EP3840124B1 - Leckwellenantenne mit afsiw-technologie - Google Patents

Leckwellenantenne mit afsiw-technologie Download PDF

Info

Publication number
EP3840124B1
EP3840124B1 EP20213687.5A EP20213687A EP3840124B1 EP 3840124 B1 EP3840124 B1 EP 3840124B1 EP 20213687 A EP20213687 A EP 20213687A EP 3840124 B1 EP3840124 B1 EP 3840124B1
Authority
EP
European Patent Office
Prior art keywords
guide
axis
antenna
cavity
afsiw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20213687.5A
Other languages
English (en)
French (fr)
Other versions
EP3840124A1 (de
Inventor
Anthony Ghiotto
Ryan Raimond
Thierry Mazeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Thales SA
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Thales SA
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Thales SA, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3840124A1 publication Critical patent/EP3840124A1/de
Application granted granted Critical
Publication of EP3840124B1 publication Critical patent/EP3840124B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric

Definitions

  • the invention relates to the general field of microwave antennas used in radars and telecommunications. It relates more particularly to the field of network antennas or leakage wave antennas.
  • the radiating slot antennas produced using such technology have, compared to other technologies used, the advantage of being compact, light and easy to produce. They can advantageously be mounted on equipment for which the criteria of weight and size are paramount.
  • slot antennas produced using this technology have the known disadvantage of having significant dielectric losses. Consequently, to compensate for these losses we are forced to oversize the amplification functions associated with the antenna, which results in an increase in the overall mass of the system associated with the antenna, so that the gain in mass provided by the use of a planar antenna is reduced by the increase in mass induced by the need to put in place means to compensate for dielectric losses.
  • Air-Filled Substrate Integrated Waveguide (AFSIW) technology has emerged. It makes it possible to produce guided transmission lines (ie waveguides) with increased performance compared to transmission lines integrated into a SIW type substrate. In this case we can speak of AFSIW waveguides.
  • An aim of the invention is to provide a solution to the problem consisting of finding a solution allowing the design and production of antennas on a substrate capable of reconciling operating performance in terms of radiation pattern and limitation of dielectric losses.
  • the subject of the invention is a leakage wave antenna produced using waveguide technology integrated into a hollow substrate (AFSIW, for Air-Filled Substrate Integrated Waveguide) comprising three layers of dielectric substrate, two substrate layers, an upper layer and a lower layer, sandwiching an intermediate layer which itself includes a longitudinal opening of length L defining a waveguide whose upper and lower walls are formed by the conductive planes covering the layers upper and lower and whose width W 1 is delimited by two conductive side walls.
  • AFSIW Air-Filled Substrate Integrated Waveguide
  • the internal faces of the conductive side walls are coated with a layer of dielectric material of thickness w(z).
  • the upper layer of the structure has an opening forming a longitudinal radiating slot of width W f (z) positioned opposite the longitudinal opening formed in the intermediate layer.
  • the thickness w(z) of the coating of dielectric material placed on the internal face of each of the side walls varies along the longitudinal axis z according to a given law, defined so as to obtain variations along the axis z of the amplitude Alpha(z) and the phase Beta(z) of the leakage wave of the guide, making it possible to produce an antenna having the desired radiation pattern.
  • the antenna according to the invention may have various following complementary technical characteristics, each of which can be considered separately or in combination.
  • the law of variation w(z) of the thickness of the dielectric substrate bordering the internal face of each of the side walls of the cavity of the AFSIW guide is a linear law.
  • the thicknesses of dielectric substrate bordering the internal face of each of the side walls of the cavity of the AFSIW guide follow the same law of variation w(z).
  • the thickness of dielectric substrate bordering the internal face of one of the side walls of the cavity of the AFSIW guide follows a linear variation law w(z) , the thickness of dielectric substrate bordering the internal face of the the other side wall of the AFSIW guide being kept constant, or even zero.
  • the median axis of the radiating slot is distant from the median axis of the cavity of the guide by a given distance d which is zero or non-zero.
  • the distance d(z) separating the median axis of the radiating slot from the median axis of the cavity of the guide varies according to a law d(z) along the longitudinal axis z of the antenna .
  • the distance separating the median axis of the radiating slot from the median axis of the guide cavity is taken along an axis perpendicular to the z axis and perpendicular to a stacking axis of the three layers of dielectric substrate.
  • the radiating slot is a rectangular slot of constant width w f .
  • the radiating slot is a slot whose width W f (z) varies along the longitudinal axis z of the guide.
  • the total width W 1 of the guide along the longitudinal axis z of the antenna is defined as a function W 1 (z).
  • the longitudinal opening of the intermediate layer forming the cavity of the waveguide is delimited by the conductive planes covering the lower and upper layers and by two conductive walls each consisting of a row of Vias in electrical contact with said conductive planes and forming the conductive side walls of said waveguide, each of said rows of Vias being arranged so as to form one of the side walls of the guide, the internal face of the wall thus formed being coated with a layer of material dielectric of thickness w(z).
  • the longitudinal opening of the intermediate layer forming the cavity of the waveguide is delimited by the conductive planes covering the lower and upper layers and by two conductive walls forming the side walls of said waveguide; one of the two walls being made up of a row of Vias in electrical contact with said conductive planes, said rows of Vias being arranged so that the internal face of the wall thus formed is coated with a layer of dielectric material of thickness w(z).
  • the device according to the invention which takes up the emerging technology of AFSIW waveguides advantageously makes it possible to produce leakage wave antennas having dimensions, weight and cost, improved compared to existing antennas, the antennas with leakage waveguides.
  • traditional slot waves in particular, using simple and robust manufacturing techniques, while maintaining good performance.
  • AFSIW Air-Filled Substrate Integrated Waveguide
  • This technology advantageously makes it possible to obtain guided transmission lines with increased performance, particularly in terms of dielectric losses compared to the structures in SIW technology used until now, structures illustrated by the figure 2 .
  • the leaky wave antenna according to the invention is based on AFSIW waveguide production technology.
  • an AFSIW waveguide comprises three layers of dielectric substrate, an intermediate substrate layer (layer no. 2) having a central longitudinal recess 32, of length L and width W 2 , sandwiched between a lower substrate layer 31 (layer no. 1) and an upper substrate layer 33 (layer no. 3); the substrate layers n°1 and n°3 closing the upper and lower walls (long sides) of the waveguide.
  • the three layers of dielectric substrate are stacked along a y axis.
  • layers n°1 and n°3 have an identical structure consisting of a dielectric substrate whose internal and external surfaces are covered with metallized planes (conductive planes), planes 311 and 313 for layer n °1 and 331 and 333 for layer no. 3 respectively.
  • the central longitudinal recess 323, constituting the cavity of the guide, is bordered laterally by two rows of conductive crossings or Vias, 322, which pass right through the layer of dielectric substrate and make it possible to ensure electrical continuity between the conductive planes internals of the upper and lower layers. These rows of Vias form the side walls (short sides) of the waveguide.
  • each of said rows of Vias is arranged so as to form a layer of dielectric material of thickness w(z) bordering the internal face of the side wall of the guide defined by the row of Vias considered; so that the AFSIW waveguide thus formed has side walls (small sides) coated with a layer of dielectric substrate of thickness w(z).
  • the thickness of the dielectric substrate layer is taken along an x axis perpendicular to the y axis and to the z axis along which the waveguide is elongated.
  • the total width W 1 is determined so as to allow the propagation of waves at the desired operating frequency.
  • the Vias 322 are also generally arranged so that the thickness w(z) of substrate bordering the side walls of the guide is as low as possible in order to minimize dielectric losses in the guide.
  • the AFSIW waveguide structure preferentially considered in the context of the antenna according to the invention is a structure conforming to the Figures 3A and 3B .
  • Such a structure advantageously makes it possible to modify the properties of the wave which propagates inside the guide thus formed.
  • FIGS. 4A and 4B being a profile view and a cross-sectional view respectively, schematically present the antenna structure according to the invention, according to an embodiment for which the side walls (small sides) of the AFSIW guide are produced by means of Vias.
  • the structure of the antenna according to the invention comprises, unlike an AFSIW waveguide structure, an upper layer of substrate 51 (layer no. 3) having at least one longitudinal slot 52 (oriented along the z axis) placed opposite the cavity 323 of the middle layer 32 of substrate (layer no. 2).
  • This slot of width W f , which passes right through the upper layer of substrate communicates the cavity 323 of the guide with the external environment.
  • the longitudinal slot 52 typically has a length, along the z axis, greater than or equal to twice the operating wavelength of the antenna, i.e. i.e. the wavelength of the radiated wave.
  • the slot is positioned relative to the cavity so as to be radiant, that is to say so as to radiate the wave which propagates in the guide.
  • the median axis 53 of the slot 52 is advantageously positioned relative to the median axis 41 of the cavity 323 of the guide so as to radiate the wave which propagates in the guide.
  • the longitudinal slot 52 is arranged in such a way that its central axis 53 is offset by a distance d relative to the central axis 41 of the cavity 323 of the guide.
  • the distance d is the distance separating, in the x direction, the median axis 53 of the slot 52 from the median axis 41 of the cavity 41.
  • the distance d is non-zero in the realization of the Figures 4A and 4B .
  • the longitudinal slot 52 thus made makes it possible to produce, from an AFSIW guide, a slot guide capable of radiating the wave which propagates there.
  • the distance d is zero. This may, for example, be the case in a particular embodiment in which the thicknesses of dielectric material placed on the two side walls of cavity 323 are different.
  • the various sizing parameters of the cavity 323 of the guide in particular the widths W 1 and w(z), as well as those which dimension the radiating slot 52, in particular the width W f , are defined so to produce an antenna whose radiation pattern has a direction, an aperture and a desired given secondary lobe level.
  • these dimensional parameters are determined so as to obtain given variation laws of the Beta(z) phase and the Alpha(z) amplitude of the leakage wave of the AFSIW guide along the longitudinal axis z of the antenna according to the invention; the variation of the phase and of the amplitude along the z axis of the leakage wave of the AFSIW guide determining the radiation diagram obtained.
  • the invention mainly consists of determining the direction, the aperture, and the level of the secondary lobes of the AFSIW antenna diagram that we wish to achieve, by acting on these parameters Alpha(z) and Beta(z). .
  • THE figures 5 And 6 illustrate a particular embodiment taken as a non-limiting example of the scope of the invention. They respectively present a top view of the intermediate substrate layer 32 (layer no. 2) forming the cavity 323 of the guide and a top view of the upper substrate layer 51 (layer no. 3), layers which constitute the structure AFSIW of the antenna according to the invention.
  • the phase and the amplitude of the wave propagating in the cavity 323 of the waveguide per unit length are controlled mainly by varying the value w of the thickness of dielectric substrate bordering the side walls of cavity 323 of the guide along the longitudinal axis z, the value w of the thickness of dielectric substrate thus being defined as a function w(z).
  • the thickness w of the dielectric substrate bordering the side walls of the guide cavity is varied, facing the radiating slot, along the z axis.
  • This control action advantageously makes it possible to control the values of the parameters Alpha( z ) and Beta( z ) which determine the parameters defining the radiation pattern of the antenna.
  • varying the thickness of the substrate bordering the side walls of the cavity 323 advantageously makes it possible to vary the phase per unit length of the wave propagating inside the cavity 323 of the device, the phase variation of the wave propagating along the cavity 323 facing the radiating slit 52 determining the orientation of the radiation diagram.
  • the variation of the width w can be carried out in different ways, depending on the desired antenna pattern.
  • the width w of dielectric substrate bordering the side walls of the cavity 323 forming the AFSIW guide varies identically for each of the side walls.
  • the thickness w of dielectric substrate can vary according to different laws w 1 ( z ) and w 2 ( z ) along the longitudinal axis of the cavity 323.
  • THE figures 5 And 6 present a first simple example of implementation for which the parameters defining the radiation diagram are exclusively controlled by simply varying the w value of the substrate thickness along the z axis.
  • the structure of the intermediate layer 32 (layer no. 2) is here perfectly symmetrical with respect to the center of symmetry of the cavity 323 of the AFSIW slot guide according to the invention.
  • the radiating slot 52 formed in the upper substrate layer 51 is presented as a rectangular slot of length L and width W f which has a constant value along the longitudinal axis z.
  • the slot 52 passes through layer No. 3 of substrate right through, its side walls formed in the thickness of the substrate are further metallized using PCB metallization processes.
  • the slot is etched on the metallized surfaces forming the external faces of substrate layer No. 3, the side walls of the slot then being made up of metallized Vias passing through the thickness of the substrate.
  • the distance, d, of the axis of symmetry 53 of the slot 52 relative to the axis of symmetry 41 of the cavity 323 also has a constant value along the longitudinal axis z.
  • the total width W 1 of the cavity 323 of the guide is kept constant, at least over the entire length of the cavity 323 of the intermediate substrate layer 32 facing the radiating slot 52.
  • the thickness w of dielectric substrate bordering the side walls of Cavity 323 varies identically, for each of the side walls, according to a law of variation w(z).
  • This variation law can be a simple linear law as illustrated by the Figure 6 .
  • Such a variation law makes it possible to form a radiation diagram in the desired direction, a radiation diagram such as those, 71 and 72, presented according to a 2D representation (in two dimensions) on the Figure 7 .
  • the antenna produced is symmetrical in the x direction (same value w of thickness of dielectric material bordering the side faces of the cavity 323 of the guide) and the z direction (it has a plane of symmetry 42), with two ports d access making it possible to radiate or receive waves according to two radiation diagrams oriented in two directions forming opposite angles + ⁇ and - ⁇ relative to the vertical plane passing through the axis of symmetry 53 of the radiating slot 52.
  • the variation law w(z) considered can be more complex than a simple linear law, in particular in order to reduce the level of the secondary lobes of the radiation diagram produced.
  • the radiating slot 52 has a rectangular shape of length L with a width W f constant over the entire length L. It is however possible, in the context of the invention, to consider another embodiment of the invention: the radiating slot may not have a rectangular shape.
  • a non-rectangular shape makes it possible in particular to obtain a radiation pattern having particular given characteristics.
  • the width of the slot 52 is then defined as a function of the considered position Wf(z) along the slot 52. In this way, good spatial weighting of the illumination law (ie the radiation diagram) can be achieved. and obtaining a radiation pattern having reduced sidelobes.
  • the distance d between the central axis 53 of the slot 52 relative to the central axis 41 of the cavity 323 of the AFSIW line remains constant over the entire length L of the antenna, the phase and the amplitude of the wave propagating in the cavity 323 of the wave guide by unit of length, being controlled by varying the value w of the thickness of the substrate bordering the side walls of the cavity 323 of the guide along the longitudinal axis z, according to a function w(z).
  • an adjustment of the radiation pattern of the antenna according to the invention can be obtained by also varying the distance d between the median axis 53 of the slot 52 relative to the median axis 41 of the cavity 323 of the AFSIW line, the distance d being defined in this case as a function d(z) of the position considered along the slot 52.
  • the structure of the device according to the invention advantageously makes it possible to form a leaky wave antenna in AFSIW technology that is easy and inexpensive to produce, the radiation pattern of which can be defined by mainly playing on the thickness of dielectric substrate lining the side walls of the waveguide line formed by the AFSIW structure from which the antenna according to the invention is developed, and in particular by varying this thickness over the length of the line transmission (variation along the longitudinal axis z).
  • the variation of the gain and the phase per unit length of the leakage wave of the radiating AFSIW guide, obtained by varying the thickness of the substrate advantageously makes it possible to determine the characteristics of the radiation pattern obtained.
  • FIG. 7 presents the radiation patterns 71 and 72 obtained for two AFSIW antennas according to the invention, formed from AFSIW guides whose side walls of the cavities 323 are coated with layers of substrate whose thicknesses vary along z with different variation profiles.
  • the radiation pattern 72 is obtained from a cavity having on its side walls a substrate thickness w(z) varying along the longitudinal axis z with a greater slope of variation than in the case of the radiation pattern 71.
  • the device, the antenna, according to the invention is defined by its basic AFSIW structure and by the dimensional characteristics which make it possible to define the different layers forming the AFSIW structure of the antenna.
  • the technical characteristics described are the dimensional characteristics preferably considered to produce an antenna according to the invention presenting the desired radiation pattern.
  • the AFSIW antenna according to the invention is presented as a device with two access ports, as illustrated by the Figures 4A and 4B , so that, depending on the way in which it is used, can advantageously present two radiation diagrams oriented in two directions having opposite angles with respect to the vertical (use of ports 1 and 2) or, alternatively, a single radiation diagram radiation, one of the ports, unexploited, being terminated by a charge. 1

Landscapes

  • Waveguide Aerials (AREA)

Claims (12)

  1. Leckwellenantenne, gebildet aus einer Wellenleiterstruktur vom AFSIW-(Air-Filled Substrate Integrated Waveguide)-Typ (40) mit drei dielektrischen Substratschichten, zwei Substratschichten, einer oberen Schicht (51) und einer unteren Schicht (31), die eine Zwischenschicht (32) mit einer Längsöffnung (323) der Länge L zwischen sich einschließen, die einen Wellenleiter definiert, dessen obere und untere Wand durch die leitenden Ebenen gebildet werden, die die obere (51) und untere (31) Schicht bedecken, und dessen Breite W1 durch zwei leitende Seitenwände begrenzt wird, wobei die Innenseiten der leitenden Seitenwände mit einer Schicht aus elektrischem Material der Dicke w(z) überzogen sind; wobei die obere Schicht (51) der Struktur eine Öffnung (52) aufweist, die einen longitudinalen Strahlungsschlitz mit der Breite Wf(z) bildet, der gegenüber der Längsöffnung (323), die in der Zwischenschicht vorgesehen ist, angeordnet ist, wobei die Dicke w(z) des auf der Innenseite jeder der Seitenwände angeordneten Überzugs aus dielektrischem Material entlang der Längsachse z nach einem gegebenen Gesetz variiert, das so definiert ist, dass sich entlang der Achse z Änderungen der Amplitude Alpha(z) und der Phase Beta(z) der Leckwelle des Leiters ergeben, wodurch eine Antenne mit dem gewünschten Strahlungsdiagramm (71, 72) realisiert werden kann.
  2. Antenne nach Anspruch 1, wobei das Gesetz der Variation w(z) der Dicke des dielektrischen Substrats, das die Innenseite jeder der Seitenwände des Hohlraums (323) des AFSIW-Leiters begrenzt, ein lineares Gesetz ist.
  3. Antenne nach Anspruch 1 oder 2, wobei die Dicken des die Innenseite jeder der Seitenwände des Hohlraums (323) des AFSIW-Leiters begrenzenden dielektrischen Substrats demselben Änderungsgesetz w(z) folgen.
  4. Antenne nach Anspruch 1 oder 2, wobei die Dicke des dielektrischen Substrats, das die Innenseite einer der Seitenwände des Hohlraums (323) des AFSIW-Leiters begrenzt, einem linearen Änderungsgesetz w(z) folgt, wobei die Dicke des dielektrischen Substrats, das die Innenseite der anderen Seitenwand des AFSIW-Leiters begrenzt, konstant oder sogar bei Null gehalten wird.
  5. Antenne nach einem der vorhergehenden Ansprüche, wobei die den longitudinalen Strahlungsschlitz bildende Öffnung (52) gegenüber der in der Zwischenschicht vorgesehenen Längsöffnung (323) so angeordnet ist, dass die Mittelachse des Strahlungsschlitzes (52) von der Mittelachse des Hohlraums (323) um eine Distanz d beabstandet ist.
  6. Antenne nach dem vorhergehenden Anspruch, wobei die Mittelachse (53) des Strahlungsschlitzes von der Mittelachse (41) des Hohlraums des Leiters um eine gegebene Distanz d entlang einer Achse lotrecht zur Achse z und zu einer Stapelachse der drei dielektrischen Substratschichten entfernt ist.
  7. Antenne nach Anspruch 5, wobei die Distanz d(z), die die Mittelachse des Strahlungsschlitzes von der Mittelachse des Hohlraums des Leiters trennt, entlang der Längsachse z der Antenne variiert, wobei die Distanz d(z) entlang einer Achse lotrecht zur Achse z und zu einer Stapelachse der drei dielektrischen Substratschichten genommen wird.
  8. Antenne nach einem der vorhergehenden Ansprüche, wobei der Strahlungsschlitz ein rechteckiger Schlitz mit konstanter Breite wf ist.
  9. Antenne nach einem der Ansprüche 1 bis 7, wobei der Strahlungsschlitz (52) ein Schlitz ist, dessen Breite wf(z) entlang der Längsachse z des Leiters variiert.
  10. Antenne nach einem der vorhergehenden Ansprüche, wobei die Gesamtbreite W1 des Leiters entlang der Längsachse z der Antenne als eine Funktion Wl(z) definiert ist.
  11. Antenne nach einem der vorhergehenden Ansprüche, wobei die Zwischenschicht (32) eine Längsöffnung (323) mit der Länge L und der Breite W2 aufweist, die den Hohlraum des Wellenleiters bildet, begrenzt durch die leitenden Ebenen, die die untere (31) und die obere (51) Schicht bedecken, und durch zwei Reihen von Durchkontaktierungen (322) in elektrischem Kontakt mit den leitenden Ebenen, und die die Seitenwände des Wellenleiters bilden, wobei jede der Reihen von Durchkontaktierungen (322) so angeordnet ist, dass sie eine der Seitenwände des Leiters bildet, wobei die Innenseite der so gebildeten Wand mit einer Schicht aus dielektrischem Material mit einer Dicke w(z) überzogen ist.
  12. Antenne nach einem der vorhergehenden Ansprüche, wobei die Zwischenschicht (32) eine Längsöffnung (323) der Länge L und der Breite W2 aufweist, die den Hohlraum des Wellenleiters bildet, begrenzt durch die leitenden Ebenen, die die untere (31) und die obere (51) Schicht bedecken; wobei eine der Seitenwände des Leiters durch eine Reihe von Durchkontaktierungen (322) in elektrischem Kontakt mit den leitenden Ebenen gebildet wird, wobei die andere Seitenwand mit einer Schicht aus leitendem Material überzogen ist, wobei die Reihe von Durchkontaktierungen (322) so angeordnet ist, dass sie eine der Seitenwände des Leiters bildet, wobei die Innenseite der so gebildeten Wand mit einer Schicht aus dielektrischem Material der Dicke w(z) überzogen ist.
EP20213687.5A 2019-12-17 2020-12-14 Leckwellenantenne mit afsiw-technologie Active EP3840124B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1914577A FR3104835B1 (fr) 2019-12-17 2019-12-17 Antenne a onde de fuite en technologie afsiw

Publications (2)

Publication Number Publication Date
EP3840124A1 EP3840124A1 (de) 2021-06-23
EP3840124B1 true EP3840124B1 (de) 2023-10-04

Family

ID=70738617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20213687.5A Active EP3840124B1 (de) 2019-12-17 2020-12-14 Leckwellenantenne mit afsiw-technologie

Country Status (4)

Country Link
US (1) US11515637B2 (de)
EP (1) EP3840124B1 (de)
ES (1) ES2964938T3 (de)
FR (1) FR3104835B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563259B2 (en) * 2020-02-12 2023-01-24 Veoneer Us, Llc Waveguide signal confinement structures and related sensor assemblies
CN113851850B (zh) * 2021-10-28 2023-03-28 中国舰船研究设计中心 一种跨零点扫描漏波天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334229A (en) * 1968-11-12 1982-06-08 The United States Of America As Represented By The Secretary Of The Navy Leaky waveguide continuous slot antenna
US11563259B2 (en) * 2020-02-12 2023-01-24 Veoneer Us, Llc Waveguide signal confinement structures and related sensor assemblies

Also Published As

Publication number Publication date
US20210184361A1 (en) 2021-06-17
ES2964938T3 (es) 2024-04-10
FR3104835A1 (fr) 2021-06-18
EP3840124A1 (de) 2021-06-23
US11515637B2 (en) 2022-11-29
FR3104835B1 (fr) 2023-09-29

Similar Documents

Publication Publication Date Title
EP3547450B1 (de) Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird
EP3073569B1 (de) Butler matrix compact, bi-dimensionales planare beam-former und planarantenne mit einer solchen butler matrix
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
EP2415120B1 (de) Mehrschichtige pillbox-antenne mit parallelen ebenen und entsprechendes antennensystem
EP2573872B1 (de) Linsenantenne, die eine dielektrische, beugende Komponente umfasst, die in der Lage ist, eine Hyperfrequenzwellenfront zu formen
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
FR2886773A1 (fr) Antenne dispersive en frequence appliquee notamment a un radar meteorologique
EP3840124B1 (de) Leckwellenantenne mit afsiw-technologie
FR2936906A1 (fr) Reseau reflecteur a arrangement optimise et antenne comportant un tel reseau reflecteur
EP3843202B1 (de) Horn für eine zirkular polarisierte duale ka-band-satellitenantenne
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
EP3113286B1 (de) Quasioptischer strahlformer mit linse, und flachantenne, die einen solchen strahlformer umfasst
EP3540853B1 (de) Antenne mit breitbandübertragungsnetz
EP3602689B1 (de) Elektromagnetische antenne
EP3417507B1 (de) Elektromagnetisch reflektierende platte mit metamaterialstruktur und miniaturantennenvorrichtung mit solch einer platte
EP0048190B1 (de) Dispersionsfreie Gruppenantenne und ihre Anwendung in einer elektronisch schwenkbaren Antenne
FR2886771A1 (fr) Antenne dispersive en frequence appliquee notamment a un radar meteorologique.
EP0831550B1 (de) Vielseitige Gruppenantenne
FR2992780A1 (fr) Antenne a cavite resonante
WO2018077830A1 (fr) Antenne
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2649543A1 (fr) Distributeur d'energie hyperfrequence pouvant rayonner directement
FR3060864A1 (fr) Ligne de transmission a ondes lentes a meandres
FR3057109A1 (fr) Element rayonnant en cavite et reseau rayonnant comportant au moins deux elements rayonnants
FR2690787A1 (fr) Antenne à guide en auge à lame centrale d'alimentation isolée du fond du guide.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210702

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020018569

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 4

Ref country code: DE

Payment date: 20231128

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1618713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2964938

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240117

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 4