EP3417507B1 - Elektromagnetisch reflektierende platte mit metamaterialstruktur und miniaturantennenvorrichtung mit solch einer platte - Google Patents

Elektromagnetisch reflektierende platte mit metamaterialstruktur und miniaturantennenvorrichtung mit solch einer platte Download PDF

Info

Publication number
EP3417507B1
EP3417507B1 EP17708866.3A EP17708866A EP3417507B1 EP 3417507 B1 EP3417507 B1 EP 3417507B1 EP 17708866 A EP17708866 A EP 17708866A EP 3417507 B1 EP3417507 B1 EP 3417507B1
Authority
EP
European Patent Office
Prior art keywords
dielectric substrate
reflective plate
conductive element
substrate layer
vias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17708866.3A
Other languages
English (en)
French (fr)
Other versions
EP3417507A1 (de
Inventor
Nebil KRISTOU
Jean-François PINTOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3417507A1 publication Critical patent/EP3417507A1/de
Application granted granted Critical
Publication of EP3417507B1 publication Critical patent/EP3417507B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/0066Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces

Definitions

  • the present invention relates to an electromagnetic reflection plate with a metamaterial structure for a miniature antenna device. It also relates to a miniature antenna device comprising such an electromagnetic reflection plate and an antenna arranged at a short distance from this plate.
  • An antenna is generally placed there in front of a reflector plane to have unidirectional radiation and to allow the integration of an electronic circuit close behind the reflector plane without appreciable interference. The radiation is thus directed in a direction of interest, making it possible, on the one hand, to improve the gain of the antenna and, on the other hand, to reduce the sensitivity of the antenna in a half-space.
  • the latter is of a type approaching the model of a perfect electrical conductor with reflection of the electromagnetic field in phase opposition.
  • the antenna must then be placed at a distance from the reflector plane as close as possible to a quarter of its average operating wavelength to compensate for the phase opposition in reflection and obtain constructive interference between an incident wave coming directly from the antenna and a wave reflected by the reflector plane.
  • the latter is of the artificial magnetic conductor type approaching the model of a perfect magnetic conductor with reflection of the electromagnetic field without phase shift.
  • the antenna can then be placed very close to the reflective plane, in particular well below a quarter of its average operating wavelength, or even below a tenth of this wavelength. This considerably reduces the size of the antenna device and allows its advantageous integration into the design of miniature antennas.
  • a reflector plane according to this technology can be produced using an electromagnetic reflection plate with a metamaterial structure which is precisely the subject of the present invention.
  • phase diagram A method was also proposed in 1999 in Sievenpiper's thesis paper, entitled “High-impedance electromagnetic surfaces”, PhD from the University of California, Los Angeles (USA ), to characterize artificial magnetic conductors by a method known as the phase diagram.
  • This method consists of illuminating the surface to be characterized using a plane wave and at normal incidence. The phase difference which exists between the incident wave and the reflected wave is then compared. Interference is considered to be constructive when the phase difference is between ⁇ / 2 and + ⁇ / 2, which thus defines the bandwidth of use of the artificial magnetic conductor.
  • each of these resonant conductive elements is generally of dimensions close to a quarter of the average operating wavelength of the antenna. Consequently, a metamaterial structure very quickly imposes a large reflecting surface facing the antenna to guarantee its operation in the frequency band of interest of the antenna.
  • the invention it is possible to increase the phase shift between interconnected metal vias without increasing the size of the conductive elements of the metamaterial structure by cleverly exploiting, using one or more meanders on at least part of the electrical connections between vias, the surface located under the ground plane.
  • one or more meanders on at least part of the electrical connections between vias, the surface located under the ground plane.
  • each electrical connection for connecting one metallic via to another is etched on the underside of the second layer of dielectric substrate.
  • the arrangement of the meanders is optimal.
  • each of said electrical connections has several meanders.
  • This option is advantageous in the case where it is desired to obtain axial symmetry along two orthogonal axes.
  • each conductive element and their respective electrical connections are distributed in a central symmetry around a central axis of symmetry of this conductive element.
  • At least part of the meandering electrical connections etched on the underside of the second dielectric substrate layer is further provided with adjustable phase shift devices.
  • each meandering electrical connection etched on the underside of the second layer of dielectric substrate gradually widens from its end in contact with the corresponding metal via towards one of the edges of the conductive element under which it is engraved.
  • each of the conductive elements has one of the shapes of the assembly consisting of a square shape, a shape rectangular, of a spiral shape, of a fork shape, of a cross shape with crutches and a dual shape of a cross with crutches known as the UC-EBG shape.
  • the conductive elements are periodically distributed over the upper face of the first layer of dielectric substrate.
  • figure 1 can be considered as composed of several elementary cells repeating themselves in two main directions x and y.
  • FIG 2A only four elementary cells 12, 14, 16 and 18 are illustrated, one of which, for example cell 12, is shown alone on the diagram. figure 2A .
  • conductive elements 20, 22, 24, 26 separated from each other are etched on an upper face 28 of a first layer 30 of dielectric substrate.
  • These conductive elements are for example rectangular or square but could be of any shape already studied in the state of the art.
  • they could be in the form of a spiral, fork, cross with crutches or dual cross with crutches known as the UC-EBG form.
  • they could have interdigitated capacitors or spiral inductances, known to allow a certain miniaturization of the reflector plate as specified previously.
  • the conductive elements are also, for example, distributed in a matrix by periodically repeating their shape in the x and y directions on the upper face 28 of the first layer 30 of dielectric substrate.
  • the conductive elements could be of different shapes for a non-uniform distribution on the upper face 28, for example of increasing surfaces when moving away from a center, or any other topology relevant to the person skilled in the art in depending on the application context.
  • the plate portion 10 further comprises a ground plane 32 disposed between a lower face 34 of the first layer 30 of dielectric substrate and an upper face 36 of a second layer 38 of dielectric substrate, with holes 40 formed in this plane. mass 32.
  • through metal vias 42 are formed in the thickness of the first and second layers 30, 38 of substrate, each having an upper end in contact with one of the conductive elements 20, 22, 24, 26, and an end lower reaching a lower face 44 of the second layer 38 of dielectric substrate. Each of these vias 42 passes through the ground plane 32 without electrical contact through one of the holes 40.
  • each conductive element 20, 22, 24 or 26 is in electrical contact with four vias 42. Furthermore, according to the invention, each via 42 of each conductive element 20, 22, 24 or 26 is connectable to another via d 'a neighboring conductive element, using a corresponding electrical connection 46 etched on the lower face 44 of the second layer 38 of dielectric substrate and in contact with the lower end of this via 42. Also according to the invention , so as to increase the phase shift between any two vias interconnected by their lower ends, at least part of the electrical connections 46 etched on the lower face 44 of the second layer 38 of dielectric substrate has one or more meanders to optimize the occupation of this lower face 44. In the non-limiting example of figure 1 , each of these electrical connections 46 is meandering.
  • the elementary cell 12 shown alone in transparent perspective on the figure 2A and in front, top and bottom views on the figures 2B, 2C and 2D , is formed of the conductive member 20 and the entire thickness of the substrate below in the z direction. It is for example square with sides of length P.
  • the conductive element 20 is also square with sides of length W slightly less than P so that two conductive elements of two adjacent elementary cells do not touch each other.
  • vias 42 are in contact with the conductive element 20 via their upper ends. They are more precisely referenced 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d on figures 2A to 2D . They are off-center with respect to the center of symmetry of the conductive element 20 but remain on its axes of symmetry. More precisely, the two vias 42 (12) a and 42 (12) d are on the x-directional axis of symmetry of the conductive element 20 but off-center with respect to its center of symmetry. More precisely also, the two vias 42 (12) b and 42 (12) c are on the y direction axis of symmetry of the conductive element 20 but off-center with respect to its center of symmetry. We denote by d the common distance between each via and the corresponding edge closest to the elementary cell 12.
  • meandering electrical connections 46 are etched on the lower face 44 of the second layer 38 of dielectric substrate in the elementary cell 12. They are more precisely referenced 46 (12) a , 46 (12) b , 46 (12) c and 46 (12) d on figures 2A to 2D and correspond respectively to vias 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d while being in respective contact with their lower ends.
  • the meandering electrical connection 46 (12) a has four prominent meanders on the 2D figure and gradually widens from its end in contact with the corresponding metallic via 42 (12) a towards one of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12).
  • the meandering electrical connection 46 (12) b has four meanders clearly visible on the 2D figure and gradually widens from its end in contact with the corresponding metallic via 42 (12) b towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) b of this edge and allows its electrical connection with another via a conductive element (not shown on the figure 1 ) adjacent in the negative direction of the y direction.
  • the meandering electrical connection 46 (12) c has four clearly visible meanders on the 2D figure and gradually widens from its end in contact with the corresponding metal via 42 (12) c towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) c of this edge and allows its electrical connection with another via the adjacent conductive element in the positive direction of the y direction, that is to say via 42 (14) b of the elementary cell 14.
  • the electrical connection with meanders 46 (12) d has four meanders clearly visible on the 2D figure and gradually widens from its end in contact with the corresponding metal via 42 (12) d towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) d from this edge and allows its electrical connection with another via the adjacent conductive element in the positive direction of the x direction, i.e. via 42 (16) a of the elementary cell 16.
  • the four vias 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d of the conductive element 20 and their respective meandering electrical connections 46 (12) a , 46 ( 12) b , 46 (12) c and 46 (12) d are distributed in a central symmetry around the center of symmetry of this conductive element 20.
  • the surface of the lower face 44 of the second layer 38 of dielectric substrate is largely occupied by the respective meandering electrical connections 46 (12) a , 46 (12) b , 46 (12) c and 46 (12) d between vias 42 (12) a , 42 (12) b , 42 ( 12) c , 42 (12) d and the four edges of elementary cell 12.
  • Such a metamaterial structure described with reference to figures 1, 2A , 2B, 2C and 2D can advantageously be used for the design of a miniature antenna device such as that shown in top and bottom views on the figures 3A and 3B .
  • This device comprises a reflector plate 50 with a metamaterial structure composed of 25 elementary cells such as that illustrated in figure 2A distributed in a matrix of 5 rows and 5 columns. It also comprises a dipole antenna 52, visible in top view on the figure 3A , placed at a distance from the plate reflector 50. More precisely, if this dipole antenna 52 has an average operating wavelength denoted A, it can be placed at a distance from the reflector plate 50 less than one tenth of this average operating wavelength, or even even at a distance close to ⁇ / 20, since the reflector plate 50 can behave like an artificial magnetic conductor when it is dimensioned to reflect the waves with zero phase shift at the average operating frequency of the antenna.
  • the figure 3B illustrates a bottom view of the vias interconnection network using the meander connections described above. It is shown that for a dipole antenna 52 with a length of 149 mm and a width of 3.5 mm arranged at a distance ⁇ / 20 from the reflector plate 50, an antenna device of total dimensions 0.63. ⁇ x 0.63 is obtained. . ⁇ x 0.071. ⁇ , where 0.071. ⁇ is the thickness, i.e. a low profile antenna device since its total thickness is less than ⁇ / 10.
  • At least part of the meandering connections engraved on the lower face 44 may be provided with adjustable phase shift devices well known to those skilled in the art, for example with diodes, for the interconnection of the conductive elements between them. This makes it possible to adjust the phase shifts according to the application to be optimized by simply varying the behavior of the active or passive elements employed while maintaining the structure of the metamaterial 10 or 50 and without the need to modify the length of the meandering connections.
  • a miniaturization of the elementary cells can be obtained by optimally adjusting the position of the four vias of each elementary cell and the phase shift ⁇ between interconnected vias, this phase shift ⁇ being adjusted by the length of the meandering connections.
  • k the parameter equal to P / d. This parameter k is necessarily strictly greater than 2 in order to be able to have four eccentric vias.
  • k 2.
  • the figure 5 is a comparative phase diagram of reflection coefficients as a function of operating frequencies for a miniature antenna device according to the invention (in solid line) and a miniature antenna device of the prior art of the same dimensions (in short dashed lines).
  • the device of the prior art chosen has a reflector plate of the mushroom type, that is to say with square conductive elements connected to a solid ground plane by means of a single via each (without a second layer substrate).
  • a gain in miniaturization of approximately 35% per dimension is thus demonstrated, which results in a gain of more than 57% in surface area.
  • comparisons on other properties such as antenna adaptation and radiation efficiency at a chosen operating frequency, or directivity, show that miniature antenna devices according to the invention and with a mushroom reflector plate exhibit quite comparable performance in terms of improvement over reflector plane type devices approaching the perfect electrical conductor model. The gain in miniaturization is therefore all the more appreciable.
  • an electromagnetic reflection plate with a metamaterial structure such as that described above makes it possible to miniaturize an antenna device including it without, however, exhibiting cost drawbacks, significant reduction in the bandwidth of the antenna. or substantial bulk in thickness. Only the surface available under the ground plane is exploited to obtain the advantageous technical effects resulting from the meandering connections.
  • the invention is applicable to an antenna device whose antenna is of the ZOR type (standing for “Zeroth-Order Resonator”). ), wire-plate, broadband, circularly polarized or otherwise, arranged parallel or perpendicular to the reflective plane.
  • each conductive element of the metamaterial may be in electrical contact with a number of vias other than four: for example two, six, etc.
  • the vias are not necessarily all identical either.
  • the invention also applies to a reflector plate with a metamaterial structure, the conductive elements of which are distributed over several layers, which may or may not be offset.
  • the electrical connections between vias may not all be identical. It is in particular possible to vary the values of k and ⁇ from one elementary cell to another.
  • the electrical connections between vias can be etched on several layers, not only on the underside of the second layer of dielectric substrate.
  • each conductive element of the metamaterial may be in electrical contact with vias and / or corresponding electrical connections which are not distributed in a central and / or axial symmetry with respect to the center and / or to one or more axes of symmetry of the conductive element.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Claims (9)

  1. Elektromagnetische Reflexionsplatte (10; 50) mit Metamaterialstruktur für Miniaturantennenvorrichtung, Folgendes beinhaltend:
    - ein dielektrisches Substrat, das mindestens zwei dielektrische Substratschichten aufweist;
    - eine Vielzahl von Leitelementen (20, 22, 24, 26), die voneinander getrennt sind und auf einer Oberseite (28) mit einer ersten Schicht (30) eines dielektrischen Substrats graviert sind,
    - eine Grundplatte (32), die zwischen einer Unterseite (34) der ersten dielektrischen Substratschicht (30) und einer Oberseite (36) einer zweiten dielektrischen Substratschicht (38) angeordnet ist, mit Löchern (40), die in diese Grundplatte (32) eingearbeitet sind,
    - eine Reihe von querenden metallischen Durchkontaktierungen (42), die in der Dicke der ersten (30) und zweiten (38) Substratschicht gebildet sind, wobei jede ein oberes Ende in Kontakt mit einem der Leitelemente (20, 22, 24, 26), ein unteres Ende, das eine Unterseite (44) der zweiten dielektrischen Substratschicht (38) erreicht, und die Grundplatte (32) ohne elektrischen Kontakt durch eines ihrer Löcher (40) durchquert, beinhaltet,
    wobei:
    - jedes Leitelement (20, 22, 24, 26) in Kontakt mit mehreren metallischen Durchkontaktierungen (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) ist, und
    - jede metallische Durchkontaktierung (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) eines jeden Leitelements mit einer anderen Durchkontaktierung eines benachbarten Leitelements mithilfe einer entsprechenden elektrischen Verbindung (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) in Kontakt mit dem unteren Ende dieser metallischen Durchkontaktierung verbindbar ist,
    dadurch gekennzeichnet, dass mindestens ein Teil der elektrischen Verbindungen (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) mehrere Mäander aufweist, wobei jede elektrische Verbindung mit Mäandern (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) auf der Unterseite (44) der zweiten dielektrischen Substratschicht (38) graviert ist und sich nach und nach von ihrem Ende in Kontakt mit der entsprechenden metallischen Durchkontaktierung (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) zu einem der Ränder des Leitelements (20, 22, 24, 26), unter dem sie graviert ist, verbreitert.
  2. Elektromagnetische Reflexionsplatte (10; 50) nach Anspruch 1, wobei jede elektrische Verbindung (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) einer Verbindung einer metallischen Durchkontaktierung mit einem anderen auf der Unterseite (44) der zweiten dielektrischen Substratschicht (38) graviert ist.
  3. Elektromagnetische Reflexionsplatte (10; 50) nach Anspruch 1 oder 2, wobei jede der elektrischen Verbindungen (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) mehrere Mäander aufweist.
  4. Elektromagnetische Reflexionsplatte (10; 50) nach einem der Ansprüche 1 bis 3, wobei:
    - die Leitelemente (20, 22, 24, 26) in Matrix auf der Oberseite (28) der ersten dielektrischen Substratschicht (30) verteilt sind, und
    - jedes Leitelement (20, 22, 24, 26) in Kontakt mit vier metallischen Durchkontaktierungen (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) ist, wobei jede dieser vier metallischen Durchkontaktierungen mit einer anderen metallischen Durchkontaktierung eines in einer Linie oder Spalte in der Matrix angrenzenden Leitelements verbindbar ist.
  5. Elektromagnetische Reflexionsplatte (10; 50) nach einem der Ansprüche 1 bis 4, wobei die metallischen Durchkontaktierungen (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) eines jeden Leitelements (20, 22, 24, 26) und ihre jeweiligen elektrischen Verbindungen (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) entsprechend einer zentralen Symmetrie um eine zentrale Symmetrieachse dieses Leitelements herum verteilt sind.
  6. Elektromagnetische Reflexionsplatte (10; 50) nach einem der Ansprüche 1 bis 5, wobei mindestens ein Teil der elektrischen Verbindungen mit Mäandern (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d), die auf die Unterseite (44) der zweiten dielektrischen Substratschicht (38) graviert sind, weiter mit einstellbaren Phasenverschiebungsvorrichtungen versehen ist.
  7. Elektromagnetische Reflexionsplatte (10; 50) nach einem der Ansprüche 1 bis 6, wobei jedes der Leitelemente (20, 22, 24, 26) eine der Formen der Reihe, die aus einer quadratischen Form, einer rechteckigen Form, einer Spiralform, einer Gabelform, einer Kreuzform mit Stegen und einer dualen Kreuzform mit Stegen, UC-EBG genannt, gebildet ist, aufweist.
  8. Elektromagnetische Reflexionsplatte (10; 50) nach einem der Ansprüche 1 bis 7, wobei die Leitelemente (20, 22, 24, 26) periodisch auf der Oberseite (28) der ersten dielektrischen Substratschicht (30) verteilt sind.
  9. Miniaturantennenvorrichtung, Folgendes beinhaltend:
    - eine elektromagnetische Reflexionsplatte (50) nach einem der Ansprüche 1 bis 8, und
    - eine Antenne (52), die eine mittlere Betriebswellenlänge aufweist, und in einem Abstand zu der Reflexionsplatte (50) angeordnet ist, der kleiner als ein Zehntel dieser mittleren Betriebswellenlänge ist.
EP17708866.3A 2016-02-17 2017-02-16 Elektromagnetisch reflektierende platte mit metamaterialstruktur und miniaturantennenvorrichtung mit solch einer platte Active EP3417507B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1651278A FR3047845A1 (fr) 2016-02-17 2016-02-17 Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
FR1651373A FR3047846B1 (fr) 2016-02-17 2016-02-19 Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
PCT/FR2017/050349 WO2017140987A1 (fr) 2016-02-17 2017-02-16 Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque

Publications (2)

Publication Number Publication Date
EP3417507A1 EP3417507A1 (de) 2018-12-26
EP3417507B1 true EP3417507B1 (de) 2021-11-17

Family

ID=56411701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17708866.3A Active EP3417507B1 (de) 2016-02-17 2017-02-16 Elektromagnetisch reflektierende platte mit metamaterialstruktur und miniaturantennenvorrichtung mit solch einer platte

Country Status (4)

Country Link
US (1) US10826188B2 (de)
EP (1) EP3417507B1 (de)
FR (2) FR3047845A1 (de)
WO (1) WO2017140987A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273860B (zh) * 2018-10-18 2020-11-13 哈尔滨工业大学 传输线型宽带有源频率选择表面
JP2022165135A (ja) * 2021-04-19 2022-10-31 京セラ株式会社 複合共振器および集合体
WO2023199870A1 (ja) * 2022-04-11 2023-10-19 京セラ株式会社 電波屈折板
WO2024024447A1 (ja) * 2022-07-26 2024-02-01 京セラ株式会社 電波制御板および複合共振器
US20240106130A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Antenna gain enhancement using frequency selective surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142036A1 (en) * 2001-02-08 2003-07-31 Wilhelm Michael John Multiband or broadband frequency selective surface
US9755320B2 (en) * 2014-07-01 2017-09-05 Asustek Computer Inc. Electromagnetic bandgap structure and electronic device having the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550100B2 (ja) * 2007-12-26 2014-07-16 日本電気株式会社 電磁バンドギャップ素子及びそれを用いたアンテナ並びにフィルタ
US8164006B2 (en) * 2008-03-19 2012-04-24 Samsung Electro-Mechanics Co., Ltd. Electromagnetic bandgap structure and printed circuit board
JP5135178B2 (ja) * 2008-11-25 2013-01-30 株式会社東芝 アンテナ装置および無線通信装置
US9136609B2 (en) * 2009-03-30 2015-09-15 Nec Corporation Resonator antenna
KR101055483B1 (ko) * 2009-04-07 2011-08-08 포항공과대학교 산학협력단 전자기 밴드갭 구조물 및 이를 포함하는 인쇄회로기판
KR101038236B1 (ko) * 2009-09-16 2011-06-01 삼성전기주식회사 전자기 밴드갭 구조를 구비하는 인쇄회로기판
FR3006505B1 (fr) 2013-05-31 2017-02-10 Commissariat Energie Atomique Dispositif de perturbation d'une propagation d'ondes electromagnetiques et son procede de fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142036A1 (en) * 2001-02-08 2003-07-31 Wilhelm Michael John Multiband or broadband frequency selective surface
US9755320B2 (en) * 2014-07-01 2017-09-05 Asustek Computer Inc. Electromagnetic bandgap structure and electronic device having the same

Also Published As

Publication number Publication date
FR3047845A1 (fr) 2017-08-18
FR3047846A1 (fr) 2017-08-18
US20190044244A1 (en) 2019-02-07
FR3047846B1 (fr) 2018-03-02
WO2017140987A1 (fr) 2017-08-24
US10826188B2 (en) 2020-11-03
EP3417507A1 (de) 2018-12-26

Similar Documents

Publication Publication Date Title
EP3417507B1 (de) Elektromagnetisch reflektierende platte mit metamaterialstruktur und miniaturantennenvorrichtung mit solch einer platte
EP2808946B1 (de) Vorrichtung zum Verhindern einer Ausbreitung von elektromagnetischen Wellen und ihr Herstellungsprozess
CA2681548C (fr) Reseau reflecteur et antenne comportant un tel reseau reflecteur
EP2656438B1 (de) Strahlende zelle mit zwei phasenzuständen für ein sendendes netzwerk
EP2202846B1 (de) Dual polarisiertes, planares Strahlungselement und mit einem solchen Strahlungselement ausgestattete Netzantenne
EP2571098B1 (de) Rekonfiguerierbare strahlende dephasierende Zelle, die auf Spaltresonanzen und komplementären Mikrostreifen basiert
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
EP2184803B1 (de) Coplanare Differenzial-Zweiband-Verzögerunsleitung, Differenzialfilter höherer Ordnung und Filterantenne mit einer solchen Leitung
WO2005117208A1 (fr) Antenne planaire à plots conducteurs à partir du plan de masse et/ou d'au moins un élément rayonnant, et procédé de fabrication correspondant.
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
WO2010052377A1 (fr) Systeme d'antenne dipole differentielle a structure rayonnante coplanaire et dispositif d'emission/reception
EP3235058B1 (de) Drahtplattenantenne mit einem kapazitiven dach mit einem schlitz zwischen der speisungssonde und dem kurzschlussdraht
EP3840124B1 (de) Leckwellenantenne mit afsiw-technologie
EP2817850B1 (de) Elektromagnetische bandlückenvorrichtung, verwendung davon in einer antennenvorrichtung und parameterfestlegungsverfahren für die antennenvorrichtung
WO2016075387A1 (fr) Dispositif antenne compacte reconfigurable
WO2016087304A1 (fr) Antenne reseau multicouche du type auto-complementaire
EP3485534B1 (de) Steuerbare multifunktionelle frequenzselektive oberfläche
FR2965112A1 (fr) Symetriseur large bande sur circuit multicouche pour antenne reseau
EP0831550A1 (de) Vielseitige Gruppenantenne
WO2012131086A1 (fr) Antenne reseau directive large bande, du type a circuit imprime

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210713

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017049395

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1448802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017049395

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017049395

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

26N No opposition filed

Effective date: 20220818

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220216

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240213

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117