EP3942658B1 - Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse - Google Patents

Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse Download PDF

Info

Publication number
EP3942658B1
EP3942658B1 EP20712336.5A EP20712336A EP3942658B1 EP 3942658 B1 EP3942658 B1 EP 3942658B1 EP 20712336 A EP20712336 A EP 20712336A EP 3942658 B1 EP3942658 B1 EP 3942658B1
Authority
EP
European Patent Office
Prior art keywords
housing
layer
zinc
nickel
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20712336.5A
Other languages
English (en)
French (fr)
Other versions
EP3942658A1 (de
Inventor
Stefan Nufer
Tina HIRTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3942658A1 publication Critical patent/EP3942658A1/de
Application granted granted Critical
Publication of EP3942658B1 publication Critical patent/EP3942658B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/06Covers forming a part of the plug and protecting it against adverse environment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/003Threaded pieces, e.g. bolts or nuts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Definitions

  • the invention relates to a housing for a spark plug according to claim 1 and a spark plug with at least one such housing according to claim 10, as well as a manufacturing method for the housing according to claim 11.
  • Nickel-containing and/or zinc-containing protective layers are very common.
  • Protective coatings containing nickel and zinc have a higher corrosive and thermal resistance than pure zinc coatings and are at the same time more cost-effective than pure nickel coatings.
  • the corrosion protection of the protective layer containing nickel and zinc is reduced by defects in the protective layer. These defects can range from the surface of the protective layer containing nickel and zinc to the surface of the housing and thus act as routes of attack for corrosion on the housing itself.
  • a chromium-containing sealing layer can, for example, be deposited on the housing surface from a CrVI-containing medium. This creates a sealing layer with bound trivalent chromium. However, depending on the environmental conditions, it can happen that 3-valent chromium that is actually bound to the surface is converted from the sealing layer surface into free 6-valent chromium. The problem is that hexavalent chromium is classified as harmful to health and its use is banned in some countries.
  • a spark plug housing is known with a sealing layer that has organic and/or silicate components.
  • the corrosion protection layer system should also have a temperature resistance of 300°C.
  • a housing according to the invention for a spark plug in that the sealing layer arranged on a protective layer containing nickel and zinc contains silicon.
  • the use of a silicon-containing sealing layer has the advantage that a chromium-containing sealing layer can be dispensed with and thus the risk of hexavalent chromium forming and leaving the sealing layer is prevented.
  • sealing layers based on silicon have proven to be very temperature-resistant. Specifically, in series of tests for spark plug housings that have a corrosion protection layer system consisting of a nickel-containing protective layer and a silicon-containing sealing layer, it was shown that these housings still had a rust level of 0 after 24 hours in the salt spray test, i.e. the housing shows no rusty areas in the areas of the housing where a corrosion protection layer has been applied. Even after storing the housings at 300°C for 3 hours, the housings still show a rust level of 0 in the salt spray test after 24 hours.
  • the housing for a spark plug has a hole along its longitudinal axis. This hole gives the housing an outside and an inside.
  • the hole in the housing is typically intended to accommodate an insulator with a center electrode and connection means.
  • the housing is typically made of a steel, such as carbon steel.
  • a protective layer is applied to the surface of the housing, which is intended to protect the housing from corrosion.
  • the protective layer is a protective layer containing nickel and zinc that is applied to the housing using electroplating technology. With electroplating technology this will happen Housing as an anode together with an electrode serving as a cathode are immersed in an electrolyte bath containing nickel and zinc.
  • the protective layer essentially consists of nickel and zinc.
  • the nickel content in the protective layer is preferably 12 to 15% by weight.
  • the protective layer then has a thermal resistance up to approx. 500°C. With a lower nickel content, the thermal resistance is lower. If the nickel content is higher, the zinc is not sufficiently stabilized and the protective layer will dezincify under corrosive stress. This means that the zinc is increasingly broken down in the protective layer, for example through oxidation of the zinc in the protective layer. The protective layer loses its anti-corrosion effect.
  • Iron from the coating electrode is also deposited on the housing along with the nickel and zinc.
  • the proportion of iron in the protective layer containing nickel and zinc is typically 2 to 6% by weight. Further impurities in the protective layer containing nickel and zinc, such as sulfur and traces of sodium or potassium, are possible.
  • the protective layer containing nickel and zinc on the housing serves as cathodic corrosion protection, i.e. the protective layer containing nickel and zinc is electrochemically more noble than the material of the housing and forms a barrier layer against moist media.
  • the corrosion protection that the protective layer containing nickel and zinc offers depends on the layer thickness B of the protective layer containing nickel and zinc and its freedom from defects. The thicker the protective layer containing nickel and zinc, the lower the probability that a defect will extend from the surface of the protective layer containing nickel and zinc through the entire thickness of the protective layer containing nickel and zinc to the surface of the housing extends and thereby opens up a path for corrosion processes on the housing.
  • An additional sealing layer on the protective layer containing nickel and zinc seals these defects and improves the corrosion protection for the housing.
  • the sealing layer is free of chromium, ie the sealing layer does not contain any intentionally added chromium and contains chromium at most in an amount of technically unavoidable impurities, for example, which are unintentionally incorporated into the sealing layer during the manufacturing process.
  • the sealing layer has a layer thickness A of not less than 10 nm and not more than 10 ⁇ m, in particular not less than 100 nm and/or not more than 1 ⁇ m. It has been shown that the sealing layer should have a layer thickness A of not smaller than 10 nm so that the sealing layer is sufficiently thick to close the defects in the protective layer containing nickel and zinc. Furthermore, it has been shown that with layer thicknesses of the sealing layer of more than 10 ⁇ m, there is no significant improvement in the technical effects of the sealing layer described above.
  • the layer thickness B of the protective layer containing nickel and zinc is in a range from 1 ⁇ m to 30 ⁇ m.
  • first intermediate layer between the housing and the protective layer containing nickel and zinc and/or a second intermediate layer between the protective layer containing nickel and zinc and the sealing layer and/or a cover layer on the sealing layer is/are applied.
  • the advantage of the first intermediate layer is that the protective layer containing nickel and zinc adheres better to the housing.
  • the first intermediate layer serves as an adhesive bonding layer and can consist, for example, of copper or nickel strike.
  • the second intermediate layer has the advantage that the silicon-containing sealing layer adheres better to the nickel and zinc-containing protective layer and thermal stresses between the layers are reduced.
  • the second intermediate layer serves as an adhesive bonding layer and can, for example, contain at least one of the elements: nickel, copper, chromium, zinc or titanium.
  • the cover layer on the silicon-containing sealing layer serves to protect the sealing layer from mechanical damage and can, for example, contain at least one of the elements: nickel, copper, zinc, chromium or titanium.
  • the first intermediate layer has a layer thickness C of 1 nm to 1000 nm and/or the second intermediate layer has a layer thickness D of 1 nm to 1000 nm and/or the cover layer has a layer thickness E of 1 nm to 2000 nm. It is advantageous If the layer thickness of the intermediate layer and the top layer are significantly less thick than the protective layer containing nickel and zinc, this prevents internal stresses from occurring in the intermediate layers and the top layer. Due to internal stresses in a layer, bonding failures or separation of the layer from another layer, such as the nickel- and zinc-containing protective layer or the sealing layer, may occur.
  • the advantageous effects of the corrosion protection layer system arise in particular when the nickel- and zinc-containing protective layer and the Sealing layer and the optional first intermediate layer and / or the optional second intermediate layer and / or the optional cover layer are formed on the entire outside of the housing.
  • the corrosion protection layer system is/are in particular also formed on at least part of the inside of the housing. It is particularly advantageous if the nickel- and zinc-containing protective layer and the sealing layer as well as the optional first intermediate layer and/or the optional second intermediate layer and/or the optional cover layer are/are formed on the entire surface of the housing. The more surface of the housing is covered with the corrosion protection layer system, the less exposed housing surface is that is susceptible to corrosion processes.
  • the invention also relates to a spark plug, comprising a housing according to the invention, an insulator arranged in the housing, a center electrode arranged in the insulator and a ground electrode arranged at the end of the housing on the combustion chamber side, the ground electrode and the center electrode being designed to jointly form an ignition gap.
  • the manufacturing process can also contain a cleaning step before the rinsing step, in which the surface of the housing coated with at least the protective layer containing nickel and zinc is cleaned.
  • the cleaning step serves to clean the surface of the housing and the surface of the nickel- and zinc-containing protective layer or the optional second intermediate layer of, for example, particles, dirt and passivating agents and in particular to hydrolyze or activate the surface for binding the silane solution.
  • the housing which is coated with at least the protective layer containing nickel and zinc, is freed from cleaning agents or their residues. Or, if there is no separate cleaning step, then coarse dirt, such as dust, is also washed off during the rinsing step.
  • the sealing layer is applied at least to the nickel- and zinc-containing protective layer or the second intermediate layer.
  • the sealing layer is a silicon-containing sealing layer which is formed by silanizing the housing surface coated with at least the nickel- and zinc-containing protective layer.
  • Silanization is a chemical bonding of a silane compound to a surface. The connection occurs through a condensation reaction between hydrolyzable groups of the silanes used and chemical groups on the surface.
  • the silanes used for silanization typically have the general form R m SiX n , where R stands for organically functionalized residues and
  • the method has at least one drying step in which the water or a solvent is removed from the surface of the coated and sealed housing. For example, this is where they begin Silane compounds already begin to network.
  • the manufacturing process can also have a polycondensation step for curing the sealing layer. During the curing of silane compounds, the crosslinking of the silane compounds is completed and the crosslinking solidifies, forming a solid and robust sealing layer.
  • the manufacturing process can also have a step in which a top layer is applied to the sealing layer. This protects the sealing layer from mechanical damage.
  • the polycondensation can occur both between silane compounds that are coupled to the surface of the second intermediate layer or to the surface of the nickel- and zinc-containing protective layer of the housing, as well as to the surface of the second intermediate layer or to the surface of the Nickel- and zinc-containing protective layer of the housing include coupled silane compounds with uncoupled silane compounds.
  • silicone oils e.g. diorganopolysiloxanes
  • a sol-gel process, CCVD or PVD is used as a coating method to apply the sealing layer.
  • the housing is placed in a silane solution.
  • the silanes accumulate on the surface of the housing coated with at least the protective layer containing nickel and zinc and begin to network with each other there and form the sealing layer.
  • a starting compound suitable for producing the desired layer here the silanes
  • a fuel gas is added to a fuel gas.
  • the flame is moved at a short distance over the substrate to be coated, here the housing coated with the protective layer containing nickel and zinc. Due to the high combustion energy, the starting compounds form very reactive species that solidify connect to the substrate surface.
  • the thermal load on the substrate itself is low because it only comes into contact with the flame for a short time.
  • the material to be deposited here the silanes
  • the coating chamber is vaporized by bombardment with laser beams, ions, electrodes or arc discharge.
  • the evaporated material moves through the coating chamber onto the parts to be coated, here the housing coated with at least the protective layer containing nickel and zinc, condenses there and thus forms the protective layer.
  • silanes with functionalization in particular alkoxysilanes, aminosilanes or acrylicsilanes
  • silanes without functionalization in particular alkyltrialkoxysilanes
  • alkyltrialkoxysilanes can also be used for the silane-containing sealing layer.
  • Partially fluorinated or perfluorinated siloxanes can only be used to a limited extent because layers formed from them have no temperature resistance up to 300°C.
  • Figure 1 shows an example of a corrosion protection layer system according to the invention, consisting of the nickel and zinc-containing protective layer 210 and the silicon-containing sealing layer 220.
  • the nickel and zinc-containing protective layer 210 is applied to the surface of a housing 2.
  • the silicon-containing sealing layer 220 is in turn applied to the nickel and zinc-containing protective layer 210.
  • the protective layer 210 containing nickel and zinc has a layer thickness B.
  • the layer thickness is measured perpendicular to the housing surface. Since the protective layer 210 containing nickel and zinc is applied to the housing 2 using electroplating technology, the layer thickness B of the protective layer 210 containing nickel and zinc can be different at different points on the housing 2.
  • the housing 2 can have no protective layer 210 containing nickel and zinc on its inside 204 or only partially have a protective layer 210 containing nickel and zinc.
  • the housing 2 preferably has a protective layer 210 containing nickel and zinc on its entire outside 205.
  • the silicon-containing sealing layer 220 has a layer thickness A.
  • a silicon-containing sealing layer 220 which is applied by means of an immersion bath in a silane solution, a very uniform layer thickness A usually results for the silicon-containing sealing layer 220.
  • the Silicon-containing sealing layer 220 may be formed on the entire surface of the housing 2, even in places of the housing 2 where there is no nickel- and zinc-containing protective layer 210, such as areas of the inside 204 of the housing 2.
  • Figure 2 shows a further example of a corrosion protection layer system according to the invention, consisting of the nickel and zinc-containing protective layer 210 and the silicon-containing sealing layer 220 as well as the first intermediate layer 301 and the second intermediate layer 302 and the cover layer 303.
  • the first intermediate layer 301 is applied on the surface of a housing 2 .
  • the protective layer 210 containing nickel and zinc is in turn applied to this.
  • the second intermediate layer 302 is arranged between the protective layer 210 containing nickel and zinc and the sealing layer 220 containing silicon.
  • the cover layer 303 is in turn applied to the silicon-containing sealing layer 220.
  • the protective layer 210 containing nickel and zinc has a layer thickness B.
  • the first intermediate layer 301 has a layer thickness C and the second intermediate layer 302 has a Layer thickness D.
  • the layer thicknesses are measured perpendicular to the housing surface. If the protective layer 210 containing nickel and zinc is applied to the housing 2 using electroplating technology, the layer thickness B of the protective layer 210 containing nickel and zinc can be different at different points on the housing 2.
  • the housing 2 can have no protective layer 210 containing nickel and zinc on its inside 204 or only partially have a protective layer 210 containing nickel and zinc.
  • the silicon-containing sealing layer 220 has a layer thickness A.
  • a silicon-containing sealing layer 220 which is applied by means of an immersion bath in a silane solution, a very uniform layer thickness A usually results for the silicon-containing sealing layer 220.
  • the Silicon-containing sealing layer 220 may be formed on the entire surface of the housing 2, even in places of the housing 2 where there is no nickel- and zinc-containing protective layer 210, such as areas of the inside 204 of the housing 2.
  • the cover layer 303 has a layer thickness E.
  • the corrosion protection layer system can, in addition to the nickel and zinc-containing protective layer 210 and the sealing layer 220, only the cover layer 303 or only the first or second intermediate layer 301, 302 or the cover layer 303 in Combination with the first or second intermediate layer 301, 302.
  • FIG. 3 shows a spark plug 1 in a half-sectional view.
  • the spark plug 1 includes a housing 2.
  • An insulator 3 is inserted into the housing 2.
  • the housing 2 and the insulator 3 each have a hole along their longitudinal axis X. Through the hole, the housing 2 has an outside 205 and an inside 204.
  • the longitudinal axis of the housing 2, the longitudinal axis of the insulator 3 and the longitudinal axis of the spark plug 1 coincide.
  • a center electrode 4 is inserted into the insulator 3.
  • a connecting bolt 8 extends into the insulator 3.
  • a connecting nut 9 is arranged on the connecting bolt 8, via which the spark plug 1 can be electrically contacted with a voltage source, not shown here.
  • the connecting nut 9 forms the end of the spark plug 1 facing away from the combustion chamber.
  • the resistance element 7 connects the center electrode 4 to the connecting bolt 8 in an electrically conductive manner.
  • the resistance element 7 is constructed, for example, as a layer system consisting of a first contact CCM 72a, a resistance CCM 71 and a second contact CCM 72b.
  • the layers of the resistance element 7 differ in their material composition and the resulting electrical resistance.
  • the first contact CCM 72a and the second contact CCM 72b may have different electrical resistance or the same electrical resistance.
  • the resistance element 7 can also have only one layer of resistance CCM or several different layers of resistance CCM with different material compositions and resistances.
  • the insulator 3 rests with a shoulder on a housing seat formed on the inside of the housing.
  • an inner seal 10 is arranged between the insulator shoulder and the housing seat, which is plastically deformed when the insulator 3 is clamped in the housing 2 and thereby seals the air gap.
  • a ground electrode 5 is arranged in an electrically conductive manner on the housing 2 on its end face on the combustion chamber side.
  • the ground electrode 5 and the center electrode 4 are arranged relative to one another in such a way that an ignition gap is formed between them, in which the ignition spark is generated.
  • the housing 2 has a shaft.
  • a polygon 21, a shrink recess and a thread 22 are formed on this shaft.
  • the thread 22 is used to screw the spark plug 1 into an internal combustion engine.
  • An outer sealing element 6 is arranged between the thread 22 and the polygon 21.
  • the outer sealing element 6 is designed as a folding seal in this exemplary embodiment.
  • the housing 2 is made of a steel such as carbon steel.
  • a protective layer 210 containing nickel and zinc is applied to the housing 2, in particular to its outside.
  • the protective layer 210 containing nickel and zinc has a layer thickness B, where B is preferably not smaller than 1 ⁇ m and not larger than 30 ⁇ m.
  • the protective layer 210 containing nickel and zinc serves as passive corrosion protection.
  • the silicon-containing sealing layer 220 has a layer thickness A, where A is preferably not smaller than 10 nm and not larger than 1000 nm.
  • FIG. 4 shows schematically a section of the exemplary sequence of the method for producing a housing 2 according to the invention:
  • a first optional step S1 the housing 2, which was previously coated using electroplating technology with at least the protective layer 210 containing nickel and zinc and optionally with one or two intermediate layers, and its surface is cleaned.
  • the housing 2 coated with at least the protective layer 210 containing nickel and zinc is placed in a bath with a highly alkaline cleaner and additionally irradiated with ultrasound in the bath for approximately 5 minutes.
  • the optional cleaning step serves, on the one hand, to remove particles, dirt and passivating agents that hinder the application of the sealing layer 220, and on the other hand, the surface to which the sealing layer 220 is to be applied is hydrolyzed or activated so that the sealing layer 220 has a good connection option has.
  • the housing 2 can also have a first intermediate layer 301 and/or a second intermediate layer 302 in addition to the protective layer 210 containing nickel and zinc.
  • the cleaned housing 2 is rinsed with, for example, demineralized water so that any remaining cleaning agent is removed.
  • the sealing layer 220 is applied.
  • the application is carried out by silanizing the coated housing 2.
  • the housing 2 is immersed in a silane solution or sprayed with a silane solution.
  • the silane binds to the hydrolyzed surface of the housing 2 and begins to crosslink, creating the sealing layer 220.
  • the housing 2 is dried and the sealing layer 220 is hardened.
  • the housing 2 is placed, for example, in a drying oven at approximately 130 ° C for approximately 15 minutes.
  • possible water residues or solvent residues for example from the bath, are removed from the sealing layer 220.
  • the crosslinking of the silanes with one another is completed, whereby the sealing layer 220 hardens.
  • the Drying step is particularly advantageous because it supports and accelerates the crosslinking of the silanes with one another.
  • the housing 2 cools down before it is passed on for further processing, such as applying a cover layer 303 to the silicon-containing sealing layer 220 or assembling the spark plug 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Gehäuse für eine Zündkerze gemäß dem Anspruch 1 und eine Zündkerze mit mindestens einem solchen Gehäuse gemäß dem Anspruch 10, sowie ein Herstellungsverfahren für das Gehäuse gemäß Anspruch 11.
  • Heutige Zündkerzen haben ein Gehäuse aus einem Stahl, der bei dem im Motor herrschenden Bedingungen einer Korrosion, insbesondere Rosten, unterliegt. Deshalb wird schon seit längerem das Gehäuse der Zündkerze mit einer Schutzschicht, die das Stahl-Gehäuse vor Korrosion schützen soll, beschichtet. Sehr weit verbreitet sind Nickel-haltige und/oder Zink-haltige Schutzschichten. Nickel- und Zink-haltige Schutzschichten haben eine höhere korrosive und thermische Beständigkeit als reine Zink-Beschichtungen und sind gleichzeitig kostengünstiger als reine Nickel-Beschichtungen. Allerdings wird der Korrosionsschutz der Nickel- und Zink-haltigen Schutzschicht durch Defekte in der Schutzschicht gemindert. Diese Defekte können von der Oberfläche der Nickel- und Zink-haltigen Schutzschicht bis hin zur Oberfläche des Gehäuses reichen und somit als Angriffswege für Korrosion am Gehäuse selbst fungieren.
  • Beispielsweise ist aus der EP 2 546 938 A1 und der EP 2 605 348 A1 bekannt, dass man dieses Problem bei Nickel-haltigen Schutzschichten minimieren kann, indem man auf die Nickel-haltige Schutzschicht eine Chrom-haltige Versiegelungsschicht aufträgt und somit die Defekte versiegelt.
  • Eine Chrom-haltige Versiegelungsschicht kann beispielsweise aus einem CrVI-haltigen Medium an der Gehäuse-Oberfläche abgeschieden werden. Dabei entsteht eine Versiegelungsschicht mit gebundenen 3-wertigen Chrom. Allerdings kann es passieren, dass je nach Umgebungsbedingungen sich eigentlich an der Oberfläche gebundenes 3-wertiges Chrom von der Versiegelungsschichtoberfläche in freies 6-wertiges Chrom umwandelt. Das Problem dabei ist, dass 6-wertiges Chrom als gesundheitsschädlich eingestuft ist und in einigen Ländern dessen Verwendung verboten ist.
  • Aus der DE 102 05 751 A1 ist ein Zündkerzengehäuse mit einer Versiegelungsschicht bekannt, die organische und/oder silikatische Bestandteile hat.
  • Offenbarung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung ein Gehäuse für eine Zündkerze mit einem Korrosionsschutzschicht-System bereit zu stellen, das einen guten Korrosionsschutz bietet und gleichzeitig auf die Verwendung einer Cr-haltigen Versiegelungsschicht weitestgehend verzichtet. Insbesondere sollte das Korrosionsschutzschicht-System auch eine Temperaturbeständigkeit bei 300°C haben.
  • Diese Aufgabe wird von einem erfindungsgemäßen Gehäuse für eine Zündkerze dadurch gelöst, dass die auf eine Nickel- und Zink-haltige Schutzschicht angeordnete Versiegelungsschicht Silizium enthält. Durch die Verwendung von einer Silizium-haltigen Versiegelungsschicht ergibt sich der Vorteil, dass auf eine Chrom-haltige Versiegelungsschicht verzichtet werden kann und somit die Gefahr, dass sich 6-wertiges Chrom bildet und die Versiegelungsschicht verlässt, verhindert wird. Des Weiteren haben sich Versiegelungsschichten auf Basis von Silizium als sehr temperaturbeständig erwiesen. Konkret konnte bei Testreihen für Zündkerzen-Gehäusen, die ein Korrosionsschutzschicht-System aus einer Nickel-haltigen Schutzschicht und einer Silizium-haltigen Versiegelungsschicht aufweisen, gezeigt werden, dass diese Gehäuse beim Salzsprühnebeltest nach 24 Stunden immer noch einen Rostgrad von 0 aufweisen, d.h. das Gehäuse zeigt keine rostigen Stellen in den Bereichen des Gehäuses, bei denen eine Korrosionsschutzschicht aufgetragen ist. Selbst nach einer Auslagerung der Gehäuse bei 300°C für 3 Stunden weisen die Gehäuse beim Salzsprühnebeltest nach 24 Stunden immer noch einen Rostgrad von 0 auf.
  • Das Gehäuse für eine Zündkerze weist eine Bohrung entlang seiner Längsachse auf. Durch diese Bohrung bekommt das Gehäuse eine Außenseite und eine Innenseite. Die Bohrung im Gehäuse ist typischerweise dafür vorgesehen, dass ein Isolator mit Mittelelektrode und Anschlussmitteln aufgenommen wird. Das Gehäuse ist typischerweise aus einem Stahl, wie beispielsweise Kohlenstoffstahl. Auf mindestens einem Teil der Außenseite ist auf der Oberfläche des Gehäuses eine Schutzschicht aufgetragen, die das Gehäuse vor Korrosion schützen soll. Die Schutzschicht ist eine Nickel- und Zink-haltige Schutzschicht, die mittels der Galvanotechnik auf das Gehäuse aufgetragen wird. Bei der Galvanotechnik wird das Gehäuse als Anode zusammen mit einer als Kathode dienenden Elektrode in ein Nickel- und Zink-haltiges Elektrolytbad getaucht. Durch anlegen einer Spannung zwischen Gehäuse und Elektrode fließt von der Beschichtungselektrode durch den Elektrolyt ein Strom zum Gehäuse hin, wodurch auf der zur Beschichtungselektrode hinweisenden Seite des Gehäuses sich eine Nickel- und Zink-haltige Schutzschicht abscheidet. Die Schutzschicht besteht im Wesentlichen aus Nickel und Zink. Bevorzugt liegt dabei der Nickel-Anteil in der Schutzschicht bei 12 bis 15 Gew%. Die Schutzschicht weist dann eine thermische Beständigkeit bis ca. 500°C auf. Bei einem niedrigeren Nickel-Gehalt ist die thermische Beständigkeit niedriger. Bei einem höheren Nickel-Gehalt wird das Zink nicht ausreichend stabilisiert und es kommt bei korrosiver Belastung zu Entzinkung der Schutzschicht. Das bedeutet, dass das Zink verstärkt in der Schutzschicht abgebaut wird, z.B. durch Oxidation des Zinks in der Schutzschicht. Die Schutzschicht verliert ihren Korrosionsschutzeffekt. Eisen aus der Beschichtungselektrode wird zusammen mit dem Nickel und dem Zink ebenfalls am Gehäuse abgeschieden. Der Anteil von Eisen in der Nickel- und Zink-haltigen Schutzschicht beträgt typischerweise 2 bis 6 Gew.-%. Weitere Verunreinigungen in der Nickel- und Zink-haltigen Schutzschicht wie beispielsweise Schwefel und Spuren von Natrium oder Kalium sind möglich.
  • Die Nickel- und Zink-haltige Schutzschicht auf dem Gehäuse dient als kathodischer Korrosionsschutz, d.h. die Nickel- und Zink-haltige Schutzschicht ist elektrochemisch edler als das Material des Gehäuses und bildet eine Barriereschicht gegen feuchte Medien. Der Korrosionsschutz, den die Nickel- und Zink-haltige Schutzschicht bietet, hängt von der Schichtdicke B der Nickel- und Zink-haltigen Schutzschicht und deren Defektfreiheit ab. Je dicker die Nickel- und Zink-haltige Schutzschicht ist umso geringer ist die Wahrscheinlichkeit, dass sich ein Defekt von der Oberfläche der Nickel- und Zink-haltigen Schutzschicht durch die gesamte Dicke der Nickel- und Zink-haltigen Schutzschicht hindurch bis zur Oberfläche des Gehäuses erstreckt und dadurch ein Angriffsweg für Korrosionsprozesse am Gehäuse eröffnet. Durch eine zusätzliche Versiegelungsschicht auf der Nickel- und Zink-haltigen Schutzschicht werden diese Defekte verschlossen und der Korrosionsschutz für das Gehäuse verbessert.
  • Weitere vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Bei einer vorteilhaften Ausgestaltung ist vorgesehen, dass die Versiegelungsschicht frei von Chrom ist, d.h. die Versiegelungsschicht enthält kein absichtlich hinzugefügtes Chrom und enthält Chrom maximal in einer Menge von technisch unvermeidbaren Verunreinigungen, beispielsweise die beim Herstellungsprozess ungewollt in die Versiegelungsschicht eingelagert werden.
  • Es hat sich als vorteilhaft herausgestellt, dass die Versiegelungsschicht eine Schichtdicke A von nicht unter 10 nm und nicht mehr als 10 µm hat, insbesondere von nicht unter 100 nm und/oder nicht mehr als 1 µm hat. Es hat sich gezeigt, dass die Versiegelungsschicht eine Schichtdicke A von nicht kleiner als 10 nm haben sollte, damit die Versiegelungsschicht ausreichend dick ist um die Defekte in der Nickel- und Zink-haltigen Schutzschicht zu verschließen. Des Weiteren hat sich gezeigt, dass bei Schichtdicken Ader Versiegelungsschicht von mehr als 10 µm es keine wesentliche Verbesserung bei den oben beschriebenen technischen Effekten der Versiegelungsschicht kommt.
  • Zusätzlich oder alternativ liegt die Schichtdicke B der Nickel- und Zink-haltigen Schutzschicht in einem Bereich von 1 µm bis 30 µm.
  • Bei einer Weiterbildung der Erfindung ist vorgesehen, dass zwischen dem Gehäuse und der Nickel- und Zink-haltigen Schutzschicht eine erste Zwischenschicht und/oder zwischen der Nickel- und Zink-haltigen Schutzschicht und der Versiegelungsschicht eine zweite Zwischenschicht und/oder auf der Versiegelungsschicht eine Deckschicht aufgetragen ist/sind.
  • Durch die erste Zwischenschicht ergibt sich der Vorteil, dass die Nickel- und Zink-haltige Schutzschicht besser am Gehäuse haftet. Die erste Zwischenschicht dient als Haftanbindungsschicht und kann beispielsweise aus Kupfer oder Nickel-Strike bestehen.
  • Durch die zweite Zwischenschicht ergibt sich der Vorteil, dass die Silizium-haltige Versiegelungsschicht besser an der Nickel- und Zink-haltige Schutzschicht haftet und thermische Spannungen zwischen den Schichten reduziert werden. Die zweite Zwischenschicht dient als Haftanbindungsschicht und kann beispielsweise mindestens eins der Elemente: Nickel, Kupfer, Chrom, Zink oder Titan enthalten.
  • Die Deckschicht auf der Silizium-haltigen Versiegelungsschicht dient dazu, die Versiegelungsschicht vor mechanischen Beschädigungen zu schützen und kann beispielsweise mindestens eins der Elemente: Nickel, Kupfer, Zink, Chrom oder Titan enthalten.
  • Zusätzlich oder alternativ hat die erste Zwischenschicht eine Schichtdicke C von 1 nm bis 1000 nm und/oder die zweite Zwischenschicht eine Schichtdicke D von 1 nm bis 1000 nm und/oder die Deckschicht eine Schichtdicke E von 1 nm bis 2000 nm. Es ist vorteilhaft, wenn die Schichtdicke der Zwischenschicht und der Deckschicht deutlich weniger dick sind als die Nickel- und Zink-haltige Schutzschicht, dadurch wird verhindert, dass es zu inneren Spannungen in den Zwischenschichten und der Deckschicht kommt. Aufgrund von inneren Spannungen in einer Schicht kann es zu Haftanbindungsfehlern oder Ablösung der Schicht von einer anderen Schicht kommen, wie beispielsweise der Nickel- und Zink-haltigen Schutzschicht oder der Versiegelungsschicht.
  • Die vorteilhaften Effekte des Korrosionsschutzschicht-Systems, aufweisend Nickel- und Zink-haltige Schutzschicht und Versiegelungsschicht und optional die erste Zwischenschicht und/oder die zweite Zwischenschicht und/oder die Deckschicht, ergeben sich insbesondere, wenn die Nickel- und Zink-haltige Schutzschicht und die Versiegelungsschicht sowie die optionale erste Zwischenschicht und/oder die optionale zweite Zwischenschicht und/oder die optionale Deckschicht auf der gesamten Außenseite des Gehäuses ausgebildet sind. Und das Korrosionsschutzschicht-System insbesondere zusätzlich auch auf mindestens einem Teil der Innenseite des Gehäuses ausgebildet ist/sind. Es ist besonders vorteilhaft, wenn die Nickel- und Zink-haltige Schutzschicht und die Versiegelungsschicht sowie die optionale erste Zwischenschicht und/oder die optionale zweite Zwischenschicht und/oder die optionale Deckschicht auf der gesamten Oberfläche des Gehäuses ausgebildet ist/sind. Je mehr Oberfläche des Gehäuses mit dem Korrosionsschutzschicht-System bedeckt ist umso geringer ist die freiliegenden Gehäuseoberfläche, die anfällig für Korrosionsprozesse ist.
  • Die Erfindung betrifft auch eine Zündkerze, aufweisend ein erfindungsgemäßes Gehäuse, einen im Gehäuse angeordneten Isolator, eine im Isolator angeordnete Mittelelektrode und eine an dem brennraumseitigen Ende des Gehäuses angeordnete Masseelektrode, wobei die Masseelektrode und die Mittelelektrode dazu eingerichtet sind gemeinsam einen Zündspalt zu bilden.
  • Des Weiteren betrifft die Erfindung auch das Herstellungsverfahren eines erfindungsgemäßen Gehäuses. Das Herstellungsverfahren weist dabei die folgenden Schritte auf:
    • Bereitstellen eines Gehäuses für eine Zündkerze mit einer Nickel- und Zink-haltigen Schutzschicht, die mittels eines galvanischen Beschichtungsverfahrens auf das Gehäuse aufgetragen wurde, wobei das Gehäuse optional eine erste und/oder zweite Zwischenschicht aufweist,
    • Anschließend Spülen des mit mindestens der Nickel- und Zink-haltigen Schutzschicht beschichteten Gehäuses,
    • Anschließend ein Schritt, bei dem eine Versiegelungsschicht auf die Nickel- und Zink-haltige Schutzschicht oder die zweite Zwischenschicht aufgetragen wird.
  • Optional kann das Herstellungsverfahren vor dem Spülschritt noch ein Reinigungsschritt enthalten, bei dem die Oberfläche des mit mindestens der Nickel- und Zink-haltigen Schutzschicht beschichteten Gehäuses gereinigt wird. Der Reinigungsschritt dient dazu, die Oberfläche des Gehäuses und die Oberfläche der Nickel- und Zink-haltigen Schutzschicht oder der optionalen zweiten Zwischenschicht von beispielsweise Partikeln, Schmutz und Passivierungsmittel zu reinigen und insbesondere eine Hydrolisation oder Aktivierung der Oberfläche für die Anbindung der Silanlösung durchzuführen.
  • Im Spülschritt wird das mit mindestens der Nickel- und Zink-haltigen Schutzschicht beschichtete Gehäuse von Reinigungsmittel bzw. dessen Rückständen befreit. Bzw., wenn auf einen eigenen Reinigungsschritt verzichtet wird, dann werden beim Spülschritt auch grobe Verschmutzungen, wie beispielsweise Staub, abgewaschen.
  • Beim Auftragungsschritt der Versiegelungsschicht wird die Versiegelungsschicht mindestens auf die Nickel- und Zink-haltige Schutzschicht oder die zweite Zwischenschicht aufgetragen.
  • Die Versiegelungsschicht ist eine Silizium-haltige Versiegelungsschicht, die durch eine Silanisierung der mit mindestens der Nickel- und Zink-haltigen Schutzschicht beschichteten Gehäuseoberfläche ausgebildet wird. Eine Silanisierung ist eine chemische Anbindung einer Silanverbindung an eine Oberfläche. Die Anbindung erfolgt durch Kondensationsreaktion zwischen hydrolysierbaren Gruppen der verwendeten Silane und chemischen Gruppen an der Oberfläche. Die für die Silanisierung verwendeten Silane haben typischerweise die allgemeine Form RmSiXn, wobei R für organisch funktionalisierte Reste und X für hydrolysierbare Gruppen stehen, m und n stehen für die Anzahl der organisch funktionalisierten Reste und der hydrolysierbaren Gruppen.
  • Das Verfahren weist bei einer vorteilhaften Weiterentwicklung mindestens einen Trocknungsschritt auf, bei dem das Wasser oder ein Lösungsmittel von der Oberfläche des beschichteten und versiegelten Gehäuses entfernt wird. Dabei beginnen beispielsweise die Silanverbindungen bereits sich zu vernetzen. Des Weiteren kann das Herstellungsverfahren auch ein Polykondensationsschritt zur Aushärtung der Versiegelungsschicht aufweisen. Bei der Aushärtung von Silanverbindungen wird die Vernetzung der Silanverbindungen abgeschlossen und die Vernetzung verfestigt sich, so dass sich eine feste und robuste Versiegelungsschicht ausbildet.
  • Zusätzlich oder alternativ kann das Herstellungsverfahren noch einen Schritt aufweisen, bei dem eine Deckschicht auf die Versiegelungsschicht aufgetragen wird. Dadurch wird die Versiegelungsschicht vor mechanischer Beschädigung geschützt.
  • Bei der Silanisierung beispielsweise kann die Polykondensation sowohl von Silanverbindung untereinander, die an der Oberfläche der zweiten Zwischenschicht oder an der Oberfläche der Nickel- und Zink-haltigen Schutzschicht des Gehäuses angekoppelt sind, als auch von an der Oberfläche der zweiten Zwischenschicht oder an die Oberfläche der Nickel- und Zink-haltigen Schutzschicht des Gehäuses angekoppelte Silanverbindungen mit nichtangekoppelten Silanverbindungen umfassen.
  • Grundsätzlich ist es auch möglich, dass weitere Silikonverbindungen, wie beispielsweise Silikonöle (z.B. Diorganopolysiloxane) in das durch die Polykondensation entstandene Netzwerk der Silanverbindungen eingelagert werden.
  • Bei einer vorteilhaften Weiterentwicklung des Herstellungsverfahrens wird zum Auftragen der Versiegelungsschicht ein Sol-Gel-Prozess, CCVD oder PVD als Beschichtungsmethode verwendet.
  • Bei dem Sol-Gel-Prozess wird das Gehäuse in eine Silan-Lösung gelegt. Während der Silanisierung lagern sich die Silane an der Oberfläche des mit mindestens der Nickel- und Zink-haltigen Schutzschicht beschichteten Gehäuses an und beginnen sich dort untereinander zu vernetzen und die Versiegelungsschicht auszubilden.
  • Bei der CCVD-Methode (combustion chemical vapor deposition), auch Flammenbeschichtung genannt, wird einem Brenngas eine zur Erzeugung der gewünschten Schicht geeignete Ausgangsverbindung, hier die Silane, zugesetzt. Die Flamme wird in geringem Abstand über das zu beschichtende Substrat, hier das mit der Nickel- und Zink-haltigen Schutzschicht beschichtete Gehäuse, bewegt. Durch die hohe Verbrennungsenergie bilden die Ausgangsverbindungen sehr reaktive Spezies, die sich fest mit der Substratoberfläche verbinden. Die thermische Belastung für das Substrat selbst ist gering, da es nur kurz mit der Flamme in Berührung kommt.
  • Bei der PVD-Methode (physical vapor deposion) liegt das abzuscheidende Material, hier die Silane, in fester Form in einer Beschichtungskammer vor. Durch Beschuss mit Laserstrahlen, Ionen, Elektroden oder Lichtbogenentladung wird das Material verdampft. Das verdampfte Material bewegt sich durch die Beschichtungskammer auf die zu beschichtenden Teile, hier das mit mindestens der Nickel- und Zink-haltigen Schutzschicht beschichtete Gehäuse, kondensiert dort und bildet somit die Schutzschicht aus.
  • Es hat sich als vorteilhaft herausgestellt, für die Herstellung der Silizium-haltigen Versiegelungsschicht Silane mit Funktionalisierung, insbesondere Alkoxysilane, Aminosilane oder Acrylsilane, zu verwenden. Zusätzlich können auch Silane ohne Funktionalisierung, insbesondere Alkyltrialkoxysilane, für die Silan-haltige Versiegelungsschicht verwendet werden. Teilfluorierte oder perfluorierte Siloxane sind nur eingeschränkt verwendbar, da daraus gebildete Schichten keine Temperaturbeständigkeit bis zu 300°C aufweisen.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind.
  • Zeichnung
    • Figur 1 zeigt ein Beispiel für ein erfindungsgemäßes Korrosionsschutzschicht-System auf einem Gehäuse
    • Figur 2 zeigt ein weiteres Beispiel für ein erfindungsgemäßes Korrosionsschutzschicht-System auf einem Gehäuse
    • Figur 3 zeigt ein Beispiel für eine Zündkerze mit dem erfindungsgemäßen Gehäuse
    • Figur 4 zeigt beispielhaft das Herstellungsverfahren für ein erfindungsgemäßes Gehäuse
    Beschreibung des Ausführungsbeispiels
  • Figur 1 zeigt ein Beispiel für ein erfindungsgemäßes Korrosionsschutzschicht-System, bestehend aus der Nickel- und Zink-haltigen Schutzschicht 210 und der Silizium-haltigen Versiegelungsschicht 220. Auf der Oberfläche eines Gehäuses 2 ist die Nickel- und Zink-haltige Schutzschicht 210 aufgetragen. Auf die Nickel- und Zink-haltige Schutzschicht 210 wiederum ist die Silizium-haltige Versiegelungsschicht 220 aufgetragen.
  • Die Nickel- und Zink-haltige Schutzschicht 210 hat eine Schichtdicke B. Die Schichtdicke wird senkrecht zur Gehäuse-Oberfläche gemessen. Da die Nickel- und Zink-haltige Schutzschicht 210 mittels Galvanotechnik auf dem Gehäuse 2 aufgebracht ist, kann die Schichtdicke B der Nickel- und Zink-haltigen Schutzschicht 210 an verschiedenen Stellen des Gehäuses 2 unterschiedlich sein. Beispielsweise kann das Gehäuse 2 auf seiner Innenseite204 keine Nickel- und Zink-haltige Schutzschicht 210 oder nur teilweise eine Nickel- und Zink-haltige Schutzschicht 210 aufweisen. Bevorzugter Weise weißt das Gehäuse 2 auf seiner gesamten Außenseite 205 eine Nickel- und Zink-haltige Schutzschicht 210 auf.
  • Die Silizium-haltige Versiegelungsschicht 220 hat eine Schichtdicke A. Bei einer Silizium-haltigen Versiegelungsschicht 220, die mittels eines Tauchbads in einer Silanlösung aufgetragen wird, ergibt sich in der Regel eine sehr gleichmäßige Schichtdicke A für die Silizium-haltige Versiegelungsschicht 220. Insbesondere kann die Silizium-haltige Versiegelungsschicht 220 auf der gesamten Oberfläche des Gehäuses 2 ausgebildet sein, auch an Stellen des Gehäuses 2, an denen es keine Nickel- und Zink-haltige Schutzschicht 210 gibt, wie beispielsweise Bereiche der Innenseite 204 des Gehäuses 2.
  • Figur 2 zeigt ein weiteres Beispiel für ein erfindungsgemäßes Korrosionsschutzschicht-System, bestehend aus der Nickel- und Zink-haltigen Schutzschicht 210 und der Silizium-haltigen Versiegelungsschicht 220 sowie der ersten Zwischenschicht 301 und der zweiten Zwischenschicht 302 und der Deckschicht 303. Auf der Oberfläche eines Gehäuses 2 ist die erste Zwischenschicht 301 aufgetragen. Auf dieser ist wiederum die Nickel- und Zink-haltige Schutzschicht 210 aufgetragen. Zwischen der Nickel- und Zink-haltige Schutzschicht 210 und der Silizium-haltige Versiegelungsschicht 220 ist die zweite Zwischenlage 302 angeordnet. Auf der Silizium-haltigen Versiegelungsschicht 220 ist wiederum die Deckschicht 303 aufgetragen.
  • Die Nickel- und Zink-haltige Schutzschicht 210 hat eine Schichtdicke B. Die erste Zwischenschicht 301 hat eine Schichtdicke C und die zweite Zwischenschicht 302 hat eine Schichtdicke D. Die Schichtdicken werden senkrecht zur Gehäuse-Oberfläche gemessen. Wenn die Nickel- und Zink-haltige Schutzschicht 210 mittels Galvanotechnik auf dem Gehäuse 2 aufgebracht ist, kann die Schichtdicke B der Nickel- und Zink-haltigen Schutzschicht 210 an verschiedenen Stellen des Gehäuses 2 unterschiedlich sein. Beispielsweise kann das Gehäuse 2 auf seiner Innenseite 204 keine Nickel- und Zink-haltige Schutzschicht 210 oder nur teilweise eine Nickel- und Zink-haltige Schutzschicht 210 aufweisen.
  • Die Silizium-haltige Versiegelungsschicht 220 hat eine Schichtdicke A. Bei einer Silizium-haltigen Versiegelungsschicht 220, die mittels eines Tauchbads in einer Silanlösung aufgetragen wird, ergibt sich in der Regel eine sehr gleichmäßige Schichtdicke A für die Silizium-haltige Versiegelungsschicht 220. Insbesondere kann die Silizium-haltige Versiegelungsschicht 220 auf der gesamten Oberfläche des Gehäuses 2 ausgebildet sein, auch an Stellen des Gehäuses 2, an denen es keine Nickel- und Zink-haltige Schutzschicht 210 gibt, wie beispielsweise Bereiche der Innenseite 204 des Gehäuses 2. Die Deckschicht 303 hat eine Schichtdicke E.
  • Bei weiteren Ausgestaltungen des Gehäuses 2 mit dem erfindungsgemäßen Korrosionsschutzschicht-System kann das Korrosionsschutzschicht-System neben der Nickel- und Zink-haltigen Schutzschicht 210 und der Versiegelungsschicht 220 nur die Deckschicht 303 oder nur die erste oder zweite Zwischenschicht 301, 302 oder die Deckschicht 303 in Kombination mit der ersten oder zweiten Zwischenschicht 301, 302 aufweisen.
  • Figur 3 zeigt in einer halb-geschnittenen Ansicht eine Zündkerze 1. Die Zündkerze 1 umfasst ein Gehäuse 2. In das Gehäuse 2 ist ein Isolator 3 eingesetzt. Das Gehäuse 2 und der Isolator 3 weisen jeweils entlang ihrer Längsachse X eine Bohrung auf. Durch die Bohrung weist das Gehäuse 2 eine Außenseite 205 und eine Innenseite 204 auf. Die Längsachse des Gehäuses 2, die Längsachse des Isolators 3 und die Längsachse der Zündkerze 1 fallen zusammen. In den Isolator 3 ist eine Mittelelektrode 4 eingesetzt. Des Weiteren erstreckt sich in den Isolator 3 ein Anschlussbolzen 8. Am Anschlussbolzen 8 ist eine Anschlußmutter 9 angeordnet, über die die Zündkerze 1 mit einer hier nicht dargestellten Spannungsquelle elektrisch kontaktierbar ist. Die Anschlußmutter 9 bildet das Brennraum-abgewandte Ende der Zündkerze 1.
  • Zwischen der Mittelelektrode 4 und dem Anschlussbolzen 8 befindet sich im Isolator 3 ein Widerstandselement 7, auch CCM (Ceramic Compound Material) genannt. Das Widerstandselement 7 verbindet die Mittelelektrode 4 elektrisch leitend mit dem Anschlussbolzen 8. Das Widerstandselement 7 ist beispielsweise als Schichtsystem aus einem ersten Kontakt-CCM 72a, einem Widerstands-CCM 71 und einem zweiten Kontakt-CCM 72b aufgebaut. Die Schichten des Widerstandselements 7 unterscheiden sich durch ihre Materialzusammensetzung und dem daraus resultierenden elektrischen Widerstand. Das erste Kontakt-CCM 72a und das zweite Kontakt-CCM 72b können einen unterschiedlichen elektrischen Widerstand oder einen gleichen elektrischen Widerstand aufweisen. Das Widerstandselement 7 kann auch nur eine Schicht Widerstands-CCM oder mehrere verschiedene Schichten Widerstands-CCM mit unterschiedlichen Materialzusammensetzungen und Widerständen aufweisen.
  • Der Isolator 3 liegt mit einer Schulter auf einem an der Gehäuse-Innenseite ausgebildeten Gehäuse-Sitz auf. Zur Abdichtung des Luftspalts zwischen Gehäuse-Innenseite und Isolator 3 ist zwischen der Isolator-Schulter und dem Gehäuse-Sitz eine Innendichtung 10 angeordnet, die beim Einspannen des Isolators 3 im Gehäuse 2 plastisch verformt wird und dadurch den Luftspalt abdichtet.
  • Am Gehäuse 2 ist auf dessen brennraumseitigen Stirnfläche eine Masseelektrode 5 elektrisch leitend angeordnet. Die Masseelektrode 5 und die Mittelelektrode 4 sind so zueinander angeordnet, dass sich zwischen ihnen ein Zündspalt ausbildet, bei dem der Zündfunken erzeugt wird.
  • Das Gehäuse 2 weist einen Schaft auf. An diesem Schaft sind ein Mehrkant 21, ein Schrumpfeinstich und ein Gewinde 22 ausgebildet. Das Gewinde 22 dient zum Einschrauben der Zündkerze 1 in eine Brennkraftmaschine. Zwischen dem Gewinde 22 und dem Mehrkant 21 ist ein äußeres Dichtelement 6 angeordnet. Das äußere Dichtelement 6 ist in diesem Ausführungsbeispiel als Faltdichtung ausgestaltet.
  • Das Gehäuse 2 besteht aus einem Stahl, wie beispielsweise Kohlenstoffstahl. Auf dem Gehäuse 2, insbesondere auf dessen Außenseite, ist eine Nickel- und Zink-haltige Schutzschicht 210 aufgetragen. Die Nickel- und Zink-haltige Schutzschicht 210 hat eine Schichtdicke B, wobei B vorzugsweise nicht kleiner als 1 µm und nicht größer als 30 µm ist. Die Nickel- und Zink-haltige Schutzschicht 210 dient als passiver Korrosionsschutz. Auf der Nickel- und Zink-haltigen Schutzschicht 210 ist noch eine Silizium-haltige Versiegelungsschicht 220 aufgetragen. Die Silizium-haltige Versiegelungsschicht 220 hat eine Schichtdicke A, wobei A vorzugsweise nicht kleiner als 10 nm und nicht größer als 1000 nm ist.
  • Figur 4 zeigt schematisch einen Ausschnitt aus dem beispielhaften Ablauf des Verfahrens zur Herstellung eines erfindungsgemäßen Gehäuses 2:
    In einem ersten optionalen Schritt S1 wird das Gehäuse 2, das zuvor mittels Galvanotechnik mit mindestens der Nickel- und Zink-haltigen Schutzschicht 210 und optional mit einer oder zwei Zwischenschichten beschichtet wurde und dessen Oberfläche gereinigt. Dazu wird das mit mindestens der Nickel- und Zink-haltigen Schutzschicht 210 beschichtete Gehäuse 2 in ein Bad mit einem hochalkalischen Reiniger gelegt und für ca. 5 min zusätzlich mit Ultraschall im Bad bestrahlt. Der optionale Reinigungsschritt dient zum einem zum Entfernen von Partikeln, Schmutz und Passivierungsmittel, die ein Auftragen der Versiegelungsschicht 220 behindern, zum anderen wird die Oberfläche, auf die die Versiegelungsschicht 220 aufgetragen werden soll, hydrolisiert bzw. aktiviert, damit die Versiegelungsschicht 220 eine gute Anbindungsmöglichkeit hat. Optional kann vor der optionalen Reinigung das Gehäuse 2 neben der Nickel- und Zink-haltigen Schutzschicht 210 auch eine erste Zwischenschicht 301 und/oder eine zweite Zwischenschicht 302 aufweisen.
  • Im zweiten Schritt S2 wird das gereinigte Gehäuse 2 mit beispielsweise demineralisiertem Wasser gespült, damit mögliche Rest von Reinigungsmittel entfernt werden.
  • Im dritten Schritt S3 wird die Versiegelungsschicht 220 aufgetragen. Dabei erfolgt die Auftragung durch eine Silanisierung des beschichteten Gehäuses 2. Dabei wird das Gehäuse 2 in eine Silanlösung eingetaucht oder mit einer Silanlösung besprüht. Bei diesem Schritt bindet sich das Silan an die hydrolisierte Oberfläche des Gehäuses 2 und beginnt sich zu vernetzen wodurch die Versiegelungsschicht 220 entsteht.
  • Im optionalen vierten Schritt S4 erfolgt eine Trocknung des Gehäuses 2 und die Aushärtung der Versiegelungsschicht 220. Dabei wird das Gehäuse 2 nach der Silanisierung beispielsweise in einen Trocknungsofen bei ca. 130°C für ca. 15 min gelegt. Dabei werden mögliche Wasserreste oder Lösungsmittelreste beispielsweise aus dem Bad aus der Versiegelungsschicht 220 entfernt. Gleichzeitig wird die Vernetzung der Silane untereinander abgeschlossen, wodurch die Versiegelungsschicht 220 aushärtet. Der Trocknungsschritt ist besonders vorteilhaft, da dadurch die Vernetzung der Silane untereinander unterstützt und beschleunigt werden.
  • Im hier gezeigten letzten Schritt S5 kühlt das Gehäuse 2 ab, bevor es zur weiteren Verarbeitungen weitergeleitet wird, wie beispielsweise einem Auftragen einer Deckschicht 303 auf die Silizium-haltige Versiegelungsschicht 220 oder Zusammenbauen der Zündkerze 1.

Claims (18)

  1. Gehäuse (2) für eine Zündkerze (1) mit einer Bohrung entlang der Längsachse X des Gehäuses (2), wodurch das Gehäuse (2) eine Außenseite (205) und eine Innenseite (204) aufweist, und wobei auf mindestens einem Teil der Außenseite (205) des Gehäuses (2) eine galvanisch aufgetragene Nickel- und Zink-haltige Schutzschicht (210) angeordnet ist und auf der Nickel- und Zink-haltigen Schutzschicht (210) eine Versiegelungsschicht (220) angeordnet ist, wobei die Versiegelungsschicht (220) Silizium enthält, dadurch gekennzeichnet, dass die Silizium-haltige Versiegelungsschicht (220) durch Silanisierung ausgebildet wurde.
  2. Gehäuse (2) nach Anspruch 1, dadurch gekennzeichnet, dass die Versiegelungsschicht (220) frei von Chrom ist.
  3. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Versiegelungsschicht (220) eine Schichtdicke A von 10 nm bis 10 µm, insbesondere von 100 nm bis 1 µm hat.
  4. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Nickel- und Zink-haltige Schutzschicht (210) eine Schichtdicke B von 1 µm bis 30 µm auf dem Gehäuse (2) hat.
  5. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Gehäuse (2) und der Nickel- und Zink-haltigen Schutzschicht (210) eine erste Zwischenschicht (301) und/oder zwischen der Nickel- und Zink-haltigen Schutzschicht (210) und der Versiegelungsschicht (220) eine zweite Zwischenschicht (302) und/oder auf der Versiegelungsschicht (220) eine Deckschicht (303) aufgetragen sind.
  6. Gehäuse (2) nach Anspruch 5, dadurch gekennzeichnet, dass die erste Zwischenschicht (301) eine Schichtdicke C von 1 nm bis 1000 nm hat.
  7. Gehäuse (2) nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die zweite Zwischenschicht (302) eine Schichtdicke D von 1 nm bis 1000 nm hat.
  8. Gehäuse (2) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Deckschicht eine Schichtdicke (303) E von 1 nm bis 2000 nm hat.
  9. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Nickel- und Zink-haltige Schutzschicht (210) und die Versiegelungsschicht (220) auf der gesamten Außenseite (205) des Gehäuses (2) ausgebildet sind, und insbesondere auf mindestens einem Teil der Innenseite (204) des Gehäuses (2) ausgebildet sind, und wenn die erste Zwischenschicht (301) und/oder die zweite Zwischenschicht (302) und/oder die Deckschicht (303) vorhanden sind, die erste Zwischenschicht (301) und/oder die zweite Zwischenschicht (302) und/oder die Deckschicht (303) auf der gesamten Außenseite (205) des Gehäuses (2) ausgebildet sind, und insbesondere auf mindestens einem Teil der Innenseite (204) des Gehäuses (2) ausgebildet sind.
  10. Zündkerze (1), aufweisend ein Gehäuse (2) nach einem der Ansprüche 1 bis 9, einen im Gehäuse (2) angeordneten Isolator (3), eine im Isolator (3) angeordnete Mittelelektrode (4) und einer an dem brennraumseitigen Ende des Gehäuses (2) angeordnete Masseelektrode (5), wobei die Masseelektrode (5) und die Mittelelektrode (4) dazu eingerichtet sind gemeinsam einen Zündspalt zu bilden.
  11. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 1 bis 9, aufweisend die Schritte:
    • Bereitstellen eines Gehäuses (2) für eine Zündkerze (1) mit einer Nickel- und Zink-haltigen Schutzschicht (210), die mittels eines galvanischen Beschichtungsverfahrens auf das Gehäuse (2) aufgetragen wurde, wobei das Gehäuse optional eine erste und/oder zweite Zwischenschicht (301, 302) aufweist,
    • Anschließend Spülen des mit der Nickel- und Zink-haltigen Schutzschicht (210) beschichteten Gehäuses (2) (S2),
    • Anschließend ein Schritt (S3), bei dem eine Versiegelungsschicht (220) auf die Nickel- und Zink-haltige Schutzschicht (210) die zweite Zwischenschicht (302) aufgetragen wird.
  12. Herstellungsverfahren eines Gehäuses (2) nach Anspruch 11, dadurch gekennzeichnet, dass das Herstellungsverfahren vor dem Spülschritt (S2) einen Schritt (S1) aufweist, bei dem die Oberfläche des mit mindestens der Nickel- und Zink-haltigen-Schutzschicht (210) beschichteten Gehäuses (2) gereinigt wird.
  13. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass das Herstellungsverfahren nach dem Auftragen der Versiegelungsschicht (220) auf die Nickel- und Zink-haltige Schutzschicht (210) oder auf die zweite Zwischenschicht (302) einen Trocknungsschritt (S4), indem insbesondere mögliches Wasser oder Lösungsmittel aus der Auftragung der Versiegelungsschicht von der Oberfläche des Gehäuses (2) entfernt werden.
  14. Herstellungsverfahren eines Gehäuses (2) nach Anspruch 13, dadurch gekennzeichnet, dass das Herstellungsverfahren nach dem Trocknungsschritt (S4) noch einen Polykondensationsschritt aufweist, indem die Versiegelungsschicht (220) aushärtet.
  15. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass das Herstellungsverfahren noch einen Schritt aufweist, bei dem eine Deckschicht (303) auf die Versiegelungsschicht (220) aufgetragen wird.
  16. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass zum Auftragen der Versiegelungsschicht (220) ein Sol-Gel-Prozess, CCVD oder PVD als Beschichtungsmethode verwendet werden.
  17. Herstellungsverfahren eines Gehäuses (2) nach einem der vorangehenden Ansprüche 11 bis 16, dadurch gekennzeichnet, dass für eine Versiegelungsschicht (220) Silane mit Funktionalisierung, insbesondere Alkoxysilane, Aminosilane oder Acrylsilane, verwendet werden.
  18. Herstellungsverfahren eines Gehäuses (2) nach Anspruch 17, dadurch gekennzeichnet, dass zusätzlich auch Silane ohne Funktionalisierung, insbesondere Alkyltrialkoxysilane, für die Versiegelungsschicht (220) verwendet werden.
EP20712336.5A 2019-03-20 2020-03-18 Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse Active EP3942658B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019203803.4A DE102019203803A1 (de) 2019-03-20 2019-03-20 Zündkerzengehäuse mit galvanischer Nickel- und Zink-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
PCT/EP2020/057388 WO2020187966A1 (de) 2019-03-20 2020-03-18 Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse

Publications (2)

Publication Number Publication Date
EP3942658A1 EP3942658A1 (de) 2022-01-26
EP3942658B1 true EP3942658B1 (de) 2024-02-21

Family

ID=69846138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20712336.5A Active EP3942658B1 (de) 2019-03-20 2020-03-18 Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse

Country Status (7)

Country Link
US (1) US11979003B2 (de)
EP (1) EP3942658B1 (de)
JP (1) JP7256893B2 (de)
CN (1) CN113544921B (de)
BR (1) BR112021018603A2 (de)
DE (1) DE102019203803A1 (de)
WO (1) WO2020187966A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203803A1 (de) * 2019-03-20 2020-09-24 Robert Bosch Gmbh Zündkerzengehäuse mit galvanischer Nickel- und Zink-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
US20240186769A1 (en) 2021-08-18 2024-06-06 Niterra Co., Ltd. Metallic shell and spark plug

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152184A (ja) 1988-12-05 1990-06-12 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2003105555A (ja) * 2001-07-23 2003-04-09 Nkk Corp 耐白錆性に優れた表面処理鋼板及びその製造方法
DE10205751B4 (de) * 2002-02-12 2004-09-30 Robert Bosch Gmbh Zündeinrichtung, insbesondere Zündkerze für Brennkraftmaschinen
JP3774415B2 (ja) * 2002-03-14 2006-05-17 ディップソール株式会社 亜鉛及び亜鉛合金めっき上に黒色の六価クロムフリー化成皮膜を形成するための処理溶液及び亜鉛及び亜鉛合金めっき上に黒色の六価クロムフリー化成皮膜を形成する方法。
EP2252545A2 (de) * 2008-03-10 2010-11-24 Yeda Research And Development Company Ltd. Verfahren zur herstellung nanoskaliger strukturierter oberflächen
JP4728437B1 (ja) * 2010-03-10 2011-07-20 日本特殊陶業株式会社 スパークプラグ、スパークプラグ用の主体金具、及び、スパークプラグの製造方法
JP4805400B1 (ja) * 2010-08-11 2011-11-02 日本特殊陶業株式会社 スパークプラグ及びスパークプラグ用の主体金具
US8558439B2 (en) * 2010-12-06 2013-10-15 Fram Group Ip Llc Anti-fouling spark plug and method of making
US9455553B2 (en) * 2013-02-15 2016-09-27 Ngk Spark Plug Co., Ltd. Spark plug
DE102014210922A1 (de) * 2014-06-06 2015-12-17 Ford Global Technologies, Llc Verfahren zur Herstellung einer Zündkerze für einen Verbrennungsmotor sowie Zündkerze für einen Verbrennungsmotor
DE102014217084B4 (de) * 2014-08-27 2024-02-01 Robert Bosch Gmbh Zündkerze mit Dichtung aus einer mindestens ternären Legierung
KR102274990B1 (ko) * 2015-06-09 2021-07-09 닛폰세이테츠 가부시키가이샤 표면 처리 강판
US9972978B2 (en) * 2015-06-15 2018-05-15 Federal-Mogul Ignition Company Spark plug gasket and method of attaching the same
DE102017109844B4 (de) * 2017-05-08 2019-08-14 Federal-Mogul Ignition Gmbh Verfahren zum Herstellen einer Zündkerzenanordnung und Zündkerzenanordnung
DE102019203803A1 (de) * 2019-03-20 2020-09-24 Robert Bosch Gmbh Zündkerzengehäuse mit galvanischer Nickel- und Zink-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse

Also Published As

Publication number Publication date
JP2022524623A (ja) 2022-05-09
BR112021018603A2 (pt) 2021-11-23
EP3942658A1 (de) 2022-01-26
DE102019203803A1 (de) 2020-09-24
US11979003B2 (en) 2024-05-07
JP7256893B2 (ja) 2023-04-12
US20220181852A1 (en) 2022-06-09
CN113544921A (zh) 2021-10-22
CN113544921B (zh) 2022-12-27
WO2020187966A1 (de) 2020-09-24

Similar Documents

Publication Publication Date Title
EP3942658B1 (de) Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse
EP2907894B1 (de) Verfahren zum Herstellen eines mit einer Chrom-VI-freien und kobaltfreien Passivierung versehenen Substrats
DE102012002637B4 (de) Abgasanlage
EP2324141A2 (de) VERSCHLEIß- UND KORROSIONSHEMMENDER SCHICHTVERBUND
DE202006019880U1 (de) Korrosionsbeständiges Substrat
DE60128844T2 (de) Metallisches Glied mit Chromatschicht, Zündkerze mit Chromschicht und ihr Herstellungsverfahren
DE60002534T2 (de) Zündkerze und ihr Herstellungsverfahren
DE102019203805A1 (de) Zündkerzengehäuse mit galvanischer Zink-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
DE102019209639A1 (de) Bauteil für einen Injektor für die Kraftstoff- und/oder Wassereinspritzung von Ottomotoren, Verfahren zu dessen Herstellung sowie Injektor für die Kraftstoff- und/oder Wassereinspritzung von Ottomotoren
DE102018211303A1 (de) Zündkerzengehäuse mit galvanischer Nickel-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
WO2020011445A1 (de) Zündkerzengehäuse mit galvanischer oder chemischer nickel-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse
DE102013104621A1 (de) Elektronisches Bauelement und Verfahren zu dessen Passivierung
DE102018211306A1 (de) Zündkerzengehäuse mit chemischer Nickel-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
DE102018222838A1 (de) Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
DE202007007303U1 (de) Korrosionsbeständiges Substrat
WO2015090709A1 (de) ZÜNDKERZENELEKTRODE UND ZÜNDKERZE MIT REDUZIERTEM KORROSIVEM VERSCHLEIß UND VERFAHREN ZUR HERSTELLUNG EINER ZÜNDKERZENELEKTRODE
DE112022003153T5 (de) Metallgehäuse und zündkerze
DE102018204699A1 (de) Verfahren zum Fertigen eines Gehäuses einer Batteriezelle sowie entsprechendes Gehäuse und Batteriezelle
DE102009017702A1 (de) Verfahren zur Bildung von Korrosionsschutzschichten auf Metalloberflächen
EP1251192A2 (de) Verfahren zum Herstellen eines Heizkörpers und Heizkörper
DE202013002328U1 (de) Lagersystem
DE102013004151B4 (de) Lagersystem
EP2813720A1 (de) Lagersystem
DE202007002788U1 (de) Korrosionsbeständiges Substrat
EP1212818A1 (de) Zündeinrichtung und verfahren zur herstellung derselben

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007088

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240415

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240527

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240521

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240402

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240521

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240521

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240403

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240528

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240221