WO2016087304A1 - Antenne reseau multicouche du type auto-complementaire - Google Patents

Antenne reseau multicouche du type auto-complementaire Download PDF

Info

Publication number
WO2016087304A1
WO2016087304A1 PCT/EP2015/077766 EP2015077766W WO2016087304A1 WO 2016087304 A1 WO2016087304 A1 WO 2016087304A1 EP 2015077766 W EP2015077766 W EP 2015077766W WO 2016087304 A1 WO2016087304 A1 WO 2016087304A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
antenna according
points
antenna
vias
Prior art date
Application number
PCT/EP2015/077766
Other languages
English (en)
Inventor
Isabelle LE ROY-NANEIX
Gwenael MORVAN
Michèle Labeyrie
Bernard Perpere
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US15/526,753 priority Critical patent/US10170829B2/en
Priority to EP15800865.6A priority patent/EP3227960B1/fr
Publication of WO2016087304A1 publication Critical patent/WO2016087304A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to a multilayer network antenna of the self-complementary type. It applies in particular for multifunction broadband network antennas.
  • the design of the radiating element is optimized by taking advantage of its depth directly impacting the thickness of the network.
  • Broadband network antennas consist of a Vivaldi type network.
  • a category of very broadband network antenna solutions have a radiating structure based on self-complementary patterns embedded in a coating of dielectric layers, making it possible to extend the frequency band.
  • multilayer structures have the advantage of having a small footprint, facilitating their integration on a carrier.
  • they have a disadvantage residing in the phenomenon of common mode currents that can appear in this type of multilayer structures.
  • An object of the invention is notably to make it possible to eliminate these common-mode phenomena in a multilayer-type antenna comprising a radiating structure based on self-complementary patterns.
  • the subject of the invention is a multilayer-type array antenna comprising a radiating structure formed of an array of radiating elements comprising self-complementary patterns, said radiating surface being separated from a ground plane by a layer dielectric, said antenna comprising a network of metallized vias crossing said dielectric layer between the radiating surface and the ground plane, each via being positioned opposite a given point, said particular point, of a radiating element.
  • each radiating element comprises several particular points, a via being made with regard to each particular point.
  • a particular point is for example located between two consecutive power supply points of a radiating element, the particular point is for example located in the middle of two consecutive power supply points.
  • each radiating element has four particular points, each point being located between two consecutive electrical supply points.
  • the vias are for example metallized holes made in said layer. In another possible embodiment, they have the shape of pins.
  • the radiating structure is for example of the printed circuit type, the radiating elements being printed metal blocks.
  • the radiating structure is for example covered with a dielectric layer, said layer being covered with a radome.
  • FIG. 1 an illustration of a radiating structure based on self-complementary patterns
  • FIG. 2 in sectional view, an antenna comprising a radiating structure according to FIG. 1;
  • FIGS. 3a and 3b an illustration of the common-mode resonance phenomenon likely to occur in an antenna
  • FIG. 7 an example of a curve representative of the reflection coefficient of an antenna according to the invention.
  • FIG. 1 shows, by way of example, a radiating structure based on self-complementary patterns by a partial view of a network.
  • the patterns presented use square printed metal blocks 1, 2, other shapes being possible.
  • a self-complementary radiating structure is composed of a network of elementary patterns 1, 2 of the dipole type, each of which is a radiating element, a metallic block 1, 2 printed in a square shape in the example of FIG.
  • Each pattern is fed by two-wire lines 10 whose conductors are connected to the junction of the two blocks of a dipole.
  • a two-wire line 10 has its first branch connected to a feed point 14 of a block and its second branch connected to a feed point 14 'of the neighboring block 2, the two points 14, 14' being opposite one of the other.
  • Each block 1, 2 thus comprises four feed points January 1, 12, 13, 14 to achieve two orthogonal electromagnetic polarizations.
  • the radiating structure is of the printed circuit type, the metal blocks 1, 2 being printed on the circuit, the zones between the blocks being non-metallic.
  • the two-wire lines having a characteristic impedance of the order of 190 ohms to adapt to the impedance of the dipoles (60 ⁇ ohms, or half the impedance of the vacuum)
  • a balun also called balun
  • in multilayer technology for here on the one hand impedance transformation of 50 ohms in 190 ohms and on the other hand the transition from balanced propagation to unbalanced propagation.
  • FIG. 2 shows, in sectional view, an antenna comprising a radiating structure based on self-complementary patterns of the type shown in FIG. More particularly, Figure 2 shows the multilayer appearance of such an antenna.
  • the multilayer structure is for example composed of at least the radiating structure 21 with the metal blocks 1, insulating layers 22, 23 and a metal plane 24.
  • a foam layer 22 is for example placed between the metal plane and the structure radiant 21.
  • a foam layer 23 is for example placed above the radiating structure. This foam layer can be replaced by a space filled with air.
  • the set of layers 21, 22, 23, 24 is covered by a radome 25 which contributes to the quality of the radiation.
  • the set of two-wire lines feeding the elementary patterns are not shown in this figure for reasons of readability. They pass for example the layer 22 and the metal plane 24 to be connected to one or more control circuits, for example of printed circuit type.
  • FIGS. 3a and 3b illustrate common mode current phenomena specific to structures with self-complementary patterns. These figures show a focused view on two neighboring metal blocks 1, 2 fed by a two-wire line 10. More specifically, a block 1 is electrically powered at a point 14 by a branch 101 of the line 10 and the other block 2 is powered at one point 14 'by the other branch 102 of the line. The latter passes through the insulator 22 supporting the blocks, then passes through the other layers not shown.
  • FIG. 3a shows the currents 31, 32 passing through the blocks, induced by the supply brought by the two-wire line 10. These currents move in the same direction, corresponding to an ideal operation.
  • FIG. 3b illustrates the common mode currents 33, 34 which are superimposed on the previous currents 31, 32. These common mode currents are caused by the electromagnetic couplings between the metal blocks equipped with their two-wire excitations. The common mode currents 33, 34 are opposite. Their superposition to the nominal currents 31, 32 disturbs the radiation of the radiating structure 21.
  • FIG. 4 illustrates the effects of these common mode resonance phenomena. More particularly, FIG. 4 illustrates by a curve 40 the value in dB of the reflection coefficient S1 1 as a function of the frequency, between 6 GHz and 18 GHz.
  • the coefficient S1 1 is connected to the stationary wave ratio.
  • This common-mode resonance phenomenon results in an increase in the reflection coefficient close to 1 at certain frequencies, illustrated by peaks 41, 42.
  • the magnitude of the increase in the reflection coefficient and the corresponding frequencies depend in particular on the type of reflection. the nature of the network, and in particular the type of mesh.
  • the analysis of the fields in the multilayer structure of the antenna also reveals the appearance of a field Ez, perpendicular to the surface, which propagates in the multilayer structure.
  • Figure 5 illustrates the principle of the invention by an exemplary embodiment.
  • metallized vias are inserted at given points 51, 52, 53, 54 into the layer 22 separating the radiating elements 1 and the ground plane, in order to reduce or even eliminate the coupling between the radiating elements. causing the parasitic mode described above.
  • FIG. 5 illustrates the position of these given points which will be called hereinafter particular points. These particular points belong to the radiating elements, that is to say that the vias are arranged opposite the radiating elements.
  • Figure 5 illustrates example positions of the particular points for a metal block, the positions being the same for all other metal blocks.
  • An advantageous position is located between the feed points January 1, 12, 13, 14 outside the central zone of the block.
  • a particularly advantageous position is located in the middle of two points on the pavement side as 5. More generally, a particular point 54 is situated, for example, between two consecutive feed points 11, 12. Two feeding points 11, 12 of a radiating element 1 are consecutive. they follow each other as they go around this element. In practice if the shape of the element allows it, the particular points can be located on a straight line connecting two consecutive points, and in particular in the middle, as illustrated by FIG.
  • the vias are placed at four points 51, 52, 53, 54 each located in the middle of the pavement feed points.
  • the vias are thus made opposite each radiating element of the radiating surface 21.
  • FIG. 6 illustrates, in sectional view, the vias 61, 62, 63 connecting a metal block 1 and the ground plane, or metal plane 24.
  • a regular mesh of vias 61, 62 is obtained.
  • 63, 64, 65 partially or totally blocking the passage of common mode currents.
  • a network of metallized vias traversing the layer 22, of dielectric material, is thus obtained in a direction perpendicular to the radiating surface, the vias being positioned opposite the particular points 51, 52, 53, 54.
  • a single via is disposed between the power points. If necessary, it is possible to place several vias between two power points, particularly depending on the nature of the common mode phenomenon.
  • the particular points of insertion of the vias can be placed between the supply points of the radiating elements, outside the central zone.
  • the vias 61, 62, 63, 64, 65 can be used between the radiating elements 1 and the ground plane 24 a low permittivity dielectric material for making metallized vias, possibly drilled. It is also possible to use foams that can be metallized. In another embodiment, in the case in particular where the two-wire lines are formed of pins, one can add additional pins to the two-wire lines, in particular in embodiments of the antenna where the layer 22 located between the radiating elements and the ground plane is a low density foam, not able to be metallized.
  • FIG. 7 illustrates the improvement provided by the vias network, in the case where the vias are installed according to the embodiment of FIG. 5.
  • the reflection coefficient S 1 1 is represented as a function of the frequency in the same range, between 6 and 16 GHz.
  • the curve 40 representing the value of the reflection coefficient no longer has the peaks 41, 42 of the curve 40 of FIG. 4.
  • the points 71, 72 of the curve corresponding to the frequencies of the peaks 41, 42 are strongly attenuated, the high peaks having disappeared.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'antenne réseau comportant une structure rayonnante formée d'un réseau d'éléments rayonnants (1) composant des motifs auto-complémentaires, ladite surface rayonnante étant séparée d'un plan de masse par un couche diélectrique, ladite antenne comporte un réseau de vias métallisés traversant ladite couche diélectrique entre la surface rayonnante et le plan de masse, chaque via étant positionné en regard d'un point donné (51,52, 53, 54), dit point particulier, d'un élément rayonnant. Les points particuliers peuvent être situés entre deux points d'alimentation électrique (11, 12, 13, 14) consécutifs d'un élément rayonnant.

Description

ANTENNE RESEAU MULTICOUCHE
DU TYPE AUTO-COMPLEMENTAIRE
La présente invention concerne une antenne réseau multicouche, du type auto-complémentaire. Elle s'applique notamment pour des antennes réseau large bande à multifonctions.
Différentes solutions existent pour réaliser des réseaux à large bande. Elles utilisent des éléments rayonnants compatibles d'architecture brique ou d'architecture tuile.
Dans l'architecture brique, le design de l'élément rayonnant est optimisé en tirant partie de sa profondeur impactant directement l'épaisseur du réseau. Des antennes réseau large bande sont constituées de réseau de type Vivaldi. Ces solutions présentent l'inconvénient d'être protubérantes et encombrantes, entraînant notamment une complexité d'intégration mécanique.
Une autre solution d'antenne large bande est décrite dans le document de A. Neto, D. Cavallo, G. Gerini and G. Toso, "Scanning Performances of Wide Band Connected Arrays in the Présence of a Backing Reflector", IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct. 2009.
Un autre type d'antenne large bande est encore proposé dans le document de D. Cavallo, A. Neto, G. Gerini : Analysis of Common-Mode Résonances in Arrays of Connected Dipoles and Possible Solutions- EUCAP 2009 et dans le document de Steven S. Holland, Marinos N. Vouvakis- The Planar Ultrawideband Modular Antenna (PUMA) Array- IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 1 , JANUARY 2012.
Toutes ces solutions ont comme inconvénient d'être encombrantes et difficiles à intégrer sur certains porteurs.
Dans le cadre des architectures tuile, une catégorie de solutions d'antennes réseau très large bande ont une structure rayonnante à base de motifs autocomplémentaires noyés dans un enrobage de couches diélectriques, permettant d'étendre la bande de fréquence.
Ces structures de type multicouche ont l'avantage de présenter un faible encombrement, facilitant leur intégration sur un porteur. Elles présentent cependant un inconvénient résidant dans le phénomène de courants de mode commun qui peuvent apparaître dans ce type de structures multicouche. Un but de l'invention est notamment de permettre de supprimer ces phénomènes de mode commun dans une antenne de type multicouche comportant une structure rayonnante à base de motifs autocomplémentaires.
A cet effet, l'invention a pour objet une antenne réseau du type multicouche comportant une structure rayonnante formée d'un réseau d'éléments rayonnants composant des motifs auto-complémentaires, ladite surface rayonnante étant séparée d'un plan de masse par une couche diélectrique, ladite antenne comportant un réseau de vias métallisés traversant ladite couche diélectrique entre la surface rayonnante et le plan de masse, chaque via étant positionné en regard d'un point donné, dit point particulier, d'un élément rayonnant.
Dans un mode de réalisation possible chaque élément rayonnant comporte plusieurs points particuliers, un via étant réalisé en regard de chaque point particulier. Un point particulier est par exemple situé entre deux points d'alimentation électrique consécutifs d'un élément rayonnant, que le point particulier est par exemple situé au milieu de deux points d'alimentation électrique consécutif. Dans un autre mode de réalisation possible, chaque élément rayonnant comporte quatre points particuliers, chaque point étant situé entre deux points d'alimentation électrique consécutifs.
Les vias sont par exemple des trous métallisés réalisés dans ladite couche. Dans un autre mode de réalisation possible, ils ont la forme de picots.
La structure rayonnante est par exemple du type circuit imprimé, les éléments rayonnants étant des pavés métalliques imprimés. La structure rayonnante est par exemple recouverte d'une couche diélectrique, ladite couche étant recouverte d'un radôme. D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
- La figure 1 , une illustration d'une structure rayonnante à base de motifs auto-complémentaires ;
- La figure 2, par une vue en coupe une antenne comportant une structure rayonnante selon la figure 1 ,
- Les figures 3a et 3b, une illustration du phénomène de résonnance de mode commun susceptible de se produire dans une antenne ;
- La figure 4, une courbe représentative de la dégradation du coefficient de réflexion provoqué par le phénomène précité ;
- La figure 5, un exemple de réalisation d'une antenne selon l'invention par une vue de dessus d'un élément rayonnant ;
- La figure 6, un exemple de réalisation d'une antenne selon l'invention par une vue en coupe partielle ;
- La figure 7, un exemple de courbe représentative du coefficient de réflexion d'une antenne selon l'invention.
La figure 1 présente à titre d'exemple une structure rayonnante à base de motifs auto-complémentaires par une vue partielle d'un réseau. Les motifs présentés utilisent des pavés métalliques imprimés 1 , 2 de forme carrée, d'autres formes étant possibles. Une structure rayonnante autocomplémentaire est composée d'un réseau de motifs élémentaires 1 , 2 de type dipôle dont chacun des deux pôles est un élément rayonnant, un pavé métallique 1 , 2 imprimé de forme carrée dans l'exemple de la figure 1 . Chaque motif est alimenté par des lignes bifilaires 10 dont les conducteurs sont connectés à la jonction des deux pavés d'un dipôle. Par exemple une ligne bifilaire 10 a sa première branche connectée à un point d'alimentation 14 d'un pavé et sa deuxième branche connectée à un point d'alimentation 14' du pavé voisin 2, les deux points 14, 14' étant en regard l'un de l'autre. Chaque pavé 1 , 2 comporte donc quatre points d'alimentation 1 1 , 12, 13, 14 pour réaliser deux polarisations électromagnétiques orthogonales. La structure rayonnante est du type circuit imprimé, les pavés métalliques 1 , 2 étant imprimés sur le circuit, les zones entre les pavés étant non métalliques. De façon connue, les lignes bifilaires ayant une impédance caractéristique de l'ordre de 190 ohms pour s'adapter à l'impédance des dipôles (60π ohms, soit la moitié de l'impédance du vide), sont reliées aux autres circuits hyperfréquence à l'aide d'un symétriseur, encore appelé balun, en technologie multicouche permettant ici d'une part la transformation d'impédance de 50 ohms en 190 ohms et d'autre part le passage d'une propagation équilibrée à une propagation non équilibrée.
La figure 2 présente par une vue en coupe une antenne comportant une structure rayonnante à base de motifs auto-complémentaires du type de celle présentée en figure 1 . Plus particulièrement la figure 2 montre l'aspect multicouche d'une telle antenne. La structure multicouche est par exemple composée au moins de la structure rayonnante 21 avec les pavés métalliques 1 , de couches isolantes 22, 23 et d'un plan métallique 24. Une couche en mousse 22 est par exemple placée entre le plan métallique et la structure rayonnante 21 . Une couche en mousse 23 est par exemple placée au dessus de la structure rayonnante. Cette couche en mousse peut être remplacée par un espace rempli d'air. L'ensemble des couches 21 , 22, 23, 24 est recouverte par un radôme 25 qui participe à la qualité du rayonnement.
L'ensemble des lignes bifilaires alimentant les motifs élémentaires ne sont pas représentés sur cette figure pour des raisons de lisibilité. Elles traversent par exemple la couche 22 et le plan métallique 24 pour être connectés à un ou plusieurs circuits de commande, par exemple de type circuit imprimé.
Les figures 3a et 3b illustrent les phénomènes de courants de mode commun propre aux structures à motifs auto-complémentaires. Ces figures présentent une vue focalisée sur deux pavés métalliques voisins 1 , 2 alimentés par une ligne bifilaire 10. Plus précisément, un pavé 1 est alimenté électriquement en un point 14 par une branche 101 de la ligne 10 et l'autre pavé 2 est alimenté en un point 14' par l'autre branche 102 de la ligne. Cette dernière traverse l'isolant 22 supportant les pavés, puis traverse les autres couches non représentées.
La figure 3a présente les courants 31 , 32 traversant les pavés, induits par l'alimentation amenée par la ligne bifilaire 10. Ces courants se déplacent dans une même direction, correspondant à un fonctionnement idéal. La figure 3b illustre les courants de mode commun 33, 34 qui se superposent aux courants précédents 31 , 32. Ces courants de mode commun sont provoqués par les couplages électromagnétiques entre les pavés métalliques équipés de leurs excitations bifilaires. Les courants de mode commun 33, 34 sont opposés. Leur superposition aux courants nominaux 31 , 32 perturbe le rayonnement de la structure rayonnante 21 .
La figure 4 illustre les effets de ces phénomènes de type résonnance de mode commun. Plus particulièrement la figure 4 illustre par une courbe 40 la valeur en dB du coefficient de réflexion S1 1 en fonction de la fréquence, entre 6 GHz et 18 GHz. Le coefficient S1 1 est relié au taux d'onde station naire.
Ce phénomène de résonnance de mode commun se traduit par une augmentation du coefficient de réflexion proche de 1 à certaines fréquences, illustrée par des pics 41 , 42. L'ampleur de l'augmentation du coefficient de réflexion et les fréquences correspondantes dépendent notamment du type de la nature du réseau, et en particulier du type de maille.
L'analyse des champs dans la structure multicouche de l'antenne met en évidence par ailleurs l'apparition d'un champ Ez, perpendiculaire à la surface, qui se propage dans la structure multicouche.
La figure 5 illustre le principe de l'invention par un exemple de réalisation. Selon l'invention, on insère des vias métallisés en des points donnés 51 , 52, 53, 54 dans la couche 22 séparant les éléments rayonnants 1 et le plan de masse, afin de réduire, voire d'éliminer le couplage entre les éléments rayonnant provoquant le mode parasite décrit ci-dessus.
La figure 5 illustre la position de ces points donnés que l'on appellera par la suite points particuliers. Ces points particuliers appartiennent aux éléments rayonnants, c'est-à-dire que les vias sont disposés en regard des éléments rayonnants. La figure 5 illustre des exemples de positions des points particuliers pour un pavé métallique, les positions étant les mêmes pour tous les autres pavés métalliques.
Une position avantageuse est située entre les points d'alimentation 1 1 , 12, 13, 14 en dehors de la zone centrale du pavé. Une position particulièrement avantageuse est située au milieu de deux points du côté du pavé comme illustré par la figure 5. De façon plus générale, un point particulier 54 est situé par exemple entre deux points d'alimentation consécutifs 1 1 , 12. Deux points d'alimentation 1 1 , 12 d'un élément rayonnant 1 sont consécutifs s'ils se suivent en parcourant le tour de cet élément. En pratique si la forme de l'élément le permet, les points particuliers peuvent être situés sur une droite reliant deux points consécutif, et notamment au milieu, comme illustré par la figure 5.
Dans l'exemple de cette figure 5, les vias sont placés en quatre points 51 , 52, 53, 54 situés chacun au milieu de points d'alimentation du pavé.
Les vias sont réalisés ainsi en regard de chaque élément rayonnant de la surface rayonnante 21 .
La figure 6 illustre par une vue en coupe, les vias 61 , 62, 63 reliant un pavé métallique 1 et le plan de masse, ou plan métallique 24. En réalisant ces vias pour chaque pavé on obtient un maillage régulier de vias 61 , 62, 63, 64, 65 bloquant en partie ou totalement le passage des courants de mode commun. On obtient ainsi un réseau de vias métallisés traversant la couche 22, en matériau diélectrique, dans une direction perpendiculaire à la surface rayonnante, les vias étant positionnés en regard des points particuliers 51 , 52, 53, 54.
Dans l'exemple des figures 5 et 6, un seul via est disposé entre les points d'alimentation. En cas de nécessité, il est possible de placer plusieurs vias entre deux points d'alimentation, notamment en fonction de la nature du phénomène de mode commun.
Dans le cas où les éléments rayonnants n'ont pas la forme de pavé carrés comme illustré par les figures, les points particuliers d'insertion des vias peuvent être placés entre les points d'alimentation des éléments rayonnants, en dehors de la zone centrale.
Pour réaliser les vias 61 , 62, 63, 64, 65 on peut utiliser entre les éléments rayonnants 1 et le plan de masse 24 un matériau diélectrique de faible permittivité permettant de réaliser des vias métallisés, éventuellement percés. On peut aussi utiliser des mousses aptes à être métallisées. Dans un autre mode de réalisation, dans le cas notamment où les lignes bifilaires sont formées de picots, on peut ajouter des picots supplémentaires aux lignes bifilaires, en particulier dans des modes de réalisation de l'antenne où la couche 22 située entre les éléments rayonnant et le plan de masse est une mousse de faible densité, non apte à être métallisée.
La figure 7 illustre l'amélioration apportée par le réseau de vias, dans le cas où les vias sont installés selon le mode de réalisation de la figure 5. Comme sur la figure 4, on représente le coefficient de réflexion S1 1 en fonction de la fréquence dans la même plage, entre 6 et 16 GHz. La courbe 40 représentant la valeur du coefficient de réflexion ne présente plus les pics 41 , 42 de la courbe 40 de la figure 4. Les points 71 , 72 de la courbe correspondant aux fréquences des pics 41 , 42 sont fortement atténués, les pics élevés ayant disparus. Par le passage de la première courbe 40 à la deuxième courbe 70, on constate une nette amélioration des performances de la surface rayonnante 21 , au niveau du coefficient de réflexion, en fonction de la fréquence, sous incidence de 20 degrés dans l'exemple d'application.

Claims

REVENDICATIONS
1 . Antenne réseau du type multicouche comportant une structure rayonnante (21 ) formée d'un réseau d'éléments rayonnants (1 , 2) composant des motifs auto-complémentaires, ladite surface rayonnante étant séparée d'un plan de masse (24) par une couche diélectrique (22), caractérisée en ce que ladite antenne comporte un réseau de vias métallisés (61 , 62, 63, 64, 65) traversant ladite couche diélectrique (22) entre la surface rayonnante (21 ) et le plan de masse (24), chaque via étant positionné en regard d'un point donné (51 ,52, 53, 54), dit point particulier, d'un élément rayonnant.
2. Antenne selon la revendication 1 , caractérisée en ce que chaque élément rayonnant (1 , 2) comporte plusieurs points particuliers, un via étant réalisé en regard de chaque point particulier.
3. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un point particulier est situé entre deux points d'alimentation électrique (1 1 , 12) consécutifs d'un élément rayonnant.
4. Antenne selon la revendication 3, caractérisée en ce que le point particulier est situé au milieu de deux points d'alimentation électrique (1 1 , 12) consécutif.
5. Antenne selon l'une quelconque des revendications 3 ou 4, caractérisée en ce que chaque élément rayonnant (1 ) comporte quatre points particuliers, chaque point étant situé entre deux points d'alimentation électrique (1 1 , 12, 13, 14) consécutifs.
6. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que les vias sont des trous métallisés réalisés dans ladite couche (22).
7. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les vias ont la forme de picots.
8. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que la structure rayonnante (21 ) est du type circuit imprimé, les éléments rayonnants étant des pavés métalliques imprimés.
9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que la structure rayonnante est recouverte d'une couche diélectrique (23), ladite couche (23) étant recouverte d'un radôme (45).
10. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est apte à fonctionner dans une large bande de fréquences, pour des applications multifonctions.
PCT/EP2015/077766 2014-12-05 2015-11-26 Antenne reseau multicouche du type auto-complementaire WO2016087304A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/526,753 US10170829B2 (en) 2014-12-05 2015-11-26 Self-complementary multilayer array antenna
EP15800865.6A EP3227960B1 (fr) 2014-12-05 2015-11-26 Antenne reseau multicouche du type auto-complementaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR14/02780 2014-12-05
FR1402780A FR3029693B1 (fr) 2014-12-05 2014-12-05 Antenne reseau multicouche du type auto complementaire

Publications (1)

Publication Number Publication Date
WO2016087304A1 true WO2016087304A1 (fr) 2016-06-09

Family

ID=53059149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077766 WO2016087304A1 (fr) 2014-12-05 2015-11-26 Antenne reseau multicouche du type auto-complementaire

Country Status (4)

Country Link
US (1) US10170829B2 (fr)
EP (1) EP3227960B1 (fr)
FR (1) FR3029693B1 (fr)
WO (1) WO2016087304A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10038252B2 (en) * 2014-06-06 2018-07-31 Rockwell Collins, Inc. Tiling system and method for an array antenna
CN110011049A (zh) * 2019-04-29 2019-07-12 成都天成电科科技有限公司 一种加载寄生贴片的微带天线
CN112993593B (zh) * 2021-02-10 2022-04-08 清华大学 一种毫米波相控阵天线及移动终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057852A1 (en) * 2009-08-03 2011-03-10 University of Massachutsetts Modular Wideband Antenna Array
WO2012003546A1 (fr) * 2010-07-08 2012-01-12 Commonwealth Scientific And Industrial Research Organisation Réseau auto-complémentaire reconfigurable

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114997A (en) * 1998-05-27 2000-09-05 Raytheon Company Low-profile, integrated radiator tiles for wideband, dual-linear and circular-polarized phased array applications
US7154451B1 (en) * 2004-09-17 2006-12-26 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
US7456803B1 (en) * 2003-05-12 2008-11-25 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
WO2010105109A2 (fr) * 2009-03-11 2010-09-16 Rayspan Corporation Dispositif d'antenne en méta-matériau à gain élevé
US8325093B2 (en) * 2009-07-31 2012-12-04 University Of Massachusetts Planar ultrawideband modular antenna array
WO2015089643A1 (fr) * 2013-12-20 2015-06-25 Tayfeh Aligodarz Mohammadreza Réseaux d'antennes à résonateur diélectrique
US10230174B2 (en) * 2016-08-17 2019-03-12 Yan Wang Frequency diverse phased-array antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057852A1 (en) * 2009-08-03 2011-03-10 University of Massachutsetts Modular Wideband Antenna Array
WO2012003546A1 (fr) * 2010-07-08 2012-01-12 Commonwealth Scientific And Industrial Research Organisation Réseau auto-complémentaire reconfigurable

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE LERA ACEDO E ET AL: "Study and Design of a Differentially-Fed Tapered Slot Antenna Array", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 58, no. 1, 1 January 2010 (2010-01-01), pages 68 - 78, XP011297193, ISSN: 0018-926X *
LOGAN JOHN T ET AL: "Planar Ultrawideband Modular Antenna (PUMA) arrays scalable to mm-waves", 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), IEEE, 7 July 2013 (2013-07-07), pages 624 - 625, XP032555710, ISSN: 1522-3965, ISBN: 978-1-4799-3538-3, [retrieved on 20140113], DOI: 10.1109/APS.2013.6710972 *
STEVEN S HOLLAND ET AL: "The Planar Ultrawideband Modular Antenna (PUMA) Array", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 60, no. 1, 1 January 2012 (2012-01-01), pages 130 - 140, XP011391336, ISSN: 0018-926X, DOI: 10.1109/TAP.2011.2167916 *

Also Published As

Publication number Publication date
EP3227960B1 (fr) 2020-07-29
US20170338553A1 (en) 2017-11-23
FR3029693A1 (fr) 2016-06-10
US10170829B2 (en) 2019-01-01
FR3029693B1 (fr) 2016-12-02
EP3227960A1 (fr) 2017-10-11

Similar Documents

Publication Publication Date Title
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP2047558B1 (fr) Antenne isotrope et capteur de mesure associe
EP0493190B1 (fr) Antenne hyperfréquence de type pavé
EP0825673A1 (fr) Antenne imprimée plane à éléments superposés court-circuités
FR2960710A1 (fr) Element rayonnant a double polarisation d'antenne multibande
EP1751820A1 (fr) Antenne planaire à plots conducteurs à partir du plan de masse et/ou d'au moins un élément rayonnant, et procédé de fabrication correspondant
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
FR2800920A1 (fr) Dispositif de transmission bi-bande et antenne pour ce dispositif
EP1042845B1 (fr) Antenne
EP3227960B1 (fr) Antenne reseau multicouche du type auto-complementaire
EP3602689A1 (fr) Antenne electromagnetique
FR3090220A1 (fr) Antenne fil-plaque monopolaire
EP1466384B1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
EP3417507B1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
FR3024802A1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
FR2736212A1 (fr) Coupleur balun hyperfrequence integre, en particulier pour antenne dipole
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
WO2010106073A1 (fr) Antenne a double ailettes
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
EP3692598A1 (fr) Antenne à substrat ferromagnétique dispersif partiellement saturé
EP0831550B1 (fr) Antenne-réseau polyvalente
EP1376758A1 (fr) Antenne pastille compacte avec un moyen d'adaptation
FR2842025A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800865

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015800865

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE