EP3903381B1 - Verfahren zur integration einer »netzwerk -antenne in ein anderes elektromagnetisches medium und zugehörige antenne - Google Patents

Verfahren zur integration einer »netzwerk -antenne in ein anderes elektromagnetisches medium und zugehörige antenne Download PDF

Info

Publication number
EP3903381B1
EP3903381B1 EP19832904.7A EP19832904A EP3903381B1 EP 3903381 B1 EP3903381 B1 EP 3903381B1 EP 19832904 A EP19832904 A EP 19832904A EP 3903381 B1 EP3903381 B1 EP 3903381B1
Authority
EP
European Patent Office
Prior art keywords
parameter
radiating elements
reflectivity
antenna
antenna according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19832904.7A
Other languages
English (en)
French (fr)
Other versions
EP3903381A1 (de
Inventor
Adrien GLISE
Isabelle LE ROY-NANEIX
Stefan VARAULT
Grégoire PILLET
Christian Renard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3903381A1 publication Critical patent/EP3903381A1/de
Application granted granted Critical
Publication of EP3903381B1 publication Critical patent/EP3903381B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/528Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the re-radiation of a support structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0046Theoretical analysis and design methods of such selective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/001Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials

Definitions

  • the field of the invention is that of electromagnetic antennas called “array antennas” used in all types of radiocommunications. These antennas can, in particular, be radars. These antennas can be installed on the ground or on any type of mobile carrier, such as aircraft.
  • Antennas are integrated into an environment. This can range from a simple tower for the cellular telecommunications base station to a mobile carrier, such as an aircraft.
  • the environment surrounding the antenna must be taken into account when designing it so as not to disrupt the radio performance of the antenna.
  • the integration of the antenna on a carrier creates a clear electrical discontinuity which results in edge diffraction.
  • This diffraction phenomenon disrupts the antenna radiation.
  • Edge diffraction also contributes to the electromagnetic signature of the antenna and increases the radar cross-sectional area, known by the acronym “SER” of the antenna.
  • THE figures 1 to 3 illustrate this problem with a simple example.
  • THE figures 1 and 2 represent a top view and a side view of a rectangular antenna A of width L x and length L y integrated in an environment M of a different electromagnetic nature.
  • the reflectivity ⁇ a of the antenna is different from the reflectivity ⁇ m of the medium.
  • the black border B in these two figures represents the discontinuity between the antenna and its middle.
  • Figure 3 represents in lateral view the reflection of an incident wave I at the level of this discontinuity B.
  • the incident wave I then generates a specular wave S but also a parasitic retroreflected wave SER linked to the discontinuity B.
  • Array-type electromagnetic antennas are made up of a finite set of radiating elements. Depending on the applications, the constitution of a radiating element varies. In some cases, it may consist of only metal. In other cases, it may consist of metal resting on a substrate and surrounded by a superstrate. By superstrate we mean any structure which covers the antenna. A radome is a superstrate. This structure can be adapted to change the radiation characteristics of the antenna.
  • array antennas can generate surface waves.
  • the surface waves generated by the antenna are diffracted at the edge by the edges. These waves can reflect off the edges of the antenna cavity and be diffracted onto the other edge of the cavity.
  • We then observe a phenomenon of multiple reflection of surface waves on the cavity edges of the antenna which results in an increase in the SER and a degradation in the performance of the emitted radiation. This phenomenon also contributes to a degradation of antenna performance.
  • edges of the edge of the panel create diffraction phenomena which mainly disrupt the radiating elements located on the edge of the panel and contribute to the SER of the antenna.
  • a first solution consists of adding, in the environment close to the antenna, materials absorbing electromagnetic waves; this solution is presented in the publication of EF Knott, JF Schaeffer, and MT Tuley, Radar Cross Section, 2nd edition. Scitech Publishing, 2004 .
  • This method makes it possible to reduce cavity reflections and in particular cavity edge reflections due to the presence of surface waves. Furthermore, these waves create multiple reflections.
  • the presence of absorbers makes it possible to eliminate this phenomenon of reflection of surface waves at the edges of the antenna.
  • a third method is described in the application US 20070069940 entitled “Method and Arrangement for Reducing the Radar Cross Section of Integrated Antennas”. It proposes to treat the opening created by the antenna in a medium using resistive materials. This method has the advantage of providing a smooth transition to gradually attenuate surface waves and thus reduce diffraction due to edge edges.
  • absorbent materials Solutions based on absorbent materials are generally not sufficient.
  • the absorbers often continue to create an abrupt discontinuity between the medium and the antenna.
  • the absorbing materials may be of a different nature than the antenna and do not necessarily operate under the same conditions of temperature, pressure or vibration environment as those of the antenna.
  • the method according to the invention does not present the preceding drawbacks. It makes it possible to optimize the transition between the antenna and its environment by focusing on the electromagnetic behavior of the discontinuity and aims thus reducing the effects of diffraction and surface waves resulting from this transition.
  • the speed of variation of the parameter is minimum between the first element and the next element, minimum between the last element and the previous element and maximum between the two elements furthest from the first element and the last element.
  • said complex number representing the reflectivity comprises a real part and an imaginary part and in that the variation of the reflectivity between two radiating elements is equal to the modulus of the variations of the real and imaginary parts of the reflectivity of said radiating elements.
  • the invention also relates to a network antenna intended to be integrated into a medium and produced according to the preceding method, said antenna comprising a plurality of radiating elements ensuring the transition between the antenna and the medium, the reflectivity of each radiating element depending on at least one parameter, the reflectivity being represented by a complex number, the reflectivity of a first element being equal to or close to that of the antenna, the reflectivity of a last radiating element being equal to or close to that of the medium, said at least one parameter varies by a radiating element to the next, and the array antenna is configured in such a way that the speed of variation defined by the derivative of the reflectivity in the complex plane with respect to said at least one parameter being minimal between the first element and the next element , minimum between the last element and the previous element and maximum between the two elements furthest from the first element and the last element.
  • the parameter is the pitch of the network in one direction of space or two directions of space.
  • the radiating elements being metallic
  • the parameter is a geometric parameter of the radiating elements so that the radiating elements have different metallic surfaces.
  • the parameter is a geometric parameter of the radiating elements so that the radiating elements have different resistive surfaces.
  • the parameter is a physical characteristic of a substrate constituting the radiating elements.
  • the parameter is a physical characteristic of a superstrate constituting the radiating elements.
  • the physical characteristic is the relative permittivity or permeability of said substrate or said superstrate.
  • the radiating elements comprising a plurality of sheets of metallic or resistive patterns
  • the parameter is the quantity or arrangement of said sheets present in the radiating elements.
  • the radiating elements comprising metamaterials
  • the parameter is the quantity of metamaterials present in the radiating elements.
  • the figures 4 to 6 represent an antenna A according to the invention integrated into its environment M.
  • the figures 4 and 5 represent a top view and a side view of a rectangular antenna A of width L x and length L y integrated in an environment M of a different electromagnetic nature.
  • the reflectivity ⁇ a of the antenna is different from the reflectivity ⁇ m of the medium.
  • This antenna is surrounded by a transition zone T of width L Tx and length L Ty .
  • This transition zone is made up of radiating elements.
  • the electromagnetic parameters of these elements vary so as to modify their reflectivity coefficient ⁇ ij , thus ensuring a smooth transition between the antenna and its environment.
  • FIG. 6 represents, in lateral view, the reflection of an incident wave I at the level of the transition zone T.
  • the incident waves then generate specular waves S but also retroreflected waves SER of much lower magnitude than in the absence of transition zone.
  • the electromagnetic behaviors of the antenna and the medium are characterized by impedance or surface reflectivity. There is a passing relationship between these two parameters. We can thus model the antenna and its environment using two plates of different impedances.
  • the reflectivity is calculated and represented in the complex plane. It depends on the frequency, incidence and polarization of the wave.
  • the discontinuity caused by the change in impedance modifies the radio behavior of the antenna and induces harmful diffraction phenomena.
  • the integration of a progressive and controlled transition of reflectivity in one or more directions of space makes it possible to eliminate the effects of this discontinuity.
  • the reflectivity along the transition can be continuous or discretized.
  • a continuous modification means that the intrinsic property varies within the set of radiating elements of the transition.
  • a discretization of the transition boils down to giving a specific value to each element of the transition.
  • the method according to the invention makes it possible to reduce diffraction effects for a given incidence, polarization and frequency. Although the optimization is carried out for this incidence, this polarization and this determined frequency, it also acts for different incidences, frequencies and polarizations, sometimes according to the same law. Thus, the method is implemented for a typical or average value of the incidence, polarization and frequency and applies to a wider range of incidence, polarization and frequency.
  • the reflectivity does not necessarily vary according to these three parameters.
  • the reflectivity of a metallic plane is equal to -1 regardless of the frequency, polarization and incidence of the wave.
  • n the number of radiating elements and i the order number of a radiating element, i varying from 0 to n.
  • the reflectivity of this first element is equal to or close to that of the antenna
  • the reflectivity of the last radiating element is equal to or close to that of the middle.
  • the reflectivity parameter(s) of the radiating elements included between this first radiating element and this last radiating element vary from one radiating element to the next.
  • an accessible path L in the behavior between the two extreme radiating elements is defined.
  • each radiating element has reflectivity ⁇ (s).
  • the curve of the Figure 7 gives the complex representation of the accessible path as a function of a single physical parameter.
  • the real part x is on the x-axis and the imaginary part y on the y-axis. They are between -1 and + 1.
  • the parameterized curve ⁇ (s) is discretized according to a certain number of elements n of the transition, this discretization can be uniform or non-uniform.
  • a uniform discretization corresponds to the same spacing between each element.
  • the point denoted ⁇ (0) corresponds to the reflectivity of the antenna and the point denoted ⁇ (n) corresponds to the reflectivity of the medium for the nth radiating element. In the case of the Figure 7 , this reflectivity is equal to -1.
  • L ⁇ not ⁇ 0 s not ⁇ v s ⁇ ds
  • s 0 is the initial value of the physical parameter or of all the parameters when several are taken into account. It corresponds to the value of the parameter of the first radiating element, closest to the antenna.
  • s n is the final value of the physical parameter or of the set of parameters when several are taken into account. It corresponds to the parameter value of the last radiating element, closest to the middle.
  • v(s) is the vector derived from ⁇ (s). Its coordinates in the complex plane are: ⁇ x ′ s y ′ s
  • the masking of diffraction phenomena is optimized. It is necessary that the norm of the parametric speed noted
  • the parametric speed can take different values in the transition.
  • FIG 8 presents an example of a mathematical law describing the evolution of the parameterized length L ⁇ as a function of the position of the radiating element i.
  • the number of radiating elements is 12 on the figures 8 And 9 .
  • the curve of the figure 8 shows small variations at the start and end so as to obtain low parametric speeds at the ends.
  • the parametric speed norm is represented discretely on the Figure 9 . It is also expressed as a function of the radiating element i.
  • the next step of the process consists of going back to the values of the parameter or to all of the parameters associated with each length value of the parameterized curve.
  • This determination can be done in different ways: analytically, if there is a passing formula, by means of charts or tabulated values.
  • THE figures 10 And 11 represent this step of determining the physical dimensions associated with each element of the transition.
  • FIG. 10 represents the variation of the path length L ⁇ n as a function of the maximum value of the parameter s. This figure is represented in a semi-logarithmic reference frame, the parameter s varying according to a logarithmic law. For a given maximum parameter value, we therefore deduce the value of the corresponding path.
  • FIG. 11 represents, for a determined maximum parameter value, the value of this parameter for each radiating element.
  • the maximum variation of s is 2000 for the first element, 500 for the second, 200 for the third and so on for the following elements.
  • the method is implemented in the case of the integration of an array antenna consisting of waveguide openings in a metallic medium.
  • Figure 12 represents in top view the antenna A at the level of its separation with the medium M.
  • the openings of the radiating elements ER are all identical, square in shape and of side a. They are regularly arranged.
  • the waveguides are said to be "under the cutoff", this results in total reflectivity of the guides, without having a phase shift of 180° like the perfect metallic plane. This results in an electrical discontinuity between the network of guides and a metal plate leading to diffraction phenomena.
  • Figure 13 represents the variation of the reflectivity coefficient between the antenna and its medium in the complex plane.
  • the point denoted ⁇ (0) corresponds to the reflectivity of the antenna and the point denoted ⁇ (n) corresponds to the reflectivity of the medium for the nth radiating element. In the case of the Figure 13 , this reflectivity is equal to -1.
  • the method according to the invention consists of determining a transition zone separating the antenna from its environment so that the problems of parasitic reflectivity are greatly reduced.
  • the radiating elements of this transition zone are of the same nature as those of the antenna but of smaller dimensions.
  • the parameter used to vary the reflectivity of the radiating elements is therefore this dimension.
  • FIG 14 shows a top view of the antenna at the level of its separation from the medium with the radiating elements ER T of the transition zone.
  • the dimension a 1 of the first element of the transition zone is therefore less than 0
  • last element of the antenna the dimension a 2 of the second element of the transition zone is therefore less than 0 and so on for the following elements.
  • FIG. 15 represents the variation of the path representative of variations in reflectivity as a function of successive radiating elements of the Figure 14 .
  • FIG. 16 represents the variation of the path representative of reflectivity variations as a function of the dependence parameter.
  • the parameter a varies between 0 and 7 millimeters.
  • Simulations of the electromagnetic signature levels with or without said transition zone as defined previously show a gain of approximately 30 dB over several frequency octaves, whatever the polarization of the wave. This gain is all the more important as the incidence approaches the grazing incidence.
  • the method according to the invention makes it possible to obtain substantial attenuations of parasitic effects at the cost of reduced additional complexity.
  • the radiating elements of the transition zone are, in fact, of the same nature as those of the antenna and pose no construction problem.
  • variable parameter is the size of the radiating elements.
  • ways to modify the reflectivity parameter are a large number of ways to modify the reflectivity parameter.
  • the parameter can be a geometric parameter of the radiating elements so that the radiating elements have different metallic surfaces.
  • the parameter can be a geometric parameter of the radiating elements so that the radiating elements have different resistive surfaces.
  • the parameter may be a physical characteristic of a substrate or a superstrate constituting the radiating elements. This physical characteristic may be the relative permittivity or the permeability of said substrate or said superstrate.
  • the radiating elements may comprise a plurality of sheets of metallic or resistive patterns, the parameter being the quantity or arrangement of said sheets present in the radiating elements.
  • the radiating elements may include metamaterials, the parameter being the quantity of metamaterials present in the radiating elements.
  • metamaterial refers to an artificial composite material that exhibits electromagnetic properties different from those of natural materials. These metamaterials are composed of periodic, dielectric or metallic structures depending on the desired properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Claims (24)

  1. Verfahren zum Integrieren einer Netzantenne (A) in ein Medium (M), wobei die Antenne eine Vielzahl von Strahlungselementen (ERT) umfasst, die den Übergang zwischen der Antenne und dem Medium sicherstellen, wobei das Reflexionsvermögen jedes Strahlungselements von mindestens einem Parameter abhängt, wobei das Reflexionsvermögen durch eine komplexe Zahl dargestellt wird, das Reflexionsvermögen eines ersten Elements gleich oder nahe dem der Antenne ist, das Reflexionsvermögen eines letzten Strahlungselements gleich oder nahe dem des Mediums ist, wobei der Parameter von einem Strahlungselement zum nächsten variiert und das Verfahren die folgenden Schritte umfasst:
    - Schritt 1: Berechnen eines Pfades, der in der komplexen Ebene dargestellt wird und gleich der Summe der Variationen des Reflexionsvermögens von einem Strahlungselement zum nächsten Strahlungselement ist;
    - Schritt 2: Optimieren der Variation des mindestens eines Parameters entlang des in der komplexen Ebene berechneten Pfades, so dass die radaräquivalente Fläche der Antenne so klein wie möglich ist oder mindestens eine der Strahlungscharakteristiken der Antenne erreicht wird;
    - Schritt 3: Bestimmen der verschiedenen Strahlungselemente in Abhängigkeit von dem mindestens einen Parameter;
    - Schritt 4: Simulieren des Gesamtreflexionsvermögens und/oder der Strahlung der Antenne.
  2. Verfahren zum Integrieren einer Antenne nach Anspruch 1, dadurch gekennzeichnet, dass die Variationsgeschwindigkeit des Parameters zwischen dem ersten Element und dem nächsten Element minimal ist, zwischen dem letzten Element und dem vorhergehenden Element minimal ist und zwischen den beiden am weitesten vom ersten Element und vom letzten Element entfernten Elementen maximal ist.
  3. Verfahren zum Integrieren einer Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die komplexe Zahl, die das Reflexionsvermögen darstellt, einen Realteil und einen Imaginärteil aufweist, und dadurch, dass die Variation des Reflexionsvermögens zwischen zwei Strahlungselementen gleich dem Modul der Variationen der Real- und Imaginärteile des Reflexionsvermögens der Strahlungselemente ist.
  4. Verfahren zum Integrieren einer Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass, da die Strahlungselemente zu einem Netzwerk organisiert sind, der mindestens eine Parameter die Maschenweite des Netzwerks in einer Raumrichtung oder in zwei Raumrichtungen ist.
  5. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass, da die Strahlungselemente metallisch sind, der mindestens eine Parameter ein geometrischer Parameter der Strahlungselemente ist, so dass die Strahlungselemente unterschiedliche Metalloberflächen haben.
  6. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Parameter ein geometrischer Parameter der Strahlungselemente ist, so dass die Strahlungselemente unterschiedliche Widerstandsflächen haben.
  7. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Parameter eine physikalische Charakteristik eines Substrats ist, das die Strahlungselemente bildet.
  8. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Parameter eine physikalische Charakteristik eines Superstrats ist, das die Strahlungselemente bildet.
  9. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die physikalische Charakteristik die relative Permittivität des Substrats oder des Superstrats ist.
  10. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die physikalische Charakteristik die Permeabilität des Substrats oder des Superstrats ist.
  11. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass, da die Strahlungselemente eine Vielzahl von metallischen Schichtmustern umfassen, der mindestens eine Parameter die Menge oder die Anordnung der in den Strahlungselementen vorhandenen Schichten ist.
  12. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass, da die Strahlungselemente eine Vielzahl von Widerstandsmusterschichten umfassen, der mindestens eine Parameter die Menge oder die Anordnung der in den Strahlungselementen vorhandenen Schichten ist.
  13. Verfahren zum Integrieren einer Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass, da die Strahlungselemente Metamaterialien umfassen, der mindestens eine Parameter die Menge an in den Strahlungselementen vorhandenen Metamaterialien ist.
  14. Netzantenne, die zum Integrieren in ein Medium bestimmt ist, wobei die Antenne eine Vielzahl von Strahlungselementen umfasst, die den Übergang zwischen der Antenne und dem Medium sicherstellen, wobei das Reflexionsvermögen jedes Strahlungselements von mindestens einem Parameter abhängt, wobei das Reflexionsvermögen durch eine komplexe Zahl dargestellt wird, wobei das Reflexionsvermögen eines ersten Elements gleich oder nahe dem der Antenne ist, das Reflexionsvermögen eines letzten Strahlungselements gleich oder nahe dem des Mediums ist, der mindestens eine Parameter von einem Strahlungselement zum nächsten variiert, dadurch gekennzeichnet, dass die Netzantenne so konfiguriert ist, dass die durch die Ableitung des Reflexionsvermögens in der komplexen Ebene nach dem mindestens einen Parameter definierte Variationsgeschwindigkeit zwischen dem ersten Element und dem nächsten Element minimal ist, zwischen dem letzten Element und dem vorhergehenden Element minimal ist und zwischen den beiden am weitesten vom ersten Element und vom letzten Element entfernten Elementen maximal ist.
  15. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass der mindestens eine Parameter die Maschenweite des Netzes in einer Raumrichtung oder in zwei Raumrichtungen ist.
  16. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass, da die Strahlungselemente metallisch sind, der mindestens eine Parameter ein geometrischer Parameter der Strahlungselemente ist, so dass die Strahlungselemente unterschiedliche Metalloberflächen haben.
  17. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass der mindestens eine Parameter ein geometrischer Parameter der Strahlungselemente ist, so dass die Strahlungselemente unterschiedliche Widerstandsflächen haben.
  18. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass der mindestens eine Parameter eine physikalische Charakteristik eines Substrats ist, das die Strahlungselemente bildet.
  19. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass der mindestens eine Parameter eine physikalische Charakteristik eines Superstrats ist, das die Strahlungselemente bildet.
  20. Netzantenne nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, dass die physikalische Charakteristik die Permittivität des Substrats oder des Superstrats ist.
  21. Netzantenne nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, dass die physikalische Charakteristik die Permeabilität des Substrats oder des Superstrats ist.
  22. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass, da die Strahlungselemente eine Vielzahl von metallischen Schichtmustern umfassen, der mindestens eine Parameter die Menge oder die Anordnung der in den Strahlungselementen vorhandenen Schichten ist.
  23. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass, da die Strahlungselemente eine Vielzahl von Widerstandsmusterschichten umfassen, der mindestens eine Parameter die Menge oder die Anordnung der in den Strahlungselementen vorhandenen Schichten ist.
  24. Netzantenne nach Anspruch 14, dadurch gekennzeichnet, dass, da die Strahlungselemente Metamaterialien umfassen, der mindestens eine Parameter die Menge an in den Strahlungselementen vorhandenen Metamaterialien ist.
EP19832904.7A 2018-12-28 2019-12-18 Verfahren zur integration einer »netzwerk -antenne in ein anderes elektromagnetisches medium und zugehörige antenne Active EP3903381B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874283A FR3091419B1 (fr) 2018-12-28 2018-12-28 Procédé d’intégration d’une antenne « réseaux » dans un milieu de nature électromagnétique différente et antenne associée
PCT/EP2019/086043 WO2020136059A1 (fr) 2018-12-28 2019-12-18 Procede d'integration d'une antenne " reseaux " dans un milieu de nature electromagnetique differente et antenne associee

Publications (2)

Publication Number Publication Date
EP3903381A1 EP3903381A1 (de) 2021-11-03
EP3903381B1 true EP3903381B1 (de) 2024-02-07

Family

ID=67001924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19832904.7A Active EP3903381B1 (de) 2018-12-28 2019-12-18 Verfahren zur integration einer »netzwerk -antenne in ein anderes elektromagnetisches medium und zugehörige antenne

Country Status (5)

Country Link
US (1) US11646500B2 (de)
EP (1) EP3903381B1 (de)
ES (1) ES2975370T3 (de)
FR (1) FR3091419B1 (de)
WO (1) WO2020136059A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091419B1 (fr) 2018-12-28 2023-03-31 Thales Sa Procédé d’intégration d’une antenne « réseaux » dans un milieu de nature électromagnétique différente et antenne associée

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684952A (en) * 1982-09-24 1987-08-04 Ball Corporation Microstrip reflectarray for satellite communication and radar cross-section enhancement or reduction
US6961368B2 (en) * 2001-01-26 2005-11-01 Ericsson Inc. Adaptive antenna optimization network
US6414644B1 (en) * 2001-09-18 2002-07-02 The Boeing Company Channeled surface fairing for use with a phased array antenna on an aircraft
JP2004077399A (ja) * 2002-08-22 2004-03-11 Hitachi Ltd ミリ波レーダ
BRPI0607700A2 (pt) 2005-02-28 2010-03-16 Ericsson Telefon Ab L M estrutura de antena, e, método para melhorar as propriedades de espalhamento de uma antena
CN100383963C (zh) 2005-07-08 2008-04-23 富准精密工业(深圳)有限公司 薄型环路式散热装置
EP1928056A1 (de) * 2006-11-28 2008-06-04 Saab AB Verfahren zum Entwerfen von Array-Antennen
EP1965462B1 (de) * 2007-03-02 2010-09-01 Saab Ab Rumpfintegrierte Antenne
EP1983608B1 (de) * 2007-04-20 2013-02-27 Saab AB Luftfahrzeugintegrierte Antenne
FR2936906B1 (fr) * 2008-10-07 2011-11-25 Thales Sa Reseau reflecteur a arrangement optimise et antenne comportant un tel reseau reflecteur
KR100976858B1 (ko) * 2008-10-24 2010-08-20 한국과학기술원 저 레이더 반사면적의 평면 패치 안테나와 평면 패치어레이 안테나
CN105811118B (zh) * 2016-03-16 2019-08-20 深圳光启高等理工研究院 一种天线
DE102018215393A1 (de) * 2018-09-11 2020-03-12 Conti Temic Microelectronic Gmbh Radarsystem mit einer Kunststoffantenne mit reduzierter Empfindlichkeit auf Störwellen auf der Antenne sowie auf Reflektionen von einer Sensorabdeckung
FR3091419B1 (fr) 2018-12-28 2023-03-31 Thales Sa Procédé d’intégration d’une antenne « réseaux » dans un milieu de nature électromagnétique différente et antenne associée

Also Published As

Publication number Publication date
US20220085515A1 (en) 2022-03-17
ES2975370T3 (es) 2024-07-04
US11646500B2 (en) 2023-05-09
FR3091419B1 (fr) 2023-03-31
FR3091419A1 (fr) 2020-07-03
WO2020136059A1 (fr) 2020-07-02
EP3903381A1 (de) 2021-11-03

Similar Documents

Publication Publication Date Title
EP2573872B1 (de) Linsenantenne, die eine dielektrische, beugende Komponente umfasst, die in der Lage ist, eine Hyperfrequenzwellenfront zu formen
EP2548261B1 (de) Reflektorgruppenantenne mit kreuzpolarisationskompensation und verfahren zur herstellung einer derartigen antenne
EP3547450A1 (de) Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird
EP2202846B1 (de) Dual polarisiertes, planares Strahlungselement und mit einem solchen Strahlungselement ausgestattete Netzantenne
EP2898568B1 (de) Elektromagnetischer absorber
EP2917965A1 (de) Abgeflachte v-förmige vorrichtung mit einem angepassten (maximierten oder minimierten) äquivalenten radarquerschnitt
EP3113286B1 (de) Quasioptischer strahlformer mit linse, und flachantenne, die einen solchen strahlformer umfasst
EP3903381B1 (de) Verfahren zur integration einer »netzwerk -antenne in ein anderes elektromagnetisches medium und zugehörige antenne
EP2658032B1 (de) Hornstrahler einer Antenne mit gewelltem Gitter
EP2817850B1 (de) Elektromagnetische bandlückenvorrichtung, verwendung davon in einer antennenvorrichtung und parameterfestlegungsverfahren für die antennenvorrichtung
EP3664214A1 (de) Mehrfachzugriff strahlelemente
EP3840124B1 (de) Leckwellenantenne mit afsiw-technologie
FR2569906A1 (fr) Reflecteur pour antenne a micro-ondes, muni d'une structure de grille a polarisation selective
EP4278412A1 (de) Radom und antennensystem mit höhenkompensationsfunktion
EP0762534B1 (de) Verfahren zur Verbreiterung des Strahlungsdiagramms einer Gruppenantenne mit verteilten Elementen in einem Volumen
EP4199258A1 (de) Elementare mikrostreifenantenne und verbesserte gruppenantenne
EP4142449A1 (de) Vorrichtung zur absorption einer elektromagnetischen welle
EP4000131B1 (de) Gruppenantenne mit mehreren paneelen
FR2736160A1 (fr) Dispositif anti-detection pour antenne radar
EP4270642A1 (de) Verbesserte hornantenne
FR3136600A1 (fr) Procédé de réalisation d'une antenne réseau dont les éléments rayonnants sont montés sur une surface de support courbe
WO2022162050A1 (fr) Système de réduction de la réflectivité d'une onde électromagnétique incidente sur une surface et dispositif mettant en œuvre ce système
EP4401239A1 (de) Antennensystem mit einer antenne und einer passiven vorrichtung zur winkelabweichung einer antennen-hauptkeule
EP4220861A1 (de) Quasi-optischer wellenleiter-strahlformer mit übereinander angeordneten parallelen platten
EP2610965A1 (de) Kompakte Breitbandantenne mit doppelter Linearpolarisation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019046273

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2975370

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1655967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240507

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207