212, PAU et le PA 12, en particulier PA1010, PA1012, PA1212, PAU, PA 12.
20. Utilisation selon la revendication 17 ou 18, dans laquelle le polyamide aryl-aliphatique est choisi parmi MXD6, MXD10, MXD12.
21. Utilisation selon la revendication 17, dans laquelle le polyamide semi-aromatique est choisi parmi PA11/9T, PA11/10T, PA 11/12T, PA12/9T, PA12/10T, PA12/12T.
22. Utilisation selon l'une des revendications 11 à 15, dans laquelle ledit alliage est constitué d'un seul polyamide qui est un polyamide amorphe et d'un mélange d'une polyoléfine greffée à base de polypropylène et d'une polyoléfine non greffée à base de polypropylène.
23. Utilisation selon l'une des revendications 11 et 16 à 21, dans laquelle ledit alliage est
constitué d'un mélange de deux polyamides semi-cristallins et d'un mélange d'une polyoléfine greffée à base de polypropylène et d'une polyoléfine non greffée est à base de polypropylène.
24. Utilisation selon l'une des revendications 1 à 23, dans laquelle la composition comprend des additifs.
25. Utilisation selon l'une des revendications 1 à 24, dans laquelle la composition comprend au moins un prépolymère, notamment monofonctionnel NH2, en particulier à base PAU,
26. Composition notamment utile pour le moulage par injection, comprenant :
30 à 70 % en poids, en particulier 35 à 60% en poids, et plus particulièrement 40 à 50% en poids d'un alliage constitué d'au moins un polyamide et d'au moins une polyoléfine, tel que défini dans l'une des revendications 1 à 23, le ratio polyamide/polyoléfine étant compris de 95/5 à 50/50;
30 à 70% en poids, en particulier 40 à 65% en poids, et plus particulièrement 50 à 60% en poids d'un mélange de renfort de verre plein et creux tel que défini dans l'une des revendications 1 à
23 ;
à l'exclusion de polyamide 6 et 66, et
0 à 11 % en poids d'au moins un prépolymère, en particulier de 0,1 à 11%;
0 à 5% en poids de charges et
0 à 2% en poids, de préférence 1 à 2 % en poids d'additifs,
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
27. Utilisation d'une composition telle que définie dans l'une des revendications 1 à 25, pour la fabrication d'un article, notamment pour l'électronique, pour des applications télécom ou pour l'échange de donnée, tel que pour un véhicule autonome ou pour des applications connectées entre elles.
28. Utilisation selon la revendication 27, caractérisée en ce que l'article est fabriqué par moulage par injection.
29. Article obtenu par moulage par injection avec une composition telle que définie dans l'une des revendications 1 à 25.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1906183A FR3097226B1 (fr) | 2019-06-11 | 2019-06-11 | Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation |
PCT/FR2020/050986 WO2020249899A1 (fr) | 2019-06-11 | 2020-06-10 | Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3983484A1 true EP3983484A1 (fr) | 2022-04-20 |
Family
ID=67810921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20743201.4A Pending EP3983484A1 (fr) | 2019-06-11 | 2020-06-10 | Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220306838A1 (fr) |
EP (1) | EP3983484A1 (fr) |
JP (1) | JP2022536159A (fr) |
KR (1) | KR20220020343A (fr) |
CN (1) | CN114127182A (fr) |
FR (1) | FR3097226B1 (fr) |
WO (1) | WO2020249899A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3914649A1 (fr) | 2019-10-24 | 2021-12-01 | INVISTA Textiles (U.K.) Limited | Compositions à base de polyamide et articles fabriqués à partir de celles-ci |
FR3111351B1 (fr) * | 2020-06-10 | 2022-09-09 | Arkema France | Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation |
CN115260760B (zh) * | 2022-09-15 | 2023-12-12 | 辰东新材料(江苏)有限公司 | 具有高耐热、高模量和低介电常数的聚酰胺复合物及其制备和应用 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1237309B (de) | 1965-09-11 | 1967-03-23 | Bayer Ag | Verfahren zur Herstellung waermestabilisierter Polyamide |
DE19847627A1 (de) | 1998-10-15 | 2000-04-20 | Brueggemann L Kg | Mit Kupferkomplexen und organischen Halogenverbindungen stabilisierte Polyamidzusammensetzung |
FR2858626B1 (fr) | 2003-08-05 | 2005-10-07 | Atofina | Polyamides semi aromatiques souple a faible reprise en humidite |
CN1256386C (zh) * | 2003-10-14 | 2006-05-17 | 林安良 | 高自润滑、高耐磨和增强的尼龙工程塑料合金及制造方法 |
DE502008000140D1 (de) | 2007-05-03 | 2009-11-26 | Ems Patent Ag | Teilaromatische Polyamidformmassen und deren Verwendungen |
FR2932808B1 (fr) * | 2008-06-20 | 2010-08-13 | Arkema France | Copolyamide, composition comprenant un tel copolyamide et leurs utilisations. |
RU2496811C1 (ru) | 2009-08-06 | 2013-10-27 | Аркема Франс | Композиция, включающая сополиамид и сшитый полиолефин |
KR101352792B1 (ko) * | 2011-11-04 | 2014-01-17 | 현대자동차주식회사 | 흡기계 하우징용 다공성 플라스틱 조성물 |
CN104262956A (zh) * | 2014-09-23 | 2015-01-07 | 苏州聚冠复合材料有限公司 | 超光亮、高流动性pa66/pa6增强填充的合金材料及其制备方法 |
CN105199374B (zh) * | 2015-09-25 | 2017-12-08 | 成都金发科技新材料有限公司 | 一种耐热老化耐水解的聚酰胺/聚丙烯合金 |
CN107459805B (zh) * | 2016-06-06 | 2020-11-24 | 华为技术有限公司 | 一种基站天线罩及其制造方法 |
FR3057572A1 (fr) * | 2016-10-19 | 2018-04-20 | Arkema France | Utilisation d'un polyamide semi-aromatique dans un melange de polyamide aliphatique comprenant des fibres de verre a section circulaire pour limiter le gauchissement |
CN109135205A (zh) * | 2018-08-14 | 2019-01-04 | 含山县胜发塑料制品有限公司 | 一种高强度高韧性瓶片再生合金材料 |
-
2019
- 2019-06-11 FR FR1906183A patent/FR3097226B1/fr active Active
-
2020
- 2020-06-10 US US17/617,877 patent/US20220306838A1/en active Pending
- 2020-06-10 WO PCT/FR2020/050986 patent/WO2020249899A1/fr unknown
- 2020-06-10 JP JP2021573363A patent/JP2022536159A/ja active Pending
- 2020-06-10 CN CN202080050562.0A patent/CN114127182A/zh active Pending
- 2020-06-10 KR KR1020227000674A patent/KR20220020343A/ko unknown
- 2020-06-10 EP EP20743201.4A patent/EP3983484A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
CN114127182A (zh) | 2022-03-01 |
JP2022536159A (ja) | 2022-08-12 |
KR20220020343A (ko) | 2022-02-18 |
US20220306838A1 (en) | 2022-09-29 |
FR3097226A1 (fr) | 2020-12-18 |
FR3097226B1 (fr) | 2021-11-26 |
WO2020249899A1 (fr) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2462195B1 (fr) | Composition comprenant un copolyamide et une polyolefine reticulee | |
WO2020249899A1 (fr) | Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation | |
EP1375594A1 (fr) | Compositions ignifugées à base de polyamide et de polyoléfine | |
JP2020007563A (ja) | 溶融状態で高いレベルの流動性を有する、新規耐衝撃性改質熱可塑性組成物 | |
EP2556104A1 (fr) | Composition polyamide de haute viscosite | |
FR2998299A1 (fr) | Composition a base d'un copolyamide semi-aromatique, d'une polyolefine et d'un stabilisant thermique au cuivre, sa preparation et ses utilisations | |
KR102334780B1 (ko) | 내충격성 열가소성 조성물 | |
WO2022129765A1 (fr) | Compositions de moulage a base de polyamide, de fibres de verre et de renfort de verre creux et leur utilisation | |
WO2019068599A1 (fr) | Coffre a batterie | |
EP1272563B1 (fr) | Compositions thermoplastiques de polyamide a proprietes choc ameliorees | |
WO2021250352A1 (fr) | Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation | |
WO2020188204A1 (fr) | Compositions de copolyamides comprenant des fibres de renforts presentant une stabilite de module elevee et leurs utilisations | |
WO2021053292A1 (fr) | Compositions de polyamides comprenant des fibres de renfort et présentant une stabilité de module élevée et leurs utilisations | |
WO2020188203A1 (fr) | Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations | |
FR3101081A1 (fr) | Compositions de polyamides comprenant des fibres de renfort et présentant une stabilité de module élevée et leurs utilisations | |
WO2019155152A2 (fr) | Utilisation d'un melange maitre comprenant un compose fluore pour diminuer les larmes de filiere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |