EP3941968A1 - Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations - Google Patents

Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations

Info

Publication number
EP3941968A1
EP3941968A1 EP20726194.2A EP20726194A EP3941968A1 EP 3941968 A1 EP3941968 A1 EP 3941968A1 EP 20726194 A EP20726194 A EP 20726194A EP 3941968 A1 EP3941968 A1 EP 3941968A1
Authority
EP
European Patent Office
Prior art keywords
weight
copolyamide
xiy
composition
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20726194.2A
Other languages
German (de)
English (en)
Inventor
Mathieu SABARD
Benoît BRULE
Marie POMMIER DE SANTI
Stefania Cassiano Gaspar
Damien Vitry
Rui MAO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3941968A1 publication Critical patent/EP3941968A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • TITLE Compositions of copolyamides comprising reinforcing fibers and exhibiting high modulus stability and their uses
  • the present patent application relates to the use of semi-aromatic copolyamides for the manufacture of compositions exhibiting a high modulus stability under the effect of temperature and humidity, their manufacturing process as well as said compositions.
  • modulus polymeric materials for example for televisions, digital cameras, digital games, phone parts, digital tablets, drones, printers or computer parts.
  • the modulus of the material is in fact a crucial factor in enabling a reduction in weight, since it allows a reduction in the thickness of the parts while maintaining great rigidity.
  • moduli for example tensile modulus, flexural modulus, etc.
  • These modules can be impacted by temperature and by the humidity level contained in the sample.
  • the rigidity is little affected by changes in temperature or by the water content in the material. Indeed, the stability of the module is also an important factor for subsequent use or for ensuring easy assembly of the parts when this is carried out in places where the temperature and / or humidity may be high.
  • polymers are sought whose modulus remains stable in the temperature and / or humidity range to which they are exposed, in particular during the assembly of the parts and the subsequent operation of the devices.
  • the modulus would be stable at a temperature ranging from 20 ° C to 40 ° C, especially in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C for compositions having variable water contents (caused by conditioning the compositions in an atmosphere where the humidity could vary from 0 to 100%, or in liquid water)
  • the polymer formulations must exhibit moderate molding temperatures and crystallize sufficiently quickly to allow a transformation time, in particular a cycle time, suitable for an industrial process.
  • aliphatic polyamides generally exhibit a significant loss of rigidity when the temperature increases, in particular when these polyamides have been packaged in a humid atmosphere beforehand because they contain a certain amount of water.
  • a semi-aromatic polyamide in particular an MXDZ polyamide in a mixture of aliphatic polyamide, in particular semi-aromatic polyamide, is known from application WO 2018/073536.
  • crystalline comprising glass fibers with a circular section, to limit the warping of the composition obtained.
  • copolyamides comprising at least two distinct A / XT units characterized in that said copolyamide has an amine end-of-chain content greater than or equal to 20 peq / g, an end-of-chain content acid less than or equal to 100 peq / g, and a non-reactive chain end content greater than or equal to 20 peq / g.
  • the copolyamide can comprise additives, in particular reinforcing fibers, said reinforcing fibers possibly being glass fibers.
  • compositions for an electronic mobile device comprising at least 20% of at least one polymer and at least 20% of glass fibers having a non-circular section and an elastic modulus of at least 76 determined GPa. according to ASTM C1557-03.
  • the aim of the invention is therefore to provide semi-aromatic copolyamides for the manufacture of compositions exhibiting a high modulus stability under the effect of temperature and humidity.
  • a subject of the invention is the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY, in which:
  • - A is a repeating unit obtained by polycondensation:
  • Cis amino acid preferably Cio to Cis, more preferably Cio to C, or at least one C8 to Cis lactam, preferably Cio to Cis, more preferably Cio to C12, or
  • C4-C36 diamine Ca preferably C6-C18, preferably C6-C12, more preferably C10-C12, with at least one Cb C4-C36 dicarboxylic acid, preferentially C6-C18, preferentially C6-C12, more preferably C10-C12;
  • - XiY is a repeating unit obtained from the polycondensation of at least one linear aliphatic diamine (Xi) in Cg to Cis, preferably from Cio to Cis, more preferably from Cio to C 12 , and at least one acid aromatic dicarboxylic (Y),
  • composition whose modulus does not vary by more than 20% in the temperature range from 20 ° C to 40 ° C, in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C.
  • the present invention relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY, as defined above, to prepare a composition whose modulus does not vary. not more than 20% in the temperature range from 20 ° C to 40 ° C, especially in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from - 10 ° C to 40 ° C in comparison with the variation of the modulus of an aliphatic homopolyamide measured under the same conditions.
  • the present invention relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY, as defined above, to prepare a composition whose modulus does not vary by more than 20% in the temperature range from 20 ° C to 40 ° C, in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from from -10 ° C to 40 ° C in comparison with the variation of the modulus of an aliphatic homopolyamide having the same unit A, measured under the same conditions.
  • the present invention relates to the use of a composition comprising a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to limit the variation of the modulus in the '' temperature range from 20 ° C to 40 ° C, in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C, said modulus not varying by more than 20% compared to the variation in modulus of said composition measured under the same conditions in which an aliphatic homopolyamide is used instead of said copolyamide.
  • the present invention relates to the use of a composition comprising a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to limit the variation of the modulus in the '' temperature range from 20 ° C to 40 ° C, especially in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range ranging from -10 ° C to 40 ° C, said modulus not varying by more than 20% compared to the variation in the modulus of said composition measured under the same conditions in which an aliphatic homopolyamide having the same unit A, is used instead of said copolyamide.
  • the inventors have unexpectedly found that the selection of a semi-aromatic copolyamide comprising a repeating unit A and a repeating unit XiY based on an aromatic diacid, made it possible to prepare a composition of which not only the modulus exhibits stability under l effect of temperature and humidity, and does not vary by more than 20% in the temperature range from 20 ° C to 40 ° C, especially in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C, but also the implementation of which is facilitated by a low molding temperature, in particular less than 100 ° C, preferably less than 90 ° C, and by a short cycle time during its implementation.
  • At least one lactam may be chosen from a lactam C6-Cis, preferably in the Cio to Cis, more preferably in Cio to C 12 .
  • a C10 to C 12 lactam is in particular decanolactam, undecanolactam, and lauryllactam.
  • Said unit A is obtained from the polycondensation of at least one lactam and can therefore comprise a single lactam or several lactams.
  • said unit A is obtained from the polycondensation of a single lactam and said lactam is lauryllactam.
  • said at least one amino acid can be chosen from a C 8 to Cis amino acid, preferably Cio to Cis, more preferably Cio to C12.
  • a Cg to C12 amino acid is in particular 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular acid N-heptyl-11-aminoundecanoic.
  • Said unit A is obtained from the polycondensation of at least one amino acid and can therefore comprise a single amino acid or several amino acids.
  • said unit A is obtained from the polycondensation of a single amino acid and said amino acid is 11-aminoundecanoic acid.
  • the repeating unit A of said copolyamide is obtained from the polycondensation of at least one C4-C36, preferably C6-C18, preferably C6-C12 diamine Ca, more preferably C10-C12, with at least one diacid Cb in C4-C36, preferentially C6-C18, preferentially C6-C12, more preferentially C10-C12, then said at least one diamine in Ca is a linear or branched aliphatic diamine, in particular linear and said at least one Cb diacid is a linear or branched aliphatic diacid, in particular a linear diacid.
  • said at least one diamine is linear aliphatic and said at least one diacid is aliphatic and linear.
  • Said at least one C4-C36 diamine Ca can be in particular chosen from 1,4-butanediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1, 18- octadecamethylenediamine, octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • said at least one Ca diamine is C6-C18 and chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,18-octadecamethylenediamine.
  • said at least one C 6 to C 12 diamine Ca is in particular chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10 -decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine.
  • the Ca diamine used is C10 to C12, in particular chosen from 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine.
  • Said at least one Cb C 4 to C36 dicarboxylic acid may be chosen from succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid , dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from acids fat.
  • said at least one Cb dicarboxylic acid is C 6 to Cis and is chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid.
  • said at least one Cb dicarboxylic acid is C6 to C12 and is chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid.
  • said at least one Cb dicarboxylic acid is C10 to C12 and is chosen from sebacic acid, undecanedioic acid and dodecanedioic acid.
  • Said unit A is obtained from the polycondensation of at least one diamine Ca with at least one dicarboxylic acid Cb and can therefore comprise a single diamine or several diamines and a single dicarboxylic acid or several dicarboxylic acids.
  • said unit A is obtained from the polycondensation of a single diamine Ca with a single dicarboxylic acid Cb.
  • Said XiY unit is a repeating unit obtained from the polycondensation of at least one linear C9 to Cis aliphatic diamine (Xi), preferably Cio to Cis, more preferably Cio to C12, and at least one dicarboxylic acid aromatic (Y).
  • Said linear aliphatic diamine (Xi) is as defined for said linear aliphatic diamine Ca.
  • Said linear aliphatic diamine (Xi) can be identical to or different from the aliphatic and linear diamine Ca.
  • Said aromatic dicarboxylic acid (Y) may be C6 to Cis, C6 to Cis, preferably Cs to Cis, more preferably Cs to C12.
  • T terepthalic acid
  • I isophthalic acid
  • N naphthalene dicarboxylic acid
  • said aromatic dicarboxylic acid (Y) is terepthalic acid.
  • the modulus of a composition changes as a function of the temperature and in general, the modulus decreases with the increase in temperature.
  • conditioning in a humid atmosphere means after saturation in liquid water at 65 ° C.
  • M20 be the modulus measured at 20 ° C
  • M T be the modulus measured at a temperature T for a composition conditioned under the same dry or humid atmosphere conditions, then: ((M 20 - M T ) / M 2O ) x 100 ⁇ 20, with T varying from 20 to 40 ° C.
  • the modulus does not vary by more than 20% in the temperature range going from 0 ° C to 40 ° C and therefore ((Mo - M T ) / Mo) x 100 ⁇ 20, with T varying from 0 at 40 ° C for a composition packaged under the same dry or humid atmosphere conditions.
  • the modulus does not vary by more than 20% in the temperature range going from -10 ° C to 40 ° C and therefore ((M-io - M T ) / M-io) x 100 ⁇ 20, with T varying from -10 to 40 ° C for a composition packaged under the same conditions of a dry or humid atmosphere.
  • the modulus does not vary by more than 15% in the temperature range going from 0 ° C to 40 ° C and therefore ((Mo - M T ) / Mo) x 100 ⁇ 15, with T varying from 0 at 40 ° C for a composition packaged under the same humid atmosphere conditions.
  • the modulus does not vary by more than 15% in the temperature range going from -10 ° C to 40 ° C and therefore ((M-io - M T ) / M-io) x 100 ⁇ 15, with T varying from -10 to 40 ° C for a composition packaged under the same humid atmosphere conditions.
  • the modulus does not vary by more than 5% in the temperature range going from 0 ° C to 40 ° C and therefore ((Mo - M T ) / Mo) x 100 ⁇ 5, with T varying from 0 at 40 ° C for a composition packaged under the same dry atmosphere conditions.
  • the modulus does not vary by more than 5% in the temperature range going from -10 ° C to 40 ° C and therefore ((M-io - M T ) / M-io) x 100 ⁇ 5, with T varying from -10 to 40 ° C for a composition packaged under the same dry atmosphere conditions.
  • the modulus is measured as defined above according to the ISO 178: 2010 standard and corresponds to the flexural modulus.
  • the modulus is measured as defined above according to the ISO 527-1 and 2: 2012 standard and corresponds to the tensile modulus.
  • the modulus corresponds to both the flexural modulus and the tensile modulus, both being measured as defined above.
  • the ratio of the flexural modulus, measured at 20 ° C on a sample saturated in water at 65 ° C, on the flexural modulus, measured at 20 ° C on a dry sample is less than 10%, in particular less than 7%, both measurements being carried out according to ISO 178: 2010.
  • said XiY unit of said copolyamide defined above is a repeating unit obtained by polycondensation of at least one C10 to Cis aliphatic diamine (Xi), more preferably Cio to C12, and at least one aromatic dicarboxylic acid (Y).
  • XiY units are 101, 10T, ION, 121, 12T, 12N, 141, 14T, 14N.
  • said copolyamide is of formula A / XiT
  • said XiY unit of said copolyamide defined above is a repeating unit obtained by polycondensation of at least one C10 to C12 aliphatic diamine (Xi), and of at least one aromatic dicarboxylic acid (Y).
  • XiY units 101, 10T, 10N, 121, 12T, 12N,
  • XiY is chosen from 10T, 12T.
  • said copolyamide is of formula A / 10T or A / 12T, preferentially A / 10T.
  • said unit A of said copolyamide defined above is an amino acid or a lactam as defined above.
  • said copolyamide is of formula A / XiY in which A is an amino acid or a lactam as defined above and XiY is as defined above.
  • said copolyamide is of formula A / XiT in which A is an amino acid or a lactam as defined above.
  • said copolyamide is of formula A / 10T or A / 12T, preferably A / 10T in which A is an amino acid or a lactam as defined above.
  • said unit A of said copolyamide defined above is an amino acid or a Cn or C 12 lactam respectively.
  • said copolyamide is of formula A / XiY in which A is an amino acid or a Cn or C12 lactam and XiY is as defined above.
  • said copolyamide defined above is semi-crystalline.
  • a semi-crystalline copolyamide within the meaning of the invention, denotes a copolyamide which has a melting point (Tm) in DSC according to standard ISO 11357-3: 2013, and an enthalpy of crystallization during the cooling step at a speed of 20K / min in DSC measured according to standard ISO 11357-3 of 2013 greater than 30 J / g, preferably greater than 35 J / g.
  • Tm melting point
  • the Tm of said copolyamide is ⁇ 280 ° C, in particular ⁇ 270 ° C, in particular ⁇ 265 ° C. Consequently, in this embodiment, the molar ratio of the units A and XiY in the copolyamide of the invention is adapted according to the different units so that said copolyamide is semi-crystalline.
  • said copolyamide of formula A / XiY consists only of units A and XiY as defined above.
  • the copolyamide has only one or more unit (s) A and one or more unit (s) XiY nevertheless, A is a repeating unit obtained by polycondensation of at least one amino acid or at least one lactam or at least one diamine in Ca with at least one dicarboxylic acid in Cb, as defined above, and XiY is a repeating unit obtained from the polycondensation of at least one diamine linear aliphatic (Xi) as defined above, and at least one aromatic dicarboxylic acid (Y) as defined above.
  • said copolyamide of formula A / XiY consists only of an A unit and a XiY unit as defined above.
  • the copolyamide has only one unit A and only one unit XiY and A is a repeating unit obtained by polycondensation of an amino acid or of a lactam or of a diamine in Ca with a Cb dicarboxylic acid as defined above, and XiY is a repeating unit obtained from the polycondensation of a linear aliphatic diamine (Xi) as defined above, and of an aromatic dicarboxylic acid (Y) as defined above.
  • the copolyamide is chosen from PA11 / 10T, PA11 / 12T, PA12 / 10T, PA12 / 12T, PA610 / 10T, PA610 / 12T, PA612 / 10T, PA612 / 12T, PA1010 / 10T, PA1012 / 10T, PA1010 / 12T ,
  • said copolyamide comprises at least a third Z unit, distinct from the A and XiY units, and corresponds to the general formulation A / XiY / Z
  • Z is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (Ce diamine). (Cd diacid), with c representing the number of carbon atoms of the diamine and d representing the number of carbon atoms of the diacid, c and d each being between 4 and 36, advantageously between 9 and 18,
  • caprolactam or aminohexanoic acid are excluded from the definition of lactam and amino acid of Z and that when the Ce diamine is a C6 diamine, then terepthalic acid is excluded from the definition of diacid in Cd.
  • the copolyamide of the invention can comprise one or more A unit (s) and one or more XiY unit (s) and at least a Z pattern.
  • the term “distinct” means that even if there are several A and / or XiY units, the Z unit when it is present is different from the A and XiY units present in the copolyamide but that it can however also be of the same type. than for A, namely a repeating unit obtained from the polycondensation of a lactam, or of an amino acid or of a diamine in Ca with a dicarboxylic acid in Cb, or of the same type as XiY, namely a unit repetitive obtained from polycondensation of at least one linear C 8 to C 18 aliphatic diamine (Xi), and of at least one aromatic dicarboxylic acid (Y).
  • Z represents a unit obtained from an amino acid
  • it can be chosen from 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-acid.
  • Z represents a unit obtained from a lactam
  • it can be chosen from pyrrolidinone, 2-piperidinone, caprolactam, enantholactam, caprolactam, pelargolactam, decanolactam, undecanolactam, and lauryllactam.
  • the Z unit is a unit corresponding to the formula (diamine in Ce).
  • (Cd-diacid) the (Cd-diamine) unit is chosen from aliphatic, linear or branched diamines, cycloaliphatic diamines and arylaliphatic diamines.
  • the diamine is aliphatic and linear, it is chosen from butanediamine, pentanediamine, hexanediamine, heptanediamine, octanediamine, nonanediamine, decanediamine, undecanediamine, dodecanediamine, tridecanediamine, tetradecanediamine, hexadecanediamine, octadecanediamine, octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • the diamine When the diamine is aliphatic and branched, it may contain one or more methyl or ethyl substituents on the main chain.
  • the C-diamine can advantageously be chosen from 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 1,3-diaminopentane, 2-methyl-l, 5-pentanediamine, 2-methyl-l, 8-octanediamine.
  • the C6 diamine is cycloaliphatic, it is chosen from bis (3,5-dialkyl-4-aminocyclohexyl) methane, bis (3,5-dialkyl-4-aminocyclohexyl) ethane, bis (3,5-dialkyl) -4- aminocyclo-hexyl) propane, bis (3,5-dialkyl-4-aminocyclo-hexyl) butane, bis- (3-methyl-4-aminocyclohexyl) -methane (BMACM or MACM), p-bis (aminocyclohexyl) -methane (PACM) and isopropylidenedi (cyclohexylamine) (PACP), 1,3-bis (aminomethyl) cyclohexyl (1,3 BAC), 1,4-bis (aminomethyl) cyclohexyl (1,4 BAC) and a mixture of these.
  • BMACM or MACM bis-methyl-4
  • the C6 diamine is arylaliphatic, it is chosen from 1,3-xylylenediamine and 1,4-xylylenediamine.
  • the Cd dicarboxylic acid is chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids.
  • the Cd-diacid is aliphatic and linear, it is chosen from succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, l 'undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, octadecenedioic acid, eicosanedioic acid, docosanedioic acid and fatty acid dimers containing 36 carbons.
  • the dimers of fatty acids mentioned above are dimerized fatty acids obtained by oligomerization or polymerization of long-chain hydrocarbon unsaturated monobasic fatty acids (such as linoleic acid and oleic acid), as described in particular in the document EP 0 471 566.
  • the diacid when it is cycloaliphatic, it may contain the following carbon skeletons: norbornyl methane, cyclohexylmethane, dicyclohexylmethane, dicyclohexylpropane, di (methylcyclohexyl), di (methylcyclohexyl) propane.
  • the diacid is aromatic, it is chosen from terephthalic acid (denoted T), isophthalic (denoted I) and naphthalenic diacids (denoted N).
  • Caprolactam or aminohexanoic acid are excluded from the definition of lactam and amino acid of Z which means that compounds of formula 6 / A / XiY in which A and XiY are as defined above are excluded.
  • Ce diamine is a C6 diamine
  • terepthalic acid is excluded from the definition of Cd diacid means that the compounds of formula 6T / A / X 1 Y in which A and XiY are as defined above are excluded.
  • said copolyamide consists only of three units of formula A / XiY / Z.
  • a said copolyamide consists of only three units of formula A / XiY / Z and a single unit A, a single unit XiY and a single unit Z are present in the formula A / XiY / Z.
  • the present invention relates to the use of a copolyamide as defined above for preparing a composition as defined above, said composition comprising up to 70% by weight of reinforcing fibers, in particular from 30 to 70% by weight of reinforcing fibers.
  • the composition comprises between 35 and 65%, and preferably between 50 and 65% by weight of reinforcing fibers, relative to the total weight of the composition.
  • the expression “between ... and” means limits included.
  • composition according to the invention may comprise short reinforcing fibers or short fibrous reinforcement.
  • the fibers are short and of length between 2 and 13 mm, preferably from 3 to 8 mm, before use of the compositions.
  • These short reinforcing fibers can be chosen from:
  • carbon fibers which includes fibers of carbon nanotubes or nanotubes (CNTs), carbon nanofibers or graphenes; silica fibers such as glass fibers, in particular of type E, R, S2 or T; boron fibers; ceramic fibers, in particular silicon carbide fibers, boron carbide fibers, boron carbonitride fibers, silicon nitride fibers, boron nitride fibers, basalt fibers or basalt-based fibers; fibers or filaments based on metals and / or their alloys; fibers of metal oxides, in particular of alumina (Al203); metallized fibers such as metallized glass fibers and metallized carbon fibers or mixtures of the aforementioned fibers. More particularly, these fibers can be chosen as follows:
  • the mineral fibers can be chosen from: carbon fibers, fibers of carbon nanotubes, glass fibers, in particular of type E, R, S2, or T, boron fibers, ceramic fibers, in particular silicon carbide fibers , boron carbide fibers, boron carbonitride fibers, silicon nitride fibers, boron nitride fibers, basalt fibers or the basalt based fibers; fibers or filaments based on metals and / or their alloys, fibers based on metal oxides such as AI203, metallized fibers such as metallized glass fibers and metallized carbon fibers or mixtures of the aforementioned fibers, and
  • polymer or polymer fibers under the aforementioned condition, are chosen from:
  • thermosetting polymers and more particularly chosen from: unsaturated polyesters, epoxy resins, vinyl esters, phenolic resins, polyurethanes, cyanoacrylates and polyimides, such as bis-maleimide resins, aminoplasts resulting from the reaction of an amine such as melamine with an aldehyde such as glyoxal or formaldehyde,
  • thermoplastic polymers and more particularly chosen from: polyethylene terephthalate (PET), polybutylene terephthalate (PBT),
  • - aramid fibers such as Kevlar ®
  • aromatic polyamides such as those corresponding to one of the formulas: PPD.T, MPD.I, PAA and PPA, with PPD and MPD being respectively p- and m- phenylene diamine, PAA being polyarylamides and PPA being polyphthalamides,
  • PAEK polyarylether ketones
  • PEEK polyetherether ketone
  • PEKK polyetherketone ketone
  • PEKEKK polyetherketoneetherketone ketone
  • Preferred short reinforcing fibers are short fibers chosen among: carbon fibers, including metallic, glass fibers, including metallized type E, R, S2, T fibers or aramid (such as Kevlar ®) or of aromatic polyamides, polyarylether ketone (PAEK) fibers, such as polyetherether ketone (PEEK), polyetherketone ketone (PEKK) fibers, polyetherketoneetherketone ketone (PEKEKK) fibers, or mixtures thereof.
  • carbon fibers including metallic, glass fibers, including metallized type E, R, S2, T fibers or aramid (such as Kevlar ®) or of aromatic polyamides, polyarylether ketone (PAEK) fibers, such as polyetherether ketone (PEEK), polyetherketone ketone (PEKK) fibers, polyetherketoneetherketone ketone (PEKEKK) fibers, or mixtures thereof.
  • PEEK polyetherether ketone
  • PEKK
  • the natural fibers are chosen from fibers of flax, castor, wood, sisal, kenaf, coconut, hemp and jute.
  • the weight ratio of reinforcing fibers / copolyamide does not exceed 1.75, in particular 1.6.
  • glass fiber within the meaning of the invention is meant any glass fiber, in particular as described by Frederick T. Wallenberger, James C. Watson and Hong Li, PPG industries Inc. (ASM Handbook, Vol 21: composites (# 06781G), 2001 ASM International).
  • the reinforcing fiber can be:
  • L and D can be measured by scanning electron microscopy (SEM).
  • the reinforcing fibers are chosen from glass fibers, carbon fibers, and a mixture thereof.
  • the reinforcing fiber is chosen from a glass fiber with a non-circular cross section, a glass fiber with a circular section, a carbon fiber and a mixture of these.
  • the reinforcing fiber is chosen from a glass fiber with a non-circular cross section, a glass fiber with a circular section and a mixture of these.
  • the reinforcing fiber is a glass fiber with a non-circular cross section.
  • the reinforcing fiber is a glass fiber with a non-circular cross section and having an elastic modulus of less than 76 GPa as measured according to ASTM C1557-03.
  • said composition is devoid of at least one of the constituents chosen from polyphenylene ether (PPE), an anti-drip agent, a PA46, a PA66, a PA6, a polyamide based on a unit obtained by polycondensation of caprolactam , a free radical inhibitor, in particular inorganic, a flame retardant, nigrosine, elemental iron, a polyhydric alcohol, a metal oxide chosen from magnesium oxide, zinc oxide, calcium oxide or a mixture thereof, an amino acid heat stabilizer, an amino acid heat stabilizer with at least one hydroxy group and an amorphous polyamide.
  • PPE polyphenylene ether
  • composition comprises a titanium oxide then it is devoid of a metal oxide selected from magnesium oxide, zinc oxide, calcium oxide or a mixture thereof.
  • said composition further comprises copolyamide and reinforcing fibers:
  • copolyamide the sum of copolyamide, reinforcing fibers, an impact modifier, filler, fluidifying agent and additives being equal to 100%.
  • said composition is devoid of at least one of the constituents excluded above defined.
  • the present invention therefore relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition comprising:
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and whose modulus does not vary by more than 20% in the temperature range from 20 ° C to 40 ° C, in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above.
  • the present invention therefore relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition comprising:
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and the modulus of which does not vary by more than 20% in the temperature range going from 20 ° C to 40 ° C , in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above.
  • the present invention relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition comprising:
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and the modulus of which does not vary by more than 20% in the temperature range going from 20 ° C to 40 ° C , in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above.
  • the present invention relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition comprising: - 35 to 65%, in particular 35 to 50, and more particularly 38 to 50% by weight of at least one copolyamide as defined above,
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and the modulus of which does not vary by more than 20% in the temperature range going from 20 ° C to 40 ° C , in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above.
  • said composition consists of copolyamide, reinforcing fibers, and:
  • copolyamide the sum of copolyamide, reinforcing fibers, an impact modifier, filler, fluidifying agent and additives being equal to 100%.
  • composition therefore does not comprise said constituents defined above and excluded.
  • the present invention relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition consisting of:
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and the modulus of which does not vary by more than 20% in the temperature range from from 20 ° C to 40 ° C, in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above .
  • the present invention therefore relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition consisting of:
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and the modulus of which does not vary by more than 20% in the temperature range going from 20 ° C to 40 ° C , in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above.
  • the present invention relates to the use of a copolyamide comprising at least two distinct units A and XiY of formula A / XiY as defined above, to prepare a composition consisting of:
  • copolyamide, reinforcing fibers, impact modifier, filler, fluidifying agent and additives being equal to 100%, and the modulus of which does not vary by more than 20% in the temperature range going from 20 ° C to 40 ° C , in particular in the temperature range from 0 ° C to 40 ° C, in particular in the temperature range from -10 ° C to 40 ° C as defined above.
  • impact modifier is meant a polyolefin-based polymer having a flexural modulus of less than 100 MPa measured according to the ISO 178: 2010 standard (23 ° C RH50) and of Tg less than 0 ° C (measured according to standard 11357-2: 2013 at the inflection point of the DSC thermogram), in particular a polyolefin.
  • the impact modifier can also be a block polymer of PEBA (polyether-block-amide) type having a flexural modulus of ⁇ 200 MPa.
  • the composition can also comprise one or more impact modifiers as defined above.
  • the presence of an impact modifier makes it possible to impart greater ductility to the articles made.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or comprise both as a mixture.
  • the polyolefins bear a function chosen from carboxylic acid, carboxylic anhydride and epoxide functions.
  • the function can in particular be chosen from a copolymer of ethylene and propylene with an elastomeric character (EPR), an ethylene-propylene-diene copolymer with an elastomeric character (EPDM) and an ethylene / (meth) acrylate copolymer, a ethylene-higher alkene copolymer, in particular ethylene-octene copolymer, ethylene-alkyl acrylate-maleic anhydride terpolymer.
  • EPR elastomeric character
  • EPDM ethylene-propylene-diene copolymer with an elastomeric character
  • EPDM ethylene / (meth) acrylate copolymer
  • ethylene-higher alkene copolymer in particular ethylene-octene copolymer, ethylene-alkyl acrylate-male
  • Peba polyether block amides
  • Polyether block amides are copolymers comprising blocks with a polyamide pattern and blocks with a polyether pattern. They can also contain ester functions, in particular resulting from the condensation reaction of terminal carboxylic functions of the polyamide blocks with the hydroxyl functions of the polyether blocks.
  • Peba are commercially available, in particular under the Pebax ® brand by the company Arkema.
  • the impact modifier is selected from Fusabond ® F493, the Tafmer MH5020, a Pebax ®, particularly Pebax ® 40R53 SP01, a Lotader ®, the Exxelor ® VA1803 or VA1801, the Orevac ® IM800 or a mixture thereof -Here, in this case they are in a ratio ranging from 0.1 / 99.9 to 99.9 / 0.1.
  • the impact modifier can also be a modifier of “core-shell” type, also designated “copolymer of core-shell type”.
  • the “core-shell” type modifier is in the form of fine particles having an elastomeric core and at least one thermoplastic shell, the size of the particles is generally less than 1 ⁇ m and advantageously comprised from 150 to 500 nm.
  • the “core-shell” core-shell modifier has an acrylic or butadiene base.
  • the content of impact modifier relative to the total weight of the composition can vary from 0 to 10% by weight, advantageously from 1 to 10% by weight.
  • the composition comprises from 1 to 8%, and in particular from 2 to 5% by weight of impact modifier relative to the total weight of the composition.
  • the impact modifier content in the composition can vary from 1 to 2% by weight; or from 2 to 3% by weight; or from 3 to 4% by weight; or from 4 to 5% by weight; or from 6 to 7% by weight; or from 7 to 8% by weight; or from 8 to 9% by weight; or from 9 to 10% by weight.
  • the composition can moreover also comprise fillers.
  • the fillers envisaged include conventional mineral fillers, such as kaolin, magnesia, slag, carbon black, expanded or non-expanded graphite, wollastonite, nucleating agents such as silica, alumina, clay or talc, in particular talc, pigments such as titanium oxide and zinc sulphide, antistatic fillers.
  • the composition can moreover comprise thinning agents.
  • fluidifying agent in particular prepolymers.
  • the prepolymer can be chosen from oligomers of aliphatic, linear or branched, cycloaliphatic, semi-aromatic or even aromatic polyamides.
  • the prepolymer can also be a copolyamide oligomer or a mixture of polyamide and copolyamide oligomers.
  • the prepolymer has a number-average molar mass Mn ranging from 1000 to 10000 g / mol, in particular from 1000 to 5000 g / mol. It can in particular be monofunctional NFh if the chain limiter used is a monoamine for example.
  • the content of thinning agent relative to the total weight of the composition can vary from 0 to 5% by weight, in particular from 1 to 5% by weight, in particular from 1 to 5%.
  • the composition comprises from 1 to 4%, and in particular from 2 to 3% by weight of thinning agent relative to the total weight of the composition.
  • the content of thinning agent relative to the total weight of the composition is from 1 to 2% by weight; or from 2 to 3% by weight; or from 3 to 4% by weight; or from 4 to 5% by weight.
  • additive is meant dyes, stabilizers, surfactants, brighteners, antioxidants, lubricants, plasticizers, waxes as well as their mixtures.
  • dyes such as dyes, stabilizers, surfactants, brighteners, antioxidants, lubricants, waxes as well as their mixtures.
  • the stabilizers can be organic or inorganic stabilizers.
  • the usual stabilizers used with polymers are, for example, phenols, phosphites, UV absorbers, stabilizers of the HALS (Hindered Amine Light Stabilizer) type, metal iodides. These include Irganox ® 1010, 245, 1098 of BASF, Irgafos ® 168, 126 from BASF, Tinuvin ® 312, 770 from BASF, the Iodide P201 from Ciba, the Nylostab ® S-EED from the company Clariant.
  • HALS Hindered Amine Light Stabilizer
  • the lubricants can in particular be a stearate or a wax binder.
  • the waxes can in particular be an amorphous wax such as beeswax, a silicone wax, a polyethylene wax, an oxidized polyethylene wax, an ethylene copolymer wax, a montane wax and a wax of. polyether.
  • additives of the same category or of different categories may be present in the composition.
  • the additive content is from 0 to less than 2% by weight relative to the total weight of the composition.
  • the composition comprises from 0.1 to less than 2%, and in particular from 0.5 to less than 2% by weight of additive relative to the total weight of the composition.
  • the content of additive in the composition can vary from 0 to 0.5% by weight; or from 0.1 to 0.5% by weight, or from 0.5 to 1% by weight; or from 1 to 1.5% by weight; or from 1.5 to less than 2% by weight.
  • the invention relates to a composition, in particular useful for injection molding, comprising:
  • the reinforcing fibers / copolyamide mass ratio does not exceed 1.75, in particular 1.6, when the reinforcing fibers have a non-circular section and have a cross-sectional area of from 1.5 to 5 , 0 c 10 6 cm 2 ;
  • said composition useful in particular for injection molding comprises:
  • said composition useful in particular for injection molding comprises:
  • the reinforcing fibers, impact modifiers, fillers, thinning agents and additives are as defined above and all the concentration ranges relating to impact modifiers, thinning agents, fillers and additives, defined above, are also valid for said composition. as is.
  • composition in particular useful for injection molding, consists of:
  • the reinforcing fibers / copolyamide mass ratio does not exceed 1.75, in particular 1.6, when the reinforcing fibers have a non-circular section and have a cross-sectional area of from 1.5 to 5 , 0 c 10 6 cm 2 ;
  • said composition in particular useful for injection molding, consists of:
  • said composition useful in particular for injection molding consists of:
  • said copolyamide of said composition is chosen from PA11 / 10T, PA11 / 12T, PA12 / 10T, PA12 / 12T, PA1010 / 10T, PA1012 / 10T, PA1010 / 12T, PA1012 / 12T, PA1210 / 10T,
  • PA1212 / 10T PA1210 / 12T, PA1212 / 12T, in particular PA11 / 10T.
  • the reinforcing fibers of said composition are chosen from glass fibers, carbon fibers, and a mixture thereof, in particular glass fibers.
  • the glass fibers of said composition are chosen from glass fibers with a non-circular cross section and glass fibers with a circular cross section, carbon fibers, and a mixture of these, in particular glass fibers with non-circular cross section and circular section glass fibers and a mixture thereof, including non-circular cross section glass fibers.
  • the glass fibers are as defined above.
  • the invention relates to a process for manufacturing the composition as defined above, in which the constituents of said composition are mixed by compounding, in particular in a twin-screw extruder, preferably co-rotating, a co-mixer, or an internal mixer.
  • the invention relates to a molded article capable of being obtained from the composition defined above, by injection molding.
  • said molded article is for electrical and electronics, and in particular chosen from the group consisting of televisions, digital cameras, digital games, telephone parts, digital tablets, drones, printers or computer parts.
  • Example 1 Synthesis of the copolyamides of the invention.
  • the monomers aminoundecanoic acid, decanediamine and terepthalic acid are loaded together into the reactor according to the desired mass ratio.
  • the medium is first inerted in order to remove the oxygen which can generate yellowing or side reactions. Water can also be charged to improve heat exchange. Two stages of temperature and pressure rise are achieved. The temperature (T °) and pressure conditions are chosen to allow that the medium is in the molten state. After reaching the maintenance conditions, degassing takes place to allow the polycondensation reaction. The medium gradually becomes viscous and the water of reaction formed is entrained by flushing with nitrogen or placed under vacuum. When the stopping conditions are reached, in relation to the desired viscosity, the agitation is stopped and the extrusion and the granulation can start. The granules obtained will then be compounded with the glass fibers.
  • compositions were prepared by melt blending the polymer granules with the short fibers. This mixture was carried out by compounding on an MC26 type co-rotating twin-screw extruder with a temperature profile (T °) flat at 290 ° C. The screw speed is 250rpm and the flow rate is 20 kg / h.
  • the introduction of the glass fibers is carried out by lateral force-feeding.
  • the additives and charges are added during the compounding process in the main hopper.
  • Irganox ® 245 and irgafos ® 168 are anti-oxidants CSX 451J circular section fiber and CSG 3PA820 non-circular section fiber (also known under the name flat fiber) are marketed by the company Nittobo
  • Plates of 100 * 100 * 1 mm 3 were prepared by injection of the different compositions: - Injection temperature: 300 ° C
  • the cycle time is adjusted as a function of the compositions to allow injection of the compositions and is less than 50 seconds.
  • the flexural modulus of test pieces of the compositions obtained was measured on an Instron 5966 machine manufactured by the Instron company.
  • the compositions are dried compositions and compositions saturated in water at 65 ° C beforehand.
  • the tests were carried out at different temperatures, from -10 ° C to 60 ° C.
  • the tensile modulus of test pieces of the compositions obtained was measured on an Instron 5966 machine manufactured by the company Instron dried compositions and compositions saturated in water at 65 ° C beforehand.
  • the tests were carried out at different temperatures, from -10 ° C to 60 ° C.
  • test pieces were cut to dimensions according to the ISO 527 standard, but with a thickness of 1 mm.
  • Tables 2 to 8 and Example 3 show that the compositions of the invention exhibit a higher modulus stability than that of the comparative CEI and CE2 compositions, in flexion or in tension.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)

Abstract

La présente invention concerne l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et X1Y de formule A/X1Y, dans laquelle : - A est un motif répétitif obtenu par polycondensation : d'au moins un aminoacide en C9 à C18, préférentiellement en C10 à C18, plus préférentiellement en C10 à C12, ou d'au moins un lactame en C9 à C18, préférentiellement en C10 à C18, plus préférentiellement en C10 à C12, ou d'au moins une diamine Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12,; - X1Y est un motif répétitif obtenu à partir de la polycondensation d'au moins une diamine aliphatique linéaire (X1) en C9 à C18, préférentiellement en C10 à C18, plus préférentiellement en C10 à C12, et d'au moins un acide dicarboxylique aromatique (Y), pour préparer une composition comprenant entre 35 et 65%, et préférentiellement entre 50 et 65% en poids de fibres de renforts, par rapport au poids total de la composition et dont le module de flexion ou le module de traction, mesuré après un conditionnement identique, ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C.

Description

DESCRIPTION
TITRE : Compositions de copolyamides comprenant des fibres de renforts et présentant une stabilité de module élevée et leurs utilisations
[Domaine technique]
La présente demande de brevet concerne l'utilisation de copolyamides semi-aromatiques pour la fabrication de compositions présentant une stabilité de module élevée sous l'effet de la température et de l'humidité, leur procédé de fabrication ainsi que lesdites compositions.
[Technique antérieure]
De nombreuses applications dans le domaine E/E exigent l'utilisation de matériaux polymères de haut module, par exemple pour les télévisions, les appareils photos numériques, les jeux numériques, les pièces de téléphone, les tablettes numériques, les drones, les imprimantes ou les pièces d'ordinateur. Le module du matériau est en effet un facteur crucial pour permettre une réduction de poids, puisqu'il permet une réduction de l'épaisseur des pièces tout en gardant une grande rigidité. On distingue différents modules (par exemple module de traction, module de flexion, etc.). Ces modules peuvent être impactés par la température et par le taux d'humidité contenu dans l'échantillon.
Il s'avère par ailleurs important que la rigidité soit peu affectée par des changements de température ou par la teneur en eau dans le matériau. En effet, la stabilité du module est également un facteur important pour l'utilisation ultérieure ou pour assurer un assemblage aisé des pièces lorsque celui-ci est réalisé dans des lieux où la température et/ou l'humidité peut être élevée.
Ainsi, on recherche des polymères dont le module reste stable dans la plage de températures et/ou d'humidité auxquels ils sont exposés, notamment pendant l'assemblage des pièces et le fonctionnement ultérieur des dispositifs. De préférence, le module serait stable à une température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C pour des compositions présentant des teneurs en eau variable (provoquées par le conditionnement des compositions dans une atmosphère où l'hygrométrie pourrait varier de 0 à 100%, ou dans l'eau liquide)
Par ailleurs, les formulations de polymère doivent présenter des températures de moulage modérées et cristalliser suffisamment rapidement pour permettre un temps de transformation, notamment un temps de cycle, adaptés à un procédé industriel.
Or les polyamides aliphatiques présentent généralement une perte importante de la rigidité lorsque la température augmente, notamment lorsque ces polyamides ont été conditionnés dans une atmosphère humide au préalable car contiennent une certaine quantité d'eau.
On connaît de la demande WO 2018/073536 l'utilisation d'un polyamide semi-aromatique, en particulier un polyamide MXDZ dans un mélange de polyamide aliphatique, notamment semi- cristallin, comprenant des fibres de verre à section circulaire, pour limiter le gauchissement de la composition obtenue.
On connaît également de la demande internationale WO 2018/073537 l'utilisation de fibres de verre à section circulaire dans un mélange comprenant au moins un polyamide MXDZ et au moins un polyamide aliphatique, notamment semi-cristallin, pour améliorer les propriétés mécaniques de ladite composition, notamment l'élongation à la rupture, après sa mise en oeuvre, en particulier par injection ou moulage par compression.
Par ailleurs, le document WO 10/015785 décrit des copolyamides comprenant au moins deux motifs distincts A/X.T caractérisé en ce que ledit copolyamide présente une teneur en fins de chaîne amine supérieure ou égale à 20 peq/g, une teneur en fins de chaîne acide inférieure ou égale à 100 peq/g, et une teneur en fins de chaîne non réactive supérieure ou égale à 20 peq/g. Le copolyamide peut comprendre des additifs, notamment des fibres de renforts, lesdites fibres de renforts pouvant être des fibres de verre.
Le document WO 10/015786 décrit des copolyamides comprenant au moins deux motifs A/10.T caractérisé en ce qu'il présente un indice de polymolécularité, noté Ip inférieur ou égal à 3,5, mesuré par chromatographie de perméation de gel.
La demande internationale WO 2014/195226 décrit des compositions pour appareil mobile électronique comprenant au moins 20% d'au moins un polymère et au moins 20% de fibres de verre présentant une section non circulaire et un module élastique d'au moins 76 GPa déterminé selon ASTM C1557-03.
Aucun de ces documents de l'art antérieur ne mentionne la stabilité du module en fonction de la température et du conditionnement préalable des compositions
Il reste donc le problème de proposer une formulation à base de polyamides alliant un module élevé stable sur une plage de température étendue, même lorsque la composition est saturée en eau, et une bonne aptitude au moulage à l'injection.
[Résumé de l'invention]
L'invention a donc pour but de proposer des copolyamides semi-aromatiques pour la fabrication de compositions présentant une stabilité de module élevée sous l'effet de la température et de l'humidité.
Aussi, selon un premier aspect, l'invention a pour objet l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY, dans laquelle :
- A est un motif répétitif obtenu par polycondensation :
d'au moins un aminoacide en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C , ou d'au moins un lactame en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à Ci2, ou
d'au moins une diamine Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12,;
- XiY est un motif répétitif obtenu à partir de la polycondensation d'au moins une diamine aliphatique linéaire (Xi) en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, et d'au moins un acide dicarboxylique aromatique (Y),
pour préparer une composition dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C.
En d'autres termes, la présente invention a pour objet l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY, tel que défini ci-dessus, pour préparer une composition dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C en comparaison avec la variation du module d'un homopolyamide aliphatique mesuré dans les mêmes conditions.
Ou encore dans d'autres termes, la présente invention a pour objet l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY, tel que défini ci-dessus, pour préparer une composition dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C en comparaison avec la variation du module d'un homopolyamide aliphatique ayant le même motif A, mesuré dans les mêmes conditions.
Ou encore autrement dit, la présente invention a pour objet l'utilisation d'une composition comprenant un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour limiter la variation du module dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C, ledit module ne variant pas de plus de 20% en comparaison de la variation du module de ladite composition mesuré dans les mêmes conditions dans laquelle un homopolyamide aliphatique est utilisé au lieu dudit copolyamide.
Ou encore autrement dit, la présente invention a pour objet l'utilisation d'une composition comprenant un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour limiter la variation du module dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C, ledit module ne variant pas de plus de 20% en comparaison de la variation du module de ladite composition mesuré dans les mêmes conditions dans laquelle un homopolyamide aliphatique ayant le même motif A, est utilisé au lieu dudit copolyamide.
Les inventeurs ont trouvé de manière inattendue que la sélection d'un copolyamide semi-aromatique comprenant un motif répétitif A et un motif répétitif XiY à base d'un diacide aromatique, permettait de préparer une composition dont non seulement le module présente une stabilité sous l'effet de la température et de l'humidité, et ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C, mais également dont la mise en oeuvre est facilitée par une température de moulage basse, notamment inférieure à 100°C, de préférence inférieure à 90°C, et par un temps de cycle court lors de sa mise en oeuvre.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1:2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l'homme du métier.
Lorsque le motif répétitif A dudit copolyamide est obtenu à partir de la polycondensation d'au moins un lactame, ledit au moins un lactame peut être choisi parmi un lactame en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12. Un lactame Cio à C12 est notamment le décanolactame, l'undécanolactame, et le lauryllactame.
Ledit motif A est obtenu à partir de la polycondensation d'au moins un lactame et peut donc comprendre un seul lactame ou plusieurs lactames.
Avantageusement, ledit motif A est obtenu à partir de la polycondensation d'un seul lactame et ledit lactame est le lauryllactame.
Lorsque le motif répétitif A dudit copolyamide est obtenu à partir de la polycondensation d'au moins un aminoacide, ledit au moins un aminoacide peut être choisi parmi un aminoacide en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12.
Un aminoacide Cg à C12 est notamment l’acide 9-aminononanoïque, l’acide 10-aminodécanoïque, l’acide 10-aminoundécanoïque, l’acide 12-aminododécanoïque et l’acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l’acide N-heptyl-ll-aminoundécanoïque.
Ledit motif A est obtenu à partir de la polycondensation d'au moins un aminoacide et peut donc comprendre un seul aminoacide ou plusieurs aminoacides.
Avantageusement, ledit motif A est obtenu à partir de la polycondensation d'un seul aminoacide et ledit aminoacide est l’acide 11-aminoundécanoïque.
Lorsque le motif répétitif A dudit copolyamide est obtenu à partir de la polycondensation d'au moins une diamine Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un diacide Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, alors ladite au moins une diamine en Ca est une diamine aliphatique linéaire ou ramifiée, en particulier linéaire et ledit au moins un diacide Cb est un diacide aliphatique linéaire ou ramifié, en particulier un diacide linéaire.
Avantageusement, ladite au moins une diamine est aliphatique linéaire et le dit au moins un diacide est aliphatique et linéaire.
Ladite au moins une diamine Ca en C4-C36 peut être en particulier choisi parmi la 1,4-butanediamine, 1,5-pentaméthylènediamine, la 1,6-hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8- octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11- undécaméthylènediamine, la 1,12-dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18- octadécaméthylènediamine, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras.
Avantageusement, ladite au moins une diamine Ca est en C6-C18 et choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12- dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine.
Avantageusement, ladite au moins une diamine Ca en C6 à C12, est en particulier choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12- dodécaméthylènediamine.
Avantageusement, la diamine Ca utilisée est en Cio à C12, en particulier choisi parmi la 1,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine.
Ledit au moins un acide dicarboxylique Cb en C4 à C36 peut être choisi parmi l'acide succinique, l'acide glutarique, l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras.
Avantageusement, ledit au moins un acide dicarboxylique Cb est en C6 à Cis et est choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque. Avantageusement, ledit au moins un acide dicarboxylique Cb est en C6 à C12 et est choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque.
Avantageusement, ledit au moins un acide dicarboxylique Cb est en Cio à C12 et est choisi parmi l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque.
Ledit motif A est obtenu à partir de la polycondensation d'au moins une diamine Ca avec au moins un acide dicarboxylique Cb et peut donc comprendre une seule diamine ou plusieurs diamine et un seul acide dicarboxylique ou plusieurs acides dicarboxyliques.
Avantageusement, ledit motif A est obtenu à partir de la polycondensation d'une seule diamine Ca avec un seul acide dicarboxylique Cb.
Ledit motif XiY est un motif répétitif obtenu à partir de la polycondensation d'au moins une diamine aliphatique linéaire (Xi) en C9 à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, et d'au moins un acide dicarboxylique aromatique (Y).
Ladite diamine aliphatique linéaire (Xi) est telle que définie pour ladite diamine aliphatique linéaire Ca.
Ladite diamine aliphatique linéaire (Xi) peut être identique à ou différente de la diamine Ca aliphatique et linéaire.
Ledit acide dicarboxylique aromatique (Y) peut être en C6 à Cis, en C6 à Cis, préférentiellement en Cs à Cis, plus préférentiellement en Cs à C12.
Avantageusement, il est choisi parmi l'acide térépthalique (T), l'acide isophtalique (I), l'acide naphtalène dicarboxylique (N).
Dans un mode de réalisation avantageux, ledit acide dicarboxylique aromatique (Y) est l'acide térépthalique.
Le module d'une composition évolue en fonction de la température et de manière générale, le module diminue avec l'augmentation de la température.
L'expression « le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C » signifie que dans cet intervalle de température de 20°C à 40°C, le module d'une même composition, qu'il s'agisse du module de flexion ou du module de traction mesuré après un conditionnement identique (atmosphère sèche ou humide), n'évolue pas de plus de 20%.
L'expression « conditionnement sous atmosphère humide », signifie après saturation dans l'eau liquide à 65°C.
Il en est de même évidemment pour les autres intervalles de température.
En d'autres termes, soit M20 le module mesuré à 20°C et MT le module mesuré à une température T pour une composition conditionnée dans les mêmes conditions d'atmosphère sèche ou humide, alors : ((M20 - MT)/ M2O) x 100 < 20, avec T variant de 20 à 40°C.
Avantageusement, le module ne varie pas de plus de 20% dans l'intervalle de température allant de de 0°C à 40°C et donc ((Mo - MT)/ Mo) x 100 < 20, avec T variant de 0 à 40°C pour une composition conditionnée dans les mêmes conditions d'atmosphère sèche ou humide.
Plus avantageusement, le module ne varie pas de plus de 20% dans l'intervalle de température allant de -10°C à 40°C et donc ((M-io - MT)/ M-io) x 100 < 20, avec T variant de -10 à 40°C pour une composition conditionnée dans les mêmes conditions d'atmosphère sèche ou humide.
Avantageusement, le module ne varie pas de plus de 15% dans l'intervalle de température allant de de 0°C à 40°C et donc ((Mo - MT)/ Mo) x 100 < 15, avec T variant de 0 à 40°C pour une composition conditionnée dans les mêmes conditions d'atmosphère humide.
Plus avantageusement, le module ne varie pas de plus de 15% dans l'intervalle de température allant de -10°C à 40°C et donc ((M-io - MT)/ M-io) x 100 < 15, avec T variant de -10 à 40°C pour une composition conditionnée dans les mêmes conditions d'atmosphère humide.
Avantageusement, le module ne varie pas de plus de 5% dans l'intervalle de température allant de de 0°C à 40°C et donc ((Mo - MT)/ Mo) x 100 < 5, avec T variant de 0 à 40°C pour une composition conditionnée dans les mêmes conditions d'atmosphère sèche.
Plus avantageusement, le module ne varie pas de plus de 5% dans l'intervalle de température allant de -10°C à 40°C et donc ((M-io - MT)/ M-io) x 100 < 5, avec T variant de -10 à 40°C pour une composition conditionnée dans les mêmes conditions d'atmosphère sèche.
Dans un mode de réalisation, le module est mesuré tel que défini ci-dessus selon la norme ISO 178 :2010 et correspond au module de flexion.
Dans un autre mode réalisation, le module est mesuré tel que défini ci-dessus selon la norme ISO 527-1 et 2 :2012 et correspond au module de traction.
Dans un autre mode réalisation, le module correspond aussi bien au module de flexion qu'au module de traction, les deux étant mesurés tels que définis ci-dessus.
Avantageusement, le rapport du module de flexion, mesuré à 20°C sur un échantillon saturé dans l'eau à 65°C, sur le module de flexion, mesuré à 20°C sur échantillon sec, est inférieur à 10%, en particulier inférieur à 7%, les deux mesures étant effectuées selon ISO 178 :2010.
Dans un mode de réalisation, ledit motif XiY dudit copolyamide ci-dessus défini est un motif répétitif obtenu par polycondensation d'au moins une diamine aliphatique (Xi) en Cio à Cis, plus préférentiellement en Cio à C12, et d'au moins un acide dicarboxylique aromatique (Y).
Des exemples de motifs XiY sont 101, 10T, ION, 121, 12T, 12N, 141, 14T, 14N.
Avantageusement, ledit copolyamide est de formule A/XiT Avantageusement, ledit motif XiY dudit copolyamide ci-dessus défini est un motif répétitif obtenu par polycondensation d'au moins une diamine aliphatique (Xi) en Cio à C12, et d'au moins un acide dicarboxylique aromatique (Y).
Des exemples de motifs XiY sont 101, 10T, 10N, 121, 12T, 12N,
Avantageusement, XiY est choisi parmi 10T, 12T.
Avantageusement, ledit copolyamide est de formule A/10T ou A/12T, préférentiellement A/10T Dans un autre mode de réalisation, ledit motif A dudit copolyamide ci-dessus défini est un aminoacide ou un lactame tel que ci-dessus défini.
Avantageusement, ledit copolyamide est de formule A/XiY dans laquelle A est un aminoacide ou un lactame tel que ci-dessus défini et XiY est tel que ci-dessus défini.
Avantageusement, ledit copolyamide est de formule A/XiT dans laquelle A est un aminoacide ou un lactame tel que ci-dessus défini.
Avantageusement, ledit copolyamide est de formule A/10T ou A/12T, préférentiellement A/10T dans laquelle A est un aminoacide ou un lactame tel que ci-dessus défini.
Dans un autre mode de réalisation, ledit motif A dudit copolyamide ci-dessus défini est un aminoacide ou un lactame en Cn ou C12 respectivement.
Avantageusement, ledit copolyamide est de formule A/XiY dans laquelle A est un aminoacide ou un lactame en Cn ou C12 et XiY est tel que ci-dessus défini.
Dans encore un autre mode de réalisation, ledit copolyamide ci-dessus défini est semi-cristallin.
Un copolyamide semi-cristallin, au sens de l'invention, désigne un copolyamide qui présente une température de fusion (Tf) en DSC selon la norme ISO 11357-3 :2013, et une enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min en DSC mesurée selon la norme ISO 11357-3 de 2013 supérieure à 30 J/g, de préférence supérieure à 35 J/g.
Avantageusement, la Tf dudit copolyamide est < 280°C, notamment < 270°C, en particulier < 265°C. Par conséquent, dans ce mode de réalisation, le rapport molaire des motifs A et XiY dans le copolyamide de l'invention est adapté en fonction des différents motifs pour que ledit copolyamide soit semi-cristallin.
Dans un autre mode de réalisation, ledit copolyamide de formule A/XiY est constitué uniquement des motifs A et XiY tels que ci-dessus définis.
Par conséquent, dans ce mode de réalisation, le copolyamide ne présente qu'un ou plusieurs motif(s) A et qu'un ou plusieurs motif(s) XiY néanmoins, A est un motif répétitif obtenu par polycondensation d'au moins un aminoacide ou d'au moins un lactame ou d'au moins une diamine en Ca avec au moins un acide dicarboxylique en Cb, tels que ci-dessus définis, et XiY est un motif répétitif obtenu à partir de la polycondensation d'au moins une diamine aliphatique linéaire (Xi) tel que définie ci-dessus, et d'au moins un acide dicarboxylique aromatique (Y) tel que défini ci-dessus. Dans un autre mode de réalisation, ledit copolyamide de formule A/XiY est constitué uniquement d'un motif A et d'un motif XiY tels que ci-dessus définis.
Par conséquent, dans ce mode de réalisation, le copolyamide ne présente qu'un motif A et qu'un motif XiY et A est un motif répétitif obtenu par polycondensation d'un aminoacide ou d'un lactame ou d'une diamine en Ca avec un acide dicarboxylique en Cb tels que ci-dessus définis, et XiY est un motif répétitif obtenu à partir de la polycondensation d'une diamine aliphatique linéaire (Xi) tel que définie ci-dessus, et d'un acide dicarboxylique aromatique (Y) tel que défini ci-dessus.
Avantageusement, le copolyamide est choisi parmi PA11/10T, PA11/12T, PA12/10T, PA12/12T, PA610/10T, PA610/12T, PA612/10T, PA612/12T, PA1010/10T, PA1012/10T, PA1010/12T,
PA1012/12T, PA1210/10T, PA1212/10T, PA1210/12T, PA1212/12T, en particulier PA11/10T.
Dans un autre mode de réalisation, ledit copolyamide comprend au moins un troisième motif Z, distinct des motifs A et XiY, et répond à la formulation générale A/XiY/Z
dans laquelle :
les motifs A et XiT sont tels que définis ci-dessus,
Z est choisi parmi un motif obtenu à partir d’un aminoacide, un motif obtenu à partir d'un lactame et un motif répondant à la formule (diamine en Ce). (diacide en Cd), avec c représentant le nombre d'atomes de carbone de la diamine et d représentant le nombre d'atomes de carbone du diacide, c et d étant chacun compris entre 4 et 36, avantageusement entre 9 et 18,
sous réserve que le caprolactame ou l'acide aminohexanoïque sont exclus de la définition du lactame et de l'aminoacide de Z et que lorsque que la diamine en Ce est une diamine en C6, alors l'acide térépthalique est exclu de la définition du diacide en Cd.
Il est bien évident que lorsque ledit copolyamide de formule A/XiY est constitué uniquement des motifs A et XiY tels que ci-dessus définis ou que ledit copolyamide de formule A/XiY est constitué uniquement d'un motif A et d'un motif XiY tels que ci-dessus définis, il ne peut exister de troisième motif Z.
Néanmoins, dans ce mode de réalisation où au moins un troisième motif Z distinct de A et XiY est présent, le copolyamide de l'invention peut comprendre un ou plusieurs motif(s) A et un ou plusieurs motif(s) XiY et au moins un motif Z.
Le terme « distinct » signifie que même s'il existe plusieurs motifs A et/ou XiY, le motif Z lorsqu'il est présent est différent des motifs A et XiY présent dans le copolyamide mais qu'il peut cependant être également du même type que pour A, à savoir un motif répétitif obtenu à partir de la polycondensation d'un lactame, ou d'un aminoacide ou d'une diamine en Ca avec un acide dicarboxylique en Cb, ou du même type que XiY, à savoir un motif répétitif obtenu à partir de la polycondensation d'au moins une diamine aliphatique linéaire (Xi) en Cg à Cis, et d'au moins un acide dicarboxylique aromatique (Y).
Lorsque Z représente un motif obtenu à partir d'un aminoacide, il peut être choisi parmi l’acide 9- aminononanoïque, l’acide 10-aminodécanoïque, l’acide 10-aminoundécanoïque, l’acide 12- aminododécanoïque et l’acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l’acide N- heptyl-ll-aminoundécanoïque.
Lorsque Z représente un motif obtenu à partir d'un lactame, il peut être choisi parmi la pyrrolidinone, la 2-pipéridinone, le caprolactame, l'énantholactame, le caprolactame, le pelargolactame, le décanolactame, l'undecanolactame, et le lauryllactame.
Lorsque le motif Z est un motif répondant à la formule (diamine en Ce). (diacide en Cd), le motif (diamine en Ce) est choisi parmi les diamines aliphatiques, linéaires ou ramifiées, les diamines cycloaliphatiques et les diamines arylaliphatiques.
Lorsque la diamine est aliphatique et linéaire, elle est choisie parmi la butanediamine, la pentanediamine, l'hexanediamine, l’heptanediamine, l'octanediamine, la nonanediamine, la décanediamine, l’undécanediamine, la dodécanediamine, la tridécanediamine, la tétradécanediamine, l’hexadécanediamine, l’octadécanediamine, l’octadécènediamine, l’eicosanediamine, la docosanediamine et les diamines obtenues à partir d’acides gras.
Lorsque la diamine est aliphatique et ramifiée, elle peut comporter un ou plusieurs substituants méthyle ou éthyle sur la chaîne principale. Par exemple, la diamine en Ce peut avantageusement être choisi parmi la 2,2,4-triméthyl-l,6-hexanediamine, la 2,4,4-triméthyl-l,6-hexanediamine, le 1,3- diaminopentane, la 2-methyl-l,5-pentanediamine, la 2-méthyl-l,8-octanediamine.
Lorsque la diamine en Ce est cycloaliphatique, elle est choisie parmi la bis(3,5-dialkyl-4- aminocyclohexyl)méthane, la bis(3,5-dialkyl-4-aminocyclohexyl)éthane, la bis(3,5-dialkyl-4- aminocyclo-hexyl)propane, la bis(3,5-dialkyl-4-aminocyclo-hexyl)butane, la bis-(3-méthyl-4- aminocyclohexyl)-méthane (BMACM ou MACM), la p-bis(aminocyclohexyl)-méthane (PACM) et l’isopropylidènedi(cyclohexylamine) (PACP), la 1,3-bis (aminométhyle) cyclohexyle (1,3 BAC), la 1,4- bis (aminométhyle) cyclohexyle (1,4 BAC) et un mélange de ceux-ci. Elle peut également comporter les squelettes carbonés suivants : norbornyl méthane, cyclohexylméthane, dicyclohexylpropane, di(méthylcyclohexyl), di(méthylcyclohexyl) propane. Une liste non-exhaustive de ces diamines cycloaliphatiques est donnée dans la publication "Cycloaliphatic Amines" (Encyclopaedia of Chemical Technology, Kirk-Othmer, 4th Edition (1992), pp. 386-405).
Lorsque la diamine en Ce est arylaliphatique, elle est choisie parmi la 1,3-xylylène diamine et la 1,4- xylylène diamine.
L'acide dicarboxylique en Cd est choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques. Lorsque le diacide en Cd est aliphatique et linéaire, il est choisi parmi l'acide succinique, l'acide glutarique, l’acide adipique, l’acide heptanedioïque, l'acide octanedioïque, l’acide azélaïque, l’acide sébacique, l’acide undécanedioïque, l’acide dodécanedioïque, l’acide brassylique, l’acide tetradécanedioïque, l’acide hexadécanedioïque, l’acide octadécanedioïque, l’acide octadécènedioïque, l’acide eicosanedioïque, l’acide docosanedioïque et les dimères d’acides gras contenant 36 carbones.
Les dimères d’acides gras mentionnés ci-dessus sont des acides gras dimérisés obtenus par oligomérisation ou polymérisation d'acides gras monobasiques insaturés à longue chaîne hydrocarbonée (tels que l’acide linoléïque et l’acide oléïque), comme décrit notamment dans le document EP 0 471 566.
Lorsque le diacide est cycloaliphatique, il peut comporter les squelettes carbonés suivants : norbornyl méthane, cyclohexylméthane, dicyclohexylméthane, dicyclohexylpropane, di(méthylcyclohexyl), di(méthylcyclohexyl)propane.
Lorsque le diacide est aromatique, il est choisi parmi l'acide téréphtalique (noté T), isophtalique (noté I) et les diacides naphtaléniques (noté N).
Le caprolactame ou l'acide aminohexanoïque sont exclus de la définition du lactame et de l'aminoacide de Z ce qui signifie que les composés de formule 6/A/XiY dans laquelle A et XiY sont tels que définis ci-dessus sont exclus.
Lorsque la diamine en Ce est une diamine en C6, alors l'acide térépthalique est exclu de la définition du diacide en Cd signifie que les composés de formule 6T/A/X1Y dans laquelle A et XiY sont tels que définis ci-dessus sont exclus.
Dans un mode de réalisation, ledit copolyamide est constitué uniquement de trois motifs de formule A/XiY/Z.
Les trois motifs sont tels que définis ci-dessus et les exclusions s'applique également.
Dans ce mode de réalisation, il n'y a donc que les trois motifs distincts A, XiY et Z, néanmoins un ou plusieurs motif(s) A, un ou plusieurs motif(s) XiY et un ou plusieurs motif(s) Z peuvent être présents. Dans un autre mode de réalisation, un ledit copolyamide est constitué uniquement de trois motifs de formule A/XiY/Z et un seul motif A, un seul motif XiY et un seul motif Z sont présents dans la formule A/XiY/Z.
Dans encore un autre mode réalisation, la présente invention concerne l'utilisation d'un copolyamide tel que défini ci-dessus pour préparer une composition telle que définie ci-dessus, ladite composition comprenant jusqu'à 70% en poids de fibres de renforts, en particulier de 30 à 70% en poids de fibres de renforts.
Selon un mode de réalisation, la composition comprend entre 35 et 65%, et préférentiellement entre 50 et 65% en poids de fibres de renforts, par rapport au poids total de la composition. Dans toute la description, l'expression « entre ... et » signifie bornes incluses.
La composition selon l'invention peut comporter des fibres de renfort courtes ou renfort fibreux court.
De préférence, les fibres sont courtes et de longueur comprise entre 2 et 13 mm, de préférence de 3 à 8mm avant mise en oeuvre des compositions.
Ces fibres de renfort courtes peuvent être choisies parmi :
- les fibres naturelles
- les fibres minérales, celles-ci ayant des températures de fusion Tf' élevées et supérieures à la température de fusion Tf dudit copolyamide semi-cristallin de l'invention et supérieures à la température de polymérisation et/ou de mise en oeuvre.
- les fibres polymériques ou de polymère ayant une température de fusion Tf' ou à défaut de Tf', une température de transition vitreuse Tg', supérieure à la température de polymérisation ou supérieure à la température de fusion Tf dudit copolyamide semi-cristallin constituant ladite matrice du matériau thermoplastique et supérieure à la température de mise en oeuvre.
- ou les mélanges des fibres citées ci-haut.
Comme fibres minérales convenables pour l'invention, on peut citer les fibres de carbone, ce qui inclut les fibres de nanotubes ou nanotubes de carbone (NTC), les nanofibres de carbone ou les graphènes ; les fibres de silice comme les fibres de verre, notamment de type E, R, S2 ou T ; les fibres de bore ; les fibres céramiques, notamment fibres de carbure de silicium, fibres de carbure de bore, fibres de carbonitrure de bore, fibres de nitrure de silicium, fibres de nitrure de bore, les fibres de basalte ou les fibres à base de basalte ; les fibres ou filaments à base de métaux et/ou de leurs alliages ; les fibres des oxydes métalliques, notamment d'alumine (AI203) ; les fibres métallisées comme les fibres de verre métallisées et les fibres de carbone métallisées ou les mélanges des fibres précitées. Plus particulièrement, ces fibres peuvent être choisies comme suit :
- les fibres minérales peuvent être choisies parmi : les fibres de carbone, les fibres de nanotubes de carbone, fibres de verre, notamment de type E, R,S2, ou T, fibres de bore, fibres céramiques, notamment fibres de carbure de silicium, fibres de carbure de bore, fibres de carbonitrure de bore, fibres de nitrure de silicium, fibres de nitrure de bore, fibres de basalte ou les fibres à base de basalte ; fibres ou filaments à base de métaux et/ou leurs alliages, fibres à base d'oxydes métalliques comme AI203, les fibres métallisées comme les fibres de verre métallisées et les fibres de carbone métallisées ou les mélanges des fibres précitées, et
- les fibres de polymère ou polymériques, sous condition précitée ci-haut, sont choisies parmi :
- les fibres de polymères thermodurcissables et plus particulièrement choisies parmi : les polyesters insaturés, les résines époxy, les esters vinyliques, les résines phénoliques, les polyuréthanes, les cyanoacrylates et les polyimides, tels que les résines bis-maléimide, les aminoplastes résultant de la réaction d'une amine telle que la mélamine avec un aldéhyde tel que le glyoxal ou le formaldéhyde,
- les fibres de polymères thermoplastiques et plus particulièrement choisies parmi : le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT),
- les fibres de polyamides,
- les fibres d'aramides (comme le Kevlar®) et polyamides aromatiques tels que ceux répondant à l'une des formules : PPD.T, MPD.I, PAA et PPA, avec PPD et MPD étant respectivement la p- et m-phénylène diamine, PAA étant les polyarylamides et PPA étant les polyphtalamides,
- les fibres de copolymères blocs de polyamide tel que le polyamide/polyéther, les fibres de polyaryléthers cétones (PAEK) telles que la polyétheréther cétone (PEEK), la polyéthercétone cétone (PEKK), la polyéthercétoneéthercétone cétone (PEKEKK).
Les fibres de renfort courtes préférées sont des fibres courtes choisies parmi les : fibres de carbone, y compris métallisées, fibres de verre, y compris métallisées de type E, R, S2, ou T fibres d'aramides (comme le Kevlar®) ou de polyamides aromatiques, les fibres de polyaryléthers cétones (PAEK), telle que la polyétheréther cétone (PEEK), fibres de la polyéthercétone cétone (PEKK), fibres de la polyéthercétoneéthercétone cétone (PEKEKK) ou leurs mélanges.
Plus particulièrement, les fibres naturelles sont choisies parmi les fibres de lin, de ricin, de bois, de sisal, de kénaf, de noix de coco, de chanvre et de jute.
Avantageusement, le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6.
Par fibre de verre au sens de l'invention, on entend toute fibre de verre, notamment telle que décrite par Frederick T. Wallenberger, James C. Watson and Hong Li, PPG industries Inc. (ASM Handbook, Vol 21 : composites (#06781G), 2001 ASM International).
La fibre de renfort peut être :
- soit à section circulaire de diamètre compris de 4 pm et 25 pm, de préférence de 4 à 15 pm.
- soit à section non circulaire avec un ratio L/D (L représentant la plus grande dimension de la section transverse de la fibre et D la plus petite dimension de la section transverse de ladite fibre) compris de 2 à 8, en particulier de 2 à 4. L et D peuvent être mesurés par microscopie électronique à balayage (MEB).
Avantageusement, les fibres de renforts sont choisies parmi les fibres de verre, les fibres de carbone, et un mélange de celle-ci.
Avantageusement, la fibre de renfort est choisie parmi une fibre de verre à section transversale non circulaire, une fibre de verre à section circulaire, une fibre de carbone et un mélange de celles-ci. Avantageusement, la fibre de renfort est choisie parmi une fibre de verre à section transversale non circulaire, une fibre de verre à section circulaire et un mélange de celles-ci. Avantageusement, la fibre de renfort est une fibre de verre à section transversale non circulaire. Avantageusement, la fibre de renfort est une fibre de verre à section transversale non circulaire et présentant un module élastique inférieur à 76 GPa tel que mesuré selon ASTM C1557-03.
Dans un mode de réalisation, ladite composition est dépourvue d'au moins un des constituants choisis parmi le polyphénylène ether (PPE), un agent antigoutte, un PA46, un PA66, un PA6, un polyamide à base de motif obtenu par polycondensation de caprolactame, un inhibiteur de radicaux libres, en particulier inorganique, un ignifugeant, la nigrosine, du fer élémentaire, un alcool polyhydrique, un oxyde métallique choisi parmi l'oxyde de magnésium, l'oxyde de zinc, l'oxyde de calcium ou un mélange de ceux-ci, un stabilisant thermique aminoacide, un stabilisant thermique aminoacide avec au moins un groupe hydroxy et un polyamide amorphe.
Dans un mode de réalisation, si ladite composition comprend un oxyde de titane alors elle est dépourvue d'oxyde métallique choisi parmi l'oxyde de magnésium, l'oxyde de zinc, l'oxyde de calcium ou un mélange de ceux-ci.
Dans un autre mode de réalisation, ladite composition comprend en plus du copolyamide et des fibres de renforts :
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0.5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, un modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%.
Dans ce dernier mode de réalisation, avantageusement, ladite composition est dépourvue d'au moins un des constituants exclus ci-dessus définis.
Dans un mode de réalisation, la présente invention concerne donc l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour préparer une composition comprenant :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus, - de 30 à 70% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Dans un autre mode de réalisation, la présente invention concerne donc l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci- dessus, pour préparer une composition comprenant :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- entre 35 et 65%, et préférentiellement entre 50 et 65% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Avantageusement, la présente invention concerne l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour préparer une composition comprenant :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- de 35 à 65%, et préférentiellement de 50 à 65% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Plus avantageusement, la présente invention concerne l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour préparer une composition comprenant : - 35 à 65 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- de 35 à 65%, et préférentiellement de 50 à 65% en poids de fibres de renforts, notamment de 50 à 62% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Dans encore un autre mode de réalisation, ladite composition est constituée du copolyamide, des fibres de renforts, et:
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0.5 à moins de 2 % en poids d'additifs,
la somme copolyamide, fibres de renfort, un modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%.
Dans ce dernier mode de réalisation, ladite composition ne comprend donc pas lesdits constituants ci-dessus définis et exclus.
Avantageusement, dans cet autre mode de réalisation, la présente invention concerne l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour préparer une composition constituée de :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- de 30 à 70% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Avantageusement, dans cet autre mode de réalisation, la présente invention concerne donc l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour préparer une composition constituée de :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 35 à 65%, et préférentiellement 50 à 65% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Avantageusement, la présente invention concerne l'utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY tel que défini ci-dessus, pour préparer une composition constituée de :
- 35 à 65 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- de 35 à 65%, et préférentiellement de 50 à 65% en poids de fibres de renforts, notamment de 50 à 62% en poids de fibres de renforts,
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5% en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence 0,5 à moins de 2% en poids d'additifs,
la somme copolyamide, fibres de renfort, modifiant choc, charge, agent fluidifiant et additifs étant égale à 100%, et dont le module ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C tel que défini ci-dessus.
Par l'expression « modifiant choc », il faut entendre un polymère à base polyoléfine présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 :2010 (23°C RH50) et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 :2013 au niveau du point d'inflexion du thermogramme DSC), en particulier une polyoléfine. Le modifiant choc peut aussi être un polymère bloc de type PEBA (polyéther-bloc-amide) ayant un module de flexion < 200 MPa.
La composition peut en outre comporter un ou plusieurs modifiants chocs tels que définis ci-dessus. La présence d'un modifiant choc permet de conférer une plus grande ductilité aux articles fabriqués. La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou comporter l'un et l'autre en mélange.
Lorsque la polyoléfine est fonctionnalisée, une partie ou la totalité des polyoléfines portent une fonction choisie parmi les fonctions acide carboxylique, anhydride carboxylique et époxide. La fonction peut en particulier être choisie parmi un copolymère d’éthylène et de propylène à caractère élastomère (EPR), un copolymère éthylène-propylène-diène à caractère élastomère (EPDM) et un copolymère éthylène/(meth)acrylate d’alkyle, un copolymère éthylène-alcène supérieur, en particulier un copolymère éthylène-octène, un terpolymère éthylène-acrylate d'alkyle-anhydride maléique.
Les Peba (polyéther block amides) sont des copolymères comportant des blocs à motif polyamide et des blocs à motif polyéther. Ils peuvent également comporter des fonctions ester, notamment issu de la réaction de condensation de fonctions carboxyliques terminales des blocs polyamide avec les fonctions hydroxyle des blocs polyéther. Les Peba sont disponibles dans le commerce, notamment sous la marque Pebax® par la société Arkema.
Avantageusement, le modifiant choc est choisi parmi le Fusabond® F493, le Tafmer MH5020, un Pebax®, en particulier le Pebax® 40R53 SP01, un Lotader®, les Exxelor® VA1803 ou VA1801, l'Orevac® IM800 ou un mélange de ceux-ci, dans ce cas ils sont dans un rapport allant de 0,1/99,9 à 99,9/0,1. Le modifiant choc peut également être un modifiant de type « core-shell », également désigné « copolymère de type cœur-écorce ». Le modifiant de type « core-shell » se présente sous la forme de fines particules ayant un cœur en élastomère et au moins une écorce thermoplastique, la taille des particules est en général inférieure au pm et avantageusement comprise de 150 à 500 nm. Le modifiant de type cœur écorce « core-shell » possède une base acrylique ou butadiène.
Plusieurs modifiants chocs différents peuvent être présents dans la composition.
Selon certains modes de réalisation, la teneur en modifiant choc par rapport au poids total de la composition peut varier de 0 à 10% en poids, avantageusement de 1 à 10% en poids.
Selon un mode de réalisation, la composition comprend de 1 à 8%, et en particulier de 2 à 5 % en poids de modifiant choc par rapport au poids total de la composition.
Dans un autre mode de réalisation, la teneur en modifiant choc dans la composition peut varier de 1 à 2% en poids; ou de 2 à 3% en poids ; ou de 3 à 4% en poids; ou de 4 à 5% en poids; ou de 6 à 7% en poids; ou de 7 à 8% en poids; ou de 8 à 9% en poids ; ou de 9 à 10% en poids.
S'agissant des charges La composition peut par ailleurs comporter également des charges. Les charges envisagées incluent les charges minérales classiques, telles que le kaolin, la magnésie, les scories, le noir de carbone, le graphite expansé ou non, la wollastonite, les agents nucléants tels que la silice, l'alumine, l'argile ou le talc, en particulier le talc, les pigments tels que l'oxyde de titane et le sulfure de zinc, les charges antistatiques.
La composition peut par ailleurs comporter des agents fluidifiants.
Par l'expression « agent fluidifiant », il faut entendre notamment des prépolymères.
Le prépolymère peut être choisi parmi les oligomères de polyamides aliphatiques, linéaires ou ramifiés, cycloaliphatiques, semi-aromatiques ou encore aromatiques. Le prépolymère peut également être un oligomère de copolyamide ou un mélange d'oligomères de polyamide et de copolyamide. De préférence, le prépolymère présente une masse molaire moyenne en nombre Mn allant de 1000 à 10000 g/mole, en particulier de 1000 à 5000 g/mol. Il peut être en particulier monofonctionnel NFh si le limiteur de chaînes utilisé est une monoamine par exemple. La masse molaire en nombre (Mn) ou l'indice d'amine est calculé selon la formule suivante : Mn = lOOO/INFh], [NH2] étant la concentration de fonctions amine dans le copolyamide telle que déterminée par exemple par potentiométrie.
Selon certains modes de réalisation, la teneur en agent fluidifiant par rapport au poids total de la composition peut varier de 0 à 5% en poids, en particulier de 1 à 5% en poids, notamment de 1 à 5%. Selon un mode de réalisation, la composition comprend de 1 à 4%, et en particulier de 2 à 3 % en poids d'agent fluidifiant par rapport au poids total de la composition.
Selon un autre mode de réalisation, la teneur en agent fluidifiant par rapport au poids total de la composition est de 1 à 2% en poids; ou de 2 à 3% en poids ; ou de 3 à 4% en poids; ou de 4 à 5% en poids.
Par l'expression « additifs » il faut entendre des colorants, stabilisants, agents tensioactifs, azurants, antioxydants, lubrifiants, plastifiants, cires ainsi que leurs mélanges.
Avantageusement, il faut entendre des colorants, stabilisants, agents tensioactifs, azurants, antioxydants, lubrifiants, cires ainsi que leurs mélanges.
Les stabilisants peuvent être des stabilisants organiques ou minéraux. Les stabilisants usuels utilisés avec des polymères sont par exemple des phénols, des phosphites, des absorbeurs UV, des stabilisants du type HALS (Hindered Amine Light Stabiliser), des iodures métalliques. On peut citer l’Irganox® 1010, 245, 1098 de la société BASF, l’Irgafos® 168, 126 de la société BASF, le Tinuvin® 312, 770 de la société BASF, l’Iodide P201 de la société Ciba, le Nylostab® S-EED de la société Clariant.
Les lubrifiants peuvent être notamment un stéarate ou un liant de cire. Les cires peuvent en particulier être une cire amorphe telle qu'une cire d'abeille, une cire de silicone, une cire de polyéthylène, une cire de polyéthylène oxydé, une cire de copolymère d'éthylène, une cire de montane et une cire de polyéther.
Plusieurs additifs différents, de la même catégorie ou de catégories différentes peuvent être présents dans la composition.
La teneur en additifs est comprise de 0 à moins de 2% en poids par rapport au poids total de la composition.
Selon un mode de réalisation, la composition comprend de 0,1 à moins de 2%, et en particulier de 0,5 à moins de 2 % en poids d'additif par rapport au poids total de la composition.
Selon certains modes de réalisation, la teneur en additif dans la composition peut varier de 0 à 0,5% en poids; ou de 0,1 à 0,5% en poids, ou de 0,5 à 1% en poids ; ou de 1 à 1,5% en poids ; ou de 1,5 à moins de 2% en poids.
Selon un deuxième aspect, l'invention concerne une composition, notamment utile pour le moulage par injection, comprenant :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 30 à 65, en particulier 50 à 65, et plus particulièrement 50 à 62% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0,5 à moins de 2 % en poids d'additifs,
à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6, lorsque les fibres de renfort sont à section non circulaire et présentent une surface de la section transversale comprise de 1,5 à 5,0 c 10 6 cm2;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
L'exclusion desdites fibres de renfort à section non circulaire présentant une surface de la section transversale comprise de 1,5 à 5,0 c 10 6 cm2 est donc valable aussi bien pour le ratio de 1,75 que pour le ratio de 1,6.
Dans un mode de réalisation, ladite composition notamment utile pour le moulage par injection, comprend :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 30 à 65, en particulier 50 à 65, et plus particulièrement 50 à 62% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ; - 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0,5 à moins de 2 % en poids d'additifs,
à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6, lorsque les fibres de renfort sont à section non circulaire;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
L'exclusion desdites fibres de renfort à section non circulaire est donc valable aussi bien pour le ratio de 1,75 que pour le ratio de 1,6.
Dans un autre mode de réalisation, ladite composition notamment utile pour le moulage par injection, comprend :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 30 à 65, en particulier 50 à 65, et plus particulièrement 50 à 62% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ;
0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0,5 à moins de 2 % en poids d'additifs,
à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6 ;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Les fibres de renfort, modifiants choc, charges, agents fluidifiants et additifs sont tels que définis ci- dessus et toutes les gammes de concentration relatives aux modifiants chocs, agents fluidifiants, charges et additifs, définis ci-dessus, sont également valables pour ladite composition en tant que telle.
Les exclusions définies ci-dessus pour la préparation de la composition sont également valables. Avantageusement, ladite composition, notamment utile pour le moulage par injection, est constituée de :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 30 à 65, en particulier 50 à 65, et plus particulièrement 50 à 62% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et - 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0.5 à moins de 2 % en poids d'additifs,
à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6, lorsque les fibres de renfort sont à section non circulaire et présentent une surface de la section transversale comprise de 1,5 à 5,0 c 10 6 cm2;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
L'exclusion desdites fibres de renfort à section non circulaire présentant une surface de la section transversale comprise de 1,5 à 5,0 c 10 6 cm2 est donc valable aussi bien pour le ratio de 1,75 que pour le ratio de 1,6.
Dans un mode de réalisation, ladite composition notamment utile pour le moulage par injection, est constituée de :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 30 à 65, en particulier 50 à 65, et plus particulièrement 50 à 62% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0,5 à moins de 2 % en poids d'additifs,
à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6 lorsque les fibres de renfort sont à section non circulaire;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
L'exclusion desdites fibres de renfort à section non circulaire est donc valable aussi bien pour le ratio de 1,75 que pour le ratio de 1,6.
Dans un autre mode de réalisation, ladite composition notamment utile pour le moulage par injection, est constituée de :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini ci-dessus,
- 30 à 65, en particulier 50 à 65, et plus particulièrement 50 à 62% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et
- 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0,5 à moins de 2 % en poids d'additifs, à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6 ;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
Avantageusement, ledit copolyamide de ladite composition est choisi parmi le PA11/10T, PA11/12T, PA12/10T, PA12/12T, PA1010/10T, PA1012/10T, PA1010/12T, PA1012/12T, PA1210/10T,
PA1212/10T, PA1210/12T, PA1212/12T, en particulier PA11/10T.
Dans un mode de réalisation, les fibres de renforts de ladite composition sont choisies parmi les fibres de verre, les fibres de carbone, et un mélange de celle-ci, en particulier les fibres de verre.
Avantageusement, les fibres de verre de ladite composition sont choisies parmi les fibres de verre à section transversale non circulaire et les fibres de verre à section circulaire, les fibres de carbone, et un mélange de celles-ci, en particulier les fibres de verre à section transversale non circulaire et les fibres de verre à section circulaire et un mélange de celles-ci, notamment les fibres de verre à section transversale non circulaire.
Les fibres de verres sont telles que définies ci-dessus.
Selon un troisième aspect, l'invention concerne un procédé de fabrication de la composition telle que définie ci-dessus, dans lequel l'on mélange les constituants de ladite composition par compoundage, notamment dans une extrudeuse bi-vis, de préférence co rotative, un comalaxeur, ou un mélangeur interne.
Selon un quatrième aspect enfin, l'invention concerne un article moulé susceptible d'être obtenu à partir de la composition définie ci-dessus, par moulage par injection.
Avantageusement, ledit article moulé est pour l'électrique et l'électronique, et en particulier choisi dans le groupe consistant en les télévisions, les appareils photos numériques, les jeux numériques, les pièces de téléphone, les tablettes numériques, les drones, les imprimantes ou les pièces d'ordinateur.
[Exemples]
L'invention sera expliquée plus en détail dans les exemples qui suivent.
Exemple 1 : Synthèse des copolyamides de l'invention.
Les différents polyamides (comparatifs) et copolyamides de l'invention ont été préparés selon la technique habituelle de synthèse de polyamides et copolyamides.
Synthèse de CoPa 11/10T représentative des différents copolyamides :
les monomères acide aminoundecanoïque, decanediamine et acide térépthalique sont chargés ensemble dans le réacteur selon le ratio massique souhaité. Le milieu est d'abord inerté afin d'enlever l'oxygène pouvant générer du jaunissement ou des réactions secondaires. De l'eau peut aussi être chargée pour améliorer l'échange thermique. Deux paliers de montée en température et pression sont réalisés. Les conditions de température (T°) et pression sont choisies afin de permettre que le milieu soit à l'état fondu. Après avoir atteint les conditions de maintien, le dégazage a lieu pour permettre la réaction de polycondensation. Le milieu devient peu à peu visqueux et l'eau de réaction formée est entraînée par le balayage d'azote ou mise sous vide. Lorsque les conditions d'arrêt sont atteintes, en lien avec la viscosité souhaitée, l'agitation est arrêtée et l'extrusion et la granulation peuvent démarrer. Les granulés obtenus seront ensuite compoundés avec les fibres de verre.
Compoundage
Les compositions ont été préparées par mélange à l'état fondu des granulés de polymères avec les fibres courtes. Ce mélange a été effectué par compoundage sur extrudeuse bi-vis co-rotative type MC26 avec un profil de température (T°) plat à 290°C. La vitesse de vis est de 250rpm et le débit de 20 kg/h.
L'introduction des fibres de verre est effectuée en gavage latéral.
Les additifs et les charges sont additionnés lors du procédé compoundage en trémie principale.
Les compositions suivantes ont été préparées (E = Exemple de l'invention CE = exemple comparatif): [Tableau 1]
Irganox® 245 et irgafos® 168 sont des anti-oxydants Fibre à section circulaire CSX 451J et fibre à section non circulaire CSG 3PA820 (aussi connue sous la dénomination fibre plate) sont commercialisées par la société Nittobo
Injection
Des plaques de 100*100*1 mm3 ont été préparées par injection des différentes compositions : - Température d'injection : 300°C
- Température du moule : 80°C
Le temps de cycle est ajusté en fonction des compositions pour permettre l'injection des compositions et est inférieur à 50 secondes.
Exemple 2 : Variation du module de flexion après sorption d'eau
Afin d'évaluer l'impact de l'humidité sur le module de flexion, on a mesuré le module de flexion d'éprouvettes des compositions obtenues sur une machine Instron 5966 fabriquée par la société Instron. Les compositions sont des compositions séchées et des compositions saturées dans l'eau à 65°C au préalable.
Les tests ont été effectués à différentes températures, de -10°C à 60°C.
Dans les plaques injectées, on a découpé, dans le sens de l'injection, des éprouvettes aux dimensions selon la norme ISO 178, mais avec une épaisseur = 1mm.
Les résultats sont présentés dans les tableaux 2 à 8 ci-après :
[Tableau 2]
[Tableau 3]
[Tableau 4]
[Tableau 5]
[Tableau 6]
[Tableau 7]
[Tableau 8] [Tableau 9]
[Tableau 10]
[Tableau 11]
Exemple 3 : Variation du module de traction après sorption d'eau
Afin d'évaluer l'impact de l'humidité sur le module de traction, on a mesuré le module de traction d'éprouvettes des compositions obtenues sur une machine Instron 5966 fabriquée par la société Instron compositions séchées et compositions saturées dans l'eau à 65°C au préalable.
Les tests ont été effectués à différentes températures, de -10°C à 60°C.
Dans les plaques injectées, on a découpé, dans le sens de l'injection, des éprouvettes aux dimensions selon la norme ISO 527, mais avec 1 mm d'épaisseur.
Les mêmes tendances que celles observées en flexion sont retrouvées en traction.
Les tableaux 2 à 8 et l'exemple 3 montrent que les compositions de l'invention présentent une stabilité du module supérieure à celle des compositions comparatives CEI et CE2 et ce en flexion ou en traction.

Claims

REVENDICATIONS
1. Utilisation d'un copolyamide comprenant au moins deux motifs distincts A et XiY de formule A/XiY, dans laquelle :
- A est un motif répétitif obtenu par polycondensation :
d'au moins un aminoacide en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, ou
d'au moins un lactame en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, ou
d'au moins une diamine Ca en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, avec au moins un acide dicarboxylique Cb en C4-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12,;
ladite au moins une diamine en Ca étant une diamine aliphatique linéaire ou ramifiée, et ledit au moins un diacide Cb étant un diacide aliphatique linéaire ou ramifié,
- XiY est un motif répétitif obtenu à partir de la polycondensation d'au moins une diamine aliphatique linéaire (Xi) en Cg à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, et d'au moins un acide dicarboxylique aromatique (Y),
pour préparer une composition comprenant entre 35 et 65%, et préférentiellement entre 50 et 65% en poids de fibres de renforts, par rapport au poids total de la composition et dont le module de flexion ou le module de traction, mesuré après un conditionnement identique, ne varie pas de plus de 20% dans l'intervalle de température allant de 20°C à 40°C, notamment dans l'intervalle de température allant de 0°C à 40°C, en particulier dans l'intervalle de température allant de -10°C à 40°C.
2. Utilisation selon la revendication 1, dans laquelle XiY est un motif répétitif obtenu par polycondensation d'au moins une diamine aliphatique (X) en Cio à Cis, plus préférentiellement en Cio à C12, et d'au moins un acide dicarboxylique aromatique (Y).
3. Utilisation selon l'une des revendications 1 ou 2, dans laquelle Y est l'acide térépthalique.
4. Utilisation selon l'une des revendications 1 à 3, dans laquelle XiY est un motif choisi parmi les motifs 10T, 12T et l'un de leurs mélanges.
5. Utilisation selon l'une des revendications 1 à 4, dans laquelle dans le copolyamide de formule A/XiY, A est un aminoacide ou un lactame.
6. Utilisation selon l'une des revendications 1 à 5, dans laquelle dans le copolyamide de formule A/XiY, A est un aminoacide ou un lactame en Cn ou C12.
7. Utilisation selon l'une des revendications 1 à 6, dans laquelle ledit copolyamide est semi-cristallin, en particulier présentant une enthalpie de cristallisation supérieure à 30 J/g.
8. Utilisation selon l'une des revendications 1 à 7, dans laquelle ledit copolyamide est constitué uniquement des motifs A et XiY de formule A/XiY.
9. Utilisation selon l'une des revendications 1 à 7, dans laquelle ledit copolyamide comprend au moins un troisième motif Z, distinct des motifs A et XiY, et répond à la formulation générale A/XiY/Z dans laquelle :
les motifs A et XiY sont tels que définis à la revendication 1,
Z est choisi parmi un motif obtenu à partir d’un aminoacide, un motif obtenu à partir d'un lactame et un motif répondant à la formule (diamine en Ce). (diacide en Cd), avec c représentant le nombre d'atomes de carbone de la diamine et d représentant le nombre d'atomes de carbone du diacide, c et d étant chacun compris entre 4 et 36, avantageusement entre 9 et 18,
sous réserve que le caprolactame ou l'acide aminohexanoïque sont exclus de la définition du lactame et de l'aminoacide de Z et que lorsque que la diamine en Ce est une diamine en C6, alors l'acide térépthalique est exclu de la définition du diacide en Cd.
10. Utilisation selon la revendication 9, dans laquelle ledit copolyamide est constitué uniquement de trois motifs de formule A/XiY/Z.
11. Utilisation selon la revendication 10, dans laquelle les fibres de renforts sont choisies parmi les fibres de verre et les fibres de carbone, ou un mélange de celle-ci, en particulier les fibres de verre.
12. Composition, notamment utile pour le moulage par injection, comprenant :
- 35 à 70 %, en particulier 35 à 50, et plus particulièrement 38 à 50% en poids d'au moins un copolyamide tel que défini dans l'une des revendications 1 à 11,
- entre 35 et 65%, et préférentiellement entre 50 et 65% en poids de fibres de renforts ;
- 0 à 10% en poids d'au moins un modifiant choc ;
- 0 à 20 % en poids d'au moins une charge ; et
- 0 à 5 % en poids d'au moins un agent fluidifiant ; et - 0 à moins de 2%, de préférence de 0,1 à moins de 2%, notamment de 0.5 à moins de 2 % en poids d'additifs,
à la condition que le rapport massique fibres de renforts / copolyamide ne dépasse pas 1,75, en particulier 1,6, lorsque les fibres de renfort sont à section non circulaire et présentent une surface de la section transversale comprise de 1,5 à 5,0 c 10 6 cm2;
la somme des proportions de chaque constituant de ladite composition étant égale à 100%.
13. Composition selon la revendication 12, dans laquelle le copolyamide est choisi parmi le PA11/10T, PA11/12T, PA12/10T, PA12/12T, PA1010/10T, PA1012/10T, PA1010/12T, PA1012/12T, PA1210/10T, PA1212/10T, PA1210/12T, PA1212/12T, en particulier PA11/10T.
14. Composition selon la revendication 12 ou 13, dans laquelle les fibres de renforts sont choisies parmi les fibres de verre, les fibres de carbone, et un mélange de celle-ci, en particulier les fibres de verre.
15. Composition selon la revendication 14, dans laquelle les fibres de verre sont choisies parmi les fibres de verre à section transversale non circulaire et les fibres de verre à section circulaire, les fibres de carbone, et un mélange de celles-ci, en particulier les fibres de verre à section transversale non circulaire et les fibres de verre à section circulaire et un mélange de celles-ci, notamment les fibres de verre à section transversale non circulaire.
16. Procédé de fabrication de la composition telle que définie aux revendications 12 à 15, dans lequel l'on mélange les constituants de ladite composition par compoundage, notamment dans une extrudeuse bi-vis, un comalaxeur, ou un mélangeur interne.
17. Article moulé susceptible d'être obtenu à partir de la composition selon l'une des revendications 12 à 15, par moulage par injection.
18. Article moulé selon la revendication 17, pour l'électrique et l'électronique, et en particulier choisi dans le groupe consistant en les télévisions, les appareils photos numériques, les jeux numériques, les pièces de téléphone, les tablettes numériques, les drones, les imprimantes ou les pièces d'ordinateur.
EP20726194.2A 2019-03-21 2020-03-13 Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations Pending EP3941968A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902916A FR3094010B1 (fr) 2019-03-21 2019-03-21 Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilité de module élevée et leurs utilisations
PCT/FR2020/050537 WO2020188203A1 (fr) 2019-03-21 2020-03-13 Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations

Publications (1)

Publication Number Publication Date
EP3941968A1 true EP3941968A1 (fr) 2022-01-26

Family

ID=67262663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20726194.2A Pending EP3941968A1 (fr) 2019-03-21 2020-03-13 Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations

Country Status (7)

Country Link
US (1) US20220153998A1 (fr)
EP (1) EP3941968A1 (fr)
JP (1) JP2022526097A (fr)
KR (1) KR20210141625A (fr)
CN (1) CN113785018A (fr)
FR (1) FR3094010B1 (fr)
WO (1) WO2020188203A1 (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843611A (en) * 1972-05-22 1974-10-22 Phillips Petroleum Co Copolyamide from terephthalic acid,dodecanedioic acid and dodecane diamine
GB9018144D0 (en) 1990-08-17 1990-10-03 Unilever Plc Polymerisation process
CN100349977C (zh) * 2002-08-09 2007-11-21 纳幕尔杜邦公司 聚酰胺模塑组合物和由其模塑的具有提高的热稳定性的电气和电子元件
US7388048B2 (en) * 2003-08-05 2008-06-17 Arkema France Flexible semiaromatic polyamides with a low moisture uptake
FR2934865B1 (fr) * 2008-08-08 2010-08-27 Arkema France Copolyamide semi-aromatique et son procede de preparation
FR2934864B1 (fr) 2008-08-08 2012-05-25 Arkema France Polyamide semi-aromatique a terminaison de chaine
FR2981357B1 (fr) * 2011-10-13 2013-10-25 Arkema France Composition souple a base de polyamide semi-aromatique, son procede de preparation et ses utilisations
FR3002180B1 (fr) * 2013-02-18 2017-12-29 Arkema France Utilisation de copolyamide semi-aromatique pour le transport de fluide frigorigene
CN105308110A (zh) 2013-06-05 2016-02-03 索尔维特殊聚合物美国有限责任公司 用于移动电子装置的填充聚合物组合物
FR3057572A1 (fr) 2016-10-19 2018-04-20 Arkema France Utilisation d'un polyamide semi-aromatique dans un melange de polyamide aliphatique comprenant des fibres de verre a section circulaire pour limiter le gauchissement
FR3057573A1 (fr) 2016-10-19 2018-04-20 Arkema France Utilisation de fibres de verre a section circulaire dans un melange comprenant un polyamide semi-aromatique et un polyamide aliphatique pour ameliorer les proprietes mecaniques dudit melange

Also Published As

Publication number Publication date
CN113785018A (zh) 2021-12-10
FR3094010A1 (fr) 2020-09-25
US20220153998A1 (en) 2022-05-19
WO2020188203A1 (fr) 2020-09-24
JP2022526097A (ja) 2022-05-23
FR3094010B1 (fr) 2021-10-08
KR20210141625A (ko) 2021-11-23

Similar Documents

Publication Publication Date Title
EP2125953B1 (fr) Materiau composite a base de polyamide et de polyacide lactique, procede de fabrication et utilisation
EP3377582A1 (fr) Composition à base de polyamide amorphe présentant une stabilité dimensionnelle améliorée
WO2019058077A1 (fr) Utilisation d&#39;une composition de copolyamide comme matrice de materiau charge avec des fibres de verre a section circulaire pour limiter le gauchissement
EP3983484A1 (fr) Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation
WO2022129765A1 (fr) Compositions de moulage a base de polyamide, de fibres de verre et de renfort de verre creux et leur utilisation
FR2909384A1 (fr) Polyamide de haute fluidite
EP3941968A1 (fr) Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilite de module elevee et leurs utilisations
EP3941969A1 (fr) Compositions de copolyamides comprenant des fibres de renforts presentant une stabilite de module elevee et leurs utilisations
EP3941967A1 (fr) Utilisation de copolyamides pour la fabrication de compositions a rigidite stable sous l&#39;effet de la temperature
WO2022101590A1 (fr) Compositions transparentes avec bonne resistance a l&#39;alcool et tenue a la fatigue
EP4165133A1 (fr) Compositions de moulage à base de polyamide, de fibres de carbone et de billes de verre creuses et leur utilisation
WO2021053292A1 (fr) Compositions de polyamides comprenant des fibres de renfort et présentant une stabilité de module élevée et leurs utilisations
EP3390493B1 (fr) Structure barrière a base de copolyamide mpmdt/xt de haute tg
FR3101081A1 (fr) Compositions de polyamides comprenant des fibres de renfort et présentant une stabilité de module élevée et leurs utilisations
EP3941966A1 (fr) Utilisation de copolyamides pour la fabrication de compositions a rigidite stable sous l&#39;effet de l&#39;humidite
EP3390494B1 (fr) Structure barrière a base de copolyamide mxdt/xt de haute tg
WO2021250352A1 (fr) Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240524