EP3840124B1 - Antenna with leaky wave in afsiw technology - Google Patents

Antenna with leaky wave in afsiw technology Download PDF

Info

Publication number
EP3840124B1
EP3840124B1 EP20213687.5A EP20213687A EP3840124B1 EP 3840124 B1 EP3840124 B1 EP 3840124B1 EP 20213687 A EP20213687 A EP 20213687A EP 3840124 B1 EP3840124 B1 EP 3840124B1
Authority
EP
European Patent Office
Prior art keywords
guide
axis
antenna
cavity
afsiw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20213687.5A
Other languages
German (de)
French (fr)
Other versions
EP3840124A1 (en
Inventor
Anthony Ghiotto
Ryan Raimond
Thierry Mazeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Thales SA
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Thales SA
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Thales SA, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3840124A1 publication Critical patent/EP3840124A1/en
Application granted granted Critical
Publication of EP3840124B1 publication Critical patent/EP3840124B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric

Definitions

  • the invention relates to the general field of microwave antennas used in radars and telecommunications. It relates more particularly to the field of network antennas or leakage wave antennas.
  • the radiating slot antennas produced using such technology have, compared to other technologies used, the advantage of being compact, light and easy to produce. They can advantageously be mounted on equipment for which the criteria of weight and size are paramount.
  • slot antennas produced using this technology have the known disadvantage of having significant dielectric losses. Consequently, to compensate for these losses we are forced to oversize the amplification functions associated with the antenna, which results in an increase in the overall mass of the system associated with the antenna, so that the gain in mass provided by the use of a planar antenna is reduced by the increase in mass induced by the need to put in place means to compensate for dielectric losses.
  • Air-Filled Substrate Integrated Waveguide (AFSIW) technology has emerged. It makes it possible to produce guided transmission lines (ie waveguides) with increased performance compared to transmission lines integrated into a SIW type substrate. In this case we can speak of AFSIW waveguides.
  • An aim of the invention is to provide a solution to the problem consisting of finding a solution allowing the design and production of antennas on a substrate capable of reconciling operating performance in terms of radiation pattern and limitation of dielectric losses.
  • the subject of the invention is a leakage wave antenna produced using waveguide technology integrated into a hollow substrate (AFSIW, for Air-Filled Substrate Integrated Waveguide) comprising three layers of dielectric substrate, two substrate layers, an upper layer and a lower layer, sandwiching an intermediate layer which itself includes a longitudinal opening of length L defining a waveguide whose upper and lower walls are formed by the conductive planes covering the layers upper and lower and whose width W 1 is delimited by two conductive side walls.
  • AFSIW Air-Filled Substrate Integrated Waveguide
  • the internal faces of the conductive side walls are coated with a layer of dielectric material of thickness w(z).
  • the upper layer of the structure has an opening forming a longitudinal radiating slot of width W f (z) positioned opposite the longitudinal opening formed in the intermediate layer.
  • the thickness w(z) of the coating of dielectric material placed on the internal face of each of the side walls varies along the longitudinal axis z according to a given law, defined so as to obtain variations along the axis z of the amplitude Alpha(z) and the phase Beta(z) of the leakage wave of the guide, making it possible to produce an antenna having the desired radiation pattern.
  • the antenna according to the invention may have various following complementary technical characteristics, each of which can be considered separately or in combination.
  • the law of variation w(z) of the thickness of the dielectric substrate bordering the internal face of each of the side walls of the cavity of the AFSIW guide is a linear law.
  • the thicknesses of dielectric substrate bordering the internal face of each of the side walls of the cavity of the AFSIW guide follow the same law of variation w(z).
  • the thickness of dielectric substrate bordering the internal face of one of the side walls of the cavity of the AFSIW guide follows a linear variation law w(z) , the thickness of dielectric substrate bordering the internal face of the the other side wall of the AFSIW guide being kept constant, or even zero.
  • the median axis of the radiating slot is distant from the median axis of the cavity of the guide by a given distance d which is zero or non-zero.
  • the distance d(z) separating the median axis of the radiating slot from the median axis of the cavity of the guide varies according to a law d(z) along the longitudinal axis z of the antenna .
  • the distance separating the median axis of the radiating slot from the median axis of the guide cavity is taken along an axis perpendicular to the z axis and perpendicular to a stacking axis of the three layers of dielectric substrate.
  • the radiating slot is a rectangular slot of constant width w f .
  • the radiating slot is a slot whose width W f (z) varies along the longitudinal axis z of the guide.
  • the total width W 1 of the guide along the longitudinal axis z of the antenna is defined as a function W 1 (z).
  • the longitudinal opening of the intermediate layer forming the cavity of the waveguide is delimited by the conductive planes covering the lower and upper layers and by two conductive walls each consisting of a row of Vias in electrical contact with said conductive planes and forming the conductive side walls of said waveguide, each of said rows of Vias being arranged so as to form one of the side walls of the guide, the internal face of the wall thus formed being coated with a layer of material dielectric of thickness w(z).
  • the longitudinal opening of the intermediate layer forming the cavity of the waveguide is delimited by the conductive planes covering the lower and upper layers and by two conductive walls forming the side walls of said waveguide; one of the two walls being made up of a row of Vias in electrical contact with said conductive planes, said rows of Vias being arranged so that the internal face of the wall thus formed is coated with a layer of dielectric material of thickness w(z).
  • the device according to the invention which takes up the emerging technology of AFSIW waveguides advantageously makes it possible to produce leakage wave antennas having dimensions, weight and cost, improved compared to existing antennas, the antennas with leakage waveguides.
  • traditional slot waves in particular, using simple and robust manufacturing techniques, while maintaining good performance.
  • AFSIW Air-Filled Substrate Integrated Waveguide
  • This technology advantageously makes it possible to obtain guided transmission lines with increased performance, particularly in terms of dielectric losses compared to the structures in SIW technology used until now, structures illustrated by the figure 2 .
  • the leaky wave antenna according to the invention is based on AFSIW waveguide production technology.
  • an AFSIW waveguide comprises three layers of dielectric substrate, an intermediate substrate layer (layer no. 2) having a central longitudinal recess 32, of length L and width W 2 , sandwiched between a lower substrate layer 31 (layer no. 1) and an upper substrate layer 33 (layer no. 3); the substrate layers n°1 and n°3 closing the upper and lower walls (long sides) of the waveguide.
  • the three layers of dielectric substrate are stacked along a y axis.
  • layers n°1 and n°3 have an identical structure consisting of a dielectric substrate whose internal and external surfaces are covered with metallized planes (conductive planes), planes 311 and 313 for layer n °1 and 331 and 333 for layer no. 3 respectively.
  • the central longitudinal recess 323, constituting the cavity of the guide, is bordered laterally by two rows of conductive crossings or Vias, 322, which pass right through the layer of dielectric substrate and make it possible to ensure electrical continuity between the conductive planes internals of the upper and lower layers. These rows of Vias form the side walls (short sides) of the waveguide.
  • each of said rows of Vias is arranged so as to form a layer of dielectric material of thickness w(z) bordering the internal face of the side wall of the guide defined by the row of Vias considered; so that the AFSIW waveguide thus formed has side walls (small sides) coated with a layer of dielectric substrate of thickness w(z).
  • the thickness of the dielectric substrate layer is taken along an x axis perpendicular to the y axis and to the z axis along which the waveguide is elongated.
  • the total width W 1 is determined so as to allow the propagation of waves at the desired operating frequency.
  • the Vias 322 are also generally arranged so that the thickness w(z) of substrate bordering the side walls of the guide is as low as possible in order to minimize dielectric losses in the guide.
  • the AFSIW waveguide structure preferentially considered in the context of the antenna according to the invention is a structure conforming to the Figures 3A and 3B .
  • Such a structure advantageously makes it possible to modify the properties of the wave which propagates inside the guide thus formed.
  • FIGS. 4A and 4B being a profile view and a cross-sectional view respectively, schematically present the antenna structure according to the invention, according to an embodiment for which the side walls (small sides) of the AFSIW guide are produced by means of Vias.
  • the structure of the antenna according to the invention comprises, unlike an AFSIW waveguide structure, an upper layer of substrate 51 (layer no. 3) having at least one longitudinal slot 52 (oriented along the z axis) placed opposite the cavity 323 of the middle layer 32 of substrate (layer no. 2).
  • This slot of width W f , which passes right through the upper layer of substrate communicates the cavity 323 of the guide with the external environment.
  • the longitudinal slot 52 typically has a length, along the z axis, greater than or equal to twice the operating wavelength of the antenna, i.e. i.e. the wavelength of the radiated wave.
  • the slot is positioned relative to the cavity so as to be radiant, that is to say so as to radiate the wave which propagates in the guide.
  • the median axis 53 of the slot 52 is advantageously positioned relative to the median axis 41 of the cavity 323 of the guide so as to radiate the wave which propagates in the guide.
  • the longitudinal slot 52 is arranged in such a way that its central axis 53 is offset by a distance d relative to the central axis 41 of the cavity 323 of the guide.
  • the distance d is the distance separating, in the x direction, the median axis 53 of the slot 52 from the median axis 41 of the cavity 41.
  • the distance d is non-zero in the realization of the Figures 4A and 4B .
  • the longitudinal slot 52 thus made makes it possible to produce, from an AFSIW guide, a slot guide capable of radiating the wave which propagates there.
  • the distance d is zero. This may, for example, be the case in a particular embodiment in which the thicknesses of dielectric material placed on the two side walls of cavity 323 are different.
  • the various sizing parameters of the cavity 323 of the guide in particular the widths W 1 and w(z), as well as those which dimension the radiating slot 52, in particular the width W f , are defined so to produce an antenna whose radiation pattern has a direction, an aperture and a desired given secondary lobe level.
  • these dimensional parameters are determined so as to obtain given variation laws of the Beta(z) phase and the Alpha(z) amplitude of the leakage wave of the AFSIW guide along the longitudinal axis z of the antenna according to the invention; the variation of the phase and of the amplitude along the z axis of the leakage wave of the AFSIW guide determining the radiation diagram obtained.
  • the invention mainly consists of determining the direction, the aperture, and the level of the secondary lobes of the AFSIW antenna diagram that we wish to achieve, by acting on these parameters Alpha(z) and Beta(z). .
  • THE figures 5 And 6 illustrate a particular embodiment taken as a non-limiting example of the scope of the invention. They respectively present a top view of the intermediate substrate layer 32 (layer no. 2) forming the cavity 323 of the guide and a top view of the upper substrate layer 51 (layer no. 3), layers which constitute the structure AFSIW of the antenna according to the invention.
  • the phase and the amplitude of the wave propagating in the cavity 323 of the waveguide per unit length are controlled mainly by varying the value w of the thickness of dielectric substrate bordering the side walls of cavity 323 of the guide along the longitudinal axis z, the value w of the thickness of dielectric substrate thus being defined as a function w(z).
  • the thickness w of the dielectric substrate bordering the side walls of the guide cavity is varied, facing the radiating slot, along the z axis.
  • This control action advantageously makes it possible to control the values of the parameters Alpha( z ) and Beta( z ) which determine the parameters defining the radiation pattern of the antenna.
  • varying the thickness of the substrate bordering the side walls of the cavity 323 advantageously makes it possible to vary the phase per unit length of the wave propagating inside the cavity 323 of the device, the phase variation of the wave propagating along the cavity 323 facing the radiating slit 52 determining the orientation of the radiation diagram.
  • the variation of the width w can be carried out in different ways, depending on the desired antenna pattern.
  • the width w of dielectric substrate bordering the side walls of the cavity 323 forming the AFSIW guide varies identically for each of the side walls.
  • the thickness w of dielectric substrate can vary according to different laws w 1 ( z ) and w 2 ( z ) along the longitudinal axis of the cavity 323.
  • THE figures 5 And 6 present a first simple example of implementation for which the parameters defining the radiation diagram are exclusively controlled by simply varying the w value of the substrate thickness along the z axis.
  • the structure of the intermediate layer 32 (layer no. 2) is here perfectly symmetrical with respect to the center of symmetry of the cavity 323 of the AFSIW slot guide according to the invention.
  • the radiating slot 52 formed in the upper substrate layer 51 is presented as a rectangular slot of length L and width W f which has a constant value along the longitudinal axis z.
  • the slot 52 passes through layer No. 3 of substrate right through, its side walls formed in the thickness of the substrate are further metallized using PCB metallization processes.
  • the slot is etched on the metallized surfaces forming the external faces of substrate layer No. 3, the side walls of the slot then being made up of metallized Vias passing through the thickness of the substrate.
  • the distance, d, of the axis of symmetry 53 of the slot 52 relative to the axis of symmetry 41 of the cavity 323 also has a constant value along the longitudinal axis z.
  • the total width W 1 of the cavity 323 of the guide is kept constant, at least over the entire length of the cavity 323 of the intermediate substrate layer 32 facing the radiating slot 52.
  • the thickness w of dielectric substrate bordering the side walls of Cavity 323 varies identically, for each of the side walls, according to a law of variation w(z).
  • This variation law can be a simple linear law as illustrated by the Figure 6 .
  • Such a variation law makes it possible to form a radiation diagram in the desired direction, a radiation diagram such as those, 71 and 72, presented according to a 2D representation (in two dimensions) on the Figure 7 .
  • the antenna produced is symmetrical in the x direction (same value w of thickness of dielectric material bordering the side faces of the cavity 323 of the guide) and the z direction (it has a plane of symmetry 42), with two ports d access making it possible to radiate or receive waves according to two radiation diagrams oriented in two directions forming opposite angles + ⁇ and - ⁇ relative to the vertical plane passing through the axis of symmetry 53 of the radiating slot 52.
  • the variation law w(z) considered can be more complex than a simple linear law, in particular in order to reduce the level of the secondary lobes of the radiation diagram produced.
  • the radiating slot 52 has a rectangular shape of length L with a width W f constant over the entire length L. It is however possible, in the context of the invention, to consider another embodiment of the invention: the radiating slot may not have a rectangular shape.
  • a non-rectangular shape makes it possible in particular to obtain a radiation pattern having particular given characteristics.
  • the width of the slot 52 is then defined as a function of the considered position Wf(z) along the slot 52. In this way, good spatial weighting of the illumination law (ie the radiation diagram) can be achieved. and obtaining a radiation pattern having reduced sidelobes.
  • the distance d between the central axis 53 of the slot 52 relative to the central axis 41 of the cavity 323 of the AFSIW line remains constant over the entire length L of the antenna, the phase and the amplitude of the wave propagating in the cavity 323 of the wave guide by unit of length, being controlled by varying the value w of the thickness of the substrate bordering the side walls of the cavity 323 of the guide along the longitudinal axis z, according to a function w(z).
  • an adjustment of the radiation pattern of the antenna according to the invention can be obtained by also varying the distance d between the median axis 53 of the slot 52 relative to the median axis 41 of the cavity 323 of the AFSIW line, the distance d being defined in this case as a function d(z) of the position considered along the slot 52.
  • the structure of the device according to the invention advantageously makes it possible to form a leaky wave antenna in AFSIW technology that is easy and inexpensive to produce, the radiation pattern of which can be defined by mainly playing on the thickness of dielectric substrate lining the side walls of the waveguide line formed by the AFSIW structure from which the antenna according to the invention is developed, and in particular by varying this thickness over the length of the line transmission (variation along the longitudinal axis z).
  • the variation of the gain and the phase per unit length of the leakage wave of the radiating AFSIW guide, obtained by varying the thickness of the substrate advantageously makes it possible to determine the characteristics of the radiation pattern obtained.
  • FIG. 7 presents the radiation patterns 71 and 72 obtained for two AFSIW antennas according to the invention, formed from AFSIW guides whose side walls of the cavities 323 are coated with layers of substrate whose thicknesses vary along z with different variation profiles.
  • the radiation pattern 72 is obtained from a cavity having on its side walls a substrate thickness w(z) varying along the longitudinal axis z with a greater slope of variation than in the case of the radiation pattern 71.
  • the device, the antenna, according to the invention is defined by its basic AFSIW structure and by the dimensional characteristics which make it possible to define the different layers forming the AFSIW structure of the antenna.
  • the technical characteristics described are the dimensional characteristics preferably considered to produce an antenna according to the invention presenting the desired radiation pattern.
  • the AFSIW antenna according to the invention is presented as a device with two access ports, as illustrated by the Figures 4A and 4B , so that, depending on the way in which it is used, can advantageously present two radiation diagrams oriented in two directions having opposite angles with respect to the vertical (use of ports 1 and 2) or, alternatively, a single radiation diagram radiation, one of the ports, unexploited, being terminated by a charge. 1

Landscapes

  • Waveguide Aerials (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention se rapporte au domaine général des antennes hyperfréquences utilisées dans les radars et les télécommunications. Elle se rapporte plus particulièrement au domaine des antennes réseaux ou des antennes à ondes de fuite.The invention relates to the general field of microwave antennas used in radars and telecommunications. It relates more particularly to the field of network antennas or leakage wave antennas.

CONTEXTE DE L'INVENTION - ART ANTERIEUR BACKGROUND OF THE INVENTION - PRIOR ART

Les antennes à ondes de fuite (en anglais, leaky wave antenna) en technologie guide d'onde métallique sont largement décrites dans la littérature. La figure 1 présente une illustration sommaire du principe de réalisation d'une telle antenne 10 au moyen de guides d'ondes à fentes 11.Leaky wave antennas in metallic waveguide technology are widely described in the literature. There figure 1 presents a summary illustration of the principle of producing such an antenna 10 by means of slotted waveguides 11.

De telles antennes sont cependant difficiles à fabriquer et coûteuses en raison de problématique d'assemblage et de précision de réalisation.However, such antennas are difficult to manufacture and expensive due to assembly problems and manufacturing precision.

Afin de réduire les coûts de fabrication et d'obtenir des antennes à ondes de fuite intégrées, il est par ailleurs connu de mettre en oeuvre la technologie de guide d'onde intégré au substrat (en anglais, SIW, pour Substrate Integrated Waveguide). La figure 2 présente une illustration de la structure d'une telle antenne.In order to reduce manufacturing costs and obtain antennas with integrated leakage waves, it is also known to implement waveguide technology integrated into the substrate (in English, SIW, for Substrate Integrated Waveguide). There figure 2 presents an illustration of the structure of such an antenna.

Les antennes à fentes rayonnantes réalisées en mettant en oeuvre une telle technologie présentent par rapport aux autres technologies employées, l'avantage d'être compactes, légères et faciles à réaliser. Elles peuvent avantageusement être montées sur des équipements pour lesquels les critères de poids et d'encombrement sont prépondérants.The radiating slot antennas produced using such technology have, compared to other technologies used, the advantage of being compact, light and easy to produce. They can advantageously be mounted on equipment for which the criteria of weight and size are paramount.

Cependant, les antennes à fentes, réalisée en mettant en oeuvre cette technologie ont pour inconvénient connu de présenter des pertes diélectriques importantes. Par suite, pour compenser ces pertes on est contraint de surdimensionner les fonctions d'amplification associées à l'antenne, ce qui se traduit par un accroissement de la masse globale du système associé à l'antenne, de sorte que le gain en masse apporté par l'utilisation d'une antenne planaire est minoré par l'accroissement de masse induit par la nécessité de mettre en place des moyens pour compenser les pertes diélectriques.However, slot antennas produced using this technology have the known disadvantage of having significant dielectric losses. Consequently, to compensate for these losses we are forced to oversize the amplification functions associated with the antenna, which results in an increase in the overall mass of the system associated with the antenna, so that the gain in mass provided by the use of a planar antenna is reduced by the increase in mass induced by the need to put in place means to compensate for dielectric losses.

Par ailleurs, surdimensionner les fonctions d'amplification se traduit par un accroissement de la consommation d'énergie du système.Furthermore, oversizing the amplification functions results in an increase in the energy consumption of the system.

Par conséquent, il existe à l'heure actuelle un besoin de trouver une solution permettant de réaliser des antennes à ondes de fuites, à structure planaire, présentant des pertes diélectriques améliorées (i.e. diminuées) par rapport aux antennes en technologies planaires existantes, en technologie SIW notamment.Consequently, there is currently a need to find a solution making it possible to produce leaky wave antennas, with a planar structure, having improved (i.e. reduced) dielectric losses compared to antennas in existing planar technologies, in technology SIW in particular.

Récemment, la technologie guide d'onde intégré à substrat creux (en anglais, AFSIW, pour Air-Filled Substrate Integrated Waveguide) a émergé. Elle permet de réaliser des lignes de transmission guidées (i.e. des guides d'ondes) présentant des performances accrues par rapport aux lignes de transmission intégrée à un substrat de type SIW. On peut parler dans ce cas de guides d'ondes AFSIW. Le document de l'art antérieur VAN DEN BRANDE QUINTEN ET AL: "Coupled Half-Mode Cavity-Backed Slot Antenna for IR-UWB in Air-Filled SIW Technology",2018 IEEE APS, 8 juillet 2018 divulgue une antenne formée en AFSIW comprenant de fentes.Recently, Air-Filled Substrate Integrated Waveguide (AFSIW) technology has emerged. It makes it possible to produce guided transmission lines (ie waveguides) with increased performance compared to transmission lines integrated into a SIW type substrate. In this case we can speak of AFSIW waveguides. The prior art document VAN DEN BRANDE QUINTEN ET AL: "Coupled Half-Mode Cavity-Backed Slot Antenna for IR-UWB in Air-Filled SIW Technology", 2018 IEEE APS, July 8, 2018 discloses an antenna formed in AFSIW comprising slots.

PRESENTATION DE L'INVENTIONPRESENTATION OF THE INVENTION

Un but de l'invention est d'apporter une solution au problème consistant à trouver une solution permettant la conception et de la réalisation d'antennes sur substrat susceptibles de concilier performances de fonctionnement en termes de diagramme de rayonnement et limitation des pertes diélectriques.An aim of the invention is to provide a solution to the problem consisting of finding a solution allowing the design and production of antennas on a substrate capable of reconciling operating performance in terms of radiation pattern and limitation of dielectric losses.

A cet effet l'invention a pour objet une antenne à ondes de fuite réalisée en technologie de guides d'ondes intégrés à un substrat creux (en anglais, AFSIW, pour Air-Filled Substrate Integrated Waveguide) comportant trois couches de substrat diélectrique, deux couches de substrat, une couche supérieure et une couche inférieure, prenant en sandwich une couche intermédiaire qui comporte elle-même une ouverture longitudinale de longueur L définissant un guide d'onde dont les parois supérieure et inférieure sont formées par les plans conducteurs recouvrant les couches supérieure et inférieure et dont la largeur W1 est délimitée par deux parois latérales conductrices.To this end, the subject of the invention is a leakage wave antenna produced using waveguide technology integrated into a hollow substrate (AFSIW, for Air-Filled Substrate Integrated Waveguide) comprising three layers of dielectric substrate, two substrate layers, an upper layer and a lower layer, sandwiching an intermediate layer which itself includes a longitudinal opening of length L defining a waveguide whose upper and lower walls are formed by the conductive planes covering the layers upper and lower and whose width W 1 is delimited by two conductive side walls.

Selon l'invention, les faces internes des parois latérales conductrices sont revêtues d'une couche de matériau diélectrique d'épaisseur w(z). La couche supérieure de la structure présente une ouverture formant une fente rayonnante longitudinale de largeur Wf (z) positionnée en regard de l'ouverture longitudinale ménagée dans la couche intermédiaire.According to the invention, the internal faces of the conductive side walls are coated with a layer of dielectric material of thickness w(z). The upper layer of the structure has an opening forming a longitudinal radiating slot of width W f (z) positioned opposite the longitudinal opening formed in the intermediate layer.

L'épaisseur w(z) du revêtement en matériau diélectrique disposé sur la face interne de chacune des parois latérales varie selon l'axe longitudinal z selon une loi donnée, définie de façon à obtenir des variations le long de l'axe z de l'amplitude Alpha(z) et de la phase Bêta(z) de l'onde de fuite du guide, permettant de réaliser une antenne ayant le diagramme de rayonnement souhaité.The thickness w(z) of the coating of dielectric material placed on the internal face of each of the side walls varies along the longitudinal axis z according to a given law, defined so as to obtain variations along the axis z of the amplitude Alpha(z) and the phase Beta(z) of the leakage wave of the guide, making it possible to produce an antenna having the desired radiation pattern.

Selon diverses dispositions, l'antenne selon l'invention peut présenter diverses caractéristiques techniques complémentaires suivantes, pouvant être considérées chacune séparément ou en combinaison.According to various arrangements, the antenna according to the invention may have various following complementary technical characteristics, each of which can be considered separately or in combination.

Selon une caractéristique particulière, la loi de variation w(z) de l'épaisseur de substrat diélectrique bordant la face interne de chacune des parois latérales de la cavité du guide AFSIW est une loi linéaire.According to a particular characteristic, the law of variation w(z) of the thickness of the dielectric substrate bordering the internal face of each of the side walls of the cavity of the AFSIW guide is a linear law.

Selon une autre caractéristique, les épaisseurs de substrat diélectrique bordant la face interne de chacune des parois latérales de la cavité du guide AFSIW suivent une même loi de variation w(z). According to another characteristic, the thicknesses of dielectric substrate bordering the internal face of each of the side walls of the cavity of the AFSIW guide follow the same law of variation w(z).

Selon une autre caractéristique, l'épaisseur de substrat diélectrique bordant la face interne d'une des parois latérales de la cavité du guide AFSIW suit une loi de variation w(z) linéaire, l'épaisseur de substrat diélectrique bordant la face interne de l'autre paroi latérales du guide AFSIW étant maintenue constante, voire nulle.According to another characteristic, the thickness of dielectric substrate bordering the internal face of one of the side walls of the cavity of the AFSIW guide follows a linear variation law w(z) , the thickness of dielectric substrate bordering the internal face of the the other side wall of the AFSIW guide being kept constant, or even zero.

Selon une autre caractéristique, l'axe médian de la fente rayonnante est distant de l'axe médian de la cavité du guide d'une distance donnée d nulle ou non nulle.According to another characteristic, the median axis of the radiating slot is distant from the median axis of the cavity of the guide by a given distance d which is zero or non-zero.

Selon une autre caractéristique, la distance d(z) séparant l'axe médian de la fente rayonnante de l'axe médian de la cavité du guide varie selon une loi d(z) le long de l'axe longitudinal z de l'antenne.According to another characteristic, the distance d(z) separating the median axis of the radiating slot from the median axis of the cavity of the guide varies according to a law d(z) along the longitudinal axis z of the antenna .

La distance séparant l'axe médian de la fente rayonnante de l'axe médian de la cavité du guide est prise selon un axe perpendiculaire à l'axe z et perpendiculaire à un axe d'empilement des trois couches de substrat diélectrique.The distance separating the median axis of the radiating slot from the median axis of the guide cavity is taken along an axis perpendicular to the z axis and perpendicular to a stacking axis of the three layers of dielectric substrate.

Selon une autre caractéristique, la fente rayonnante est une fente rectangulaire de largeur constante wf .According to another characteristic, the radiating slot is a rectangular slot of constant width w f .

Selon une autre caractéristique, la fente rayonnante est une fente dont la largeur Wf (z) varie le long de l'axe longitudinal z du guide.According to another characteristic, the radiating slot is a slot whose width W f (z) varies along the longitudinal axis z of the guide.

Selon une autre caractéristique, la largeur totale W1 du guide le long de l'axe longitudinal z de l'antenne est définie comme une fonction W1 (z).According to another characteristic, the total width W 1 of the guide along the longitudinal axis z of the antenna is defined as a function W 1 (z).

Selon une autre caractéristique, l'ouverture longitudinale de la couche intermédiaire formant la cavité du guide d'ondes, est délimitée par les plans conducteurs recouvrant les couches inférieure et supérieure et par deux parois conductrices constituées chacune d'une rangée de Vias en contact électrique avec lesdits plans conducteurs et formant les parois latérales conductrices dudit guide d'ondes, chacune desdites rangées de Vias étant disposée de façon à former une des parois latérales du guide, la face interne de la paroi ainsi formée étant revêtue d'une couche de matériau diélectrique d'épaisseur w(z). According to another characteristic, the longitudinal opening of the intermediate layer forming the cavity of the waveguide, is delimited by the conductive planes covering the lower and upper layers and by two conductive walls each consisting of a row of Vias in electrical contact with said conductive planes and forming the conductive side walls of said waveguide, each of said rows of Vias being arranged so as to form one of the side walls of the guide, the internal face of the wall thus formed being coated with a layer of material dielectric of thickness w(z).

Selon une autre caractéristique, l'ouverture longitudinale de la couche intermédiaire formant la cavité du guide d'ondes, est délimitée par les plans conducteurs recouvrant les couches inférieure et supérieure et par deux parois conductrices formant les parois latérales dudit guide d'ondes ; une des deux parois étant constituée d'une rangée de Vias en contact électrique avec lesdits plans conducteurs, ladite rangées de Vias étant disposée de façon à ce que la face interne de la paroi ainsi formée soit revêtue d'une couche de matériau diélectrique d'épaisseur w(z). According to another characteristic, the longitudinal opening of the intermediate layer forming the cavity of the waveguide is delimited by the conductive planes covering the lower and upper layers and by two conductive walls forming the side walls of said waveguide; one of the two walls being made up of a row of Vias in electrical contact with said conductive planes, said rows of Vias being arranged so that the internal face of the wall thus formed is coated with a layer of dielectric material of thickness w(z).

Le dispositif selon l'invention qui reprend la technologie émergente des guides d'ondes AFSIW permet avantageusement de réaliser des antennes à onde de fuite présentant des dimensions, un poids et un coût, améliorés par rapport aux antennes existantes, les antennes à guides d'ondes à fentes traditionnelles notamment, en utilisant des techniques de fabrication simple et robuste, tout en gardant de bonnes performances.The device according to the invention which takes up the emerging technology of AFSIW waveguides advantageously makes it possible to produce leakage wave antennas having dimensions, weight and cost, improved compared to existing antennas, the antennas with leakage waveguides. traditional slot waves in particular, using simple and robust manufacturing techniques, while maintaining good performance.

DESCRIPTION DES FIGURESDESCRIPTION OF FIGURES

Les caractéristiques et avantages de l'invention seront mieux appréciés grâce à la description qui suit, description qui s'appuie sur les figures annexées qui illustrent l'invention :

  • La figure 1 déjà commentée, représente de manière schématique la structure d'une antenne réseau à guides à fentes selon l'art antérieur ;
  • La figure 2 déjà commentée, représente de manière schématique une structure planaire de type SIW connue ;
  • La figure 3A représente de manière schématique, en vue de profil, la structure standard en trois couches d'un guide d'onde réalisé en technologie AFSIW (i.e. Air-Filled Substrate Integrated Waveguide selon la terminologie anglo-saxonne)
  • La figure 3B représente de manière schématique, en vue en coupe transversale, la structure standard en trois couche d'un guide d'onde réalisé en technologie AFSIW (i.e. Air-Filled Substrate Integrated Waveguide selon la terminologie anglo-saxonne) ;
  • La figure 4A représente de manière schématique, en vue de profil, la structure type d'une antenne à onde de fuite en technologie AFSIW selon l'invention ;
  • La figure 4B représente de manière schématique, en vue en coupe, la structure type d'une antenne à onde de fuite en technologie AFSIW selon l'invention ;
  • La figure 5 représente de manière schématique, en vue de dessus, la troisième couche de substrat formant la structure AFSIW de l'antenne selon l'invention, dans un mode de réalisation particulier ;
  • La figure 6 représente de manière schématique une vue de dessus de la seconde couche de substrat formant la structure AFSIW de l'antenne selon l'invention, dans le mode de réalisation particulier de la figure 5 ;
  • La figure 7 représente des exemples de diagrammes de rayonnement, projetés dans le plan yz ; diagrammes obtenus au moyen d'une antenne selon l'invention.
The characteristics and advantages of the invention will be better appreciated thanks to the description which follows, a description which is based on the appended figures which illustrate the invention:
  • There figure 1 already commented on, schematically represents the structure of an array antenna with slotted guides according to the prior art;
  • There figure 2 already commented on, schematically represents a known SIW type planar structure;
  • There Figure 3A schematically represents, in profile view, the standard three-layer structure of a waveguide produced in AFSIW technology (ie Air-Filled Substrate Integrated Waveguide according to Anglo-Saxon terminology)
  • There Figure 3B schematically represents, in cross-sectional view, the standard three-layer structure of a waveguide produced in AFSIW technology (ie Air-Filled Substrate Integrated Waveguide according to Anglo-Saxon terminology);
  • There figure 4A schematically represents, in profile view, the typical structure of a leaky wave antenna in AFSIW technology according to the invention;
  • There figure 4B schematically represents, in sectional view, the typical structure of a leaky wave antenna in AFSIW technology according to the invention;
  • There figure 5 schematically represents, in top view, the third substrate layer forming the AFSIW structure of the antenna according to the invention, in a particular embodiment;
  • There Figure 6 schematically represents a top view of the second substrate layer forming the AFSIW structure of the antenna according to the invention, in the particular embodiment of the figure 5 ;
  • There Figure 7 represents examples of radiation patterns, projected in the yz plane; diagrams obtained by means of an antenna according to the invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

On utilise depuis peu la technologie de guides d'ondes intégrés à un substrat creux, ou technologie AFSIW (pour Air-Filled Substrate Integrated Waveguide) selon la terminologie anglo-saxonne, technologie développée récemment, pour réaliser des lignes de transmission guidée sur substrat. Dans la suite du texte une telle structure est qualifiée de "guide d'ondes AFSIW".We have recently used the technology of waveguides integrated into a hollow substrate, or AFSIW technology (for Air-Filled Substrate Integrated Waveguide) according to the Anglo-Saxon terminology, a recently developed technology, to produce guided transmission lines on a substrate. In the remainder of the text, such a structure is referred to as an “AFSIW waveguide”.

Cette technologie permet avantageusement d'obtenir des lignes de transmission guidée présentant des performances accrues notamment en termes de pertes diélectrique par rapport aux structures en technologie SIW utilisées jusqu'à présent, structures illustrées par la figure 2.This technology advantageously makes it possible to obtain guided transmission lines with increased performance, particularly in terms of dielectric losses compared to the structures in SIW technology used until now, structures illustrated by the figure 2 .

Par rapport à des structures de type guide d'onde métallique, illustrées par la figure 1, de telles lignes de transmission présentent également des caractéristiques avantageuses en termes de masse et d'encombrement.Compared to metallic waveguide type structures, illustrated by the figure 1 , such transmission lines also have advantageous characteristics in terms of mass and size.

Du point de vue technologique l'antenne à onde de fuite selon l'invention s'appuie sur la technologie de réalisation de guides d'ondes AFSIW.From a technological point of view, the leaky wave antenna according to the invention is based on AFSIW waveguide production technology.

Comme l'illustrent les figures 3A et 3B, vue de profil et, respectivement, vue en coupe transversale respectivement, la structure d'un guide d'ondes AFSIW comporte trois couches de substrat diélectrique, une couche de substrat intermédiaire (couche n°2) présentant un évidement longitudinal central 32, de longueur L et de largeur W2 , prise en sandwich entre une couche de substrat inférieure 31 (couche n°1) et une couche de substrat supérieure 33 (couche n°3) ; les couches de substrat n°1 et n°3 fermant les parois supérieure et inférieure (grands côtés) du guide d'ondes.As illustrated by Figures 3A and 3B , profile view and, respectively, cross-sectional view respectively, the structure of an AFSIW waveguide comprises three layers of dielectric substrate, an intermediate substrate layer (layer no. 2) having a central longitudinal recess 32, of length L and width W 2 , sandwiched between a lower substrate layer 31 (layer no. 1) and an upper substrate layer 33 (layer no. 3); the substrate layers n°1 and n°3 closing the upper and lower walls (long sides) of the waveguide.

Les trois couches de substrat diélectrique sont empilées selon un axe y.The three layers of dielectric substrate are stacked along a y axis.

Dans une structure AFSIW classique, les couches n°1 et n°3 présentent une structure identique constituée d'un substrat diélectrique dont les surfaces interne et externe sont couverte de plans métallisés (plans conducteurs), les plans 311 et 313 pour la couche n°1 et 331 et 333 pour la couche n°3 respectivement.In a classic AFSIW structure, layers n°1 and n°3 have an identical structure consisting of a dielectric substrate whose internal and external surfaces are covered with metallized planes (conductive planes), planes 311 and 313 for layer n °1 and 331 and 333 for layer no. 3 respectively.

L'évidement longitudinal central 323, constituant la cavité du guide, est bordé latéralement par deux rangées de traversées conductrices ou Vias, 322, qui traversent de part en part la couche de substrat diélectrique et permettent d'assurer une continuité électrique entre les plans conducteurs internes des couches supérieure et inférieure. Ces rangées de Vias forment les parois latérales (petits côtés) du guide d'ondes.The central longitudinal recess 323, constituting the cavity of the guide, is bordered laterally by two rows of conductive crossings or Vias, 322, which pass right through the layer of dielectric substrate and make it possible to ensure electrical continuity between the conductive planes internals of the upper and lower layers. These rows of Vias form the side walls (short sides) of the waveguide.

Selon l'invention, chacune desdites rangées de Vias est disposée de façon à former une couche de matériau diélectrique d'épaisseur w(z) bordant la face interne de la paroi latérale du guide définie par la rangée de Vias considérée; de sorte que le guide d'ondes AFSIW ainsi constitué présente des parois latérales (petits côtés) revêtues d'une couche de substrat diélectrique d'épaisseur w(z). According to the invention, each of said rows of Vias is arranged so as to form a layer of dielectric material of thickness w(z) bordering the internal face of the side wall of the guide defined by the row of Vias considered; so that the AFSIW waveguide thus formed has side walls (small sides) coated with a layer of dielectric substrate of thickness w(z).

L'épaisseur de la couche de substrat diélectrique est prise selon un axe x perpendiculaire à l'axe y et à l'axe z selon lequel le guide d'onde est allongé.The thickness of the dielectric substrate layer is taken along an x axis perpendicular to the y axis and to the z axis along which the waveguide is elongated.

Le guide d'ondes AFSIW ainsi formé présente ainsi une largeur W1 =W2+2w. The AFSIW waveguide thus formed thus has a width W 1 = W 2 +2w.

Selon l'invention, la largeur totale W1 est déterminée de façon à permettre la propagation d'ondes à la fréquence de fonctionnement désirée.According to the invention, the total width W 1 is determined so as to allow the propagation of waves at the desired operating frequency.

Les Vias 322 sont par ailleurs généralement agencés de façon à ce que l'épaisseur w(z) de substrat bordant les parois latérales du guide, soit la plus faible possible afin de minimiser les pertes diélectriques dans le guide.The Vias 322 are also generally arranged so that the thickness w(z) of substrate bordering the side walls of the guide is as low as possible in order to minimize dielectric losses in the guide.

La structure de guide d'onde AFSIW considérée préférentiellement dans le cadre de l'antenne selon l'invention est une structure conforme aux figures 3A et 3B. Une telle structure permet en effet, avantageusement, de modifier les propriétés de l'onde qui se propage à l'intérieur du guide ainsi formé.The AFSIW waveguide structure preferentially considered in the context of the antenna according to the invention is a structure conforming to the Figures 3A and 3B . Such a structure advantageously makes it possible to modify the properties of the wave which propagates inside the guide thus formed.

Cependant, Il est à noter qu'il est possible, par la technique AFSIW, de construire des structures de guides d'ondes ne présentant pas de diélectrique sur ses parois latérales, notamment en réalisant une métallisation continue de ces parois.However, it should be noted that it is possible, using the AFSIW technique, to construct waveguide structures that do not have a dielectric on its side walls, in particular by producing a continuous metallization of these walls.

Dans ce cas, une structure équivalente à la structure des figures 3A et 3B peut néanmoins être envisagée, dans le cadre de l'invention, en disposant dans la cavité 323 du guide sur chacune des parois latérales (petits côtés) du guide une couche de matériau diélectrique d'épaisseur w(z) permettant comme dans le cas précédent de modifier les propriétés de l'onde qui se propage à l'intérieur du guide formé.In this case, a structure equivalent to the structure of Figures 3A and 3B can nevertheless be envisaged, in the context of the invention, by placing in the cavity 323 of the guide on each of the side walls (small sides) of the guide a layer of dielectric material of thickness w(z) allowing as in the previous case to modify the properties of the wave which propagates inside the guide formed.

Les figures 4A et 4B, étant une vue de profil et une vue en coupe transversale respectivement, présentent de manière schématique la structure d'antenne selon l'invention, selon un mode de réalisation pour lequel les parois latérales (petit côtés) du guide AFSIW sont réalisées au moyen de Vias.THE Figures 4A and 4B , being a profile view and a cross-sectional view respectively, schematically present the antenna structure according to the invention, according to an embodiment for which the side walls (small sides) of the AFSIW guide are produced by means of Vias.

De manière générale la structure de l'antenne selon l'invention comporte, à la différence d'une structure de guide d'onde AFSIW, une couche supérieure de substrat 51 (couche n°3) présentant au moins une fente longitudinale 52 (orientée selon l'axe z) placée en regard de la cavité 323 de la couche médiane 32 de substrat (couche n°2).Generally speaking, the structure of the antenna according to the invention comprises, unlike an AFSIW waveguide structure, an upper layer of substrate 51 (layer no. 3) having at least one longitudinal slot 52 (oriented along the z axis) placed opposite the cavity 323 of the middle layer 32 of substrate (layer no. 2).

Cette fente, de largeur Wf , qui traverse de part en part la couche supérieure de substrat fait communiquer la cavité 323 du guide avec le milieu extérieur.This slot, of width W f , which passes right through the upper layer of substrate communicates the cavity 323 of the guide with the external environment.

Afin de permettre le rayonnement d'une onde de fuite, la fente longitudinale 52 présente typiquement une longueur, selon l'axe z, supérieure ou égale au double de la longueur d'onde de fonctionnement de l'antenne, c'est-à-dire de la longueur d'onde de l'onde rayonnée.In order to allow the radiation of a leakage wave, the longitudinal slot 52 typically has a length, along the z axis, greater than or equal to twice the operating wavelength of the antenna, i.e. i.e. the wavelength of the radiated wave.

La fente est positionnée par rapport à la cavité de façon à être rayonnante, c'est-à-dire de façon à rayonner l'onde qui se propage dans le guide.The slot is positioned relative to the cavity so as to be radiant, that is to say so as to radiate the wave which propagates in the guide.

A cet effet, l'axe médian 53 de la fente 52 est, avantageusement, positionné par rapport à l'axe médian 41 de la cavité 323 du guide de façon à rayonner l'onde qui se propage dans le guide.For this purpose, the median axis 53 of the slot 52 is advantageously positioned relative to the median axis 41 of the cavity 323 of the guide so as to radiate the wave which propagates in the guide.

Dans la réalisation non limitative des figures 4A et 4B, la fente longitudinale 52 est disposée de telle façon que son axe médian 53 soit décalé d'une distance d par rapport à l'axe médian 41 de la cavité 323 du guide.In the non-limiting realization of the Figures 4A and 4B , the longitudinal slot 52 is arranged in such a way that its central axis 53 is offset by a distance d relative to the central axis 41 of the cavity 323 of the guide.

La distance d est la distance séparant, selon la direction x, l'axe médian 53 de la fente 52 de l'axe médian 41 de la cavité 41.The distance d is the distance separating, in the x direction, the median axis 53 of the slot 52 from the median axis 41 of the cavity 41.

La distance d est non nulle dans la réalisation des figures 4A et 4B.The distance d is non-zero in the realization of the Figures 4A and 4B .

La fente longitudinale 52 ainsi pratiquée permet de réaliser, à partir d'un guide AFSIW, un guide à fente apte à rayonner l'onde qui s'y propage.The longitudinal slot 52 thus made makes it possible to produce, from an AFSIW guide, a slot guide capable of radiating the wave which propagates there.

En variante, la distance d est nulle. Cela peut, par exemple, être le cas dans une réalisation particulière dans laquelle les épaisseurs de matériau diélectriques disposées sur les deux parois latérales de la cavité 323 sont différentes.Alternatively, the distance d is zero. This may, for example, be the case in a particular embodiment in which the thicknesses of dielectric material placed on the two side walls of cavity 323 are different.

Selon l'invention, les divers paramètres de dimensionnement de la cavité 323 du guide, en particulier les largeurs W1 et w(z), ainsi que ceux qui dimensionnent la fente rayonnante 52, en particulier la largeur Wf , sont définis de façon à réaliser une antenne dont le diagramme de rayonnement présente une direction, une ouverture et un niveau de lobes secondaires donnés souhaités. Autrement dit, ces paramètres dimensionnels sont déterminés de façon à obtenir des lois de variation données de la phase Bêta(z) et de l'amplitude Alpha(z) de l'onde de fuite du guide AFSIW suivant l'axe longitudinal z de l'antenne selon l'invention ; la variation de la phase et de l'amplitude selon l'axe z de l'onde de fuite du guide AFSIW déterminant le diagramme de rayonnement obtenu.According to the invention, the various sizing parameters of the cavity 323 of the guide, in particular the widths W 1 and w(z), as well as those which dimension the radiating slot 52, in particular the width W f , are defined so to produce an antenna whose radiation pattern has a direction, an aperture and a desired given secondary lobe level. In other words, these dimensional parameters are determined so as to obtain given variation laws of the Beta(z) phase and the Alpha(z) amplitude of the leakage wave of the AFSIW guide along the longitudinal axis z of the antenna according to the invention; the variation of the phase and of the amplitude along the z axis of the leakage wave of the AFSIW guide determining the radiation diagram obtained.

Ainsi, l'invention consiste principalement à déterminer la direction, l'ouverture, et le niveau des lobes secondaires du diagramme de l'antenne AFSIW que l'on souhaite réaliser, en agissant sur ces paramètres Alpha(z) et Bêta(z).Thus, the invention mainly consists of determining the direction, the aperture, and the level of the secondary lobes of the AFSIW antenna diagram that we wish to achieve, by acting on these parameters Alpha(z) and Beta(z). .

La suite de la description expose différents modes de réalisation de l'invention selon lesquels on agit sur un ou plusieurs paramètres dimensionnels qui définissent le guide d'onde AFSIW à fente rayonnante constituant l'antenne selon l'invention, de façon à obtenir le diagramme de rayonnement souhaité, en faisant varier le long de l'axe z la phase Bêta(z) et l'amplitude Alpha(z) de l'onde traversant le guide d'onde.The remainder of the description sets out different embodiments of the invention according to which one or more dimensional parameters are acted upon which define the AFSIW waveguide with a radiating slot constituting the antenna according to the invention, so as to obtain the diagram of desired radiation, by varying along the z axis the phase Beta(z) and the amplitude Alpha(z) of the wave passing through the waveguide.

Les figures 5 et 6 illustrent un mode de réalisation particulier pris comme exemple non limitatif de la portée de l'invention. Elles présentent respectivement une vue de dessus de la couche 32 de substrat intermédiaire (couche n°2) formant la cavité 323 du guide et une vue de dessus de la couche 51 de substrat supérieure (couche n°3), couches qui constitue la structure AFSIW de l'antenne selon l'invention.THE figures 5 And 6 illustrate a particular embodiment taken as a non-limiting example of the scope of the invention. They respectively present a top view of the intermediate substrate layer 32 (layer no. 2) forming the cavity 323 of the guide and a top view of the upper substrate layer 51 (layer no. 3), layers which constitute the structure AFSIW of the antenna according to the invention.

Pour obtenir une antenne AFSIW selon l'invention présentant un diagramme de rayonnement ayant les caractéristiques souhaitées (gain, directivité et niveau de lobes secondaires notamment), il est notamment possible d'ajuster les paramètres suivants :

  • La longueur de l'antenne L, qui permet d'ajuster le gain de l'antenne et l'ouverture angulaire du son diagramme de rayonnement, un gain plus élevé et une ouverture angulaire plus faible pouvant être obtenus avec une antenne et une fente rayonnante plus longues ;
  • La largeur, W1, de la ligne AFSIW qui détermine la largeur totale du guide d'ondes ;
  • Le couple W2 et w détermine la fréquence de coupure du mode fondamentale du guide d'onde. On peut être amené à réduire W2 , lorsque l'on augmente w afin de garder la même fréquence de coupure du mode fondamentale ;
  • La largeur, Wf, de la fente 52 ménagée dans la couche supérieure de substrat 51 (couche n°2) ;
  • La distance d, de l'axe longitudinal 53 de la fente 52 par rapport à l'axe longitudinal 41 de la cavité 323.
To obtain an AFSIW antenna according to the invention presenting a radiation pattern having the desired characteristics (gain, directivity and secondary lobe level in particular), it is in particular possible to adjust the following parameters:
  • The antenna length L, which allows adjustment of the antenna gain and angular aperture of its radiation pattern, higher gain and lower angular aperture can be obtained with an antenna and a radiating slot longer ;
  • The width, W1, of the AFSIW line which determines the total width of the waveguide;
  • The pair W 2 and w determines the cut-off frequency of the fundamental mode of the waveguide. We may have to reduce W 2 , when we increase w in order to keep the same cut-off frequency of the fundamental mode;
  • The width, Wf, of the slot 52 formed in the upper layer of substrate 51 (layer no. 2);
  • The distance d, of the longitudinal axis 53 of the slot 52 relative to the longitudinal axis 41 of the cavity 323.

Cependant, dans le cas du dispositif selon l'invention, la phase et l'amplitude de l'onde se propageant dans la cavité 323 du guide d'onde par unité de longueur, sont contrôlées principalement en faisant varier la valeur w de l'épaisseur de substrat diélectrique bordant les parois latérales de la cavité 323 du guide selon l'axe longitudinal z, la valeur w de l'épaisseur de substrat diélectrique étant ainsi défini comme une fonction w(z). However, in the case of the device according to the invention, the phase and the amplitude of the wave propagating in the cavity 323 of the waveguide per unit length, are controlled mainly by varying the value w of the thickness of dielectric substrate bordering the side walls of cavity 323 of the guide along the longitudinal axis z, the value w of the thickness of dielectric substrate thus being defined as a function w(z).

Avantageusement, on fait varier, en regard de la fente rayonnante, le long de l'axe z, l'épaisseur w de substrat diélectrique bordant les parois latérale de la cavité du guide.Advantageously, the thickness w of the dielectric substrate bordering the side walls of the guide cavity is varied, facing the radiating slot, along the z axis.

Cette action de contrôle permet avantageusement de contrôler les valeurs des paramètres Alpha(z) et Bêta(z) qui déterminent les paramètres définissant le diagramme de rayonnement de l'antenne.This control action advantageously makes it possible to control the values of the parameters Alpha( z ) and Beta( z ) which determine the parameters defining the radiation pattern of the antenna.

En effet, faire varier l'épaisseur de substrat bordant les parois latérales de la cavité 323 permet avantageusement de faire varier la phase par unité de longueur de l'onde se propageant à l'intérieur de la cavité 323 du dispositif, la variation de phase de l'onde se propageant le long de la cavité 323 en regard de la fente rayonnante 52 déterminant l'orientation du diagramme de rayonnement.Indeed, varying the thickness of the substrate bordering the side walls of the cavity 323 advantageously makes it possible to vary the phase per unit length of the wave propagating inside the cavity 323 of the device, the phase variation of the wave propagating along the cavity 323 facing the radiating slit 52 determining the orientation of the radiation diagram.

Selon le mode de réalisation considéré, la variation de la largeur w peut être opérée de différentes façons, en fonction du diagramme d'antenne souhaité.Depending on the embodiment considered, the variation of the width w can be carried out in different ways, depending on the desired antenna pattern.

Ainsi selon un premier mode de réalisation, la largeur w de substrat diélectrique bordant les parois latérales de la cavité 323 formant le guide AFSIW varie de manière identique pour chacune des parois latérales.Thus according to a first embodiment, the width w of dielectric substrate bordering the side walls of the cavity 323 forming the AFSIW guide varies identically for each of the side walls.

Alternativement, selon un autre mode de réalisation, l'épaisseur w de substrat diélectrique peut varier selon des lois différentes w1 (z) et w2 (z) le long de l'axe longitudinal de la cavité 323. L'épaisseur w de substrat diélectrique peut notamment rester constante (w1 (z)=cte) sur une paroi latérale de la cavité 323 et varier selon une loi de variation donnée w2 (z) I sur l'autre paroi latérale de la cavité.Alternatively, according to another embodiment, the thickness w of dielectric substrate can vary according to different laws w 1 ( z ) and w 2 ( z ) along the longitudinal axis of the cavity 323. The thickness w of dielectric substrate can in particular remain constant ( w 1 ( z )=cte) on one side wall of the cavity 323 and vary according to a given variation law w 2 ( z ) I on the other side wall of the cavity.

Les figures 5 et 6, présentent un premier exemple simple de réalisation pour lequel les paramètres définissant le diagramme de rayonnement sont exclusivement contrôlés en faisant simplement varier la valeur w de l'épaisseur de substrat le long de l'axe z.THE figures 5 And 6 , present a first simple example of implementation for which the parameters defining the radiation diagram are exclusively controlled by simply varying the w value of the substrate thickness along the z axis.

La structure de la couche intermédiaire 32 (couche n°2) est ici parfaitement symétrique par rapport au centre de symétrie de la cavité 323 du guide à fente AFSIW selon l'invention.The structure of the intermediate layer 32 (layer no. 2) is here perfectly symmetrical with respect to the center of symmetry of the cavity 323 of the AFSIW slot guide according to the invention.

La fente rayonnante 52 ménagée dans la couche de substrat supérieure 51 se présente comme une fente de forme rectangulaire de longueur L et de largeur Wf qui présente une valeur constante suivant l'axe longitudinal z. The radiating slot 52 formed in the upper substrate layer 51 is presented as a rectangular slot of length L and width W f which has a constant value along the longitudinal axis z.

Dans l'exemple de réalisation considéré, la fente 52 traverse la couche n°3 de substrat de part en part, ses parois latérales ménagées dans l'épaisseur du substrat sont en outre métallisées en utilisant les procédés de métallisation du PCB.In the embodiment considered, the slot 52 passes through layer No. 3 of substrate right through, its side walls formed in the thickness of the substrate are further metallized using PCB metallization processes.

Cependant, selon un mode alternatif de réalisation, la fente est gravée sur les surfaces métallisées formant les faces externes de la couche de substrat n°3, les parois latérales de la fente étant alors constituées de Vias métallisés traversant l'épaisseur du substrat.However, according to an alternative embodiment, the slot is etched on the metallized surfaces forming the external faces of substrate layer No. 3, the side walls of the slot then being made up of metallized Vias passing through the thickness of the substrate.

La distance, d, de l'axe de symétrie 53 de la fente 52 par rapport à l'axe de symétrie 41 de la cavité 323 présente elle aussi une valeur constante suivant l'axe longitudinal z. The distance, d, of the axis of symmetry 53 of the slot 52 relative to the axis of symmetry 41 of the cavity 323 also has a constant value along the longitudinal axis z.

Concernant la couche de substrat intermédiaire 32 (couche n°2), la largeur totale W1 de la cavité 323 du guide, la largeur entre les deux rangées de Vias bordant la cavité dans le mode de réalisation illustré par les figures 4A, 4B, 5 et 6, est maintenue constante, au moins sur toute la longueur de la cavité 323 de la couche de substrat intermédiaire 32 en regard de la fente rayonnante 52.Concerning the intermediate substrate layer 32 (layer no. 2), the total width W 1 of the cavity 323 of the guide, the width between the two rows of Vias bordering the cavity in the embodiment illustrated by the Figures 4A, 4B , 5 And 6 , is kept constant, at least over the entire length of the cavity 323 of the intermediate substrate layer 32 facing the radiating slot 52.

Par ailleurs, comme le montre la figure 6, l'épaisseur w de substrat diélectrique bordant les parois latérales de la Cavité 323 varie de manière identique, pour chacune des parois latérales, selon une loi de variation w(z).Furthermore, as shown in Figure 6 , the thickness w of dielectric substrate bordering the side walls of Cavity 323 varies identically, for each of the side walls, according to a law of variation w(z).

Cette loi de variation peut être une simple loi linéaire comme illustré par la figure 6. Une telle loi de variation permet de former un diagramme de rayonnement dans la direction voulue, un diagramme de rayonnement tel que ceux, 71 et 72, présentés selon une représentation 2D (en deux dimensions) sur la figure 7.This variation law can be a simple linear law as illustrated by the Figure 6 . Such a variation law makes it possible to form a radiation diagram in the desired direction, a radiation diagram such as those, 71 and 72, presented according to a 2D representation (in two dimensions) on the Figure 7 .

Dans l'exemple de réalisation illustré par les figures 5 et 6, l'antenne réalisée est symétrique selon la direction x (même valeur w d'épaisseur de matériau diélectrique bordant les faces latérales de la cavité 323 du guide) et la direction z (elle présente un plan de symétrie 42), avec deux ports d'accès permettant de rayonner ou de recevoir des ondes suivant deux diagrammes de rayonnement orientés selon deux directions formant des angles opposée + θ et - θ par rapport au plan vertical passant par l'axe de symétrie 53 de la fente rayonnante 52.In the exemplary embodiment illustrated by the figures 5 And 6 , the antenna produced is symmetrical in the x direction (same value w of thickness of dielectric material bordering the side faces of the cavity 323 of the guide) and the z direction (it has a plane of symmetry 42), with two ports d access making it possible to radiate or receive waves according to two radiation diagrams oriented in two directions forming opposite angles + θ and - θ relative to the vertical plane passing through the axis of symmetry 53 of the radiating slot 52.

Il est toutefois possible de concevoir une antenne avec un unique port et donc une unique direction de propagation. Une topologie non symétrique avec un unique port d'alimentation peut en effet être implémentée, en terminant le guide par une charge.However, it is possible to design an antenna with a single port and therefore a single direction of propagation. A non-symmetrical topology with a single power port can indeed be implemented, ending the guide with a load.

Il est à noter que, selon l'invention, la loi de variation w(z) considérée peut être plus complexe qu'une simple loi linéaire, afin notamment de diminuer le niveau des lobes secondaires du diagramme de rayonnement réalisé.It should be noted that, according to the invention, the variation law w(z) considered can be more complex than a simple linear law, in particular in order to reduce the level of the secondary lobes of the radiation diagram produced.

Dans l'exemple de réalisation illustré par les figures 5 et 6, la fente rayonnante 52 présente une forme rectangulaire de longueur L avec une largeur Wf constante sur toute la longueur L. Il est cependant possible, dans le cadre de l'invention, d'envisager un autre mode de réalisation de l'invention : la fente rayonnante peut ne pas avoir une forme rectangulaire.In the exemplary embodiment illustrated by the figures 5 And 6 , the radiating slot 52 has a rectangular shape of length L with a width W f constant over the entire length L. It is however possible, in the context of the invention, to consider another embodiment of the invention: the radiating slot may not have a rectangular shape.

Une forme non rectangulaire permet en particulier d'obtenir un diagramme de rayonnement ayant des caractéristiques particulières données. Ainsi, en utilisant par exemple une fente en forme « d'oeil » on peut limiter l'énergie rayonnée (i.e. le gain de l'antenne) aux extrémités de la fente et maximiser l'énergie rayonnée au centre de la fente. La largeur de la fente 52 est alors définie comme une fonction de la position considéré Wf(z) le long de la fente 52. On peut de cette façon réaliser une bonne pondération spatiale de la loi d'éclairement (i.e. du diagramme de rayonnement) et obtenir un diagramme de rayonnement présentant des lobes secondaires réduits.A non-rectangular shape makes it possible in particular to obtain a radiation pattern having particular given characteristics. Thus, by using for example an “eye” shaped slot, we can limit the radiated energy (ie the gain of the antenna) at the ends of the slot and maximize the energy radiated at the center of the slot. The width of the slot 52 is then defined as a function of the considered position Wf(z) along the slot 52. In this way, good spatial weighting of the illumination law (ie the radiation diagram) can be achieved. and obtaining a radiation pattern having reduced sidelobes.

Par ailleurs, dans l'exemple de réalisation illustré par les figures 5 et 6, la distance d entre l'axe centrale 53 de la fente 52 par rapport à l'axe central 41 de la cavité 323 de la ligne AFSIW, reste constante sur toute la longueur L de l'antenne, la phase et l'amplitude de l'onde se propageant dans la cavité 323 du guide d'onde par unité de longueur, étant contrôlées en faisant varier la valeur w de l'épaisseur de substrat bordant les parois latérales de la cavité 323 du guide selon l'axe longitudinal z, selon une fonction w(z). Furthermore, in the exemplary embodiment illustrated by the figures 5 And 6 , the distance d between the central axis 53 of the slot 52 relative to the central axis 41 of the cavity 323 of the AFSIW line, remains constant over the entire length L of the antenna, the phase and the amplitude of the wave propagating in the cavity 323 of the wave guide by unit of length, being controlled by varying the value w of the thickness of the substrate bordering the side walls of the cavity 323 of the guide along the longitudinal axis z, according to a function w(z).

Il est cependant possible, dans le cadre de l'invention, d'envisager un autre mode de réalisation dans lequel un ajustement du diagramme de rayonnement de l'antenne selon l'invention peut être obtenu en faisant également varier la distance d entre l'axe médian 53 de la fente 52 par rapport à l'axe médian 41 de la cavité 323 de la ligne AFSIW, la distance d étant définie dans ce cas comme une fonction d(z) de la position considérée le long de la fente 52.It is however possible, in the context of the invention, to consider another embodiment in which an adjustment of the radiation pattern of the antenna according to the invention can be obtained by also varying the distance d between the median axis 53 of the slot 52 relative to the median axis 41 of the cavity 323 of the AFSIW line, the distance d being defined in this case as a function d(z) of the position considered along the slot 52.

Comme l'exposent les paragraphes précédents, la structure du dispositif selon l'invention, permet avantageusement de former une antenne à onde de fuite en technologie AFSIW facile et peu coûteuse à réaliser, dont le diagramme de rayonnement peut être défini en jouant principalement sur l'épaisseur de substrat diélectrique tapissant les parois latérales de la ligne en guide d'onde formée par la structure AFSIW à partir de laquelle est développée l'antenne selon l'invention, et en faisant en particulier varier cette épaisseur sur la longueur de la ligne de transmission (variation selon l'axe longitudinal z). La variation du gain et de la phase par unité de longueur de l'onde de fuite du guide AFSIW rayonnant, obtenue en faisant varier l'épaisseur de substrat permet avantageusement de déterminer les caractéristiques du diagramme de rayonnement obtenu.As explained in the preceding paragraphs, the structure of the device according to the invention advantageously makes it possible to form a leaky wave antenna in AFSIW technology that is easy and inexpensive to produce, the radiation pattern of which can be defined by mainly playing on the thickness of dielectric substrate lining the side walls of the waveguide line formed by the AFSIW structure from which the antenna according to the invention is developed, and in particular by varying this thickness over the length of the line transmission (variation along the longitudinal axis z). The variation of the gain and the phase per unit length of the leakage wave of the radiating AFSIW guide, obtained by varying the thickness of the substrate, advantageously makes it possible to determine the characteristics of the radiation pattern obtained.

La figure 7 présente les diagrammes de rayonnement 71 et 72 obtenus pour deux antennes AFSIW selon l'invention, formées à partir de guides AFSIW dont les parois latérales des cavités 323 sont revêtues de couches de substrat dont les épaisseurs varient selon z avec des profils de variation différents. Le diagramme de rayonnement 72 est obtenu à partir d'une cavité présentant sur ses parois latérales une épaisseur de substrat w(z) variant selon l'axe longitudinal z avec une pente de variation plus importante que dans le cas du diagramme de rayonnement 71.There Figure 7 presents the radiation patterns 71 and 72 obtained for two AFSIW antennas according to the invention, formed from AFSIW guides whose side walls of the cavities 323 are coated with layers of substrate whose thicknesses vary along z with different variation profiles. The radiation pattern 72 is obtained from a cavity having on its side walls a substrate thickness w(z) varying along the longitudinal axis z with a greater slope of variation than in the case of the radiation pattern 71.

On constate que, dans ce dernier cas, la pente de variation de l'épaisseur w(z) étant plus importante, le diagramme obtenu 72 se rapproche du plan vertical de l'antenne, alors que, réciproquement, rétrécir l'intérieur du guide d'ondes va rendre le faisceau de plus en plus parallèle à l'axe longitudinal de l'antenne.We note that, in the latter case, the slope of variation of the thickness w(z) being greater, the diagram obtained 72 approaches the vertical plane of the antenna, whereas, conversely, narrowing the interior of the guide waves will make the beam more and more parallel to the longitudinal axis of the antenna.

Dans la partie de la description qui précède, le dispositif, l'antenne, selon l'invention est définie par sa structure de base AFSIW et par les caractéristiques dimensionnelles qui permettent de définir les différentes couches formant la structure AFSIW de l'antenne. Les caractéristiques techniques décrites sont les caractéristiques dimensionnelles préférentiellement considérées pour réaliser une antenne selon l'invention présentant le diagramme de rayonnement voulu.In the preceding part of the description, the device, the antenna, according to the invention is defined by its basic AFSIW structure and by the dimensional characteristics which make it possible to define the different layers forming the AFSIW structure of the antenna. The technical characteristics described are the dimensional characteristics preferably considered to produce an antenna according to the invention presenting the desired radiation pattern.

Il est cependant possible d'intégrer à ces divers paramètres d'autres paramètres dimensionnels et /ou structurels afin en particulier de disposer d'une plus grande latitude dans le choix des valeurs des paramètres dimensionnels permettant d'obtenir une structure d'antenne présentant le diagramme de rayonnement recherché.It is however possible to integrate other dimensional and/or structural parameters into these various parameters in order in particular to have greater latitude in the choice of the values of the dimensional parameters making it possible to obtain an antenna structure presenting the desired radiation pattern.

Il est ainsi notamment possible, dans le cadre de la réalisation de l'antenne selon l'invention, de jouer également sur la largeur totale W1 du guide le long de l'axe longitudinal z du guide (direction de propagation de l'onde) de telle façon que la largeur totale du guide soit définies comme une fonction W1 (z)). On dispose ainsi d'un moyen de contrôle supplémentaire de la variation de la phase Bêta(z) et de l'amplitude Alpha(z) de l'onde de fuite selon l'axe longitudinal z de l'antenne.It is thus notably possible, in the context of producing the antenna according to the invention, to also play on the total width W 1 of the guide along the longitudinal axis z of the guide (direction of propagation of the wave ) such that the total width of the guide is defined as a function W 1 (z)). We thus have an additional means of controlling the variation of the phase Beta(z) and the amplitude Alpha(z) of the leakage wave along the longitudinal axis z of the antenna.

Il est également possible de faire varier la largeur de la fente et/ou la position de son axe de symétrie par rapport à celui de la cavité du guide AFSIW afin de disposer d'un moyen de contrôle supplémentaire de la variation de la phase Alpha(z) et de l'amplitude Bêta(z) selon l'axe longitudinal z de l'antenne.It is also possible to vary the width of the slot and/or the position of its axis of symmetry relative to that of the cavity of the AFSIW guide in order to have an additional means of controlling the variation of the Alpha phase ( z) and the amplitude Beta(z) along the longitudinal axis z of the antenna.

Il est encore également possible de remplacer la fente rayonnante continue 52 par plusieurs petites fentes, constituant un réseau de fentes disposées le long l'axe z de l'antenne en regard de la cavité 323 du guide.It is also possible to replace the continuous radiating slot 52 with several small slots, constituting a network of slots arranged along the z axis of the antenna facing the cavity 323 of the guide.

D'un point de vue fonctionnel, l'antenne AFSIW selon l'invention se présente comme un dispositif à deux ports d'accès, comme l'illustrent les figures 4A et 4B, de sorte que, selon la façon dont elle est utilisée, peut avantageusement présenter deux diagrammes de rayonnement orientés selon deux directions présentant des angles opposée par rapport à la verticale (utilisation des port 1 et 2) ou bien, alternativement, un seul diagramme de rayonnement, l'un des ports, inexploité, étant terminé par une charge. 1From a functional point of view, the AFSIW antenna according to the invention is presented as a device with two access ports, as illustrated by the Figures 4A and 4B , so that, depending on the way in which it is used, can advantageously present two radiation diagrams oriented in two directions having opposite angles with respect to the vertical (use of ports 1 and 2) or, alternatively, a single radiation diagram radiation, one of the ports, unexploited, being terminated by a charge. 1

Claims (12)

  1. A leaky wave antenna formed from an Air-Filled Substrate Integrated Waveguide (AFSIW) type waveguide structure (40) having three layers of dielectric substrate, two layers of substrate, an upper layer (51) and a lower layer (31) sandwiching an intermediate layer (32) with a longitudinal opening (323) of length L defining a waveguide, the upper and lower walls of which are formed by the conducting planes covering the upper (51) and lower (31) layers and the width W1 of which is delimited by two conductive side walls, with the inner faces of the conductive side walls being coated with a layer of dielectric material of thickness w(z), the upper layer (51) of the structure having an opening (52) forming a longitudinal radiating slot of width Wf(z) positioned facing the longitudinal opening (323) provided in the intermediate layer, with the thickness w(z) of the coating made of dielectric material disposed on the inner face of each of the side walls varying along the longitudinal axis z according to a given law, defined so as to acquire variations, along the z-axis, of the amplitude Alpha(z) and of the phase Beta(z) of the leaky wave of the guide, allowing an antenna to be produced with the desired radiation pattern (71, 72).
  2. The antenna according to claim 1, wherein the variation law w(z) of the thickness of the dielectric substrate bordering the inner face of each of the side walls of the cavity (323) of the AFSIW guide is a linear law.
  3. The antenna according to any one of claim 1 or 2, wherein the thicknesses of the dielectric substrate bordering the inner face of each of the side walls of the cavity (323) of the AFSIW guide follow the same variation law w(z).
  4. The antenna according to any one of claim 1 or 2, wherein the thickness of the dielectric substrate bordering the inner face of one of the side walls of the cavity (323) of the AFSIW guide follows a linear variation law w(z), with the thickness of the dielectric substrate bordering the inner face of the other side wall of the AFSIW guide being kept constant, or even null.
  5. The antenna according to any one of the preceding claims, wherein the opening (52) forming the longitudinal radiating slot is positioned facing the longitudinal opening (323) provided in the intermediate layer such that the median axis of the radiating slot (52) is separated from the median axis of the cavity (323) by a distance d.
  6. The antenna according to the preceding claim, wherein the median axis (53) of the radiating slot is separated from the median axis (41) of the cavity of the guide by a given distance d taken along an axis, perpendicular to the z-axis and to a stacking axis of the three layers of dielectric substrate.
  7. The antenna according to claim 5, wherein the distance d(z) separating the median axis of the radiating slot from the median axis of the cavity of the guide varies along the longitudinal axis z of the antenna, with the distance d(z) being taken along an axis perpendicular to the z-axis and to a stacking axis of the three layers of dielectric substrate.
  8. The antenna according to any one of the preceding claims, wherein the radiating slot is a rectangular slot with a constant width wf .
  9. The antenna according to any one of claims 1 to 7, wherein the radiating slot (52) is a slot with a width wf(z) that varies along the longitudinal axis z of the guide.
  10. The antenna according to any one of the preceding claims, wherein the total width W1 of the guide along the longitudinal axis z of the antenna is defined as a function W1(z).
  11. The antenna according to any one of the preceding claims, wherein the intermediate layer (32) has a longitudinal opening (323) of length L and of width W2 , forming the cavity of the waveguide, delimited by the conducting planes covering the lower (31) and upper (51) layers and by two rows of vias (322) in electrical contact with said conducting planes and forming the side walls of said waveguide, with each of said rows of vias (322) being disposed so as to form one of the side walls of the guide, the inner face of the wall thus formed being coated with a layer of dielectric material of thickness w(z).
  12. The antenna according to any one of the preceding claims, wherein the intermediate layer (32) has a longitudinal opening (323) of length L and of width W2 , forming the cavity of the waveguide, delimited by the conducting planes covering the lower (31) and upper (51) layers, with one of the side walls of said guide being formed by a row of vias (322) in electrical contact with said conducting planes, the other side wall being coated with a layer of conductive material, with said row of vias (322) being disposed so as to form one of the side walls of the guide, the inner face of the wall thus formed being coated with a layer of dielectric material of thickness w(z).
EP20213687.5A 2019-12-17 2020-12-14 Antenna with leaky wave in afsiw technology Active EP3840124B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1914577A FR3104835B1 (en) 2019-12-17 2019-12-17 LEAKAGE WAVE ANTENNA IN AFSIW TECHNOLOGY

Publications (2)

Publication Number Publication Date
EP3840124A1 EP3840124A1 (en) 2021-06-23
EP3840124B1 true EP3840124B1 (en) 2023-10-04

Family

ID=70738617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20213687.5A Active EP3840124B1 (en) 2019-12-17 2020-12-14 Antenna with leaky wave in afsiw technology

Country Status (4)

Country Link
US (1) US11515637B2 (en)
EP (1) EP3840124B1 (en)
ES (1) ES2964938T3 (en)
FR (1) FR3104835B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563259B2 (en) * 2020-02-12 2023-01-24 Veoneer Us, Llc Waveguide signal confinement structures and related sensor assemblies
CN113851850B (en) * 2021-10-28 2023-03-28 中国舰船研究设计中心 Zero-crossing scanning leaky-wave antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334229A (en) * 1968-11-12 1982-06-08 The United States Of America As Represented By The Secretary Of The Navy Leaky waveguide continuous slot antenna
US11563259B2 (en) * 2020-02-12 2023-01-24 Veoneer Us, Llc Waveguide signal confinement structures and related sensor assemblies

Also Published As

Publication number Publication date
US11515637B2 (en) 2022-11-29
FR3104835B1 (en) 2023-09-29
ES2964938T3 (en) 2024-04-10
FR3104835A1 (en) 2021-06-18
US20210184361A1 (en) 2021-06-17
EP3840124A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
EP2573872B1 (en) Lens antenna comprising a diffractive dielectric component able to shape a hyperfrequency wave front.
FR2886773A1 (en) Antenna e.g. airborne antenna, for airborne weather radar, has radiating waveguide divided into three sections, where central section of radiating wave guide is crossed with central section of vertical component stack of feed waveguide
EP3840124B1 (en) Antenna with leaky wave in afsiw technology
WO2011134666A1 (en) Compact radiating element having resonant cavities
FR2936906A1 (en) OPTIMIZED ARRANGEMENT REFLECTOR NETWORK AND ANTENNA HAVING SUCH A REFLECTIVE NETWORK
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP2869400A1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
FR2652453A1 (en) COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE.
EP3602689B1 (en) Electromagnetic antenna
EP3113286B1 (en) Quasi-optical lens beam former and planar antenna comprising such a beam former
EP2079131A1 (en) Improvement of planar antennas comprising at least one radiating element such as a slot with longitudinal radiation
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP0048190B1 (en) Non-dispersive antenna array and its application to electronic scanning
FR2886771A1 (en) Airborne weather radar antenna for e.g. meteorological phenomenon detection, has feed waveguide connected by coupling slots to radiating waveguides, where antenna beam pointing angle is varied by varying frequency of wave of feed waveguide
EP0831550B1 (en) Versatile array antenna
FR2992780A1 (en) RESONANT CAVITY ANTENNA
FR3060864A1 (en) SLOW WAVE TRANSMISSION LINE IN MEANDRES
EP3529861A1 (en) Antenna
EP3264531A1 (en) Microwave antenna with dual reflector
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
FR2649543A1 (en) HYPERFREQUENCY ENERGY DISTRIBUTOR THAT CAN RADIATE DIRECTLY
FR3057109A1 (en) RADIATION ELEMENT IN A CAVITY AND RADIANT ARRAY COMPRISING AT LEAST TWO RADIANT ELEMENTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210702

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020018569

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 4

Ref country code: DE

Payment date: 20231128

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1618713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2964938

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240117

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020018569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231214

26N No opposition filed

Effective date: 20240705