EP3859249B1 - Dispositif de détermination de fuite de fluide frigorigène, dispositif de congélation comprenant ce dispositif de détermination de fuite de fluide frigorigène et procédé de détermination de fuite de fluide frigorigène - Google Patents

Dispositif de détermination de fuite de fluide frigorigène, dispositif de congélation comprenant ce dispositif de détermination de fuite de fluide frigorigène et procédé de détermination de fuite de fluide frigorigène Download PDF

Info

Publication number
EP3859249B1
EP3859249B1 EP19865774.4A EP19865774A EP3859249B1 EP 3859249 B1 EP3859249 B1 EP 3859249B1 EP 19865774 A EP19865774 A EP 19865774A EP 3859249 B1 EP3859249 B1 EP 3859249B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
refrigeration apparatus
compressor
index value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19865774.4A
Other languages
German (de)
English (en)
Other versions
EP3859249A1 (fr
EP3859249A4 (fr
Inventor
Kiichirou Satou
Masataka Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of EP3859249A1 publication Critical patent/EP3859249A1/fr
Publication of EP3859249A4 publication Critical patent/EP3859249A4/fr
Application granted granted Critical
Publication of EP3859249B1 publication Critical patent/EP3859249B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present disclosure relates to a refrigerant leakage determination device, a refrigeration apparatus including the refrigerant leakage determination device, and a method for determining refrigerant leakage.
  • a typical air conditioner includes a refrigeration cycle in which an outdoor unit including a compressor is connected to an indoor unit by a refrigerant pipe.
  • the air conditioner has a configuration that determines whether a refrigerant has leaked (refer to, for example, Patent Document 1).
  • whether the refrigerant has leaked is determined by comparing an outside temperature when the compressor is activated at an initial stage after installation of the air conditioner, a discharge side temperature of the compressor when the air conditioner is operated under a predetermined condition, an outside temperature when the compressor is activated later, and a discharge side temperature of the compressor when the air conditioner is operated in the same predetermined condition.
  • Patent Document 2 describes an abnormality diagnosis system performing diagnosis of abnormality in an air conditioning device.
  • a first deriving portion derives a derived value on the basis of a state value relating to a state of the air conditioning device in diagnosis.
  • a second deriving portion derives a normal value on the basis of the state value in a normal operation of the air conditioning device.
  • An abnormality diagnosing portion performs examination by statistical processing to the derived value and the normal value, and diagnoses that the air conditioning device is in an abnormal state when significant difference is found between the derived value and the normal value.
  • Patent Document 3 describes a refrigeration cycle apparatus including a control unit that detects abnormality of a refrigeration cycle based on the pressure or temperature of the refrigeration cycle in an off time of the refrigeration cycle.
  • Patent Document 4 describes a refrigerating and air-conditioning apparatus capable of calculating the internal volume of a refrigerant extension pipe using operation data obtained during normal operation, and calculating the total amount of refrigerant in a refrigerant circuit and detecting leakage of refrigerant with high accuracy.
  • Patent Document 5 describes detecting a leakage of a refrigerant by analysing the discharged refrigerant temperature of a compressor (see paragraphs [0048]-[0052] of Patent Document 5).
  • Patent Document 6 describes detecting abnormality in a blower including a propeller fan, and to prevent breakage of the blower (see paragraphs [0046]-[0049] of Patent Document 6).
  • Patent Document 7 describes detecting degradation of an air conditioner by detecting abnormality before fails and stops.
  • Patent Document 8 describes recognizing abnormality/normality of an appliance capable of not being recognized when setting an absolute threshold value.
  • Patent Document 9 describes regulation of a detected voltage of a supply voltage detecting circuit in an inverter air conditioner.
  • the operation condition of the air conditioner at the initial stage after installation of the air conditioner needs to conform to a later operation condition of the air conditioner. Therefore, a special operation for determining whether the refrigerant has leaked needs to be performed. In this configuration, the air conditioner cannot perform a normal operation while determining whether the refrigerant has leaked. This drawback is not limited to an air conditioner and also occurs in any refrigeration apparatus including a refrigerant circuit.
  • the deviation degree of the refrigerant circuit from the normal state is calculated based on the deviation degree between the first index value and the second index value that are calculated using data related to operation of the refrigeration apparatus including operation of the refrigeration apparatus in the pre-trip inspection and normal operations of the refrigeration apparatus.
  • the data related to operation of the refrigeration apparatus is obtained from, for example, operations including normal operations of the refrigeration apparatus and a pre-trip inspection operation of the refrigeration apparatus.
  • the refrigeration apparatus 1 is configured to refrigerate the inside of storage, for example, a shipping container or a road transportation trailer container.
  • the inside of a casing of the refrigeration apparatus 1 is divided into an interior accommodation space that circulates the air in the storage and an exterior accommodation space that circulates the air outside the storage.
  • the refrigeration apparatus 1 includes a refrigerant circuit 20 in which, for example, a compressor 11, a condenser 12, and an evaporator 13 are connected by a refrigerant pipe.
  • the refrigerant circuit 20 includes a main circuit 21, a hot gas bypass circuit 22, and a liquid refrigerant bypass circuit 31.
  • the compressor 11 that is motor-driven, the condenser 12, a first expansion valve 14A that is an example of a decompression device, and the evaporator 13 are sequentially connected in series by the refrigerant pipe.
  • the exterior accommodation space accommodates the compressor 11, the condenser 12, the first expansion valve 14A, and an exterior fan 15 that circulates the air outside the storage to the condenser 12.
  • the interior accommodation space accommodates the evaporator 13 and an interior fan 16 that circulates the air in the storage to the evaporator 13.
  • the compressor 11 may be, for example, a rotary compressor or a scroll compressor.
  • the compressor 11 is configured so that the operating capacity is variable when an inverter controls the operating frequency to control the rotational speed.
  • the condenser 12 and the evaporator 13 may be a fin-and-tube heat exchanger.
  • the condenser 12 exchanges heat between the air outside the storage supplied by the exterior fan 15 and the refrigerant circulating in the condenser 12.
  • the evaporator 13 exchanges heat between the air in the storage supplied by the interior fan 16 and the refrigerant circulating in the evaporator 13.
  • An example of the exterior fan 15 and the interior fan 16 is a propeller fan.
  • a drain pan 28 is disposed below the evaporator 13. The drain pan 28 collects, for example, frost and ice blocks falling from the evaporator 13 and water condensed from the air.
  • the first expansion valve 14A may be, for example, an electric expansion valve having an opening degree that is variable using a pulse motor.
  • the compressor 11 and the condenser 12 are connected by a high pressure gas pipe 23 that includes a first opening-closing valve 17A and a check valve 18 sequentially arranged in a direction in which the refrigerant flows.
  • the first opening-closing valve 17A may be, for example, an electric expansion valve having an opening degree that is variable using a pulse motor.
  • the check valve 18 allows the refrigerant to flow in the directions of the arrows shown in Fig. 1 .
  • the condenser 12 and the first expansion valve 14A are connected by a high pressure liquid pipe 24 that includes a receiver 29, a second opening-closing valve 17B, a dryer 30, and a supercooling heat exchanger 27 sequentially arranged in the direction in which the refrigerant flows.
  • the second opening-closing valve 17B may be, for example, an electromagnetic valve capable of opening and closing.
  • the supercooling heat exchanger 27 includes a primary passage 27a and a secondary passage 27b configured to exchange heat with each other.
  • the primary passage 27a is disposed in the main circuit 21 between the dryer 30 and the first expansion valve 14A.
  • the secondary passage 27b is disposed in the liquid refrigerant bypass circuit 31.
  • the liquid refrigerant bypass circuit 31 is a bypass circuit that connects the high pressure liquid pipe 24 and an intermediate-pressure portion (not shown) of a compression mechanism of the compressor 11.
  • a third opening-closing valve 17C and a second expansion valve 14B, which is an example of a metering device, are sequentially connected in the direction in which the high pressure liquid refrigerant flows to the liquid refrigerant bypass circuit 31 between the high pressure liquid pipe 24 and the secondary passage 27b.
  • the second expansion valve 14B expands the liquid refrigerant to an intermediate pressure, so that the liquid refrigerant has a lower temperature than the liquid refrigerant flowing through the high pressure liquid pipe 24 and flows to the secondary passage 27b.
  • the third opening-closing valve 17C may be, for example, an electromagnetic valve capable of opening and closing.
  • the second expansion valve 14B may be, for example, an electric expansion valve having an opening degree that can be varied using a pulse motor.
  • the hot gas bypass circuit 22 connects the high pressure gas pipe 23 and the inlet side of the evaporator 13 and sends the high-pressure high-temperature gas refrigerant discharged from the compressor 11 to the inlet side of the evaporator 13.
  • the hot gas bypass circuit 22 includes a main passage 32, and a first branch passage 33 and a second branch passage 34 divided from the main passage 32.
  • the first branch passage 33 and the second branch passage 34 are configured to be a parallel circuit in which one end of each of the first branch passage 33 and the second branch passage 34 is connected to the main passage 32 and the other end is connected to the inlet side of the evaporator 13, that is, a low pressure connection pipe 25 that extends between the first expansion valve 14A and the evaporator 13.
  • the main passage 32 includes a fourth opening-closing valve 17D.
  • the fourth opening-closing valve 17D may be, for example, an electromagnetic valve capable of opening and closing.
  • the first branch passage 33 includes only a pipe.
  • the second branch passage 34 includes a drain pan heater 35.
  • the drain pan heater 35 is disposed at the bottom of the drain pan 28 to heat the drain pan 28 with the refrigerant having a high temperature.
  • the refrigeration apparatus 1 includes various sensors.
  • the refrigeration apparatus 1 includes a discharge temperature sensor 41, a discharge pressure sensor 42, an intake temperature sensor 43, an intake pressure sensor 44, a current sensor 45, a rotation sensor 46, a condensation temperature sensor 47, and an evaporation temperature sensor 48.
  • the sensors 41 to 48 may be, for example, known sensors.
  • the discharge temperature sensor 41 and the discharge pressure sensor 42 are arranged, for example, on the high pressure gas pipe 23 in the vicinity of a discharge port of the compressor 11.
  • the discharge temperature sensor 41 outputs a signal corresponding to the temperature of a discharge gas refrigerant discharged from the compressor 11.
  • the discharge pressure sensor 42 outputs a signal corresponding to the pressure of the discharge gas refrigerant discharged from the compressor 11.
  • the intake temperature sensor 43 and the intake pressure sensor 44 are arranged, for example, on an intake pipe of the compressor 11, namely, a low pressure gas pipe 26 in the vicinity of the intake port of the compressor 11.
  • the intake temperature sensor 43 outputs a signal corresponding to the temperature of an intake gas refrigerant drawn into the compressor 11.
  • the intake pressure sensor 44 outputs a signal corresponding to the pressure of the intake gas refrigerant drawn into the compressor 11.
  • the current sensor 45 is arranged, for example, on an inverter circuit that drives the motor of the compressor 11.
  • the current sensor 45 outputs a signal corresponding to the amount of current flowing to the inverter circuit.
  • the rotation sensor 46 is arranged, for example, on the motor of the compressor 11.
  • the rotation sensor 46 outputs a signal corresponding to the rotational speed of the motor.
  • the condensation temperature sensor 47 is arranged, for example, on the condenser 12 and outputs a signal corresponding to the condensation temperature of the refrigerant flowing through the condenser 12.
  • the condensation temperature sensor 47 is attached to, for example, an intermediate portion of the condenser 12.
  • the condensation temperature sensor 47 obtains the temperature of the refrigerant in the intermediate portion of the condenser 12 as the condensation temperature and outputs a signal corresponding to the condensation temperature.
  • the attachment position of the condensation temperature sensor 47 to the condenser 12 may be changed in any manner.
  • the evaporation temperature sensor 48 is arranged, for example, on the evaporator 13 and outputs a signal corresponding to the evaporation temperature of the refrigerant flowing through the evaporator 13.
  • the evaporation temperature sensor 48 is attached to, for example, an intermediate portion of the evaporator 13.
  • the evaporation temperature sensor 48 obtains the temperature of the refrigerant in the intermediate portion of the evaporator 13 as the evaporation temperature and outputs a signal corresponding to the evaporation temperature.
  • the attachment position of the evaporation temperature sensor 48 to the evaporator 13 may be changed in any manner.
  • the refrigeration apparatus 1 includes a notification unit 52 and a control device 50 that controls operation of the refrigeration apparatus 1.
  • the control device 50 is electrically connected to each of the discharge temperature sensor 41, the discharge pressure sensor 42, the intake temperature sensor 43, the intake pressure sensor 44, the current sensor 45, the rotation sensor 46, the condensation temperature sensor 47, and the evaporation temperature sensor 48.
  • the control device 50 is also electrically connected to the compressor 11, the first expansion valve 14A, the second expansion valve 14B, the exterior fan 15, the interior fan 16, the first opening-closing valve 17A, the second opening-closing valve 17B, the third opening-closing valve 17C, the fourth opening-closing valve 17D, and the notification unit 52.
  • the notification unit 52 notifies information related to the refrigeration apparatus 1 to the outside of the refrigeration apparatus 1.
  • the notification unit 52 includes, for example, a display 53 that shows information related to the refrigeration apparatus 1.
  • the notification unit 52 may include a speaker instead of or in addition to the display 53. In this case, the notification unit 52 may issue notification of information related to the refrigeration apparatus 1 with sound.
  • the control device 50 includes a controller 51.
  • the controller 51 includes, for example, an arithmetic unit that executes a predetermined control program and a storage unit.
  • the arithmetic unit includes, for example, a central processing unit (CPU) or a micro processing unit (MPU).
  • the storage unit stores various control programs and information used for various control processes.
  • the storage unit includes, for example, nonvolatile memory and volatile memory.
  • the controller 51 controls the compressor 11, the expansion valves 14A and 14B, the exterior fan 15, the interior fan 16, and the opening-closing valves 17A to 17D based on detection results of the sensors 41 to 48.
  • the refrigeration apparatus 1 performs a refrigerating-cooling operation and a defrosting operation using the controller 51.
  • the first opening-closing valve 17A, the second opening-closing valve 17B, and the third opening-closing valve 17C are open, and the fourth opening-closing valve 17D is closed.
  • the opening degree of each of the first expansion valve 14A and the second expansion valve 14B is appropriately adjusted. Also, the compressor 11, the exterior fan 15, and the interior fan 16 are operated.
  • the refrigerant circulates as indicated by the solid arrows shown in Fig. 1 . More specifically, a high-pressure gas refrigerant compressed in the compressor 11 is condensed to become a liquid refrigerant in the condenser 12 and then is stored in the receiver 29. The liquid refrigerant stored in the receiver 29 flows through the second opening-closing valve 17B and the dryer 30. The liquid refrigerant is supercooled to become a supercooled liquid refrigerant in the primary passage 27a of the supercooling heat exchanger 27 and flows to the first expansion valve 14A. As indicated by the wave arrows shown in Fig.
  • some of the liquid refrigerant discharged from the receiver 29 flows as a supercooling source through the third opening-closing valve 17C and the second expansion valve 14B to become an intermediate-pressure refrigerant.
  • the intermediate-pressure refrigerant flows to the secondary passage 27b of the supercooling heat exchanger 27 to cool the liquid refrigerant in the primary passage 27a.
  • the liquid refrigerant supercooled in the supercooling heat exchanger 27 is decompressed in the first expansion valve 14A and then flows to the evaporator 13.
  • a low-pressure liquid refrigerant absorbs heat from the air in the storage and evaporates. As a result, the air in the storage is cooled.
  • the low-pressure gas refrigerant evaporated in the evaporator 13 is drawn into the compressor 11 and compressed again.
  • frost collects on a surface of, for example, a heat transfer tube of the evaporator 13.
  • the frost gradually develops and enlarges.
  • the controller 51 performs the defrosting operation, that is, an operation for defrosting the evaporator 13.
  • the defrosting operation allows a high-temperature high-pressure gas refrigerant that is compressed in the compressor 11 to flow to the inlet side of the evaporator 13 through a bypass to defrost the evaporator 13.
  • the fourth opening-closing valve 17D is open, and the first opening-closing valve 17A, the second opening-closing valve 17B, the third opening-closing valve 17C, and the second expansion valve 14B are fully closed. While the compressor 11 is operated, the exterior fan 15 and the interior fan 16 are stopped.
  • the high-pressure high-temperature gas refrigerant compressed in the compressor 11 flows through the main passage 32 and then the fourth opening-closing valve 17D and is divided into the first branch passage 33 and the second branch passage 34.
  • the refrigerant divided into the second branch passage 34 flows through the drain pan heater 35.
  • the refrigerant discharged from the drain pan heater 35 joins the refrigerant that has passed through the first branch passage 33 and flows to the evaporator 13.
  • a high-pressure gas refrigerant (so-called hot gas) flows in the heat transfer tube.
  • the frost collected on the heat transfer tube and the fin is gradually heated by the high-temperature gas refrigerant.
  • the drain pan 28 gradually receives the frost from the evaporator 13.
  • the refrigerant used to defrost the evaporator 13 is drawn into the compressor 11 and compressed again.
  • the drain pan 28 receives, for example, an ice block that falls from the surface of the evaporator 13 in addition to water, that is, melted frost.
  • the ice block is heated and melted by the refrigerant flowing in the drain pan heater 35.
  • the melted water is discharged out of the storage through a predetermined flow passage.
  • the control device 50 further includes a refrigerant leakage determination device 60 that determines whether the refrigerant has leaked or estimates a refrigerant leakage occurrence time.
  • a refrigerant leakage determination device 60 monitors the temperature of the discharge gas refrigerant discharged from the compressor 11 (hereafter, referred to as "discharge side refrigerant temperature") to determine whether the refrigerant has leaked or estimate a refrigerant leakage occurrence time.
  • the refrigerant leakage determination device 60 includes a data obtainment unit 61, data storage 62, a pre-processing unit 63, a refrigerant leakage determination unit 64, and an output unit 65.
  • the data obtainment unit 61 is connected to the sensors 41 to 48 to communicate with the sensors 41 to 48.
  • the data obtainment unit 61 receives time series data from the sensors 41 to 48.
  • each of the sensors 41 to 48 outputs a detection result to the refrigerant leakage determination device 60 in each predetermined time TX.
  • An example of the predetermined time TX is one hour.
  • each of the sensors 41 to 48 stores detection results detected in a predetermined sampling cycle for the predetermined time TX and outputs an average of the detection results in the predetermined time TX to the refrigerant leakage determination device 60.
  • Each of the sensors 41 to 48 may output a detection result detected at a point in time specified in each predetermined time TX to the refrigerant leakage determination device 60.
  • the data storage 62 is electrically connected to the data obtainment unit 61.
  • the data storage 62 receives data from the data obtainment unit 61.
  • the data storage 62 stores data from the data obtainment unit 61.
  • the data storage 62 sequentially stores data from the data obtainment unit 61 in time order.
  • the data storage 62 is configured to be a memory medium incorporated in the refrigerant leakage determination device 60.
  • the data storage 62 may include, for example, nonvolatile memory and volatile memory.
  • the data storage 62 may be a memory medium provided outside the refrigerant leakage determination device 60 or outside the refrigeration apparatus 1.
  • the data storage 62 may include at least one of universe serial bus (USB) memory, a secure digital (SD) memory card, and a hard disk drive (HDD) memory medium.
  • USB universe serial bus
  • SD secure digital
  • HDD hard disk drive
  • the pre-processing unit 63 removes, from the time series data, data that act as noise when determining whether the refrigerant has leaked or estimating a refrigerant leakage occurrence time and replaces the section corresponding to the removed data with alternative data.
  • the pre-processing unit 63 includes a first processor 63a and a second processor 63b.
  • the noise data include data having momentary variations that occur, for example, immediately after activation of the compressor 11 and data in temporally noncontinuous sections.
  • the first processor 63a is electrically connected to the data storage 62.
  • the second processor 63b is electrically connected to the first processor 63a.
  • the first processor 63a extracts a section that is replaced with alternative data.
  • Such a section includes, for example, at least one of a section in which the refrigeration apparatus 1 is stopped, a section immediately after activation of the compressor 11, a section immediately after deactivation of the compressor 11, or a section immediately after operation of the compressor 11 is switched.
  • the first processor 63a extracts all of the section in which the refrigeration apparatus 1 is stopped, a section immediately after activation of the compressor 11, the section immediately after deactivation of the compressor 11, and the section immediately after the operation of the compressor 11 is switched.
  • the second processor 63b inputs alternative data into the section extracted by the first processor 63a.
  • the alternative data is a value before or after the section extracted by the first processor 63a or a predetermined representative value.
  • the second processor 63b uses a value in the section before or after the section in which the refrigeration apparatus 1 is stopped as the alternative data.
  • Data in sections being stopped that is, temporally noncontinuous sections, are assumed to be, for example, zero.
  • the second processor 63b uses the value after the section immediately after activation of the compressor 11 as the alternative data.
  • the value after the section immediately after activation of the compressor 11 may be an average value of data obtained during a predetermined period after the section immediately after activation of the compressor 11 or data obtained at a time immediately after the section immediately after activation of the compressor 11.
  • the second processor 63b uses a value in a section before the section immediately after deactivation of the compressor 11 as the alternative data.
  • the section before the section immediately after deactivation of the compressor 11 may be the section immediately before deactivation of the compressor 11.
  • the value in the section before the section immediately after deactivation of the compressor 11 may be an average value of data in the section immediately before deactivation of the compressor 11 or may be data related to time immediately before deactivation of the compressor 11.
  • the second processor 63b uses a value in the section before or after the section immediately after operation of the compressor 11 is switched as the alternative data.
  • the value in the section before or after the section immediately after operation of the compressor 11 is switched may be an average value of data in the section before or after the section immediately after operation of the compressor 11 is switched or may be data related to a predetermined time in the section before or after the section immediately after operation of the compressor 11 is switched.
  • data obtained before and after the section that is replaced with the alternative data may be interpolated (e.g., linearly interpolated), and the calculated value may be used as the alternative data.
  • the refrigerant leakage determination unit 64 is electrically connected to the pre-processing unit 63.
  • the refrigerant leakage determination unit 64 uses the data that has been processed by the pre-processing unit 63 to determine whether the refrigerant has leaked or estimate a refrigerant leakage occurrence time.
  • the refrigerant leakage determination unit 64 includes a calculator 66 and a determination unit 67.
  • the calculator 66 calculates a first index value and a second index value to calculate a deviation degree of the refrigerant circuit 20 from a normal state.
  • the normal state of the refrigerant circuit 20 is, for example, that the amount of refrigerant enclosed in the refrigerant circuit 20 (refrigerant contained amount) is in an appropriate range.
  • the calculator 66 calculates the first index value from data related to operation of the refrigeration apparatus 1 in a first period.
  • the calculator 66 calculates the second index value from data related to operation of the refrigeration apparatus 1 in a second period that differs in length from the first period.
  • the calculator 66 calculates the deviation degree of the refrigerant circuit 20 from the normal state based on the first index value and the second index value. In the present embodiment, the calculator 66 calculates the deviation degree of the refrigerant circuit 20 from the normal state based on a deviation degree between the first index value and the second index value.
  • the calculator 66 outputs the calculation result to the determination unit 67.
  • the determination unit 67 determines whether the refrigerant has leaked or estimates a refrigerant leakage occurrence time based on the deviation degree of the refrigerant circuit 20 from the normal state calculated by the calculator 66.
  • the determination unit 67 outputs the determination result or the estimation result to the output unit 65.
  • Determination of whether the refrigerant has leaked is made based on the refrigerant leak amount per unit time being greater than or equal to a first threshold value and not based on a small amount of refrigerant leak.
  • the first threshold value is an amount of refrigerant leak that causes the refrigeration apparatus 1 to have an abnormality and is determined in advance by experiments or the like.
  • An example of the abnormality of the refrigeration apparatus 1 is an excessive increase in the temperature of the compressor 11 that occurs when the refrigerant contained amount is less than a lower limit value of the appropriate range and results in a failure to cool the compressor 11.
  • the refrigerant leakage occurrence time may be, for example, a time at which the refrigerant contained amount becomes less than the lower limit value of the appropriate range or a time at which the temperature of the compressor 11 becomes greater than or equal to a second threshold value due to the refrigerant contained amount becoming less than the lower limit value of the appropriate range and resulting in a failure to cool the compressor 11.
  • a second threshold value is a temperature that increases the possibility of producing an abnormality such as galling of the compression mechanism of the compressor 11 and is determined in advance by experiments or the like.
  • the output unit 65 is electrically connected to the data storage 62 and the notification unit 52.
  • the output unit 65 outputs the determination result of whether the refrigerant has leaked or the estimation result of a refrigerant leakage occurrence time to the data storage 62 and the notification unit 52.
  • the notification unit 52 uses, for example, the display 53 to show the determination result of whether the refrigerant has leaked or the estimation result of a refrigerant leakage occurrence time.
  • the output unit 65 further includes a wireless communicator including an antenna.
  • the output unit 65 is configured to communicate with a terminal of a manager (manager terminal 70) through the wireless communicator.
  • the output unit 65 outputs the determination result of whether the refrigerant has leaked or the estimation result of a refrigerant leakage occurrence time to the manager terminal 70.
  • the manager terminal 70 may be a mobile communication device such as a smartphone or a tablet computer or may be a desktop personal computer.
  • the calculator 66 uses data stored in the data storage 62 and related to operation of the refrigeration apparatus 1 to calculate the first index value from a moving average of data related to operation of the refrigeration apparatus 1 in the first period and calculate the second index value from a moving average of data related to operation of the refrigeration apparatus 1 in the second period.
  • the calculator 66 calculates the first index value and the second index value using data in the first period and the second period that are before execution of the process. Then, the calculator 66 calculates the deviation degree between the first index value and the second index value.
  • data in the first period include data for one day
  • data in the second period include data for ten days.
  • a sampling cycle is one hour
  • data related to operation of the refrigeration apparatus 1 is obtained per hour.
  • data in the first period and data in the second period may be expressed by the number of data sets as well as the length of a period. Data for one day include twenty-four data sets, and data for ten days include two hundred and forty data sets.
  • Each of the first index value and the second index value is a discharge side refrigerant temperature ratio.
  • the discharge side refrigerant temperature ratio is an example of a discharge side refrigerant temperature index and is expressed by a ratio of an actual value of the discharge side refrigerant temperature of the compressor 11 to an estimated value of the discharge side refrigerant temperature of the compressor 11.
  • the ratio of the actual value of the discharge side refrigerant temperature of the compressor 11 to the estimated value of the discharge side refrigerant temperature of the compressor 11 is defined as the discharge side refrigerant temperature ratio.
  • the calculator 66 calculates the discharge side refrigerant temperature ratio as data related to operation of the refrigeration apparatus 1. More specifically, the calculator 66 calculates the estimated value of the discharge side refrigerant temperature of the compressor 11 and the actual value of the discharge side refrigerant temperature of the compressor 11 and calculates the discharge side refrigerant temperature ratio as a ratio of the calculated actual value of the discharge side refrigerant temperature of the compressor 11 to the calculated estimated value of the discharge side refrigerant temperature of the compressor 11.
  • the calculator 66 calculates an estimated value of the discharge side refrigerant temperature of the compressor 11 for each power source frequency and power source voltage of a power source, which is a source of power supplied to the refrigeration apparatus 1, using a regression analysis.
  • a variable for the regression analysis is, for example, at least one of the condensation temperature, the evaporation temperature, the opening degree of the first expansion valve 14A, the opening degree of the second expansion valve 14B, the operating frequency of the compressor 11, or the rotational speed of the compressor 11 when the refrigerant contained amount of the refrigerant circuit 20 is in the appropriate range.
  • the power source frequency and the power source voltage of a power source arranged at a terminal such as a harbor may differ from the power source frequency and the power source voltage of a power source arranged in a ship.
  • the power source arranged at a terminal has a power source frequency of 50 Hz and a power source rated voltage of 380 V ⁇ 10%.
  • the power source arranged in a ship has a power source frequency of 60 Hz and a power source rated voltage of 440 V t 10%. Examples of combination of a power source frequency and a power source voltage include first to sixth combinations.
  • the power source frequency is 50 Hz, and the power source voltage is 342 V (lower limit value of the power source voltage when the power source frequency is 50 Hz).
  • the power source frequency is 50 Hz, and the power source voltage is 380 V (median of the power source voltage when the power source frequency is 50 Hz).
  • the power source frequency is 50 Hz, and the power source voltage is 418 V (upper limit value of the power source voltage when the power source frequency is 50 Hz).
  • the power source frequency is 60 Hz, and the power source voltage is 396 V (lower limit value of the power source voltage when the power source frequency is 60 Hz).
  • the power source frequency is 60 Hz
  • the power source voltage is 440 V (median of the power source voltage when the power source frequency is 60 Hz).
  • the power source frequency is 60 Hz
  • the power source voltage is 484 V (upper limit value of the power source voltage when the power source frequency is 60 Hz).
  • the calculator 66 calculates an estimated value of the discharge side refrigerant temperature of the compressor 11 for each of the first to sixth combinations. The combinations of the power source frequency and the power source voltage may be changed in any manner.
  • the calculator 66 calculates an actual value of the discharge side refrigerant temperature of the compressor 11 from a signal from the discharge temperature sensor 41.
  • the actual value of the discharge side refrigerant temperature of the compressor 11 increases relative to the estimated value of the discharge side refrigerant temperature of the compressor 11, for example, as the refrigerant leak amount of the refrigerant circuit 20 per unit time increases per unit time.
  • the refrigerant leak amount per unit time is correlated with the deviation degree of the actual value of the discharge side refrigerant temperature of the compressor 11 from the estimated value of the discharge side refrigerant temperature of the compressor 11.
  • the calculator 66 calculates the discharge side refrigerant temperature ratio obtained in the first period (hereafter, referred to as "first refrigerant temperature ratio”) as the first index value and calculates the discharge side refrigerant temperature ratio obtained in the second period (hereafter, referred to as "second refrigerant temperature ratio") as the second index value.
  • Fig. 4A is a graph showing an example of changes in the first refrigerant temperature ratio and the second refrigerant temperature ratio. As shown in Fig. 4A , on and before July 9th, the deviation degree between the first refrigerant temperature ratio and the second refrigerant temperature ratio is small. From July 9th, the deviation degree gradually increases.
  • the calculator 66 calculates, for example, the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio.
  • the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio is expressed by a ratio of the first refrigerant temperature ratio to the second refrigerant temperature ratio. As the ratio increases, the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio increases.
  • the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio may be expressed by a difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio.
  • Fig. 4B is a graph showing an example of changes in the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio. As shown in Fig. 4B , on and before July 9th, the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio is substantially 1.00. From July 9th, the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio gradually increases.
  • the determination unit 67 determines that the refrigerant has leaked.
  • the threshold value XT is set in advance by experiments or the like and is used to determine an occurrence of the refrigerant leakage that may provoke an abnormality of the refrigeration apparatus 1.
  • the determination unit 67 estimates a refrigerant leakage occurrence time based on a change tendency of the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio. More specifically, the calculator 66 calculates, for example, a degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio for each day and outputs the degree of difference to the determination unit 67. The determination unit 67 obtains a change tendency of the degree of difference, for example, based on the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio of each day. The determination unit 67 estimates a refrigerant leakage occurrence time based on information indicating that the degree of difference has an increasing tendency and the slope of the degree of difference.
  • the determination unit 67 estimates a time in which the degree of difference reaches the threshold value XT based on the slope of the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio.
  • the determination unit 67 may calculate the slope of the degree of difference using, for example, regression analysis or a straight line that connects degrees of difference in two predetermined periods.
  • the determination unit 67 estimates the degree of difference from July 16th based on changes in the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio until July 16th (broken line in Fig. 4B ).
  • the determination unit 67 estimates a refrigerant leakage occurrence time based on a comparison of the threshold value XT with changes in the degree of difference from July 16th.
  • This process is executed, for example, at least one of when there is a user request, when the transporting refrigeration apparatus 1 or the refrigerant leakage determination device 60 is powered on, when transportation of the refrigeration apparatus 1 is completed, or when the pre-trip inspection of the refrigeration apparatus 1 is conducted.
  • the refrigerant leakage determination device 60 determines whether the refrigerant has leaked or estimates a refrigerant leakage occurrence time.
  • step S11 the refrigerant leakage determination device 60 calculates a first refrigerant temperature ratio and a second refrigerant temperature ratio from data related to operation of the refrigeration apparatus 1 and then proceeds to step S12.
  • step S12 the refrigerant leakage determination device 60 calculates a degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio and then proceeds to step S13.
  • step S13 the refrigerant leakage determination device 60 determines whether the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio is greater than or equal to the threshold value XT. When an affirmative determination is made in step S13, the refrigerant leakage determination device 60 proceeds to step S14 to determine that the refrigerant has leaked and then proceeds to step S15. In step S15, the refrigerant leakage determination device 60 transmits the determination result to at least one of the display 53 or the manager terminal 70 and then temporarily ends the process.
  • step S15 the display 53 and the manager terminal 70 issue notification of the determination result of whether the refrigerant has leaked or notification of the estimation result of a refrigerant leakage occurrence time at least one of when there is a user request, when the refrigeration apparatus 1 or the refrigerant leakage determination device 60 is powered on, when transportation of the refrigeration apparatus 1 is completed, or when the pre-trip inspection of the refrigeration apparatus 1 is conducted.
  • the display 53 and the manager terminal 70 issue notification of the determination result of whether the refrigerant has leaked or notification of the estimation result of a refrigerant leakage occurrence time each of when there is a user request, when the refrigeration apparatus 1 or the refrigerant leakage determination device 60 is powered on, when transportation of the refrigeration apparatus 1 is completed, and when the pre-trip inspection of the refrigeration apparatus 1 is conducted.
  • the result may be transmitted to the notification unit 52 instead of the display 53.
  • the notification unit 52 includes a speaker
  • the notification unit 52 may issue, using the speaker, notification of the determination result of whether the refrigerant has leaked or notification of the estimation result of a refrigerant leakage occurrence time.
  • step S13 the refrigerant leakage determination device 60 proceeds to step S16 to calculate a change tendency of the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio and then proceeds to step S17.
  • step S17 the refrigerant leakage determination device 60 estimates a refrigerant leakage occurrence time based on a slope of changes in the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio and then proceeds to step S18.
  • step S18 the refrigerant leakage determination device 60 transmits the estimation result to at least one of the display 53 or the manager terminal 70 and then temporarily ends the process. As shown in the flowchart of Fig. 5 , the refrigerant leakage determination device 60 estimates a refrigerant leakage occurrence time after determining whether the refrigerant has leaked.
  • the method for determining the refrigerant leakage executed by the refrigerant leakage determination device 60 and described above includes a data storing step, a first calculating step, a second calculating step, and a determining step. The steps will be described below.
  • the data storing step is a step of storing data related to operation of the refrigeration apparatus 1.
  • the data storing step stores data related to operation of the refrigeration apparatus 1 and obtained from the data obtainment unit 61 in the data storage 62 as time series data.
  • the first calculating step is a step of calculating the first index value from data related to operation of the refrigeration apparatus 1 in the first period and calculating the second index value from data related to operation of the refrigeration apparatus 1 in the second period.
  • the first calculating step is executed by the calculator 66.
  • the first calculating step is a step of calculating the first index value from a moving average of data related to operation of the refrigeration apparatus 1 in the first period and calculating the second index value from a moving average of data related to operation of the refrigeration apparatus 1 in the second period.
  • the first calculating step includes a pre-processing step that removes data that act as noise when determining whether the refrigerant has leaked or estimating a refrigerant leakage occurrence time and replaces it with alternative data with the pre-processing unit 63.
  • the relationship of the first calculating step with Fig. 5 is that step S11 in Fig. 5 corresponds to the first calculating step.
  • the second calculating step is a step of calculating a deviation degree of the refrigerant circuit 20 from the normal state based on the first index value and the second index value.
  • the second calculating step is executed by the calculator 66.
  • the relationship of the second calculating step with Fig. 5 is that step S12 in Fig. 5 corresponds to the second calculating step.
  • the determining step is a step of determining whether the refrigerant has leaked or estimating a refrigerant leakage occurrence time based on the deviation degree of the refrigerant circuit 20 from the normal state.
  • the determining step when the second index value refers to the normal state of the refrigerant circuit 20 and the deviation degree of the first index value from the second index value becomes greater than or equal to a threshold value, it is determined that the refrigerant has leaked.
  • a time at which the deviation degree reaches the threshold value is estimated based on a change tendency of the deviation degree of the first index value from the second index value, so that a refrigerant leakage occurrence time is estimated.
  • the relationship of the determining step with Fig. 5 is that steps S13 to S18 in Fig. 5 correspond to the determining step.
  • the refrigerant leakage determination device 60 calculates the second index value from a moving average of data related to operation of the refrigeration apparatus 1 in the second period and uses the calculated second index value as reference.
  • data in the second period is related to operation of the refrigeration apparatus 1 obtained during a long period of ten days to thirty days and thus is subtly affected by variations related to operation of the refrigeration apparatus 1 obtained in a short period such as one day.
  • the refrigerant leakage determination device 60 also calculates the first index value from a moving average of data related to operation of the refrigeration apparatus 1 in the first period.
  • data in the first period is related to operation of the refrigeration apparatus 1 in a short period, that is, one day, and thus is greatly affected by recent variations related to operation of the refrigeration apparatus 1.
  • the second index value which is subtly affected by recent variations related to operation of the refrigeration apparatus 1, is used as reference to monitor how much the first index value, which is greatly affected by variations related to operation of the refrigeration apparatus 1, is deviated from the second index value. This facilitates extraction of variations related to operation of the refrigeration apparatus 1.
  • the first index value is prominently deviated from the second index value so that the refrigerant leakage determination device 60 determines that the refrigerant has leaked.
  • the refrigerant leakage determination device 60 obtains a change tendency of the deviation degree of the first index value from the second index value and estimates changes in the deviation degree to estimate a refrigerant leakage occurrence time.
  • the present embodiment has the following advantages.
  • the description related to the above embodiment exemplifies, without any intention to limit, applicable forms of a refrigerant leakage determination device, a refrigeration apparatus including the refrigerant leakage determination device, and a method for determining a refrigerant leakage according to the present disclosure.
  • the refrigerant leakage determination device, the refrigeration apparatus including the refrigerant leakage determination device, and the method for determining a refrigerant leakage according to the present disclosure can be applicable to, for example, modified examples of the embodiment that are described below and combinations of at least two of the modified examples that do not contradict each other.
  • the same reference characters are given to those elements that are the same as the corresponding elements of the above embodiment. Such elements will not be described in detail.
  • the degree of difference between the first index value and the second index value is expressed by the ratio of the first index value to the second index value.
  • the process of calculating the degree of difference between the first index value and the second index value may be changed in any manner.
  • the calculator 66 may calculate the degree of difference between the first index value and the second index value based on at least one of a standard deviation, skewness, likelihood, kurtosis, or an average that is obtained using the first index value and the second index value.
  • the refrigerant leakage determination device 60 performs both the determination of whether the refrigerant has leaked and the estimation of a refrigerant leakage occurrence time. Instead, the refrigerant leakage determination device 60 may perform only the determination of whether the refrigerant has leaked. When the degree of difference between the first index value and the second index value is less than the threshold value XT, the refrigerant leakage determination device 60 may estimate a refrigerant leakage occurrence time. In this case, the refrigerant leakage determination device 60 may omit the determination of whether the refrigerant has leaked.
  • the pre-processing unit 63 removes, from time series data, data that act as noise when determining whether the refrigerant has leaked or estimating a refrigerant leakage occurrence time, and replaces the section corresponding to the removed data with alternative data.
  • the pre-processing unit 63 may only remove, from time series data, data that act as noise when determining whether the refrigerant has leaked or estimating a refrigerant leakage occurrence time. This configuration accurately determines whether the refrigerant has leaked or accurately estimates a refrigerant leakage occurrence time.
  • the first index value and the second index value may be calculated from the estimated value of the discharge side refrigerant temperature or the actual value of the discharge side refrigerant temperature instead of the discharge side refrigerant temperature ratio.
  • the calculator 66 calculates the first index value from a moving average of estimated values of the discharge side refrigerant temperature in the first period and calculates the second index value from a moving average of estimated values of the discharge side refrigerant temperature in the second period.
  • the calculator 66 calculates the first index value from a moving average of actual values of the discharge side refrigerant temperature in the first period and calculates the second index value from a moving average of actual values of the discharge side refrigerant temperature in the second period.
  • the first index value and the second index value may be a discharge side refrigerant pressure ratio, which is a ratio of an actual value of a discharge side refrigerant pressure of the compressor 11 to an estimated value of the discharge side refrigerant pressure of the compressor 11, instead of the discharge side refrigerant temperature ratio.
  • the calculator 66 calculates a discharge side refrigerant pressure ratio in the first period (hereafter, referred to as "first refrigerant pressure ratio") as the first index value and a discharge side refrigerant pressure ratio in the second period (hereafter, referred to as "second refrigerant pressure ratio") as the second index value.
  • the calculator 66 calculates a degree of difference between the first refrigerant pressure ratio and the second refrigerant pressure ratio.
  • the determination unit 67 determines that the refrigerant has leaked.
  • the determination unit 67 also estimates a refrigerant leakage occurrence time based on a change tendency of the degree of difference between the first refrigerant pressure ratio and the second refrigerant pressure ratio.
  • the discharge side cooling temperature ratio may be replaced with a ratio of an actual value of a degree of superheating the intake gas refrigerant drawn into the compressor 11 to an estimated value of the degree of superheating the intake gas refrigerant or a ratio of an actual value of a degree of subcooling the liquid refrigerant at an outlet of the condenser 12 to an estimated value of the degree of subcooling the liquid refrigerant at the outlet of the condenser 12.
  • the first index value and the second index value may be calculated from an estimated value of the discharge side refrigerant pressure of the compressor 11 or an actual value of the discharge side refrigerant pressure of the compressor 11 instead of the discharge side refrigerant pressure ratio.
  • the calculator 66 calculates the first index value from a moving average of estimated values of the discharge side refrigerant pressure of the compressor 11 in the first period and calculates the second index value from a moving average of estimated values of the discharge side refrigerant pressure of the compressor 11 in the second period.
  • the calculator 66 calculates the first index value from a moving average of actual values of the discharge side refrigerant pressure of the compressor 11 in the first period and calculates the second index value from a moving average of actual values of the discharge side refrigerant pressure of the compressor 11 in the second period.
  • the data storage 62 may be an external server of the refrigeration apparatus 1 connected to the refrigeration apparatus 1 to communicate with the refrigeration apparatus 1.
  • An example of the server includes a cloud server. More specifically, the refrigerant leakage determination device 60 transmits data obtained in the data obtainment unit 61 to the server so that the server stores the data.
  • the refrigerant leakage determination device 60 and the notification unit 52 are separately arranged.
  • the refrigerant leakage determination device 60 may include the notification unit 52.
  • the configuration of a transporting refrigeration apparatus is described as the refrigeration apparatus 1.
  • the refrigeration apparatus is not limited to this configuration.
  • a refrigeration apparatus may be used for a stationary storage.
  • the refrigerant leakage determination device 60 determines whether the refrigerant has leaked or estimates a refrigerant leakage occurrence time at least one of when there is a user request, when the refrigeration apparatus 1 or the refrigerant leakage determination device 60 is powered on, or when the pre-trip inspection of the refrigeration apparatus 1 is conducted.
  • the notification unit 52 issues notification of a determination result of whether the refrigerant has leaked or notification of an estimation result of a refrigerant leakage occurrence time at least one of when there is a user request, when the refrigeration apparatus 1 or the refrigerant leakage determination device 60 is powered on, or when the pre-trip inspection of the refrigeration apparatus 1 is conducted.
  • the refrigeration apparatus 1 is configured to be installed on a container.
  • the refrigeration apparatus is not limited to this the configuration.
  • a refrigeration apparatus may be used as an air conditioner 80.
  • the air conditioner 80 includes a refrigerant circuit 90 in which an outdoor unit 80A and a wall-mounted indoor unit 80B are connected by a refrigerant pipe 91.
  • the outdoor unit 80A is arranged outdoors.
  • the indoor unit 80B is installed on an indoor wall surface.
  • the outdoor unit 80A includes a compressor 81 having a variable displacement varied by a change in an operating frequency, a four-way switching valve 82, an outdoor heat exchanger 83, an expansion valve 84, an outdoor fan 85, and an outdoor control device 86.
  • the compressor 81 is, for example, a rocking piston compressor and includes, for example, a compression mechanism, a motor, and a crankshaft that transmits driving power of the motor to the compression mechanism.
  • the outdoor heat exchanger 83 exchanges heats between the outside air and the refrigerant and may be, for example, a fin-and-tube heat exchanger.
  • the expansion valve 84 is, for example, an electronic expansion valve.
  • the outdoor fan 85 includes a motor, which is a drive source having a changeable number of revolutions, and an impeller connected to an output shaft of the motor.
  • An example of the impeller is a propeller fan.
  • the outdoor control device 86 is electrically connected to the motor of the compressor 81, the four-way switching valve 82, the expansion valve 84, and the motor of the outdoor fan 85 to control their operations.
  • the indoor unit 80B includes an indoor heat exchanger 87, an indoor fan 88, and an indoor control device 89.
  • the indoor heat exchanger 87 exchanges heat between the inside air and the refrigerant and may be, for example, a fin-and-tube heat exchanger.
  • the indoor fan 88 includes a motor, which is a drive source having a changeable number of revolutions, and an impeller connected to an output shaft of the motor. An example of the impeller is a cross-flow fan.
  • the indoor control device 89 is electrically connected to the indoor fan 88 to control operation of the indoor fan 88.
  • the refrigerant circuit 90 is formed by connecting the compressor 81, the four-way switching valve 82, the outdoor heat exchanger 83, and the expansion valve 84 to the indoor heat exchanger 87 and an accumulator 81a with the refrigerant pipe 91 as a loop.
  • the refrigerant circuit 90 is configured to execute a vapor compression refrigeration cycle that reversibly circulates the refrigerant by switching the four-way switching valve 82.
  • the refrigerant circuit 90 forms a cooling cycle in which the refrigerant circulates in the order of the compressor 81, the four-way switching valve 82, the outdoor heat exchanger 83, the expansion valve 84, the indoor heat exchanger 87, the four-way switching valve 82, the accumulator 81a, and the compressor 81.
  • the air conditioner 80 performs a cooling operation in which the outdoor heat exchanger 83 acts as a condenser, and the indoor heat exchanger 87 acts as an evaporator.
  • the refrigerant circuit 90 forms a heating cycle in which the refrigerant circulates in the order of the accumulator 81a, the compressor 81, the four-way switching valve 82, the indoor heat exchanger 87, the expansion valve 84, the outdoor heat exchanger 83, the four-way switching valve 82, and the compressor 81.
  • the air conditioner 80 performs a heating operation in which the indoor heat exchanger 87 acts as a condenser and the outdoor heat exchanger 83 acts as an evaporator.
  • the refrigerant leakage determination device 60 (not shown in Fig. 6 ) is arranged on one of the outdoor control device 86 and the indoor control device 89.
  • the notification unit 52 (not shown in Fig. 6 ) is arranged on, for example, a remote controller of the air conditioner 80.
  • the refrigeration apparatus 1 includes the refrigerant leakage determination device 60.
  • the refrigeration apparatus 1 is not limited to this configuration.
  • the refrigerant leakage determination device 60 may be omitted from the refrigeration apparatus 1.
  • the refrigerant leakage determination device 60 and the refrigeration apparatus 1 may be separately arranged.
  • the refrigerant leakage determination device 60 may be arranged on a server configured to communicate with the refrigeration apparatus 1.
  • the refrigeration apparatus 1 communicates with the refrigerant leakage determination device 60 to obtain a determination result of whether the refrigerant has leaked or an estimation result of a refrigerant leakage occurrence time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (12)

  1. Dispositif (60) de détermination de fuite de fluide frigorigène configuré pour déterminer une fuite de fluide frigorigène d'un appareil (1) de réfrigération, l'appareil (1) de réfrigération incluant un circuit (20) de fluide frigorigène, le circuit (20) de fluide frigorigène incluant un compresseur (11), un condenseur (12), un dispositif (14A, 14B) de décompression, et un évaporateur (13) et étant configuré de sorte qu'un fluide frigorigène circule à travers le compresseur (11), le condenseur (12), le dispositif (14A, 14B) de décompression, et l'évaporateur (13), le dispositif (60) de détermination de fuite de fluide frigorigène comprenant :
    un calculateur (66) configuré pour calculer un degré d'écart du circuit (20) de fluide frigorigène par rapport à un état normal sur la base de données liées au fonctionnement de l'appareil (1) de réfrigération ; et
    une unité (67) de détermination configurée pour déterminer si le fluide frigorigène a fui ou pour estimer un temps d'occurrence de fuite de fluide frigorigène sur la base d'un résultat de calcul du calculateur (66), dans lequel
    les données liées au fonctionnement de l'appareil (1) de réfrigération incluent des données liées au fonctionnement de l'appareil (1) de réfrigération lors d'une première période et des données liées au fonctionnement de l'appareil (1) de réfrigération lors d'une seconde période qui diffère en longueur de la première période,
    le calculateur (66) est configuré pour calculer une première valeur d'indice à partir des données liées au fonctionnement de l'appareil (1) de réfrigération lors de la première période et calculer une seconde valeur d'indice à partir des données liées au fonctionnement de l'appareil (1) de réfrigération lors de la seconde période,
    le calculateur (66) est configuré pour calculer le degré d'écart du circuit (20) de fluide frigorigène par rapport à l'état normal sur la base de la première valeur d'indice et de la seconde valeur d'indice,
    l'unité (67) de détermination est configurée pour déterminer si le fluide frigorigène a fui ou pour estimer le temps d'occurrence de fuite de fluide frigorigène sur la base du degré d'écart du circuit (20) de fluide frigorigène par rapport à l'état normal,
    chacune parmi la première valeur d'indice et la seconde valeur d'indice inclut l'un parmi une valeur estimée d'une température de fluide frigorigène côté évacuation du compresseur (11), ou un indice de température de fluide frigorigène côté évacuation qui est calculé sur la base de la valeur estimée de la température de fluide frigorigène côté évacuation du compresseur (11) et de la valeur réelle de la température de fluide frigorigène côté évacuation du compresseur (11),
    le calculateur (66) est configuré pour calculer la première valeur d'indice à partir d'une moyenne mobile des données liées au fonctionnement de l'appareil (1) de réfrigération lors de la première période,
    le calculateur (66) est configuré pour calculer la seconde valeur d'indice à partir d'une moyenne mobile des données liées au fonctionnement de l'appareil (1) de réfrigération lors de la seconde période, et
    le calculateur (66) est configuré pour calculer la valeur estimée d'une température de fluide frigorigène côté évacuation du compresseur (11) pour chaque fréquence de source d'énergie et tension de source d'énergie d'une source d'énergie, qui est une source d'énergie fournie à l'appareil (1) de réfrigération, en utilisant une analyse de régression, dans lequel une variable pour l'analyse de régression est au moins un parmi une température de condensation, une température d'évaporation, un degré d'ouverture d'une soupape (14A, 14B) de dilatation qui est le dispositif de décompression, une fréquence de fonctionnement du compresseur (11), ou une vitesse de rotation du compresseur (11) lorsqu'une quantité de fluide frigorigène contenue dans le circuit (20) de fluide frigorigène est dans une plage appropriée.
  2. Dispositif (60) de détermination de fuite de fluide frigorigène selon la revendication 1, dans lequel le calculateur (66) est configuré pour détecter le degré d'écart du circuit (20) de fluide frigorigène par rapport à l'état normal sur la base d'un degré d'écart entre la première valeur d'indice et la seconde valeur d'indice.
  3. Dispositif (60) de détermination de fuite de fluide frigorigène selon la revendication 1 ou la revendication 2, dans lequel
    les données liées au fonctionnement de l'appareil (1) de réfrigération lors de la première période incluent des données pendant une journée, et
    les données liées au fonctionnement de l'appareil (1) de réfrigération lors de la seconde période incluent des données pendant dix jours ou plus et trente jours ou moins.
  4. Dispositif de détermination de fuite de fluide frigorigène selon la revendication 3, dans lequel
    les données liées au fonctionnement de l'appareil (1) de réfrigération lors de la première période incluent vingt-quatre ensembles de données, et
    les données liées au fonctionnement de l'appareil (1) de réfrigération lors de la seconde période incluent deux cent quarante ensembles de données ou plus et sept cent vingt ensembles de données ou moins.
  5. Dispositif de détermination de fuite de fluide frigorigène selon l'une quelconque des revendications 1 à 4, dans lequel le calculateur (66) est configuré pour calculer la première valeur d'indice et la seconde valeur d'indice à partir de données excluant au moins l'une des données dans une section dans laquelle l'appareil (1) de réfrigération est arrêté, des données dans une section immédiatement après l'activation du compresseur (11), des données dans une section immédiatement après la désactivation du compresseur (11), ou des données dans une section immédiatement après que le fonctionnement du compresseur (11) est commuté.
  6. Dispositif de détermination de fuite de fluide frigorigène selon l'une quelconque des revendications 1 à 4, dans lequel le calculateur (66) est configuré pour calculer la première valeur d'indice et la seconde valeur d'indice en utilisant des données alternatives à au moins l'une des données dans une section dans laquelle l'appareil (1) de réfrigération est arrêté, des données dans une section immédiatement après l'activation du compresseur (11), des données dans une section immédiatement après la désactivation du compresseur (11), ou des données dans une section immédiatement après que le fonctionnement du compresseur (11) est commuté.
  7. Dispositif de détermination de fuite de fluide frigorigène selon la revendication 6, dans lequel les données alternatives sont une valeur représentative prédéterminée ou une valeur avant ou après la section qui utilise les données alternatives dans la section dans laquelle l'appareil (1) de réfrigération est arrêté, la section immédiatement après l'activation du compresseur (11), la section immédiatement après la désactivation du compresseur (11), ou la section immédiatement après que le fonctionnement du compresseur (11) est commuté.
  8. Dispositif de détermination de fuite de fluide frigorigène selon l'une quelconque des revendications 1 à 7, dans lequel le calculateur (66) est configuré pour calculer un degré d'écart entre la première valeur d'indice et la seconde valeur d'indice sur la base d'au moins un d'un écart-type, d'une asymétrie, d'une vraisemblance, d'un aplatissement, ou d'une moyenne qui est obtenue en utilisant la première valeur d'indice et la seconde valeur d'indice.
  9. Dispositif de détermination de fuite de fluide frigorigène selon l'une quelconque des revendications 1 à 8, dans lequel
    l'appareil (1) de réfrigération inclut en outre une unité (52) de notification qui délivre une notification d'un résultat de détermination indiquant si le fluide frigorigène a fui ou une notification d'un résultat d'estimation du temps d'occurrence de fuite de fluide frigorigène, et
    l'unité (52) de notification est configurée pour délivrer une notification d'un résultat de détermination indiquant si le fluide frigorigène a fui ou une notification d'un résultat d'estimation du temps d'occurrence de fuite de fluide frigorigène au moins l'un parmi lorsqu'il existe une requête de l'utilisateur, lorsque l'appareil (1) de réfrigération ou le dispositif (60) de détermination de fuite de fluide frigorigène est mis sous tension, ou lorsqu'une inspection pré-déclenchement de l'appareil (1) de réfrigération est menée.
  10. Appareil de réfrigération, comprenant :
    le dispositif (60) de détermination de fuite de fluide frigorigène selon l'une quelconque des revendications 1 à 9.
  11. Appareil de réfrigération selon la revendication 10, dans lequel
    l'appareil de réfrigération est un appareil (1) de réfrigération de transport,
    l'appareil (1) de réfrigération de transport inclut en outre une unité (52) de notification configurée pour délivrer une notification d'un résultat de détermination indiquant si le fluide frigorigène a fui ou une notification d'un résultat d'estimation du temps d'occurrence de fuite de fluide frigorigène, et
    l'unité (52) de notification est configurée pour délivrer une notification d'un résultat de détermination indiquant si le fluide frigorigène a fui ou une notification d'un résultat d'estimation du temps d'occurrence de fuite de fluide frigorigène au moins l'un parmi lorsqu'il existe une requête de l'utilisateur, lorsque l'appareil (1) de réfrigération de transport ou le dispositif (60) de détermination de fuite de fluide frigorigène est mis sous tension, lorsque le transport de l'appareil (1) de réfrigération de transport est achevé ou lorsqu'une inspection pré-déclenchement de l'appareil (1) de réfrigération de transport est menée.
  12. Procédé de détermination d'une fuite de fluide frigorigène d'un appareil (1) de réfrigération, l'appareil (1) de réfrigération incluant un circuit (20) de fluide frigorigène, et le circuit (20) de fluide frigorigène incluant un compresseur (11), un condenseur (12), un dispositif (14A, 14B) de décompression, et un évaporateur (13) et étant configuré de sorte qu'un fluide frigorigène circule à travers le compresseur (11), le condenseur (12), le dispositif (14A, 14B) de décompression, et l'évaporateur (13), le procédé comprenant :
    le stockage de données liées au fonctionnement de l'appareil (1) de réfrigération ;
    le calcul d'une première valeur d'indice à partir de données liées au fonctionnement de l'appareil (1) de réfrigération lors d'une première période et le calcul d'une seconde valeur d'indice à partir de données liées au fonctionnement de l'appareil (1) de réfrigération lors d'une seconde période qui diffère en longueur de la première période ;
    le calcul d'un degré d'écart du circuit (20) de fluide frigorigène par rapport à un état normal sur la base de la première valeur d'indice et de la seconde valeur d'indice ; et
    le fait de déterminer si le fluide frigorigène a fui ou l'estimation d'un temps d'occurrence de fuite de fluide frigorigène sur la base du degré d'écart du circuit (20) de fluide frigorigène par rapport à l'état normal, dans lequel
    chacune parmi la première valeur d'indice et la seconde valeur d'indice inclut l'un parmi une valeur estimée d'une température de fluide frigorigène côté évacuation du compresseur (11), ou un indice de température de fluide frigorigène côté évacuation qui est calculé sur la base de la valeur estimée de la température de fluide frigorigène côté évacuation du compresseur (11) et de la valeur réelle de la température de fluide frigorigène côté évacuation du compresseur (11),
    la première valeur d'indice est calculée à partir d'une moyenne mobile des données liées au fonctionnement de l'appareil (1) de réfrigération lors de la première période, la seconde valeur d'indice est calculée à partir d'une moyenne mobile des données liées au fonctionnement de l'appareil (1) de réfrigération lors de la seconde période, et
    la valeur estimée d'une température de fluide frigorigène côté évacuation du compresseur (11) est calculée pour chaque fréquence de source d'énergie et tension de source d'énergie d'une source d'énergie, qui est une source d'énergie fournie à l'appareil (1) de réfrigération, en utilisant une analyse de régression, dans lequel une variable pour l'analyse de régression est au moins un parmi une température de condensation, une température d'évaporation, un degré d'ouverture d'une soupape (14A, 14B) de dilatation qui est le dispositif de décompression, une fréquence de fonctionnement du compresseur (11), ou une vitesse de rotation du compresseur (11) lorsqu'une quantité de fluide frigorigène contenue dans le circuit (20) de fluide frigorigène est dans une plage appropriée.
EP19865774.4A 2018-09-28 2019-09-26 Dispositif de détermination de fuite de fluide frigorigène, dispositif de congélation comprenant ce dispositif de détermination de fuite de fluide frigorigène et procédé de détermination de fuite de fluide frigorigène Active EP3859249B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185173A JP6887979B2 (ja) 2018-09-28 2018-09-28 冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法
PCT/JP2019/037874 WO2020067296A1 (fr) 2018-09-28 2019-09-26 Dispositif de détermination de fuite de fluide frigorigène, dispositif de congélation comprenant ce dispositif de détermination de fuite de fluide frigorigène et procédé de détermination de fuite de fluide frigorigène

Publications (3)

Publication Number Publication Date
EP3859249A1 EP3859249A1 (fr) 2021-08-04
EP3859249A4 EP3859249A4 (fr) 2021-11-03
EP3859249B1 true EP3859249B1 (fr) 2023-08-30

Family

ID=69953139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19865774.4A Active EP3859249B1 (fr) 2018-09-28 2019-09-26 Dispositif de détermination de fuite de fluide frigorigène, dispositif de congélation comprenant ce dispositif de détermination de fuite de fluide frigorigène et procédé de détermination de fuite de fluide frigorigène

Country Status (6)

Country Link
US (1) US20220034568A1 (fr)
EP (1) EP3859249B1 (fr)
JP (1) JP6887979B2 (fr)
CN (1) CN112752938B (fr)
DK (1) DK3859249T3 (fr)
WO (1) WO2020067296A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
SE544494C2 (en) * 2020-10-21 2022-06-21 Senseair Ab Temperature controller for a temperature control mechanism
DE102020130850B3 (de) * 2020-11-23 2022-04-28 Viessmann Refrigeration Solutions Gmbh Verfahren zum Erkennen von Leckagen in einem Kältekreis einer Kompressionskältemaschine und Leckagedetektiersystem
JP7197814B2 (ja) * 2021-05-21 2022-12-28 ダイキン工業株式会社 冷媒漏洩検知システム
CN113687670B (zh) * 2021-08-02 2022-09-16 北京京仪自动化装备技术股份有限公司 热交换器温控方法及温控系统
WO2023199425A1 (fr) * 2022-04-13 2023-10-19 三菱電機株式会社 Système de détection de fuite de fluide frigorigène et dispositif de détection de fuite

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272849A (ja) * 1991-11-15 1993-10-22 Oki Electric Ind Co Ltd 熱交換機の劣化予測方法およびその装置
JP3357736B2 (ja) * 1994-01-28 2002-12-16 三洋電機株式会社 空気調和装置
US6205798B1 (en) * 1999-01-19 2001-03-27 Carrier Corporation Test for the automated detection of leaks between high and low pressure sides of a refrigeration system
JP4113700B2 (ja) * 2001-11-16 2008-07-09 三菱電機株式会社 液面検出装置、液溜、冷凍サイクル装置、及び、冷媒漏出検出システム
JP4018374B2 (ja) * 2001-11-21 2007-12-05 株式会社山武 空気調和機の異常検出装置、異常検出方法及びプログラム
JP4458349B2 (ja) * 2004-08-27 2010-04-28 日立アプライアンス株式会社 機器診断装置、その動作プログラム、機器診断方法
JP4124228B2 (ja) * 2005-12-16 2008-07-23 ダイキン工業株式会社 空気調和装置
JP2007225158A (ja) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp 除霜運転制御装置および除霜運転制御方法
WO2009091399A1 (fr) * 2008-01-17 2009-07-23 Carrier Corporation Détection d'une fuite de co2 dans un conteneur
JP5040975B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 漏洩診断装置
JP2009002650A (ja) * 2008-10-06 2009-01-08 Daikin Ind Ltd 異常診断システム
JP2010127568A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 異常検出装置およびそれを備えた冷凍サイクル装置
CN102792108B (zh) * 2010-03-12 2015-02-18 三菱电机株式会社 冷冻空调装置
JP2013204871A (ja) 2012-03-28 2013-10-07 Hitachi Appliances Inc 空気調和機
US10139803B2 (en) * 2014-04-16 2018-11-27 Mitsubishi Electric Corporation Instruction value generation device
JP2015222151A (ja) * 2014-05-23 2015-12-10 日立アプライアンス株式会社 空気調和機の室外機
WO2016071947A1 (fr) * 2014-11-04 2016-05-12 三菱電機株式会社 Dispositif de cycle de réfrigération et système de détection d'anomalie dans un dispositif de cycle de réfrigération
JP2016090177A (ja) * 2014-11-07 2016-05-23 東芝キヤリア株式会社 冷凍サイクル装置
JPWO2016174734A1 (ja) * 2015-04-28 2017-11-30 三菱電機株式会社 空気調和装置監視装置および方法
WO2017219230A1 (fr) * 2016-06-21 2017-12-28 马玉琴 Climatiseur et procédé de détection de fuite de réfrigérant associé
US10697655B2 (en) * 2016-12-28 2020-06-30 Pure Humidifier Company Modulating makeup fluid control systems and methods for same

Also Published As

Publication number Publication date
EP3859249A1 (fr) 2021-08-04
CN112752938B (zh) 2022-08-30
EP3859249A4 (fr) 2021-11-03
JP2020056509A (ja) 2020-04-09
CN112752938A (zh) 2021-05-04
JP6887979B2 (ja) 2021-06-16
WO2020067296A1 (fr) 2020-04-02
US20220034568A1 (en) 2022-02-03
DK3859249T3 (da) 2023-11-13

Similar Documents

Publication Publication Date Title
EP3859249B1 (fr) Dispositif de détermination de fuite de fluide frigorigène, dispositif de congélation comprenant ce dispositif de détermination de fuite de fluide frigorigène et procédé de détermination de fuite de fluide frigorigène
US8151583B2 (en) Expansion valve control system and method for air conditioning apparatus
US11454442B2 (en) Abnormality determination device for transporting freezing device, transporting freezing device including this abnormality determination device, and abnormality determination method for transporting freezing device
JP5334909B2 (ja) 冷凍空調装置並びに冷凍空調システム
JP5795025B2 (ja) 冷凍サイクル装置
US10139815B2 (en) Chiller control device, chiller, and chiller diagnostic method
JP2007225158A (ja) 除霜運転制御装置および除霜運転制御方法
CN107923646A (zh) 冷冻装置
JP6309169B2 (ja) 空気調和装置
US10533783B2 (en) Air conditioner having compressor bypass and evaluation of volume of connecting pipe
EP3859250B1 (fr) Dispositif de détermination d'anomalie, dispositif de congélation comprenant ce dispositif de détermination d'anomalie, et procédé de détermination d'anomalie pour compresseur
CN108603681B (zh) 冷气机以及空气调节机
JP6621017B2 (ja) 冷凍装置
JP2019035579A (ja) 冷凍装置
EP4220320A1 (fr) Dispositif de traitement d'informations, procédé de traitement d'informations et programme
JP6449979B2 (ja) 冷凍装置
JP6590945B2 (ja) 冷凍装置
WO2018146805A1 (fr) Dispositif de réfrigération
CN115789985A (zh) 空调器

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20211005

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/00 20060101ALI20210929BHEP

Ipc: F25B 41/20 20210101ALI20210929BHEP

Ipc: F25B 40/00 20060101ALI20210929BHEP

Ipc: F25D 11/00 20060101ALI20210929BHEP

Ipc: F25B 49/02 20060101AFI20210929BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220701

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIKIN INDUSTRIES, LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230414

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019036433

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20231110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1605923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20231117

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230926