DE102018222838A1 - Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse - Google Patents

Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse Download PDF

Info

Publication number
DE102018222838A1
DE102018222838A1 DE102018222838.8A DE102018222838A DE102018222838A1 DE 102018222838 A1 DE102018222838 A1 DE 102018222838A1 DE 102018222838 A DE102018222838 A DE 102018222838A DE 102018222838 A1 DE102018222838 A1 DE 102018222838A1
Authority
DE
Germany
Prior art keywords
housing
layer
nickel
containing protective
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018222838.8A
Other languages
English (en)
Inventor
Tina Hirte
Stefan Nufer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102018222838.8A priority Critical patent/DE102018222838A1/de
Priority to CN201980046072.0A priority patent/CN112385102A/zh
Priority to US17/257,853 priority patent/US11245251B2/en
Priority to PCT/EP2019/064238 priority patent/WO2020011445A1/de
Priority to EP19728048.0A priority patent/EP3821506A1/de
Priority to JP2020571413A priority patent/JP7042933B2/ja
Publication of DE102018222838A1 publication Critical patent/DE102018222838A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spark Plugs (AREA)

Abstract

Gehäuse (2) für eine Zündkerze (1) mit einer Bohrung entlang der Längsachse X des Gehäuses (2), wodurch das Gehäuse (2) eine Außenseite (205) und eine Innenseite (204) aufweist, und wobei auf mindestens einem Teil der Außenseite (205) des Gehäuses (2) eine galvanisch oder chemisch aufgetragene Nickel-haltige Schutzschicht (210) angeordnet ist und auf der Nickel-haltigen Schutzschicht (210) eine Versiegelungsschicht (220) angeordnet ist, dadurch gekennzeichnet, dass die Versiegelungsschicht (220) Silizium enthält, und dass zwischen dem Gehäuse und der Nickel-haltigen Schutzschicht eine erste Zwischenschicht (301) und/oder zwischen der Nickel-haltigen Schutzschicht und der Versiegelungsschicht eine zweite Zwischenschicht (302) und/oder auf der Versiegelungsschicht eine Deckschicht (303) aufgetragen sind.

Description

  • Stand der Technik
  • Die Erfindung betrifft ein Gehäuse für eine Zündkerze gemäß dem Anspruch 1 und eine Zündkerze mit mindestens einem solchen Gehäuse gemäß dem Anspruch 9, sowie ein Herstellungsverfahren für das Gehäuse gemäß Anspruch 10.
  • Heutige Zündkerzen haben ein Gehäuse aus einem Stahl, der bei den im Motor herrschenden Bedingungen einer Korrosion, insbesondere Rosten, unterliegt. Deshalb wird schon seit längerem das Gehäuse der Zündkerze mit einer Schutzschicht, die das Stahl-Gehäuse vor Korrosion schützen soll, beschichtet. Sehr weit verbreitet sind Nickel-haltige Schutzschichten. Allerdings wird der Korrosionsschutz der Nickel-haltigen Schutzschicht durch Defekte in der Schutzschicht gemindert. Diese Defekte können von der Oberfläche der Nickel-haltigen Schutzschicht bis hin zur Oberfläche des Gehäuses reichen und somit als Angriffswege für Korrosion am Gehäuse selbst fungieren.
  • Beispielsweise ist aus der EP 2 546 938 A1 und der EP 2 605 348 A1 bekannt, dass man dieses Problem minimieren kann, indem man auf die Nickel-haltige Schutzschicht eine Chrom-haltige Versiegelungsschicht aufträgt und somit die Defekte versiegelt.
  • Eine Chrom-haltige Versiegelungsschicht kann beispielsweise aus einem CrVI-haltigen Medium an der Gehäuse-Oberfläche abgeschieden werden. Dabei entsteht eine Versiegelungsschicht mit gebundenen 3-wertigen Chrom. Allerdings kann es passieren, dass je nach Umgebungsbedingungen sich eigentlich an der Oberfläche gebundenes 3-wertiges Chrom von der Versiegelungsschichtoberfläche in freies 6-wertiges Chrom umwandelt. Das Problem dabei ist, dass 6-wertiges Chrom als gesundheitsschädlich eingestuft ist und in einigen Ländern dessen Verwendung verboten ist.
  • Offenbarung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung ein Gehäuse für eine Zündkerze mit einem Korrosionsschutzschicht-System bereit zu stellen, das einen guten Korrosionsschutz bietet und gleichzeitig auf die Verwendung einer Cr-haltigen Versiegelungsschicht weitest gehend verzichtet. Insbesondere sollte das Korrosionsschutzschicht-System auch eine Temperaturbeständigkeit bei 300°C haben.
  • Diese Aufgabe wird von einem erfindungsgemäßen Gehäuse für eine Zündkerze dadurch gelöst, dass die auf eine Nickel-haltige Schutzschicht angeordnete Versiegelungsschicht Silizium enthält. Durch die Verwendung von einer Silizium-haltigen Versiegelungsschicht ergibt sich der Vorteil, dass auf eine Chrom-haltige Versiegelungsschicht verzichtet werden kann und somit die Gefahr, dass sich 6-wertiges Chrom bildet und die Versiegelungsschicht verlässt, nicht besteht. Des Weiteren haben sich Versiegelungsschichten auf Basis von Silizium als sehr temperaturbeständig erwiesen. Konkret konnte bei Testreihen für Zündkerzen-Gehäusen, die ein Korrosionsschutzschicht-System aus einer Nickel-haltigen Schutzschicht und einer Silizium-haltigen Versiegelungsschicht aufweisen, gezeigt werden, dass diese Gehäuse beim Sprühnebeltest nach 24 Stunden immer noch einen Rostgrad von 0 aufweisen, d.h. das Gehäuse zeigt keine rostigen Stellen in den Bereichen des Gehäuses, bei denen eine Korrosionsschutzschicht aufgetragen ist. Selbst nach einer Auslagerung der Gehäuse bei 300°C für 3 Stunden weisen die Gehäuse beim Sprühnebeltest nach 24 Stunden immer noch einen Rostgrad von 0 auf.
  • Das Gehäuse für eine Zündkerze weist eine Bohrung entlang seiner Längsachse auf. Durch diese Bohrung bekommt das Gehäuse eine Außenseite und eine Innenseite. Die Bohrung im Gehäuse ist typischerweise dafür vorgesehen, dass ein Isolator mit Mittelelektrode und Anschlussmitteln aufgenommen wird. Das Gehäuse ist typischerweise aus einem Stahl, wie beispielsweise Kohlenstoffstahl. Auf mindestens einem Teil der Außenseite ist auf der Oberfläche des Gehäuses eine Schutzschicht aufgetragen, die das Gehäuse vor Korrosion schützen soll. Die Schutzschicht ist eine Nickel-haltige Schutzschicht, die mittels der Galvanotechnik oder eines chemischen Beschichtungsverfahrens auf das Gehäuse aufgetragen wird.
  • Bei der Galvanotechnik wird das Gehäuse als Anode zusammen mit einer als Kathode dienenden Elektrode in ein Nickel-haltiges Elektrolytbad getaucht. Durch anlegen eine Spannung zwischen Gehäuse und Elektrode fließt von der Elektrode durch das Elektrolytbad ein Strom zum Gehäuse hin, wodurch auf der zur Elektrode hingewendete Seite des Gehäuses sich eine Nickel-haltige Schutzschicht abscheidet. Die Schutzschicht besteht im Wesentlichen aus Nickel. Eisen aus der Elektrode wird zusammen mit dem Nickel ebenfalls am Gehäuse abgeschieden. Der Anteil von Eisen in der Nickel-haltigen Schutzschicht beträgt typischerweise 2 bis 6 Gew.-%. Weitere Verunreinigungen in der Nickel-haltigen Schutzschicht wie beispielsweise Schwefel und Spuren von Natrium oder Kalium sind möglich.
  • Bei der chemischen Beschichtung wird das Gehäuse in ein Nickel-haltiges Elektrolytbad gelegt und durch chemische Oxidationsreaktion scheiden sich das Nickel an der Oberfläche des Gehäuses ab. Durch die chemische Beschichtung erhält man eine sehr gleichmäßige Nickel-haltige Schutzschicht auf dem Gehäuse. Die Schutzschicht besteht im Wesentlichen aus Nickel. Phosphor ist dem Elektrolytbad beigemischt und scheidet sich zusammen mit dem Nickel an der Gehäuse-Oberfläche ab. Dabei verbessert Phosphor die Korrosionsschutzfunktion der Schutzschicht, macht diese allerdings gleichzeitig auch spröder. Ein Phosphor-Gehalt von 3 bis 12 Gew.-% in der Nickel-haltigen Schutzschicht hat sich als guter Kompromiss für eine gute Korrosionsschutzeigenschaft für die Nickel-haltige Schutzschicht und gleichzeitig einer noch guten Bearbeitbarkeit der Nickel-haltigen Schutzschicht herausgestellt.
  • Die Nickel-haltige Schutzschicht auf dem Gehäuse dient als passiver Korrosionsschutz, d.h. die Nickel-haltige Schutzschicht ist elektrochemisch edler als das Material des Gehäuses und bildet eine Barriereschicht gegen feuchte Medien. Der Korrosionsschutz, den die Nickel-haltige Schutzschicht bietet, hängt von der Schichtdicke B der Nickel-haltigen Schutzschicht und deren Defektfreiheit ab. Je dicker die Nickel-haltige Schutzschicht ist umso geringer ist die Wahrscheinlichkeit, dass sich ein Defekt von der Oberfläche der Nickel-haltigen Schutzschicht durch die gesamte Dicke der Nickel-haltigen Schutzschicht hindurch bis zur Oberfläche des Gehäuses hin erstreckt und dadurch einen Angriffsweg für Korrosionsprozesse am Gehäuse eröffnet. Durch eine zusätzliche Versiegelungsschicht auf der Nickel-haltigen Schutzschicht werden diese Defekt verschlossen und der Korrosionsschutz verbessert.
  • Des Weiteren sind zwischen dem Gehäuse und der Nickel-haltigen Schutzschicht eine erste Zwischenschicht und/oder zwischen der Nickel-haltigen Schutzschicht und der Versiegelungsschicht eine zweite Zwischenschicht und/oder auf der Versiegelungsschicht eine Deckschicht aufgetragen.
  • Durch die erste Zwischenschicht ergibt sich der Vorteil, dass die Nickel-haltige Schutzschicht besser am Gehäuse haftet. Die erste Zwischenschicht dient als Haftanbindungsschicht und kann beispielsweise aus Kupfer oder Nickel-Strike bestehen.
  • Durch die zweite Zwischenschicht ergibt sich der Vorteil, dass die Silizium-haltige Versiegelungsschicht besser an der Nickel-haltige Schutzschicht haftet und thermische Spannungen zwischen den Schichten reduziert werden. Die zweite Zwischenschicht dient als Haftanbindungsschicht und kann beispielsweise mindestens eins der Elemente: Nickel, Kupfer, Chrom oder Titan enthalten.
  • Die Deckschicht auf der Silizium-haltigen Versiegelungsschicht dient dazu die Versiegelungsschicht vor mechanischen Beschädigungen zu schützen und kann beispielsweise mindestens eins der Elemente: Nickel, Kupfer, Chrom oder Titan enthalten.
  • Weitere vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Bei einer vorteilhaften Ausgestaltung ist vorgesehen, dass die Versiegelungsschicht frei von Chrom ist, d.h. die Versiegelungsschicht enthält kein absichtlich hinzugefügtes Chrom und enthält Chrom maximal in einer Menge von technisch unvermeidbaren Verunreinigungen, beispielsweise die beim Herstellungsprozess ungewollt in die Versiegelungsschicht eingelagert werden.
  • Es hat sich als vorteilhaft herausgestellt, dass die Versiegelungsschicht eine Schichtdicke A von nicht unter 10 nm und nicht mehr als 10 µm hat, insbesondere von nicht unter 100 nm und/oder nicht mehr als 1 µm hat. Es hat sich gezeigt, dass die Versiegelungsschicht eine Schichtdicke A von nicht kleiner als 10 nm haben sollte, damit die Versiegelungsschicht ausreichend dick ist um die Defekte in der Nickel-haltigen Schutzschicht zu verschließen. Des Weiteren hat sich gezeigt, dass bei Schichtdicken A der Versiegelungsschicht von mehr als 10 µm es keine wesentliche Verbesserung bei den oben beschriebenen technischen Effekten der Versiegelungsschicht kommt.
  • Zusätzlich oder alternativ liegt die Schichtdicke B der Nickel-haltigen Schutzschicht in einem Bereich von 1 µm bis 30 µm.
  • Zusätzlich oder alternativ hat die erste Zwischenschicht eine Schichtdicke C von 1 nm bis 1000 nm und/oder die zweite Zwischenschicht eine Schichtdicke D von 1 nm bis 1000 nm und/oder die Deckschicht eine Schichtdicke E von 1 nm bis 2000 nm. Es ist vorteilhaft, wenn die Schichtdicke der Zwischenschicht und der Deckschicht deutlich weniger dick sind als die Nickel-haltige Schutzschicht, dadurch wird verhindert, dass es zu inneren Spannungen in den Zwischenschichten und der Deckschicht kommt. Aufgrund von inneren Spannungen in einer Schicht kann es zu Haftanbindungsfehlern oder Ablösung der Schicht zu einer anderen Schicht, wie beispielsweise der Nickel-haltigen Schutzschicht oder der Versiegelungsschicht führen.
  • Die vorteilhaften Effekte des Korrosionsschutzschicht-Systems, aufweisend Nickel-haltige Schutzschicht und Versiegelungsschicht sowie die erste Zwischenschicht und/oder die zweite Zwischenschicht und/oder die Deckschicht, ergeben sich insbesondere, wenn die Nickel-haltige Schutzschicht und die Versiegelungsschicht sowie die erste Zwischenschicht und/oder die zweite Zwischenschicht und/oder die Deckschicht auf der gesamten Außenseite des Gehäuses ausgebildet sind. Und das Korrosionsschutzschicht-System insbesondere zusätzlich auch auf mindestens einem Teil der Innenseite des Gehäuses ausgebildet sind. Es ist besonders vorteilhaft, wenn die Nickel-haltige Schutzschicht und die Versiegelungsschicht sowie die erste Zwischenschicht und/oder die zweite Zwischenschicht und/oder die Deckschicht auf der gesamten Oberfläche des Gehäuses ausgebildet sind. Je mehr Oberfläche des Gehäuses mit dem Korrosionsschutzschicht-System bedeckt ist umso geringer ist die freiliegende Gehäuseoberfläche, die anfällig für Korrosionsprozesse ist.
  • Die Erfindung betrifft auch eine Zündkerze, aufweisend ein erfindungsgemäßes Gehäuse, einen im Gehäuse angeordneten Isolator, eine im Isolator angeordnete Mittelelektrode und einer an dem brennraumseitigen Ende des Gehäuses angeordnete Masseelektrode, wobei die Masseelektrode und die Mittelelektrode dazu eingerichtet sind gemeinsam einen Zündspalt zu bilden.
  • Des Weiteren betrifft die Erfindung auch das Herstellungsverfahren eines erfindungsgemäßen Gehäuses. Das Herstellungsverfahren weist dabei die folgenden Schritte auf:
    • • Bereitstellen eines Gehäuses für eine Zündkerze mit einer Nickel-haltigen Schutzschicht, die mittels eines galvanischen oder eines chemischen Beschichtungsverfahrens auf das Gehäuse aufgetragen wurde, wobei das Gehäuse optional eine erste und/oder zweite Zwischenschicht aufweist
    • • Anschließend spülen des mit mindestens der Nickel-haltigen Schutzschicht beschichteten Gehäuses,
    • • Anschließend ein Schritt, bei dem eine Versiegelungsschicht auf die Nickel-haltige Schutzschicht oder die zweite Zwischenschicht aufgetragen wird.
  • Optional kann das Herstellungsverfahren vor dem Spül-Schritt noch ein Reinigungs-Schritt enthalten, bei dem die Oberfläche des mit der Nickel-haltigen Schutzschicht beschichteten Gehäuses gereinigt wird. Der Reinigungsschritt dient dazu die Oberfläche des Gehäuses und die Oberfläche der Nickel-haltigen Schutzschicht von beispielsweise Partikeln, Schmutz und Passivierungsmittel zu reinigen und insbesondere eine Hydrolisation oder Aktivierung der Oberfläche für die Anbindung der Silanlösung durchzuführen.
  • Im Spülschritt wird das mit mindestens der Nickel-haltigen Schutzschicht beschichtete Gehäuse von Reinigungsmittel bzw. dessen Rückständen befreit. Bzw. wenn auf einen eigenen Reinigungsschritt verzichtet wird, dann werden beim Spülschritt auch grobe Verschmutzungen, wie beispielsweise Staub, abgewaschen.
  • Beim Auftragungsschritt der Versiegelungsschicht wird die Versiegelungsschicht mindestens auf die Nickel-haltige Schutzschicht oder die zweite Zwischenschicht aufgetragen.
  • Vorzugsweise ist die Versiegelungsschicht eine Silizium-haltige Versiegelungsschicht, wobei die Silizium-haltige Versiegelungsschicht durch eine Silanisierung der mit mindestens der Nickel-haltigen Schutzschicht beschichteten Gehäuseoberfläche ausgebildet wird. Eine Silanisierung ist eine chemische Anbindung einer Silanverbindung an eine Oberfläche. Die Anbindung erfolgt durch Kondensationsreaktion zwischen hydrolysierbaren Gruppen der verwendeten Silane und chemischen Gruppen an der Oberfläche. Die für die Silanisierung verwendeten Silane haben typischerweise die allgemeine Form RmSiXn, wobei R für organische funktionalisierte Reste und X für hydrolysierbare Gruppen stehen, m und n stehen für die Anzahl der organisch funktionalisierten Reste und der hydrolysierbaren Gruppen.
  • Das Verfahren weist bei einer vorteilhaften Weiterentwicklung mindestens einen Trocknungsschritt auf, bei dem das Wasser oder ein Lösungsmittel von der Oberfläche des beschichteten und versiegelten Gehäuses entfernt wird. Dabei beginnen beispielsweise die Silanverbindungen bereits sich zu vernetzen. Des Weiteren kann das Herstellungsverfahren auch ein Polykondensationsschritt zur Aushärtung der Versiegelungsschicht aufweisen. Bei der Aushärtung von Silanverbindungen wird die Vernetzung der Silanverbindungen abgeschlossen und verfestigt sich, so dass sich eine feste und robuste Versiegelungsschicht ausbildet.
  • Zusätzlich oder alternativ kann das Herstellungsverfahren noch einen Schritt aufweisen, bei dem eine Deckschicht auf die Versiegelungsschicht aufgetragen wird. Dadurch wird die Versiegelungsschicht vor mechanischer Beschädigung geschützt.
  • Bei der bevorzugten Silanisierung beispielsweise kann die Polykondensation sowohl von Silanverbindung untereinander, die an der Oberfläche der Nickel-haltigen Schutzschicht des Gehäuses angekoppelt sind, als auch von an die Oberfläche der Nickel-haltigen Schutzschicht des Gehäuses angekoppelte Silanverbindungen mit nichtangekoppelten Silanverbindungen umfassen.
  • Grundsätzlich ist es auch möglich, dass weitere Silikonverbindungen, wie beispielsweise Silikonöle (z.B. Diorganopolysiloxane) in das durch die Polykondensation entstandene Netzwerke der Silanverbindungen eingelagert werden.
  • Bei einer vorteilhaften Weiterentwicklung des Herstellungsverfahrens wird zum Auftragen der Versiegelungsschicht ein Sol-Gel-Prozess, CCVD oder PVD als Beschichtungsmethode verwendet.
  • Bei dem Sol-Gel-Prozess wird das Gehäuse in eine Silan-Lösung gelegt. Während der Silanisierung lagern sich die Silane an der Oberfläche des mit der Nickel-haltigen Schutzschicht beschichteten Gehäuses an und beginnen sich dort untereinander zu vernetzen und die Versiegelungsschicht auszubilden.
  • Bei der CCVD-Methode (combustion chemical vapor deposition), auch Flammenbeschichtung genannt, wird einem Brenngas eine zur Erzeugung der gewünschten Schicht geeignete Ausgangsverbindung, hier die Silane, zugesetzt. Die Flamme wird in geringem Abstand über das zu beschichtende Substrat, hier das mit der Nickel-haltigen Schutzschicht beschichtete Gehäuse, bewegt. Durch die hohe Verbrennungsenergie bilden die Ausgangsverbindungen sehr reaktive Spezies, die sich fest mit der Substratoberfläche verbinden. Die thermische Belastung für das Substrat selbst ist gering, da es nur kurz mit der Flamme in Berührung kommt.
  • Bei der PVD-Methode (physical vapor deposition) liegt das abzuscheidende Material, hier die Silane, in fester Form in einer Beschichtungskammer vor. Durch Beschuss mit Laserstrahlen, Ionen, Elektroden oder Lichtbogenentladung wird das Material verdampft. Das verdampfte Material bewegt sich durch die Beschichtungskammer auf die zu beschichtenden Teile, hier das mit der Nickel-haltigen Schutzschicht beschichtete Gehäuse, kondensiert dort und bildet somit die Schicht aus.
  • Es hat sich als vorteilhaft herausgestellt für die Herstellung der Silizium-haltigen Versiegelungsschicht Silane mit Funktionalisierung, insbesondere Alkoxysilane, Aminosilane oder Acrylsilane, zu verwenden. Zusätzlich können auch Silane ohne Funktionalisierung, insbesondere Alkyltrialkoxysilane, für die Silane-haltige Versiegelungsschicht verwendet werden. Teilfluorierte oder perfluorierte Siloxane sind nur eingeschränkt verwendbar, da daraus gebildete Schichten keine Temperaturbeständigkeit bis zu 300°C aufweisen.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind.
  • Figurenliste
    • 1 zeigt ein Beispiel für ein erfindungsgemäßes Korrosionsschutzschicht-System auf einem Gehäuse
    • 2 zeigt beispielhaft das Herstellungsverfahren für ein erfindungsgemäßes Gehäuse
  • Beschreibung des Ausführungsbeispiels
  • 1 zeigt ein Beispiel für ein erfindungsgemäßes Korrosionsschutzschicht-System, bestehend aus der Nickel-haltigen Schutzschicht 210 und der Silizium-haltigen Versiegelungsschicht 220 sowie der ersten Zwischenschicht 301 und der zweiten Zwischenschicht 302 und der Deckschicht 303. Auf der Oberfläche eines Gehäuses 2 ist die erste Zwischenschicht 301 aufgetragen. Auf dieser ist wiederum die Nickel-haltige Schutzschicht 210 aufgetragen. Zwischen der Nickel-haltige Schutzschicht 210 und der Silizium-haltige Versiegelungsschicht 220 ist die zweite Zwischenlage 302 angeordnet. Auf der Silizium-haltigen Versiegelungsschicht 220 ist wiederum die Deckschicht 303 aufgetragen. Die Nickel-haltige Schutzschicht 210 hat eine Schichtdicke B. Die erste Zwischenschicht 301 hat eine Schichtdicke C und die zweite Zwischenschicht 302 hat eine Schichtdicke D. Die Schichtdicken werden senkrecht zur Gehäuse-Oberfläche gemessen. Wenn die Nickel-haltige Schutzschicht 210 mittels Galvanotechnik auf dem Gehäuse 2 aufgebracht ist, kann die Schichtdicke B der Nickel-haltigen Schutzschicht 210 an verschiedenen Stellen des Gehäuses 2 unterschiedlich sein. Beispielsweise kann das Gehäuse 2 auf seiner Innenseite 204 keine Nickel-haltige Schutzschicht 210 oder nur teilweise eine Nickel-haltige Schutzschicht 210 aufweisen. Die Silizium-haltige Versiegelungsschicht 220 hat eine Schichtdicke A. Bei einer Silizium-haltigen Versiegelungsschicht 220, die mittels eines Tauchbads in einer Silanlösung aufgetragen wird, ergibt sich in der Regel eine sehr gleichmäßige Schichtdicke A für die Silizium-haltige Versiegelungsschicht 220. Insbesondere kann die Silizium-haltige Versiegelungsschicht 220 auf der gesamten Oberfläche des Gehäuses 2 ausgebildet sein, auch an Stellen des Gehäuses 2, an denen es keine Nickel-haltige Schutzschicht 210 gibt, wie beispielsweise Bereiche der Innenseite 204 des Gehäuses 2. Die Deckschicht 303 hat eine Schichtdicke E.
  • Bei weiteren Ausgestaltungen des Gehäuses 2 mit dem erfindungsgemäßen Korrosionsschutzschicht-System kann das Korrosionsschutzschicht-System neben der Nickel-haltigen Schutzschicht 210 und der Versiegelungsschicht 220 nur die Deckschicht 303 oder nur die erste oder zweite Zwischenschicht 301, 302 oder die Deckschicht 303 in Kombination mit der ersten oder zweiten Zwischenschicht 301, 302 aufweisen.
  • 2 zeigt schematisch einen Ausschnitt aus dem beispielhaften Ablauf des Verfahrens zur Herstellung eines erfindungsgemäßen Gehäuses 2:
  • In einem ersten optionalen Schritt S1 wird das Gehäuse 2, das zuvor mittels Galvanotechnik oder mittels eines chemischen Beschichtungsverfahrens mit einer Nickel-haltigen Schutzschicht 210 beschichtet wurde, und dessen Oberfläche gereinigt. Dazu wird das mit der Nickel-haltigen Schutzschicht 210 beschichtete Gehäuse 2 in ein Bad mit einem hochalkalischen Reiniger gelegt und für ca. 5 min zusätzlich mit Ultraschall im Bad bestrahlt. Der optionale Reinigungsschritt dient zum einem der Entfernung von Partikeln, Schmutz und Passivierungsmittel, die ein Auftragen der Versiegelungsschicht 220 behindern, zum anderen wird die Oberfläche, auf die die Versiegelungsschicht 220 aufgetragen werden soll, hydrolisiert bzw. aktiviert, damit die Versiegelungsschicht 220 eine gute Anbindungsmöglichkeit hat. Optional kann vor der optionalen Reinigung das Gehäuse 2 neben der Nickel-haltigen Schutzschicht 210 auch eine erste Zwischenschicht 301 und/oder eine zweite Zwischenschicht 302 aufweisen.
  • Im zweiten Schritt S2 wird das gereinigte Gehäuse 2 mit beispielsweise demineralisiertem Wasser gespült, damit mögliche Reste von Reinigungsmittel entfernt werden.
  • Im dritten Schritt S3 wird die Versiegelungsschicht 220 aufgetragen. Dabei kann beispielsweise die Auftragung durch eine Silanisierung des Gehäuses 2 erfolgen. Dabei wird das Gehäuse 2 in eine Silanlösung eingetaucht oder mit einer Silanlösung besprüht. Bei diesem Schritt bindet sich das Silan an die hydrolisierte Oberfläche des Gehäuses 2 und beginnt sich zu vernetzen wodurch die Versiegelungsschicht 220 entsteht.
  • Bei einem optionalen vierten Schritt S4 erfolgt eine Trocknung des Gehäuses 2 und die Aushärtung der Versiegelungsschicht 220. Dabei wird das Gehäuse 2 nach der Silanisierung beispielsweise in einen Trocknungsofen bei ca. 130°C für ca. 15 min gelegt oder induktiv getrocknet. Dabei werden mögliche Wasserreste oder Lösungsmittelreste beispielsweise aus dem Bad aus der Versiegelungsschicht 220 entfernt. Gleichzeitig findet weitere Vernetzung der Silane untereinander statt, wodurch die Versiegelungsschicht 220 aushärtet. Der Trocknungsschritt ist besonders vorteilhaft, da dadurch die Vernetzung der Silane untereinander unterstützt und beschleunigt werden.
  • Im hier gezeigten letzten Schritt S5 kühlt das Gehäuse 2 ab, bevor es zur weiteren Verarbeitung weitergeleitet wird, wie beispielsweise einem Auftragen einer Deckschicht 303 auf die Silizium-haltige Versiegelungsschicht 220 oder einem Zusammenbauen der Zündkerze.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 2546938 A1 [0003]
    • EP 2605348 A1 [0003]

Claims (17)

  1. Gehäuse (2) für eine Zündkerze (1) mit einer Bohrung entlang der Längsachse X des Gehäuses (2), wodurch das Gehäuse (2) eine Außenseite (205) und eine Innenseite (204) aufweist, und wobei auf mindestens einem Teil der Außenseite (205) des Gehäuses (2) eine galvanisch oder chemisch aufgetragene Nickel-haltige Schutzschicht (210) angeordnet ist und auf der Nickel-haltigen Schutzschicht (210) eine Versiegelungsschicht (220) angeordnet ist, dadurch gekennzeichnet, dass die Versiegelungsschicht (220) Silizium enthält, und dass zwischen dem Gehäuse (2) und der Nickel-haltigen Schutzschicht (210) eine erste Zwischenschicht (301) und/oder zwischen der Nickel-haltigen Schutzschicht (210) und der Versiegelungsschicht (220) eine zweite Zwischenschicht (302) und/oder auf der Versiegelungsschicht (220) eine Deckschicht (303) aufgetragen sind.
  2. Gehäuse (2) nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Versiegelungsschicht (220) frei von Chrom ist.
  3. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Versiegelungsschicht (220) eine Schichtdicke A von 10 nm bis 10 µm hat, insbesondere von 100 nm bis 1 µm hat.
  4. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Nickel-haltige Schutzschicht (210) eine Schichtdicke B von 1 µm bis 30 µm hat.
  5. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die erste Zwischenschicht (301) eine Schichtdicke C von 1 nm bis 1000 nm hat.
  6. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Zwischenschicht (302) eine Schichtdicke D von 1 nm bis 1000 nm hat.
  7. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Deckschicht eine Schichtdicke (303) E von 1 nm bis 2000 nm hat.
  8. Gehäuse (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Nickel-haltige Schutzschicht (210) und die Versiegelungsschicht (220) sowie die erste Zwischenschicht (301) und/oder die zweite Zwischenschicht (302) und/oder die Deckschicht (303) auf der gesamten Außenseite (205) des Gehäuses (2) ausgebildet sind, und insbesondere auf mindestens einem Teil der Innenseite (204) des Gehäuses (2) ausgebildet sind.
  9. Zündkerze (1), aufweisend ein Gehäuse (2) nach einem der Ansprüche 1 bis 8, einen im Gehäuse (2) angeordneten Isolator (3), eine im Isolator (3) angeordnete Mittelelektrode (4) und einer an dem brennraumseitigen Ende des Gehäuses (2) angeordnete Masseelektrode (5), wobei die Masseelektrode (5) und die Mittelelektrode (4) dazu eingerichtet sind gemeinsam einen Zündspalt zu bilden.
  10. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 1 bis 9, aufweisend die Schritte: • Bereitstellen eines Gehäuses (2) für eine Zündkerze (1) mit einer Nickel-haltigen Schutzschicht (210), die mittels eines galvanischen Beschichtungsverfahrens oder eines chemischen Beschichtungsverfahrens auf das Gehäuse (2) aufgetragen wurde, wobei das Gehäuse optional eine erste und/oder zweite Zwischenschicht (301, 302) aufweist, • Anschließend spülen des mit mindestens der Nickel-haltigen Schutzschicht (210) beschichteten Gehäuses (2) (S2), • Anschließend ein Schritt (S3), bei dem eine Versiegelungsschicht (220) auf die Nickel-haltige Schutzschicht (210) oder die zweite Zwischenschicht (302) aufgetragen wird.
  11. Herstellungsverfahren eines Gehäuses (2) nach Anspruch 10, dadurch gekennzeichnet, dass das Herstellungsverfahren vor dem Spülschritt (S2) einen Schritt (S1) aufweist, bei dem die Oberfläche des mit mindestens der Nickel-haltigen-Schutzschicht (210) beschichteten Gehäuses (2) gereinigt wird.
  12. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass das Herstellungsverfahren nach dem Auftragen der Versiegelungsschicht (220) auf die Nickel-haltige Schutzschicht (210) oder auf die zweite Zwischenschicht (302) einen Trocknungsschritt (S4) aufweist, indem insbesondere mögliches Wasser oder Lösungsmittel aus der Auftragung der Versiegelungsschicht von der Oberfläche des Gehäuses (2) entfernt werden.
  13. Herstellungsverfahren eines Gehäuses (2) nach Anspruch 12, dadurch gekennzeichnet, dass das Herstellungsverfahren nach dem Trocknungsschritt (S4) noch einen Polykondensationsschritt aufweist, indem die Versiegelungsschicht (220) aushärtet.
  14. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Herstellungsverfahren noch einen Schritt aufweist, bei dem eine Deckschicht (303) auf die Versiegelungsschicht (220) aufgetragen wird.
  15. Herstellungsverfahren eines Gehäuses (2) nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass zum Auftragen der Versiegelungsschicht (220) ein Sol-Gel-Prozess, CCVD oder PVD als Beschichtungsmethode verwendet werden.
  16. Herstellungsverfahren eines Gehäuses (2) nach einem der vorangehenden Ansprüche 10 bis 15, dadurch gekennzeichnet, dass für eine Versiegelungsschicht (220) Silane mit Funktionalisierung, insbesondere Alkoxysilane, Aminosilane oder Acrylsilane, verwendet werden.
  17. Herstellungsverfahren eines Gehäuses (2) nach Anspruch 16, dadurch gekennzeichnet, dass zusätzlich auch Silane ohne Funktionalisierung, insbesondere Alkyltrialkoxysilane, für die Versiegelungsschicht (220) verwendet werden.
DE102018222838.8A 2018-07-09 2018-12-21 Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse Pending DE102018222838A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102018222838.8A DE102018222838A1 (de) 2018-12-21 2018-12-21 Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
CN201980046072.0A CN112385102A (zh) 2018-07-09 2019-05-31 具有电镀或化学的含镍保护层以及含硅密封层的火花塞壳体以及具有该壳体的火花塞和该壳体的制造方法
US17/257,853 US11245251B2 (en) 2018-07-09 2019-05-31 Spark plug housing including an electroplated or a chemically applied nickel-containing protective layer and a silicon-containing sealing layer, and a spark plug including this housing, and method for manufacturing this housing
PCT/EP2019/064238 WO2020011445A1 (de) 2018-07-09 2019-05-31 Zündkerzengehäuse mit galvanischer oder chemischer nickel-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse
EP19728048.0A EP3821506A1 (de) 2018-07-09 2019-05-31 Zündkerzengehäuse mit galvanischer oder chemischer nickel-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse
JP2020571413A JP7042933B2 (ja) 2018-07-09 2019-05-31 電気めっきの(galvanisch)、または化学的なニッケル含有保護層とケイ素含有封止層とを有するスパークプラグハウジング、およびこのハウジングを有するスパークプラグ、およびこのハウジングの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018222838.8A DE102018222838A1 (de) 2018-12-21 2018-12-21 Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse

Publications (1)

Publication Number Publication Date
DE102018222838A1 true DE102018222838A1 (de) 2020-06-25

Family

ID=70969574

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018222838.8A Pending DE102018222838A1 (de) 2018-07-09 2018-12-21 Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse

Country Status (1)

Country Link
DE (1) DE102018222838A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048930A (ja) * 1998-07-27 2000-02-18 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
DE60002534T2 (de) * 1999-08-25 2003-11-20 Ngk Spark Plug Co Zündkerze und ihr Herstellungsverfahren
DE102007053457A1 (de) * 2007-11-07 2009-05-14 Nanogate Ag Goldhaltige Nickelschicht
EP2546938A1 (de) 2010-03-10 2013-01-16 NGK Sparkplug Co., Ltd. Zündkerze, hauptanschluss für eine zündkerze und verfahren zur herstellung einer zündkerze
EP2605348A1 (de) 2010-08-11 2013-06-19 NGK Sparkplug Co., Ltd. Zündkerze und hauptmetallarmatur für die zündkerze

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048930A (ja) * 1998-07-27 2000-02-18 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
DE60002534T2 (de) * 1999-08-25 2003-11-20 Ngk Spark Plug Co Zündkerze und ihr Herstellungsverfahren
DE102007053457A1 (de) * 2007-11-07 2009-05-14 Nanogate Ag Goldhaltige Nickelschicht
EP2546938A1 (de) 2010-03-10 2013-01-16 NGK Sparkplug Co., Ltd. Zündkerze, hauptanschluss für eine zündkerze und verfahren zur herstellung einer zündkerze
EP2605348A1 (de) 2010-08-11 2013-06-19 NGK Sparkplug Co., Ltd. Zündkerze und hauptmetallarmatur für die zündkerze

Similar Documents

Publication Publication Date Title
DE102012002637B4 (de) Abgasanlage
EP3942658B1 (de) Zündkerzengehäuse mit galvanischer nickel- und zink-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse
DE102006009116A1 (de) Korrosionsbeständiges Substrat und Verfahren zu dessen Herstellung
EP2324141A2 (de) VERSCHLEIß- UND KORROSIONSHEMMENDER SCHICHTVERBUND
DE10297178B4 (de) Korrosionsbeständige Beschichtungsfilmstruktur, die kein kein sechswertiges Chrom enthält
DE102018222838A1 (de) Zündkerzengehäuse mit Nickel-haltiger Schutzschicht, einer Silizium-haltigen Versiegelungsschicht und mindestens einer Zwischenschicht und/oder einer Deckschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
EP3821506A1 (de) Zündkerzengehäuse mit galvanischer oder chemischer nickel-haltiger schutzschicht und einer silizium-haltigen versiegelungsschicht, sowie eine zündkerze mit diesem gehäuse und herstellungsverfahren für dieses gehäuse
DE102018211303A1 (de) Zündkerzengehäuse mit galvanischer Nickel-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
DE102019203805A1 (de) Zündkerzengehäuse mit galvanischer Zink-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
DE102018211306A1 (de) Zündkerzengehäuse mit chemischer Nickel-haltiger Schutzschicht und einer Silizium-haltigen Versiegelungsschicht, sowie eine Zündkerze mit diesem Gehäuse und Herstellungsverfahren für dieses Gehäuse
EP2770088B1 (de) Hochkorrosionsfeste Stahlteile und Verfahren zu deren Herstellung
DE102006031492A1 (de) Korrosionsbeständiges Substrat und Verfahren zu dessen Herstellung
WO2015090709A1 (de) ZÜNDKERZENELEKTRODE UND ZÜNDKERZE MIT REDUZIERTEM KORROSIVEM VERSCHLEIß UND VERFAHREN ZUR HERSTELLUNG EINER ZÜNDKERZENELEKTRODE
DE10210849B4 (de) Verwendung eines Stoffes und ein Verfahren zur Beschichtung von Oberflächen von Körpern sowie Seltene-Erden-Magnetkörper mit einer entsprechenden Beschichtung
DE102018204699A1 (de) Verfahren zum Fertigen eines Gehäuses einer Batteriezelle sowie entsprechendes Gehäuse und Batteriezelle
DE102012222739A1 (de) Verfahren zum Herstellen eines Bauteilverbunds und Bauteilverbund
DE10119348A1 (de) Verfahren zum Herstellen eines Heizkörpers und Heizkörper
DE2215600A1 (de) Verwendung von aminosilanen zur oberflaechenbehandlung
DE102009017702A1 (de) Verfahren zur Bildung von Korrosionsschutzschichten auf Metalloberflächen
DE102016114808A1 (de) Verfahren zum Schutz eines Gehäuses eines Steckverbinders vor Korrosion
DE102009045076A9 (de) Korrosionsschutz auf Zink-Legierungsbasis
DE202007002788U1 (de) Korrosionsbeständiges Substrat
DE202013002328U1 (de) Lagersystem
DE2835465A1 (de) Verfahren zur korrosionsschutzbeschichtung von stahlrohren
DE102021126252A1 (de) Schichtsystem und Verfahren zur Herstellung eines Schichtsystems

Legal Events

Date Code Title Description
R163 Identified publications notified