EP3973175B1 - Méthode et générateur pour former une étincelle sur un éclateur - Google Patents

Méthode et générateur pour former une étincelle sur un éclateur Download PDF

Info

Publication number
EP3973175B1
EP3973175B1 EP20726239.5A EP20726239A EP3973175B1 EP 3973175 B1 EP3973175 B1 EP 3973175B1 EP 20726239 A EP20726239 A EP 20726239A EP 3973175 B1 EP3973175 B1 EP 3973175B1
Authority
EP
European Patent Office
Prior art keywords
phase
voltage pulses
voltage
primary side
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20726239.5A
Other languages
German (de)
English (en)
Other versions
EP3973175C0 (fr
EP3973175A1 (fr
Inventor
Johannes WIESBÖCK
Josef Lutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grabner Instruments Messtechnik GmbH
Original Assignee
Grabner Instruments Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grabner Instruments Messtechnik GmbH filed Critical Grabner Instruments Messtechnik GmbH
Publication of EP3973175A1 publication Critical patent/EP3973175A1/fr
Application granted granted Critical
Publication of EP3973175C0 publication Critical patent/EP3973175C0/fr
Publication of EP3973175B1 publication Critical patent/EP3973175B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0421Opening or closing the primary coil circuit with electronic switching means with electronic tubes
    • F02P3/0428Opening or closing the primary coil circuit with electronic switching means with electronic tubes using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Definitions

  • the invention relates to a method for forming a spark via a spark gap, in particular for igniting a flammable liquid to measure its flash point, with the aid of a spark generator having an ignition transformer, which has at least one DC voltage source on the primary side of the ignition transformer and two on the secondary side of the ignition transformer comprises electrodes delimiting the spark gap to be formed, the ignition transformer being supplied with voltage pulses from the DC voltage source on the primary side, which generate ignition voltage pulses on the secondary side.
  • the invention further relates to a device for carrying out this method, comprising an ignition transformer with a primary coil and a secondary coil, at least one DC voltage source arranged on the primary side, which is connected to the primary coil via a switch arrangement, and electrodes connected to the secondary coil and delimiting the spark gap to be formed, wherein Furthermore, a control device for controlling the switches of the switch arrangement is provided in such a way that the ignition transformer can be acted upon on the primary side with voltage pulses from the DC voltage source, which generate ignition voltage pulses on the secondary side.
  • Spark generators are used to form an ion channel in a path between two electrically conductive materials (electrodes) using high voltage pulses.
  • the spark generated and the current flowing lead to very strong heating in the area ion channel.
  • This energy can be used to ignite flammable, especially gaseous, substances in the vicinity of the spark.
  • An example of an application for this is active ignition in a gasoline combustion engine.
  • the flash point of flammable liquids is measured using a very similar principle (see standards ASTM D6450, ASTM D7094 etc.).
  • certain parameters must be precisely defined for ignition tests during flash point measurements and kept constant in accordance with the values set and recorded in the standards. These parameters include the ignition voltage, the transferred ignition power during spark burning, the spark duration and the total transferred ignition energy.
  • FIG. 1 shows a corresponding circuit with a DC voltage source 1 and an ignition transformer 2, which includes a primary coil 3 and a secondary coil 4.
  • the secondary coil 4 has a multiple of the windings of the primary coil 3 in order to generate an ignition voltage in the kV range on the secondary side.
  • the secondary coil is connected to electrodes 5, between which a spark gap 6 is to be formed.
  • the primary coil 3 is supplied with voltage pulses from the DC voltage source 1 by switching the switch 7 on and off, with a freewheeling diode 8 being connected in anti-parallel to the switch 7.
  • a voltage-limiting element 9, in the present case a varistor, is also arranged parallel to the primary coil 3.
  • the high voltage required for ignition is generated as follows. First, the switch 7 is turned on and a current begins to build up in the primary coil 3 of the ignition transformer 2. The increase in current is proportional to the supply voltage of the DC voltage source 1 and the inductance of the primary coil 3. If the current flow is interrupted by opening the switch 7, a very high voltage builds up on the primary coil 3, which is limited by the varistor 9. This voltage peak is transmitted to the spark electrodes 5 in an even increased manner by the transmission ratio of the ignition transformer 2. This creates a spark between the electrodes 5, which creates an ion channel and enables the subsequent burning of sparks.
  • the spark generator according to Fig. 1 works according to the flyback converter principle because the energy transfer from the primary to the secondary side mainly takes place in the blocking phase in which the switch 7 is open.
  • a magnetic field builds up in the air gap of the ignition transformer 2.
  • the air gap supports energy storage and limits the increase in current. If the switch 7 opens, a voltage peak occurs and a voltage is induced in the secondary coil 4, reducing the stored magnetic field.
  • the advantage of the circuit according to Fig. 1 lies in its simplicity and the small number of components. However, it is very difficult to independently determine and, if necessary, vary the parameters required for an exact spark definition, such as the ignition voltage and the transmitted power, because this requires a corresponding adjustment of the electrical components, namely the Ignition transformer 2 and/or varistor 9 would result. In addition, especially after a successful ignition, only a fraction of the energy stored in the primary coil is transferred to the secondary side. The majority of the energy is dissipated in the varistor as thermal energy. This means that in many cases the proportion of energy that is transferred to the spark gap is only in the order of 10% of the total energy used that has to be obtained from the voltage source. The varistor must be designed accordingly large and the maximum energy and pulse sequence for ignition must be limited.
  • a transformer that works according to the flux converter principle enables a significantly more efficient method of transforming energy to higher voltages.
  • a switch arrangement such as a switch bridge
  • a switch arrangement is controlled in such a way that a (usually symmetrical) alternating voltage is generated at the primary coil of the transformer.
  • a corresponding circuit is in Fig. 2 shown.
  • the same parts are designated with the same reference numbers as in Fig. 1 .
  • the direct voltage source 1 is connected to the primary coil 3 via a switch arrangement 10.
  • the switch arrangement 10 is designed as a full bridge comprising the switches S1, S2, S3 and S4, whereby the primary winding 3 of the transformer 2 is located between two half bridges of the switch bridge and can therefore be connected to the DC voltage source 1 in both directions.
  • switches S1 and S3 or S2 and S4 are switched on at the same time (conducting phase).
  • the transformer 2 is operated with an alternating flow, phases in which all switches are open being provided between the respective conductive phases.
  • the current flows through the inductor of the transformer via the diodes through the DC voltage source.
  • the transmitted power can be varied via the time relationship between leading phases and phases with open switches.
  • the training shown is referred to as a push-pull flux converter.
  • the disadvantage of the flux converter principle is that the high voltage required for ignition requires an extremely high transmission ratio. This requires a complex and expensive design and a lower efficiency of the ignition transformer as well as critical control of the spark output once the spark gap has been ignited.
  • DE102014015486A1 , WO9100961A1 and DE112014002666T5 describe known spark generators and methods for forming a spark.
  • the present invention is therefore based on the object of providing a spark generator that meets the above-mentioned requirements without having to rely on extremely narrow and expensive ones Manufacturing tolerances for the ignition transformer and other components are required.
  • the invention essentially consists in a method of the type mentioned in that the ignition transformer is operated in a first phase according to the flyback converter principle and in a subsequent second phase according to the forward converter principle.
  • the essential idea of the invention is therefore to implement the two control variants mentioned above in a single circuit.
  • a first phase a number of high-voltage pulses are generated, which serve to generate a flashover and thus an ion gap between the electrodes.
  • the advantage of the flyback converter principle is exploited, which lies in the efficient generation of high voltage peaks, whereby the lack of possibility of precise control of the power transmission does not have a disruptive effect, since this phase is very short compared to the entire length of the spark.
  • the second phase switches to the flux converter mode, so that the advantages of the flux converter principle can be exploited, which lie in precise control of the power transfer, whereby the disadvantage of the less high voltage peaks no longer comes into play because the ion gap is already in the first phase has been generated.
  • the ignition transformer can be dimensioned smaller and it is possible to take into account the deviations in power transmission caused by potential manufacturing tolerances of the ignition transformer by suitable control of the primary coil in the second phase to balance compliance with the power transmission parameters specified by standards.
  • the voltage that builds up in the first phase on a primary coil of the ignition transformer in a blocking phase of the ignition transformer lying between two voltage pulses is limited by a voltage-limiting element.
  • the limitation achieved by the voltage-limiting element can be set at a relatively high voltage.
  • a varistor with a relatively high threshold voltage can be used.
  • At least one Z diode can also be used as a voltage-limiting element, with two series-connected Z diodes poled in opposite directions preferably being provided.
  • a further switch is provided, which separates the primary coil from the DC voltage source in the first phase between two voltage pulses.
  • a freewheeling diode is assigned in parallel to the switches of the switch arrangement provided for generating the voltage pulses.
  • the ignition transformer is supplied with successive voltage pulses of the same polarity.
  • the ignition transformer is supplied with successive voltage pulses of alternating polarity.
  • the ignition generator is designed as a push-pull flux converter for generating the primary-side voltage pulses of alternating polarity.
  • the polarity reversal of the ignition transformer can be done by cyclically reversing the polarity of the primary winding of the ignition transformer or by switching between two primary windings with opposite polarity.
  • the ignition transformer experiences alternating magnetic flux, whereby the magnetic circuit of the ignition transformer, in contrast to the single-ended flux converter, is used to transmit energy in both directions, i.e. through positive and negative flux. Accordingly, a demagnetization winding can be dispensed with, as this task is carried out by reversing the polarity of the flow.
  • the frequency of the voltage pulses applied on the primary side is chosen to be lower in the first phase than in the second phase.
  • the frequency of the voltage pulses applied in the second phase can be used to maintain a predetermined transmitted ignition power can be selected, whereas the frequency of the voltage pulses applied in the first phase can be selected with the aim of safely generating an ion gap.
  • the frequency of the voltage pulses applied on the primary side in the first phase is at most 3/2, preferably at most half, of the frequency of the voltage pulses applied on the primary side in the second phase.
  • the pulse duration of the voltage pulses can also be adjusted in order to optimize the effect to be achieved in the respective phase.
  • a preferred embodiment provides that the pulse duration of the voltage pulses applied on the primary side is chosen to be longer in the first phase than in the second phase.
  • the pulse duration of the voltage pulses applied on the primary side in the first phase can correspond to at least 1.5 times, preferably at least 2 times, the pulse duration of the voltage pulses applied on the primary side in the second phase.
  • the operation of the ignition transformer according to the flux converter principle allows the parameters of the ignition process in the second phase to be precisely regulated, with at least one parameter selected from the ignition voltage, transmitted ignition power during spark burning, spark duration and total transmitted ignition energy being measured and a deviation from a corresponding target value being determined and wherein the deviation is reduced or eliminated by changing the pulse frequency and/or the duty cycle of the primary-side voltage pulses.
  • the present invention relates to a spark generator, which comprises an ignition transformer with a primary coil and a secondary coil, at least one DC voltage source arranged on the primary side, which is connected to the primary coil via a switch arrangement, and electrodes connected to the secondary coil and delimiting the spark gap to be formed, Furthermore, a control device for controlling the switches of the switch arrangement is provided in such a way that the ignition transformer can be acted upon on the primary side with voltage pulses from the DC voltage source, which generate ignition voltage pulses on the secondary side. According to the invention, the control device is designed to generate the voltage pulses in such a way that the ignition transformer can be operated in a first phase according to the flyback converter principle and in a subsequent second phase according to the forward converter principle.
  • the switch arrangement is designed to apply successive voltage pulses of the same polarity to the ignition transformer in the first phase and to apply successive voltage pulses of alternating polarity to the ignition transformer in the second phase.
  • the primary coil is assigned a voltage-limiting element in order to limit the voltage that builds up in the first phase on the primary coil in a blocking phase of the ignition transformer that lies between two voltage pulses.
  • the voltage-limiting element can, for example, be designed as a varistor or be formed by at least one Zener diode.
  • the ignition generator can be designed as a push-pull flux converter, particularly preferably as a push-pull flux converter with full bridge control.
  • the switch arrangement preferably comprises a switch bridge, the switches of which are each assigned a freewheeling diode.
  • Another way to avoid a full switch bridge is to arrange two supply voltages instead of a single supply voltage.
  • control device for controlling the switch arrangement is designed such that the frequency of the voltage pulses applied on the primary side is lower in the first phase than in the second phase.
  • control device for controlling the switch arrangement is preferably designed such that the frequency of the voltage pulses applied on the primary side in the first phase is at most 3/2, preferably at most half the frequency of the voltage pulses applied on the primary side in the second phase.
  • control device for controlling the switch arrangement is designed such that the pulse duration of the voltage pulses applied on the primary side is greater in the first phase than in the second phase.
  • control device for controlling the switch arrangement can be designed such that the pulse duration of the voltage pulses applied on the primary side in the first phase corresponds to at least 1.5 times, preferably at least 2 times, the pulse duration of the voltage pulses applied on the primary side in the second phase.
  • Fig. 1 and Fig. 2 Versions according to the state of the art Fig. 3 a circuit diagram of a spark generator design according to the invention
  • Fig. 4 a representation of the sequence of switching states of the switches of the switch arrangement of the spark generator Fig. 3
  • Fig. 5 a circuit diagram of a modified version of the spark generator
  • Fig. 6 a circuit diagram of another modified version of the spark generator.
  • Fig. 3 shows a circuit with a DC voltage source 1 and an ignition transformer 2, which includes a primary coil 3 and a secondary coil 4.
  • the secondary coil 4 has a Multiples of the windings of the primary coil 3 in order to generate an ignition voltage in the kV range on the secondary side.
  • the secondary coil 4 is connected to electrodes 5, between which a spark gap 6 is to be formed.
  • the DC voltage source 1 is connected to the primary coil 3 via a switch arrangement 10.
  • the primary coil 3 can be supplied with voltage pulses from the DC voltage source 1 by controlling the switch arrangement 10.
  • the switch arrangement 10 is designed as a full bridge comprising the switches S1, S2, S3 and S4, whereby the primary winding 3 of the ignition transformer 2 is located between two half bridges of the switch bridge and can therefore be connected to the DC voltage source 1 in alternating polarity.
  • a voltage-limiting element 9, in the present case a varistor, is also arranged parallel to the primary coil 3.
  • a further switch S5 with an associated freewheeling diode 12 is arranged on the side of the positive pole of the DC voltage source 1.
  • the diagram according to Fig. 4 shows the sequence of switch positions of switches S1, S2, S3, S4 and S5.
  • the first phase is designated 13 and includes the first two pulses, which are generated by opening and closing the switch S3 twice when the switch S1 is open.
  • the ignition transformer is operated according to the flyback converter principle to generate high-voltage peaks between the electrodes 5.
  • a current increase is produced in the primary inductance via switches S1 and S3.
  • By turning off the switch S3, a voltage peak is generated, which is limited by the varistor 9 and transmitted to the secondary side.
  • the switch S5 must be switched off for the ignition during the generation of the high-voltage peaks and therefore, like the switch S3, takes over the isolation of the High voltage compared to the other low voltage potentials.
  • the maximum voltage at the switches S1, S2 and S4 is essentially given by the supply voltage of the DC voltage source 1.
  • the switch bridge is then continued to operate as a flux converter in the second phase 14 by alternately switching the switches S1 and S3 as well as S2 and S4 on and off while the switch S5 is closed, so that voltage pulses of different polarities are alternately applied to the primary coil 3.
  • the respective switch-on times are preferably chosen to be of the same length, since otherwise a constant field will form in the ignition transformer, which can lead the transformer core to saturation. Furthermore, overlapping switching of the switches S1/S3 and S2/S4 should be avoided, as this would cause a short circuit.
  • the maximum voltage peak is basically determined by the voltage at the varistor 9 and the transformation ratio of the ignition transformer 2.
  • the capacities of the ignition transformer 2 and the electrodes 5 also play a decisive role. With the help of the pulse duration of the voltage pulses, these and other effects can be largely taken into account or compensated for.
  • the power transmitted after ignition can be adjusted via the pulse frequency and the duty cycle (switch-on time/period) independently of the ignition voltage. With the help of the two parameters, tolerances in the transformer regarding the transformation ratio and the leakage inductances can be compensated for.
  • switch includes any configuration of switching elements, including electronic switching elements, such as bipolar transistors, FETs, IGBTs, thyristors and the like.
  • the switches S3 and S5 are in accordance with the exemplary embodiment Fig. 3 the requirements regarding high blocking voltages and low capacities are particularly high. Therefore, in some applications it is preferred that different switches are connected in series instead of a single switch or, in the case of high currents, in parallel.
  • Any component that has a stress-limiting effect can be used as a stress-limiting element.
  • a varistor or, alternatively, at least one Zener diode can be used.
  • the use of corresponding Zener diodes while switching off the switch S3 can lead to significantly more constant voltages with a lower tendency to overvoltages.
  • FIG. 3 The circuit shown represents only one of several conceivable embodiments.
  • the circuit example according to Fig. 3 a symmetrical control of the ignition transformer 2 with a single DC voltage source 1 for the supply.
  • the same or a similar function can also be achieved with asymmetrical arrangements, for example by connecting the voltage-limiting element 9 on one side Ground potential or connected to the supply voltage.
  • Fig. 5 it is in principle also possible to bypass the switch bridge by using two different voltage-limiting elements, as shown in Fig. 5 is shown. Although this leads to a reduction in the number of components, the result is that efficiency is reduced due to losses (especially at D3).
  • Z diodes D1, D2 and D3 are used as voltage-limiting elements.
  • the full bridge of the switches can also be bypassed by using two supply voltages 1 and 1 ', as shown in Fig. 6 is shown. This allows the number of electronic components for the circuit to be reduced without reducing the efficiency of power transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Claims (18)

  1. Procédé pour produire une étincelle à travers un éclateur, en particulier pour enflammer un liquide inflammable afin de mesurer son point d'éclair, à l'aide d'un générateur d'étincelles comportant un transformateur d'allumage (2) comprenant au moins une source de tension continue (1) sur le côté primaire du transformateur d'allumage (2) et deux électrodes (5) délimitant l'éclateur (6) à former sur le côté secondaire du transformateur d'allumage (2), le transformateur d'allumage (2) étant soumis, côté primaire, à des impulsions de tension provenant de la source de tension continue (1), qui génèrent, côté secondaire, des impulsions de tension d'allumage, dans lequel le transformateur d'allumage (2) fonctionne conformément au principe du convertisseur flyback dans une première phase et fonctionne conformément au principe du convertisseur de flux dans une deuxième phase, qui suit à la première, caractérisé en ce que le transformateur d'allumage (2) est soumis à des impulsions de tension successives de même polarité dans la première phase, et en ce que le transformateur d'allumage (2) est soumis à des impulsions de tension successives de polarité alternée dans la deuxième phase.
  2. Procédé selon la revendication 1, caractérisé en ce que la tension qui s'établit dans la première phase sur une bobine primaire du transformateur d'allumage (2) dans une phase de blocage du transformateur d'allumage (2) située entre deux impulsions de tension, est limitée par un élément limiteur de tension (9).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le générateur d'allumage (2) pour générer les impulsions de tension côté primaire de polarité alternée est conçu comme un convertisseur de flux symétrique.
  4. Procédé selon l'une des revendications 1 bis 3, caractérisé en ce que la fréquence des impulsions de tension appliquées côté primaire dans la première phase est choisie différente, de préférence inférieure, à celle dans la deuxième phase.
  5. Procédé selon la revendication 4, caractérisé en ce que la fréquence des impulsions de tension appliquées côté primaire dans la première phase est au plus égale aux 3/2, de préférence au plus à la moitié, de la fréquence des impulsions de tension appliquées côté primaire dans la deuxième phase.
  6. Procédé selon l'une des revendications 1 bis 5, caractérisé en ce que la durée d'impulsion des impulsions de tension appliquées côté primaire est choisie plus longue dans la première phase que dans la deuxième phase.
  7. Procédé selon la revendication 6, caractérisé en ce que la durée d'impulsion des impulsions de tension appliquées côté primaire dans la première phase correspond à au moins 1,5 fois, de préférence au moins 2 fois la durée d'impulsion des impulsions de tension appliquées côté primaire dans la deuxième phase.
  8. Procédé selon l'une des revendications 1 bis 7, caractérisé en ce que la puissance transmise à travers l'éclateur dans la deuxième phase est ajustée en faisant varier la fréquence des impulsions et/ou le rapport cyclique des impulsions de tension côté primaire.
  9. Générateur d'étincelles pour produire une étincelle à travers un éclateur, en particulier pour la mise en oeuvre d'un procédé selon l'une des revendications 1 bis 8, comprenant un transformateur d'allumage (2) avec une bobine primaire (3) et une bobine secondaire (4), au moins une source de tension continue (1) disposée du côté primaire, qui est reliée à la bobine primaire (3) par l'intermédiaire d'un agencement de commutateurs (10), et des électrodes (5) reliées à la bobine secondaire (4) et délimitant l'éclateur (6) à former, dans lequel il est en outre prévu un dispositif de commande pour commander les commutateurs (S1, S2, S3, S4, S5) de l'agencement de commutateurs (10), de telle sorte que le transformateur d'allumage (2) puisse être soumis, côté primaire, à des impulsions de tension provenant de la source de tension continue (1), qui génèrent, côté secondaire, des impulsions de tension d'allumage, le dispositif de commande étant conçu pour générer les impulsions de tension de manière à ce que le transformateur d'allumage (2) puisse fonctionner conformément au principe du convertisseur flyback dans une première phase, et puisse fonctionner conformément au principe du convertisseur de flux dans une deuxième phase, qui suit à la première, caractérisé en ce que l'agencement de commutateurs (10) est conçu pour soumettre le transformateur d'allumage (2) à des impulsions de tension successives de même polarité dans la première phase, et à des impulsions de tension successives de polarité alternée dans la deuxième phase.
  10. Générateur d'étincelles selon la revendication 9, caractérisé en ce qu'un élément limiteur de tension (9) est associé à la bobine primaire (3), afin de limiter la tension qui s'établit dans la première phase sur la bobine primaire (3) dans une phase de blocage du transformateur d'allumage (2) située entre deux impulsions de tension.
  11. Générateur d'étincelles selon la revendication 9 ou 10, caractérisé en ce que le générateur d'allumage est conçu comme un convertisseur de flux symétrique.
  12. Générateur d'étincelles selon la revendication 11, caractérisé en ce que le générateur d'allumage est conçu comme un convertisseur de flux symétrique avec commande en pont complet.
  13. Générateur d'étincelles selon l'une des revendications 9 bis 12, caractérisé en ce que l'agencement de commutateurs (10) comprend un pont de commutation dont les commutateurs (S1, S2, S3, S4) sont respectivement associés à une diode flyback (8).
  14. Générateur d'étincelles selon l'une des revendications 9 bis 13, caractérisé en ce que, en plus des commutateurs (S1, S2, S3, S4) de l'agencement de commutateurs (10) prévus pour générer les impulsions de tension, un commutateur (S5) additionnel est prévu, qui sépare la bobine primaire (3) de la source de tension continue (1) dans la première phase entre deux impulsions de tension.
  15. Générateur d'étincelles selon l'une des revendications 9 bis 14, caractérisé en ce que le dispositif de commande pour commander l'agencement de commutateurs (10) est conçu de telle sorte que la fréquence des impulsions de tension appliquées côté primaire soit plus basse dans la première phase que dans la deuxième phase.
  16. Générateur d'étincelles selon la revendication 15, caractérisé en ce que le dispositif de commande pour commander l'agencement de commutateurs (10) est conçu de telle sorte que la fréquence des impulsions de tension appliquées côté primaire dans la première phase soit au plus égale aux 3/2, de préférence au plus à la moitié, de la fréquence des impulsions de tension appliquées côté primaire dans la deuxième phase.
  17. Générateur d'étincelles selon l'une des revendications 9 bis 16, caractérisé en ce que le dispositif de commande pour commander l'agencement de commutateurs (10) est conçu de telle sorte que la durée d'impulsion des impulsions de tension appliquées côté primaire soit plus longue dans la première phase que dans la deuxième phase.
  18. Générateur d'étincelles selon la revendication 17, caractérisé en ce que le dispositif de commande pour commander l'agencement de commutateurs (10) est conçu de telle sorte que la durée d'impulsion des impulsions de tension appliquées côté primaire dans la première phase corresponde à au moins 1,5 fois, de préférence au moins 2 fois la durée d'impulsion des impulsions de tension appliquées côté primaire dans la deuxième phase.
EP20726239.5A 2019-05-23 2020-04-22 Méthode et générateur pour former une étincelle sur un éclateur Active EP3973175B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA195/2019A AT522630B1 (de) 2019-05-23 2019-05-23 Verfahren zur Ausbildung eines Funkens über eine Funkenstrecke und Funkengenerator
PCT/IB2020/053797 WO2020234662A1 (fr) 2019-05-23 2020-04-22 Procédé et générateur d'étincelles pour la formation d'étincelles par l'intermédiaire d'un éclateur

Publications (3)

Publication Number Publication Date
EP3973175A1 EP3973175A1 (fr) 2022-03-30
EP3973175C0 EP3973175C0 (fr) 2024-03-13
EP3973175B1 true EP3973175B1 (fr) 2024-03-13

Family

ID=70738777

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20726239.5A Active EP3973175B1 (fr) 2019-05-23 2020-04-22 Méthode et générateur pour former une étincelle sur un éclateur

Country Status (4)

Country Link
US (1) US20220228547A1 (fr)
EP (1) EP3973175B1 (fr)
AT (1) AT522630B1 (fr)
WO (1) WO2020234662A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69022422T2 (de) * 1989-07-13 1996-05-15 Siemens Ag Zündsystem für verbrennungsmotor.
EP2639446A1 (fr) * 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Système d'ignition
US20130263835A1 (en) * 2010-11-23 2013-10-10 Sven-Michael Eisen Ignition Device for an Internal Combustion Engine and Method for Operating an Ignition Device for an Internal Combustion Engine
US20180358782A1 (en) * 2017-06-07 2018-12-13 Denso Corporation Ignition device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2547397C2 (de) * 1975-10-23 1985-01-31 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches Zündsystem für Brennkraftmaschinen
DE10121993B4 (de) * 2001-05-05 2004-08-05 Daimlerchrysler Ag Zündsystem für Verbrennungsmotoren
US7404396B2 (en) * 2006-02-08 2008-07-29 Denso Corporation Multiple discharge ignition control apparatus and method for internal combustion engines
DE102008042830A1 (de) * 2008-10-14 2010-04-15 Robert Bosch Gmbh Verfahren zum Bereitstellen einer elektrischen Spannung
US8078384B2 (en) * 2010-06-25 2011-12-13 Ford Global Technologies, Llc Engine control using spark restrike/multi-strike
JP5533623B2 (ja) * 2010-12-16 2014-06-25 株式会社デンソー 高周波プラズマ点火装置
DE112014002666T5 (de) * 2013-06-04 2016-03-17 Mitsubishi Electric Corporation Zündvorrichtung eines fremdgezündeten Verbrennungsmotors
US9617965B2 (en) * 2013-12-16 2017-04-11 Transient Plasma Systems, Inc. Repetitive ignition system for enhanced combustion
DE102014015486A1 (de) * 2014-10-18 2015-03-26 Daimler Ag Betriebsarten- und kennfeldabhängig umschaltbare Funkenbandzündung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69022422T2 (de) * 1989-07-13 1996-05-15 Siemens Ag Zündsystem für verbrennungsmotor.
US20130263835A1 (en) * 2010-11-23 2013-10-10 Sven-Michael Eisen Ignition Device for an Internal Combustion Engine and Method for Operating an Ignition Device for an Internal Combustion Engine
EP2639446A1 (fr) * 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Système d'ignition
US20180358782A1 (en) * 2017-06-07 2018-12-13 Denso Corporation Ignition device

Also Published As

Publication number Publication date
AT522630B1 (de) 2021-02-15
US20220228547A1 (en) 2022-07-21
EP3973175C0 (fr) 2024-03-13
WO2020234662A1 (fr) 2020-11-26
EP3973175A1 (fr) 2022-03-30
AT522630A1 (de) 2020-12-15

Similar Documents

Publication Publication Date Title
EP0382110B1 (fr) Circuit de commande de sortie pour inverseur, ainsi que source de courant haute fréquence pour l'alimentation en courant continue d'une station de sondage
EP1211794A2 (fr) Procédé de regulation de courant de sortie et/ou tension de sortie d'alimentation à découpage
DE112010003325T5 (de) Multiplex-Treiberschaltkreis für eine Wechselstrom-Zündanlage
DE2650002A1 (de) Wechselrichter
DE3508289C1 (de) Wechselrichter zur Speisung eines Verbrauchers mit einer induktiven Komponente
EP1386074A1 (fr) Systeme d'allumage pour moteurs a combustion interne
DE102012105797A1 (de) Multiplex-Ansteuerschaltkreis für eine Wechselstrom-Zündanlage mit Strommodussteuerung und Fehlertoleranzerkennung
EP3973175B1 (fr) Méthode et générateur pour former une étincelle sur un éclateur
DE4128175A1 (de) Lichtbogenschweissgeraet
EP1507445B1 (fr) Ballast electronique pour faire fonctionner une lamp avec des impulsions de tension itérative
DE2057520C3 (de) Elektronische Zündschaltung für Brennkraftmaschinen
DE10143016B4 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
DE4023253A1 (de) Einrichtung zur speisung eines verbraucherzweipols mit einer weitgehend oberschwingungsfreien und dennoch rasch veraenderbaren gleichspannung oder einem weitgehend oberschwingungsfreien und dennoch rasch veraenderbaren gleichstrom
DE4418864C2 (de) Lichtbogenschweißgerät
DE3736800C2 (fr)
DE3049020C2 (de) Regelbarer Gleichspannungswandler für Leistungsschaltnetzteile
DE3116447A1 (de) "impulsgenerator"
DE4014302A1 (de) Einrichtung zur versorgung eines verbraucherzweipols mit einem eingepraegten, jedoch in einer anzahl von stufen einstellbaren gleichstrom
DE1539228C3 (fr)
DE19608655A1 (de) Leistungssteuerung einer mit Wechselstrom betriebenen Hochdruckgasentladungslampe, insbesondere für Kraftfahrzeuge
DE3327704C1 (de) Vorschaltgerät für Gasentladungslampen mit heizbaren Elektroden
DE2461739C3 (de) Elektronische Zündvorrichtung für Brennkraftmaschinen
DE667983C (de) Anordnung zur Regelung von gittergesteuerten Quecksilberdampfgleichrichtern
DE1811048A1 (de) Hochfrequenz-Stromversorgungsschaltung
DE1451423C (de) Zundfunkenerzeuger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007348

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240403

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240412

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240410