EP3856799A1 - Propylencopolymer mit hervorragenden optischen eigenschaften - Google Patents

Propylencopolymer mit hervorragenden optischen eigenschaften

Info

Publication number
EP3856799A1
EP3856799A1 EP19768752.8A EP19768752A EP3856799A1 EP 3856799 A1 EP3856799 A1 EP 3856799A1 EP 19768752 A EP19768752 A EP 19768752A EP 3856799 A1 EP3856799 A1 EP 3856799A1
Authority
EP
European Patent Office
Prior art keywords
copolymer
propylene copolymer
random propylene
reactor
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19768752.8A
Other languages
English (en)
French (fr)
Inventor
Jingbo Wang
Markus Gahleitner
Klaus Bernreitner
Pauli Leskinen
Peter Niedersüss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis AG
Original Assignee
Borealis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis AG filed Critical Borealis AG
Publication of EP3856799A1 publication Critical patent/EP3856799A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention is directed to a polypropylene composition (P) comprising a first random propylene copolymer (A) and a second random propylene copolymer (B), said first random propylene copolymer (A) and said second random propylene copolymer (B) being copolymers of propylene and 1 -hexene. Further, the present invention is directed to a blown film comprising said polypropylene composition (P).
  • Polypropylene copolymers are widely used in different areas, for example blow film or cast film applications. Due to the multiple requirements of the properties for the said applications, normally multi-layer film structures are used wherein the different layers have different functions. These layers are combined together to provide the solution with the desired properties. For example, C2/C3/C4 terpolymers prepared in the presence of Ziegler-Natta catalysts are normally used as sealing layer. However, the optical properties of such terpolymers are not satisfying.
  • One approach to improve the optical properties is to add nucleating agents or clarifiers. This will clearly improve the optics of the finished products, but this technology has certain limits with regard to the purity of the products. Adding additives will introduce extra chemicals which potentially leads to conflicts for the key application area such as food or medical packaging where the purity of the product is of high importance.
  • the sealing properties of polypropylene films used for packaging applications are on a high level.
  • the films have a broad sealing window, i.e. the temperature window within the sealing may occur should be as broad as possible.
  • the article to be sealed should not be exposed to high temperatures whereupon a low sealing initiation temperature (SIT) is preferred.
  • SIT sealing initiation temperature
  • EP 2 386 603 Al describes cast films prepared from copolymers of propylene and higher a-olefins showing a broad sealing window at a low sealing initiation temperature (SIT).
  • Copolymers of propylene and 1 -hexene showing improved hot tack properties accompanied by a good sealing window are also disclosed by WO 2011/131639 Al.
  • the films prepared from said copolymers have a rather low tensile modulus and the optical properties are not satisfying.
  • the present invention is directed to a polypropylene composition (P), comprising
  • the copolymer (C) has a xylene soluble content (XCS) in the range of 8.0 to 30.0 wt.-%.
  • XCS xylene soluble content
  • the present invention is directed to a polypropylene composition (P), comprising
  • copolymer (C) has a xylene soluble content (XCS) in the range of 8.0 to 30.0 wt.-%.
  • the polypropylene composition (P) fulfills in-equation (1)
  • MFR(A) is the melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/lO min] of the first random propylene copolymer (A)
  • MFR(C) is the melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/lO min] of the copolymer (C).
  • the copolymer (C) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.4 to 12.0 g/lO min.
  • the weight ratio between the first random propylene copolymer (A) and the second random propylene copolymer (B) within the copolymer (C) is in the range of 30:70 to 70:30.
  • the copolymer (C) has an amount of 2, 1 erythro regio-defects of at least 0.4 mol.-%.
  • the first random propylene copolymer (A) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.3 to 12.0 g/lO min
  • the second random propylene copolymer (B) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.2 to 9.0 g/lO min.
  • the copolymer (C) comprises 35.0 to 65.0 wt.-% of the first random propylene copolymer (A) and 35.0 to 65.0 wt.-% of the second random propylene copolymer (B), based on the overall weight of the copolymer (C).
  • the copolymer (C) fulfills in-equation (2)
  • C6(A) is the 1 -hexene content of the first random propylene copolymer (A) based on the total weight of the first random propylene copolymer (A) [in wt.-%];
  • C6(C) is the 1 -hexene content of the copolymer (C) based on the total weight of the copolymer (C) [in wt.-%];
  • [A]/[C] is the weight ratio between the first random propylene copolymer (A) and the copolymer (C) [in g/g] .
  • the copolymer (C) has an amount of hexane hot solubles (HHS) measured according to FDA 177.1520 equal or below 1.5 wt.-%.
  • the present invention is further directed to an article, comprising at least 90.0 wt.-% of the polypropylene composition (P) as described above.
  • the article is a film, more preferably a blown film.
  • the film has i) a haze before steam sterilization determined according to ASTM D 1003-00 measured on a 50 mih blown film below 10.0 %, and
  • a haze after steam sterilization determined according to ASTM D 1003-00 measured on a 50 mih blown film below 12.0 %.
  • the present invention is also directed to the use of the article as described above as a sealing layer in a multi-layer film.
  • the present invention is directed to a process for the preparation of a copolymer (C) as described above, wherein the process is a sequential
  • polymerization process comprising at least two reactors connected in series, wherein said process comprises the steps of
  • R-l polymerizing in a first reactor (R-l) being a slurry reactor (SR), preferably a loop reactor (LR), propylene and 1 -hexene, obtaining a first random propylene copolymer (A),
  • each Cp independently is an unsubstituted or substituted and/or fused
  • cyclopentadienyl ligand substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand; the optional one or more substituent(s) being independently selected preferably from halogen, hydrocarbyl ( e.g.
  • each R" is independently a hydrogen or hydrocarbyl selected from Cl-C20-alkyl, C2- C20-alkenyl, C2- C20-alkynyl, C3-Cl2-cycloalkyl, C6-C20-aryl or C7-C20- arylalkyl), C3-C12- cycloalkyl which contains 1, 2, 3 or 4 heteroatom(s) in the ring moiety, C6-C20- heteroaryl, Cl-C20-haloalkyl, -SiR" 3 , -OSiR'' 3 , -SR”, -PR" 2 , OR” or -NR” 2 , each R" is independently a hydrogen or hydrocarbyl selected from Cl-C20-alkyl, C2- C20-alkenyl, C2-C20-alkynyl, C3-Cl2-cyeloalkyl or C6-C20-aryl; or in case of - NR" 2 , the two
  • R is a bridge of 1-2 C-atoms and 0-2 heteroatoms, wherein the heteroatom(s) can be Si, Ge and/or O atom(s), wherein each of the bridge atoms may bear independently substituents selected from Cl-C20-alkyl, tri(Cl-C20-alkyl)silyl, tri(Cl-C20- alkyl)siloxy or C6-C20-aryl substituents); or a bridge of one or two heteroatoms selected from silicon, germanium and/or oxygen atom(s),
  • M is a transition metal of Group 4 selected from Zr or Hf, especially Zr; each X is independently a sigma- ligand selected from H, halogen, Cl-C20-alkyl, Cl- C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-Cl2-cycloalkyl, C6-C20-aryl, C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR”, -PR” , -SiR” , - OSiR" 3 , -NR" 2 or -CH 2 -Y, wherein Y is C6-C20-aryl, C6-C20-heteroaryl, C1-C20- alkoxy, C6-C20-aryloxy, NR” 2 ,-SR”, -PR” 3 , -SiR” 3 , or -OS
  • the transition metal compound of formula (I) is an organo-zirconium compound of formula (II) or (IF)
  • M is Zr; each X is a sigma ligand, preferably each X is independently a hydrogen atom, a halogen atom, a C1-C6 alkoxy group, C1-C6 alkyl, phenyl or a benzyl group; L is a divalent bridge selected from -R' 2 C-, -R2C-CR 2, -R 2 Si-, -R ⁇ Si-SiRV
  • each R' is independently a hydrogen atom, C1-C20 alkyl, C3-C10 cycloalkyl, tri(Cl-C20-alkyl)silyl, C6-C20-aryl or C7-C20 arylalkyl; each R 2 or R 2 ' is a C1-C10 alkyl group;
  • R 5 ' is a C1-C10 alkyl group or a Z'R 3 ' group
  • R 6 is hydrogen or a C1-C10 alkyl group
  • R 6 ' is a C1-C10 alkyl group or a C6-C10 aryl group
  • R 7 is hydrogen, a C1-C6 alkyl group or a ZR 3 group;
  • R 7 ' is hydrogen or a C1-C10 alkyl group;
  • Z and Z' are independently O or S;
  • R 3 ' is a C1-C10 alkyl group, or a C6-C10 aryl group optionally substituted by one or more halogen groups;
  • R 3 is a C1-C10 alkyl group; each n is independently 0 to 4; and each R 1 is independently a C1-C20 hydrocarbyl group.
  • the polypropylene composition (P) according to the present invention comprises at least 90.0 wt.-%, based on the overall weight of the polypropylene composition (P) of the copolymer (C) of propylene and 1 -hexene, comprising
  • the polypropylene composition (P) comprises at least 95.0 wt.-% of the copolymer (C), more preferably at least 97.0 wt.-%, still more preferably at least
  • the polypropylene composition (P) consists of the copolymer (C).
  • the copolymer (C) according to this invention is featured by a rather high comonomer content, i.e. l-hexene content.
  • the rather high comonomer content is achieved due to the fact that the inventive copolymer (C) comprises two fractions of propylene copolymer as defined herein.
  • A“comonomer” according to this invention is a polymerizable unit different to propylene. Accordingly the copolymer (C) according to this invention shall have a l-hexene content in the range of 3.8 to
  • the copolymer (C) comprises a first random propylene copolymer (A) and a second random propylene copolymer (B).
  • the term“random copolymer” has to be preferably understood according to IUPAC (Pure Appl. Chem., Vol. No. 68, 8, pp. 1591 to 1595, 1996).
  • [HH] is the molar fraction of adjacent comonomer units, like of adjacent 1 -hexene units, and
  • [H] is the molar fraction of total comonomer units, like of total 1 -hexene units, in the polymer.
  • the copolymer (C) of the present invention has a melt flow rate (MFR) given in a specific range.
  • MFR melt flow rate measured under a load of 2.16 kg at 230 °C (ISO 1133) is denoted as MFR 2 (230 °C, 2.16 kg).
  • the copolymer (C) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.4 to 12.0 g/lO min, more preferably in the range of 0.6 to 9.0 g/lO min, still more preferably in the range of 0.8 to less than 2.0 g/lO min, like in the range of 1.0 to 1.5 g/lO min.
  • the polypropylene composition (P) shall be especially suitable for the packaging industry. Accordingly good sealing properties are desired, like rather low heat sealing initiation temperature (SIT) and a broad sealing window combined with low stickiness.
  • the polypropylene composition (P) has a heat sealing initiation temperature (SIT) of equal or below 117 °C, more preferably of equal or below 113 °C, still more preferably in the range of 93 to 115 °C, yet more preferably in the range of 95 to 114 °C.
  • SIT heat sealing initiation temperature
  • Tm melting temperature
  • SIT heat sealing initiation temperature
  • the polypropylene composition (P) fulfills the equation (I), more preferably the equation (la), yet more preferably the equation (lb) Tm - SIT > 20 °C (I)
  • Tm is the melting temperature given in centigrade [°C] of the polypropylene composition (P),
  • SIT is the heat sealing initiation temperature given in centigrade [°C] of the
  • the melting temperature (Tm) measured according to ISO 11357-3 of the copolymer (C) is preferably at least 120 °C, more preferably of at least 125 °C.
  • the melting temperature (Tm) measured according to ISO 11357-3 of the copolymer (C) is in the range of 125 to 145 °C, more preferably in the range of 130 to less than 140 °C, still more preferably in the range of 131 °C to 139 °C.
  • the copolymer (C) can be defined by the xylene cold soluble (XCS) content measured according to ISO 16152 (25 °C). Accordingly the copolymer (C) is preferably featured by a xylene cold soluble (XCS) content in the range of 8.0 to 30.0 wt.-%, more preferably in the range of 9.0 to 28.0 wt.-%, still more preferably in the range of 10.0 to 27.0 wt.-%.
  • XCS xylene cold soluble
  • the amount of xylene cold soluble (XCS) additionally indicates that the copolymer (C) is preferably free of any elastomeric polymer component, like an ethylene propylene rubber.
  • the copolymer (C) shall not be a heterophasic polypropylene, i.e. a system consisting of a polypropylene matrix in which an elastomeric phase is dispersed. Such systems are featured by a rather high xylene cold soluble content.
  • the copolymer (C) comprises the first random propylene copolymer (A) and the second random propylene copolymer (B) as the only polymer components.
  • HHS hexane hot solubles
  • the inventive copolymer (C) has an amount of hexane hot solubles (HHS) measured according to FDA 177.1520 equal or below 1.5 wt.-%, more preferably equal or below 1.2 wt.-%, still more preferably equal or below
  • HHS hexane hot solubles
  • the copolymer (C) of the present invention is further defined by its polymer fractions present. Accordingly the copolymer (C) of the present invention comprises at least, preferably consists of, two fractions, namely the first random propylene copolymer (A) and the second random propylene copolymer (B).
  • the first random propylene copolymer (A) is a copolymer of propylene and 1 -hexene having a l-hexene content in the range of 0.1 to below 3.8 wt.-%, preferably in the range of 0.5 to 3.5 wt.-%, more preferably in the range of 0.8 to 3.0 wt.-%, still more preferably in the range of 1.0 to 2.5 wt.-%
  • the second random propylene copolymer (B) is a copolymer of propylene and l-hexene having a l-hexene content in the range of 4.0 to 15.0 wt.-%, preferably in the range of 5.0 to 13.0 wt.-%, more preferably in the range of 6.0 to 12.0 wt.-%, still more preferably in the range of 6.5 to l0.0 wt.-%.
  • the first random propylene copolymer (A) is the l-hexene lean fraction whereas the second random propylene copolymer (B) is the l-hexene rich fraction.
  • the copolymer (C) fulfils in-equation (1), more preferably in-equation (la), still more preferably in-equation (lb),
  • MFR(A) is the melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/lO min] of the first random propylene copolymer (A)
  • MFR(C) is the melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/lO min] of the copolymer (C).
  • the first random propylene copolymer (A) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.3 to 12.0 g/lO min, more preferably in the range of 0.5 to 9.0 g/lO min, still more preferably in the range of 0.8 to 3.0 g/lO min, like in the range of 1.0 to 2.5 g/lO min.
  • the second propylene copolymer (B) preferably has a has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.2 to
  • the weight ratio between the first random propylene copolymer (A) and the second random propylene copolymer (B) within the copolymer (C) is in the range of 30:70 to 70:30, more preferably in the range of 35:65 to 65:35, still more preferably in the range of 40:60 to 60:40.
  • the copolymer (C) comprises 30.0 to 70.0 wt.-%, more preferably 35.0 to 65.0 wt.-%, still more preferably 40.0 to 60.0 wt.-% of the first random propylene copolymer (A) and 30.0 to 70.0 wt.-%, more preferably 35.0 to 65.0 wt.-%, still more preferably 40.0 to 60.0 wt.-% of the second random propylene copolymer (B), based on the overall weight of the copolymer (C).
  • the copolymer (C) may contain additives (AD).
  • the copolymer (C) comprises, more preferably consists of, 30.0 to 70.0 wt.-%, more preferably 35.0 to 65.0 wt.-%, still more preferably 40.0 to 60.0 wt.-% of the first random propylene copolymer (A), 30.0 to 70.0 wt.-%, more preferably 35.0 to 65.0 wt.-%, still more preferably 40.0 to 60.0 wt.-% of the second random propylene copolymer (B) and 0.01 to 5.0 wt.-%, more preferably 0.1 to 4.0 wt.-%, still more preferably 1.0 to 3.0 wt.-%, like 1.5 to 2.5 wt.-% of additives (AD), based on the overall weight of the copolymer (C).
  • AD additives
  • the copolymer (C) has an amount of 2, 1 erythro regio- defects of at least 0.4 mol-%.
  • a high amount of misinsertions of propylene and/or 1 -hexene within the polymer chain indicates that the copolymer (C) is produced in the presence of a single site catalyst, preferably a metallocene catalyst.
  • Typical additives are acid scavengers, antioxidants, colorants, light stabilisers, plasticizers, slip agents, anti- scratch agents, dispersing agents, processing aids, lubricants, pigments, and the like.
  • additives are commercially available and for example described in“Plastic Additives Handbook”, 6 th edition 2009 of Hans Zweifel (pages 1141 to 1190).
  • additives also includes carrier materials, in particular polymeric carrier materials.
  • the copolymer (C) of the invention does not comprise (a) further polymer (s) different to the first random propylene copolymer (A) and the second random propylene copolymer (B) in an amount exceeding 15 wt.-%, preferably in an amount exceeding 10 wt.-%, more preferably in an amount exceeding 9 wt.-%, based on the weight of the copolymer (C).
  • Any polymer being a carrier material for additives (AD) is not calculated to the amount of polymeric compounds as indicated in the present invention, but to the amount of the respective additive.
  • the polymeric carrier material of the additives (AD) is a carrier polymer to ensure a uniform distribution in the copolymer (C) of the invention.
  • the polymeric carrier material is not limited to a particular polymer.
  • the polymeric carrier material may be ethylene homopolymer, ethylene copolymer obtained from ethylene and a-olefin comonomer such as C 3 to Cx a-olefin comonomer, propylene homopolymer and/or propylene copolymer obtained from propylene and a-olefin comonomer such as ethylene and/or C 4 to Cx a-olefin comonomer. It is preferred that the polymeric carrier material does not contain monomeric units derivable from styrene or derivatives thereof.
  • the copolymer (C) is in particular obtainable, preferably obtained, by a process as defined in detail below.
  • the process for the preparation of a copolymer (C) forming the polypropylene composition (P) as defined above is a sequential polymerization process comprising at least two reactors connected in series, wherein said process comprises the steps of (A) polymerizing in a first reactor (R-l) being a slurry reactor (SR), preferably a loop reactor (LR), propylene and 1 -hexene, obtaining a first random propylene copolymer (A) as defined in the instant invention,
  • SR slurry reactor
  • LR loop reactor
  • M is zirconium (Zr) or hafnium (Hf),
  • each“X” is independently a monovalent anionic s-ligand
  • each“Cp” is a cyclopentadienyl-type organic ligand independently selected from the group consisting of unsubstituted or substituted and/or fused cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl, said organic ligands coordinate to the transition metal
  • R is a bivalent bridging group linking said organic ligands (Cp),
  • n is 1 or 2, preferably 1, and
  • cocatalyst comprising an element (E) of group 13 of the periodic table (IUPAC), preferably a cocatalyst (Co) comprising a compound of Al and/or B.
  • the manufacture of the above defined copolymer (C) is possible.
  • a propylene copolymer i.e. the first random propylene copolymer (A)
  • the conveyance of said propylene copolymer and especially the conveyance of unreacted comonomers into the second reactor (R-2) it is possible to produce a copolymer (C) with high comonomer content in a sequential polymerization process.
  • the term“sequential polymerization process” indicates that the copolymer (C) is produced in at least two reactors connected in series. More precisely the term “sequential polymerization process” indicates in the present application that the polymer of the first reactor (R-l) is directly conveyed with unreacted comonomers to the second reactor (R-2). Accordingly the decisive aspect of the present process is the preparation of the copolymer (C) in two different reactors, wherein the reaction material of the first reactor (R-l) is directly conveyed to the second reactor (R-2).
  • the present process comprises at least a first reactor (R-l) and a second reactor (R-2).
  • the instant process consists of two polymerization reactors (R-l) and (R-2).
  • the term“polymerization reactor” shall indicate that the main polymerization takes place there.
  • this definition does not exclude the option that the overall process comprises for instance a pre-polymerization step in a pre -polymerization reactor.
  • the term“consists of’ is only a closing formulation in view of the main polymerization reactors.
  • the first reactor (R-l) is a slurry reactor (SR) and can be any continuous or simple stirred batch tank reactor or loop reactor operating in slurry. According to the present invention the slurry reactor (SR) is preferably a loop reactor (LR).
  • SR slurry reactor
  • LR loop reactor
  • the second reactor (R-2) and any subsequent reactor are gas phase reactors (GPR).
  • gas phase reactors (GPR) can be any mechanically mixed or fluid bed reactors.
  • the gas phase reactor(s) (GPR) comprise a mechanically agitated fluid bed reactor with gas velocities of at least 0.2 m/sec.
  • the gas phase reactor (GPR) is a fluidized bed type reactor preferably with a mechanical stirrer.
  • the condition (temperature, pressure, reaction time, monomer feed) in each reactor is dependent on the desired product which is in the knowledge of a person skilled in the art.
  • the first reactor (R-l) is a slurry reactor (SR), like a loop reactor (LR), whereas the second reactor (R-2) is a gas phase reactor (GPR-l).
  • the subsequent reactors - if present - are also gas phase reactors (GPR).
  • a preferred multistage process is a“loop-gas phase”-process, such as developed by Borealis A/S, Denmark (known as BORSTAR® technology) described e.g. in patent literature, such as in EP 0 887 379 or in WO 92/12182.
  • Multimodal polymers can be produced according to several processes which are described, e.g. in WO 92/12182, EP 0 887 379, and WO 98/58976. The contents of these documents are included herein by reference.
  • the conditions for the first reactor (R-l), i.e. the slurry reactor (SR), like a loop reactor (LR), of step (A) may be as follows:
  • the temperature is within the range of 40 °C to 110 °C, preferably between 60 °C and 100 °C, more preferably in the range of 65 to 90 °C,
  • the pressure is within the range of 20 bar to 80 bar, preferably between 40 bar to 70 bar,
  • hydrogen can be added for controlling the molar mass in a manner known per se.
  • step (D) the reaction mixture from step (A) is transferred to the second reactor (R-2), i.e. gas phase reactor (GPR-l), i.e. to step (D), whereby the conditions in step (D) are preferably as follows:
  • the temperature is within the range of 50 °C to 130 °C, preferably between 60 °C and 100 °C,
  • the pressure is within the range of 5 bar to 50 bar, preferably between 15 bar to 40 bar,
  • hydrogen can be added for controlling the molar mass in a manner known per se.
  • the residence time can vary in both reactor zones.
  • the residence time in the slurry reactor (SR), e.g. loop (LR) is in the range 0.2 to 4.0 hours, e.g. 0.3 to 1.5 hours and the residence time in the gas phase reactor (GPR) will generally be 0.2 to 6.0 hours, like 0.5 to 4.0 hours.
  • the polymerization may be effected in a known manner under supercritical conditions in the first reactor (R-l), i.e. in the slurry reactor (SR), like in the loop reactor (LR).
  • the conditions in the other gas phase reactors (GPR), if present, are similar to the second reactor (R-2).
  • the present process may also encompass a pre-polymerization prior to the polymerization in the first reactor (R-l).
  • the pre-polymerization can be conducted in the first reactor (R-l), however it is preferred that the pre-polymerization takes place in a separate reactor, so called pre-polymerization reactor.
  • the copolymer (C) according to the present invention is prepared in the presence of a solid catalyst system (SCS) comprising a transition metal compound.
  • SCS solid catalyst system
  • the transition metal compound has the formula (I)
  • each Cp independently is an unsubstituted or substituted and/or fused
  • cyclopentadienyl ligand e.g. substituted or unsubstituted cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand; the optional one or more substituent(s) being independently selected preferably from halogen, hydrocarbyl ( e.g.
  • each R" is independently a hydrogen or hydrocarbyl, e.g.
  • each of the bridge atoms may bear independently substituents, such as Cl-C20-alkyl, tri(Cl-C20- alkyl)silyl, tri(Cl-C20-alkyl)siloxy or C6-C20-aryl substituents); or a bridge of 1-3 , e.g. one or two, hetero atoms, such as silicon, germanium and/or oxygen atom(s), e.g.
  • each R 10 is independently Cl-C20-alkyl, C3-12 cycloalkyl, C6- C20-aryl or tri(Cl-C20-alkyl)silyl- residue, such as trimethylsilyl;
  • M is a transition metal of Group 4, e.g. Zr or Hf, especially Zr; each X is independently a sigma- ligand, such as H, halogen, Cl-C20-alkyl, C1-C20- alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-Cl2-cycloalkyl, C6-C20-aryl, C6- C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR”, -PR” 3 , -SiR” 3 , -OSiR” , - NR" 2 or -CH 2 -Y, wherein Y is C6-C20-aryl, C6-C20-heteroaryl, Cl-C20-alkoxy, C6-C20-aryloxy, NR” 2 ,-SR”, -PR” 3 , -SiR” 3
  • each Y is independently selected from C6-C20-aryl, NR" 2 , -SiR" 3 or -OSiR" 3 .
  • X as -CH 2 -Y is benzyl.
  • Each X other than -CH 2 -Y is independently halogen, Cl-C20-alkyl, Cl-C20-alkoxy, C6- C20-aryl, C7- C20-arylalkenyl or -NR" 2 as defined above, e.g. -N(Cl-C20-alkyl) 2 .
  • each X is halogen, methyl, phenyl or -CH 2 -Y
  • each Y is
  • Cp is preferably cyclopentadienyl, indenyl or fluorenyl, optionally substituted as defined above. Ideally Cp is cyclopentadienyl or indenyl.
  • each Cp independently bears 1, 2, 3 or 4 substituents as defined above, preferably 1, 2 or 3, such as 1 or 2 substituents, which are preferably selected from Cl-C20-alkyl, C6- C20-aryl, C7- C20-aryialkyl (wherein the aryl ring alone or as a part of a further moiety may further be substituted as indicated above), -OSiR"3, wherein R" is as indicated above, preferably Cl-C20-alkyl.
  • R" is other than hydrogen.
  • a specific subgroup includes the well known metallocenes of Zr and Hf with two eta5-ligands which are bridged with cyclopentadienyl ligands optionally- substituted with e.g. siloxy, or alkyl (e.g. Cl-6-alkyl) as defined above, or with two bridged indenyl ligands optionally substituted in any of the ring moieties with e.g. siloxy or alkyl as defined above, e.g. at 2-, 3-, 4- and/or 7-positions.
  • Preferred bridges are ethylene or -SiMe 2 .
  • the preparation of the metallocenes can be carried out according or analogously to the methods known from the literature and is within skills of a person skilled in the field.
  • examples of compounds wherein the metal atom bears a -NR" 2 ligand see i.a. in WO-A-985683 1 and WO-A- 0034341.
  • examples of compounds wherein the metal atom bears a -NR" 2 ligand see i.a. in WO-A-985683 1 and WO-A- 0034341.
  • EP-A-260 130 examples of compounds wherein the metal atom bears a -NR" 2 ligand.
  • the complexes of the invention are preferably asymmetrical. That means simply that the two indenyl ligands forming the metallocene are different, that is, each indenyl ligand bears a set of substituents that are either chemically different, or located in different positions with respect to the other indenyl ligand. More precisely, they are chiral, racemic bridged bisindenyl metallocenes. Whilst the complexes of the invention may be in their syn configuration ideally, they are in their anti
  • racemic-anti means that the two indenyl ligands are oriented in opposite directions with respect to the
  • racemic- syn means that the two indenyl ligands are oriented in the same direction with respect to the
  • Preferred complexes of the invention are of formula (IG) or (II)
  • each X is a sigma ligand, preferably each X is independently a hydrogen atom, a halogen atom, a C1-C6 alkoxy group, C1-C6 alkyl, phenyl or a benzyl group;
  • L is a divalent bridge selected from -R' 2 C-, -R' 2 C-CR' 2 , -R' 2 Si-, -RiSi-SiRV, -R' 2 Ge- , wherein each R' is independently a hydrogen atom, C1-C20 alkyl, C3-C10 cycloalkyl, tri(Cl-C20-alkyl)silyl, C6-C20-aryl, C7-C20 arylalkyl each R 2 or R 2 ' is a C1-C10 alkyl group;
  • R 5 ' is a C1-C10 alkyl group or a Z'R 3 ' group
  • R 6 is hydrogen or a C1-C10 alkyl group
  • R 6 ' is a C1-C10 alkyl group or a C6-C10 aryl group
  • R 7 is hydrogen, a C1-C6 alkyl group or a ZR 3 group;
  • R 7 ' is hydrogen or a C1-C10 alkyl group;
  • Z and Z' are independently O or S;
  • R 3 ' is a C1-C10 alkyl group, or a C6-C10 aryl group optionally substituted by one or more halogen groups;
  • R 3 is a C1-C10 alkyl group; each n is independently 0 to 4, e.g. 0, 1 or 2; and each R 1 is independently a C1-C20 hydrocarbyl group, e.g. a C1-C10 alkyl group.
  • Particularly preferred compounds of the invention include:
  • the most preferred metallocene complex (procatalyst) is rac-anti- dimethylsilandiyl(2-methyl-4-phenyl-5-methoxy-6-tert- butyl- indenyl)(2-methyl-4- (4-tert-butylphenyl)indenyl)zirconium dichloride.
  • the metallocene catalyst comprises additionally a cocatalyst as defined in WO 2015/011135 Al.
  • the preferred cocatalyst is methylaluminoxane (MAO) and/or a borate, preferably trityl tetrakis(pentafluorophenyl)borate.
  • the metallocene catalyst is unsupported, i.e. no external carrier is used.
  • the preparation of such a metallocene complex again reference is made to WO 2015/011135 Al.
  • the present invention is further directed to an article comprising at least 90.0 wt.-% of the polypropylene composition (P) as defined above.
  • the article comprises at least 95.0 wt.-% of the polypropylene
  • composition (P) more preferably at least 97.0 wt.-%, still more preferably at least 98.0 wt.-%, like at least 99.9 wt.-%. It is especially preferred that the article consists of the polypropylene composition (P).
  • the article is a film, more preferably a blown film.
  • the film according to this invention can be obtained in a conventional manner for instance by cast film technology or extrusion blown film technology. Said film will typically have a thickness in the range of 15 to 300 pm, preferably in the range of 20 to 250 pm, like in the range of 30 to 200 pm.
  • the film has a haze before sterilization determined according to ASTM D 1003-00 measured on a 50 pm blown film below 10.0 %, more preferably below 8.0 %, still more preferably below 7.5 %, like below 6.5 %, and a haze after sterilization determined according to ASTM D 1003-00 measured on a 50 pm blown film below 12.0 %, more preferably below 10.0 %, still more preferably below 9.0 %, like below 8.5 %.
  • the film has a tensile modulus determined according to ISO 527-3 on 50 pm films in machine direction (MD) and/or transverse direction (TD) of at least 400 MPa, more preferably in the range of 400 to 1000 MPa, still more preferably in the range of 500 to 900 MPa.
  • MD machine direction
  • TD transverse direction
  • the film has a dart-drop strength (DDI) determined according to ASTM D1709, method A on a 50 pm blown film of at least 100 g, more preferably in the range of 100 to 600 g, still more preferably in the range of 110 to 500 g, like in the range of 120 to 400 g.
  • DMI dart-drop strength
  • the film has a high Elmendorf tear strength as determined in accordance with ISO 6383/2.
  • the tear strength is preferably at least 5.0 N/mm, more preferably in the range of 5.0 to 20.0 N/mm, like in the range of 6.0 to 15.0 N/mm.
  • the tear strength is preferably at least 15.0 N/mm, more preferably in the range of 15.0 to 500 N/mm, like in the range of 20.0 to 300 N/mm.
  • the film is characterized by a hot-tack force of more than 2.0 N, more preferably of more than 2.5 N.
  • the present invention is also directed to the use of the article, preferably the film according to the present invention comprising the polypropylene composition (P) as a sealing layer in a multi-layer film.
  • the article preferably the film according to the present invention comprising the polypropylene composition (P) as a sealing layer in a multi-layer film.
  • Such multi-layer films are usually prepared by means of multi-layer blown film co extrusion.
  • the co-extrusion process may be carried out using conventional blown film techniques.
  • the polypropylene composition (P) obtained from the above defined polymerization process is fed, typically in the form of pellets, optionally containing additives, to an extruding device forming part of a multi-layer blown film unit.
  • the polymer melt is passed preferably through a distributor to an annular die of said blown film unit, forming one of the outermost layers of a multi-layer film produced.
  • Further layers of said multi-layer film may include other types of polypropylene or polyethylene homo- and copolymers.
  • copolymer (C) has an overall l-hexene content in the range of 3.8 to 10.0 wt.-%
  • copolymer (C) has a xylene soluble content (XCS) in the range of 8.0 to 30.0 wt.-%.
  • MFR(A) is the melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/lO min] of the first random propylene copolymer (A)
  • MFR(C) is the melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in [g/lO min] of the copolymer (C).
  • the copolymer (C) has an amount of 2, 1 erythro regio- defects of at least 0.4 mol.-%.
  • the first random propylene copolymer (A) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.3 to 12.0 g/lO min, and/or
  • the second random propylene copolymer (B) has a melt flow rate MFR 2 (230 °C, 2.16 kg) determined according to ISO 1133 in the range of 0.2 to 9.0 g/lO min.
  • the copolymer (C) comprises 35.0 to 65.0 wt.-% of the first random propylene copolymer (A) and 35.0 to 65.0 wt.-% of the second random propylene copolymer (B), based on the overall weight of the copolymer (C).
  • C6(A) is the 1 -hexene content of the first random propylene copolymer (A) based on the total weight of the first random propylene copolymer (A) [in wt.-%];
  • C6(C) is the 1 -hexene content of the copolymer (C) based on the total weight of the copolymer (C) [in wt.-%];
  • [A]/[C] is the weight ratio between the first random propylene copolymer (A) and the copolymer (C) [in g/g] .
  • copolymer (C) has an amount of hexane hot solubles (HHS) measured according to FDA 177.1520 equal or below 1.5 wt.-%.
  • HHS hexane hot solubles
  • LR loop reactor
  • A first random propylene copolymer
  • each Cp independently is an unsubstituted or substituted and/or fused cyclopentadienyl ligand, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand; the optional one or more substituent(s) being independently selected preferably from halogen, hydrocarbyl ( e.g.
  • each R" is independently a hydrogen or hydrocarbyl selected from C 1-C20- alkyl, C2- C20-alkenyl, C2-C20-alkynyl, C3 -Cl2-cycloalkyl, C6-C20-aryl or C7-C20-arylalkyl), C3-C12- cycloalkyl which contains 1, 2, 3 or 4 heteroatom(s) in the ring moiety, C6-C20- heteroaryl, Cl-C20-haloalkyl, - SiR" 3 , -OSiR" 3 , -SR”, -PR” 2 , OR” or -NR” 2 , each R" is independently a hydrogen or hydrocarbyl selected from C 1-C20- alkyl, C2- C20-alkenyl, C2-C20-alkynyl, C3 -Cl2-cycloalkyl or C6-C20- aryl; or in case of - NR" 2 , the two substituents
  • R is a bridge of 1-2 C-atoms and 0-2 heteroatoms, wherein the heteroatom(s) can be Si, Ge and/or O atom(s), wherein each of the bridge atoms may bear independently substituents selected from Cl-C20-alkyl, tri(Cl-C20- alkyl)silyl, tri(Cl-C20-alkyl)siloxy or C6-C20-aryl substituents); or a bridge of one or two heteroatoms selected from silicon, germanium and/or oxygen atom(s),
  • M is a transition metal of Group 4 selected from Zr or Hf, especially Zr; each X is independently a sigma- ligand selected from H, halogen, C1-C20- alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-Cl2-cycloalkyl, C6-C20-aryl, C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR”,
  • M is Zr; each X is a sigma ligand, preferably each X is independently a hydrogen atom, a halogen atom, a C1-C6 alkoxy group, C1-C6 alkyl, phenyl or a benzyl group;
  • L is a divalent bridge selected from -R' 2 C-, -R' 2 C-CR' 2 , -R' 2 Si-, -R' 2 Si-SiR'2- , -R' 2 Ge-, wherein each R' is independently a hydrogen atom, C1-C20 alkyl, C3-C10 cycloalkyl, tri(Cl-C20-alkyl)silyl, C6-C20-aryl or C7-C20 arylalkyl; each R 2 or R 2 ' is a C1-C10 alkyl group;
  • R 5 ' is a C1-C10 alkyl group or a Z'R 3 ' group
  • R 6 is hydrogen or a C1-C10 alkyl group
  • R 6 ' is a C1-C10 alkyl group or a C6-C10 aryl group
  • R 7 is hydrogen, a C1-C6 alkyl group or a ZR 3 group
  • R 7 ' is hydrogen or a C1-C10 alkyl group; Z and Z' are independently O or S;
  • R 3 ' is a C1-C10 alkyl group, or a C6-C10 aryl group optionally substituted by one or more halogen groups; R 3 is a C1-C10 alkyl group; each n is independently 0 to 4; and each R 1 is independently a C1-C20 hydrocarbyl group.
  • the total l-hexene content was calculated based on the sum of isolated and consecutively incorporated l-hexene:
  • the total amount of secondary (2, l-erythro) inserted propene was quantified based on the aa2le9 methylene site at 42.4 ppm:
  • P21 Iaa2le9
  • the total amount of primary (1,2) inserted propene was quantified based on the main Saa methylene sites at 46.7 ppm and compensating for the relative amount of 2,1- erythro, aB4 and aaB4B4 methylene unit of propene not accounted for (note H and HH count number of hexene monomers per sequence not the number of sequences):
  • the total amount of propene was quantified as the sum of primary (1,2) and secondary (2, 1 -erythro) inserted propene:
  • H [wt%] 100 * ( fH * 84.16) / ( (fH * 84.16) + ((1 - fH) * 42.08) )
  • w(A) is the weight fraction of the first random propylene copolymer (A)
  • w(B) is the weight fraction of the second random propylene copolymer (B)
  • C(A) is the comonomer content [in wt.-%] measured by 13 C NMR spectroscopy of the first random propylene copolymer (A), i.e. of the product of the first reactor (Rl)
  • C(CPP) is the comonomer content [in wt.-%] measured by 13 C NMR
  • C(B) is the calculated comonomer content [in wt.-%] of the second random propylene copolymer (B).
  • melt flow rates are measured with a load of 2.16 kg (MFR 2 ) at 230 °C.
  • the melt flow rate is that quantity of polymer in grams which the test apparatus standardised to ISO 1133 extrudes within 10 minutes at a temperature of 230 °C under a load of 2.16 kg.
  • w(A) is the weight fraction of the first random propylene copolymer (A)
  • w(B) is the weight fraction of the second random propylene copolymer (B)
  • MFR(A) is the melt flow rate MFR 2 (230 °C, 2.16 kg) [in g/lOmin] measured according ISO 1133 of the first random propylene copolymer (A)
  • MFR(C) is the melt flow rate MFR 2 (230 °C, 2.16 kg) [in g/lOmin] measured according ISO 1133 of the Polypropylene composition (P)
  • MFR(B) is the calculated melt flow rate MFR 2 (230 °C, 2.16 kg) [in g/lOmin] of the second random propylene copolymer (B).
  • xylene cold solubles (XCS, wt.-%): Content of xylene cold solubles (XCS) is determined at 25 °C according ISO 16152; first edition; 2005-07-01. Hexane hot solubles (HHS, wt.-%)
  • the precipitate is collected in an aluminium recipient and the residual hexane is evaporated on a steam bath under N 2 flow.
  • the amount of hexane solubles is determined by the formula
  • Haze was determined according to ASTM D1003-00 on blown films of 50 pm thickness.
  • the method determines the sealing temperature range (sealing range) of
  • the sealing temperature range is the temperature range, in which the films can be sealed according to conditions given below.
  • the lower limit is the sealing temperature at which a sealing strength of > 3 N is achieved.
  • the upper limit is reached, when the films stick to the sealing device.
  • the sealing range is determined on a J&B Universal Sealing Machine Type 3000 with a film of 50 pm thickness with the following further parameters:
  • the temperature is determined at which the seal strength reaches 3 N.
  • the hot tack force is determined on a J&B Hot Tack Tester with a blown film of 50 pm thickness with the following further parameters:
  • the maximum hot tack force i.e the maximum of a force/temperature diagram is determined and reported.
  • Tensile modulus in machine and transverse direction were determined according to ISO 527-3 on 50 pm blown films at a cross head speed of 1 mm/min.
  • Dart-drop strength is measured using ASTM D1709, method A (Alternative Testing Technique) from the film samples.
  • a dart with a 38 mm diameter hemispherical head is dropped from a height of 0.66 m onto a film clamped over a hole.
  • Successive sets of twenty specimens are tested.
  • One weight is used for each set and the weight is increased (or decreased) from set to set by uniform increments.
  • the weight resulting in failure of 50 % of the specimens is calculated and reported.
  • Tear resistance determined as Elmendorf tear (N): Applies both for the measurement in machine direction (MD) and transverse direction (TD). The tear strength is measured using the ISO 6383/2 method.
  • the force required to propagate tearing across a film sample is measured using a pendulum device.
  • the pendulum swings under gravity through an arc, tearing the specimen from pre-cut slit.
  • the film sample is fixed on one side by the pendulum and on the other side by a stationary clamp.
  • the tear resistance is the force required to tear the specimen.
  • the relative tear resistance (N/mm) is then calculated by dividing the tear resistance by the thickness of the film.
  • the catalyst used in the inventive examples is prepared as described in detail in WO 2015/011135 Al (metallocene complex MC1 with methylaluminoxane (MAO) and borate resulting in Catalyst 3 described in WO 2015/011135 Al) with the proviso that the surfactant is 2,3,3,3-tetrafluoro-2-(l,l,2,2,3,3,3-heptafluoropropoxy)-l- propanol.
  • the metallocene complex (MC1 in WO 2015/011135 Al) is prepared as described in WO 2013/007650 Al (metallocene E2 in WO 2013/007650 Al).
  • the Polypropylene compositions (P) were prepared in a sequential process comprising a loop reactor and a gas phase reactor.
  • the reaction conditions are summarized in Table 1.
  • Table 2 contains the properties of the comparative and inventive examples.
  • CE1 is a C2/C3/C4-terpolymer prepared in the presence of a Ziegler-Natta having a melt flow rate (230 °C, 2.16 kg) of 1.6 g/lO min, a melting temperature Tm of 135 °C, a xylene soluble content of 10.7 wt.-%, a l-butene content of 7.1 wt.-% and an ethylene content of 1.6 wt.-%. It is identical with comparative example CE1 of EP 17186987.
  • CE2 is the commercial nucleated C2/C3 copolymer RB709CF of Borealis having a melt flow rate of 1.5 g/lO min, a melting temperature Tm of l4l°C, a xylene soluble content of 15.0 wt.-% and an ethylene content of 5.5 wt.-%.
EP19768752.8A 2018-09-26 2019-09-09 Propylencopolymer mit hervorragenden optischen eigenschaften Pending EP3856799A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18196801 2018-09-26
PCT/EP2019/073990 WO2020064314A1 (en) 2018-09-26 2019-09-09 Propylene copolymer with excellent optical properties

Publications (1)

Publication Number Publication Date
EP3856799A1 true EP3856799A1 (de) 2021-08-04

Family

ID=63685668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19768752.8A Pending EP3856799A1 (de) 2018-09-26 2019-09-09 Propylencopolymer mit hervorragenden optischen eigenschaften

Country Status (4)

Country Link
US (1) US11827777B2 (de)
EP (1) EP3856799A1 (de)
CN (1) CN112638959B (de)
WO (1) WO2020064314A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2837424T3 (es) 2017-12-05 2021-06-30 Borealis Ag Composición de polipropileno reforzada con fibra
ES2874060T3 (es) 2017-12-05 2021-11-04 Borealis Ag Artículo que comprende una composición de polipropileno reforzada con fibra
KR102553655B1 (ko) 2018-04-16 2023-07-07 보레알리스 아게 다층 요소
CN110498973B (zh) 2018-05-16 2023-09-01 北欧化工公司 发泡聚丙烯组合物
WO2020064313A1 (en) * 2018-09-26 2020-04-02 Borealis Ag Propylene random copolymer for use in film applications
CN112638959B (zh) 2018-09-26 2023-05-02 博里利斯股份公司 具有优异光学性能的丙烯共聚物
US20220135779A1 (en) * 2018-09-26 2022-05-05 Borealis Ag Propylene copolymer composition with excellent optical and mechanical properties
SG11202106418WA (en) 2018-12-20 2021-07-29 Borealis Ag Biaxially oriented polypropylene film with improved breakdown strength
EP3994187A1 (de) 2019-07-04 2022-05-11 Borealis AG Langkettige verzweigte propylenpolymerzusammensetzung
ES2910955T3 (es) 2019-07-08 2022-05-17 Borealis Ag Proceso de reducción del contenido de aldehído, y poliolefina reciclada con bajo contenido de aldehído
WO2023208875A1 (en) * 2022-04-26 2023-11-02 Borealis Ag A process for recycling polypropylene films

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA844157B (en) 1983-06-06 1986-01-29 Exxon Research Engineering Co Process and catalyst for polyolefin density and molecular weight control
US5077255A (en) 1986-09-09 1991-12-31 Exxon Chemical Patents Inc. New supported polymerization catalyst
US5036034A (en) 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
US5416228A (en) 1991-10-07 1995-05-16 Fina Technology, Inc. Process and catalyst for producing isotactic polyolefins
FI104826B (fi) 1996-01-30 2000-04-14 Borealis As Heteroatomilla substituoituja metalloseeniyhdisteitä olefiinipolymerointikatalyytti-systeemejä varten ja menetelmä niiden valmistamiseksi
FI971565A (fi) 1997-04-14 1998-10-15 Borealis As Olefiinien polymerointiin tarkoitettujen katalysaattorisysteemien substituoituja metalloseeniyhdisteitä, niiden välituotteet ja valmistusmenetelmä
GB9708487D0 (en) 1997-04-25 1997-06-18 Bp Chem Int Ltd Novel catalysts for olefin polymerisation
WO1998056831A1 (de) 1997-06-10 1998-12-17 Peroxid-Chemie Gmbh & Co. Kg. Neue katalysatorsysteme für (co-)polymerisationsreaktionen, metallocenamidhalogenide, ihre herstellung und verwendung
FI111848B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä ja laitteisto propeenin homo- ja kopolymeerien valmistamiseksi
JP2002504954A (ja) 1997-06-24 2002-02-12 ボレアリス エイ/エス プロピレンポリマーの製造方法
AU754941B2 (en) 1997-09-05 2002-11-28 Bp Chemicals Limited Polymerisation catalysts
GB9721559D0 (en) 1997-10-11 1997-12-10 Bp Chem Int Ltd Novel polymerisation catalysts
GB9826874D0 (en) 1998-12-07 1999-01-27 Borealis As Process
TWI238169B (en) 2000-12-22 2005-08-21 Basell Technology Co Bv Bioriented polypropylene films
ES2619729T3 (es) 2008-11-07 2017-06-26 Borealis Ag Composición de catalizador sólida
ATE552303T1 (de) * 2010-04-21 2012-04-15 Borealis Ag Propylen-/1-hexen copolymerzusammensetzung mit breitem verarbeitungsfenster für abdichtungen
BR112012026909B1 (pt) 2010-04-21 2020-03-10 Borealis Ag Composição de copolímero propileno/1-hexeno com baixa temperatura de selamento, seu processo de preparação, película, e substrato revestido por extrusão
EP2540497B1 (de) * 2011-06-27 2014-08-06 Borealis AG Mehrschichtige Gießfolie
EP2540499B1 (de) * 2011-06-27 2014-02-26 Borealis AG Mehrschichtige, biaxial ausgerichtete Polymerfolie
EP2540496B1 (de) * 2011-06-27 2014-04-23 Borealis AG Mehrschichtige Blasfolie
CN103649209B (zh) 2011-07-08 2016-05-04 博瑞立斯有限公司 多相共聚物
ES2644772T3 (es) 2013-06-19 2017-11-30 Borealis Ag Polipropileno con distribución extremadamente amplia de peso molecular
ES2612627T3 (es) 2013-07-24 2017-05-17 Borealis Ag Proceso
ES2651456T3 (es) 2013-08-14 2018-01-26 Borealis Ag Composición de propileno con mejor resistencia al impacto a baja temperatura
BR112016002682A8 (pt) 2013-08-21 2020-01-28 Borealis Ag composição de poliolefina de alto fluxo com alta rigidez e tenacidade
WO2015024887A1 (en) 2013-08-21 2015-02-26 Borealis Ag High flow polyolefin composition with high stiffness and toughness
EP2853563B1 (de) 2013-09-27 2016-06-15 Borealis AG Filme zur BOPP-Verarbeitung aus Polymeren mit hohem XS und hoher Schmelztemperatur
EP2860031B1 (de) 2013-10-11 2016-03-30 Borealis AG In Maschinenrichtung ausgerichtete Folien für Etiketten
EP2865713B1 (de) 2013-10-24 2016-04-20 Borealis AG Blasgeformter Artikel auf Basis eines bimodalen Random-Copolymers
WO2015059229A1 (en) 2013-10-24 2015-04-30 Borealis Ag Low melting pp homopolymer with high content of regioerrors and high molecular weight
CN105722869B (zh) 2013-10-29 2017-09-12 北欧化工公司 具有高聚合活性的固体单点催化剂
ES2644829T3 (es) 2013-11-22 2017-11-30 Borealis Ag Homopolímero de propileno de baja emisión con alto flujo de masa fundida
BR112016011829B1 (pt) 2013-12-04 2022-01-18 Borealis Ag Composição de polipropileno, fibra e trama soprada em fusão, artigo e uso da composição de polipropileno
PE20160935A1 (es) 2013-12-18 2016-09-18 Borealis Ag Pelicula bopp de baja contraccion
KR101873134B1 (ko) 2013-12-18 2018-06-29 보레알리스 아게 향상된 강성/인성 균형을 가진 bopp 필름
EP2886600B1 (de) 2013-12-19 2018-05-30 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Multimodales Polypropylen gegenüber dem Co-Monomergehalt
EP3090021B1 (de) 2013-12-31 2018-06-06 Borealis AG Verfahren zur herstellung von propylenterpolymer
EP3094660B1 (de) 2014-01-17 2018-12-19 Borealis AG Verfahren zur herstellung von propylen/1-buten-copolymeren
EP2902438B1 (de) 2014-01-29 2016-03-30 Borealis AG Polyolefinzusammensetzung mit hohem Durchfluss mit hoher Steifigkeit und Durchstechfestigkeit
JP6474417B2 (ja) 2014-02-06 2019-02-27 ボレアリス エージー 軟質及び透明衝撃コポリマー
CN112225997B (zh) 2014-02-06 2023-09-22 北欧化工公司 高冲击强度的柔性共聚物
EP2907841A1 (de) 2014-02-14 2015-08-19 Borealis AG Polypropylenverbundstoff
EP2947118B1 (de) 2014-05-20 2017-11-29 Borealis AG Polypropylenzusammensetzung für Anwendungen im Fahrzeuginnenraum
EP3006472A1 (de) 2014-10-07 2016-04-13 Borealis AG Verfahren zur Herstellung von alpha-nukleiertem Polypropylen
KR101818899B1 (ko) 2014-11-24 2018-02-21 보레알리스 아게 폴리머 조성물 및 압출 코팅된 물품
KR101856916B1 (ko) 2014-12-19 2018-05-10 아부 다비 폴리머스 씨오. 엘티디 (보르쥬) 엘엘씨. 배터리 케이스를 위한 우세한 응력 백화 수행성
PL3064548T3 (pl) * 2015-03-02 2017-09-29 Borealis Ag Kompozycja polipropylenowa łącząca niską temperaturę inicjowania zgrzewania, niskie zmętnienie, niską zawartość substancji rozpuszczalnych w heksanie oraz polepszoną odporność na rozdarcie i temperaturę topnienia
PL3088459T3 (pl) 2015-04-27 2021-08-02 Borealis Ag Kompozyt polipropylenowy
US10870718B2 (en) 2015-07-16 2020-12-22 Borealis Ag Catalyst component
PT3447088T (pt) 2017-08-21 2020-02-03 Borealis Ag Composição de polipropileno
DK3473674T3 (da) 2017-10-19 2022-06-20 Abu Dhabi Polymers Co Ltd Borouge Llc Polypropylensammensætning
EP3489296B1 (de) 2017-11-28 2021-09-01 Borealis AG Polymerzusammensetzung mit verbesserter lackhaftung
ES2886432T3 (es) 2017-11-28 2021-12-20 Borealis Ag Composición de polímero con adherencia de la pintura mejorada
ES2837424T3 (es) 2017-12-05 2021-06-30 Borealis Ag Composición de polipropileno reforzada con fibra
ES2874060T3 (es) 2017-12-05 2021-11-04 Borealis Ag Artículo que comprende una composición de polipropileno reforzada con fibra
EP3502177B1 (de) 2017-12-20 2020-02-12 Borealis AG Polypropylenzusammensetzung
BR112020017945A2 (pt) 2018-04-10 2020-12-22 Borealis Ag Composição de polipropileno
KR102553655B1 (ko) 2018-04-16 2023-07-07 보레알리스 아게 다층 요소
EP3567079B1 (de) * 2018-05-09 2021-12-01 Borealis AG Heterophasisches polypropylen mit propylen-hexen-random-copolymer als matrix
CN110498973B (zh) 2018-05-16 2023-09-01 北欧化工公司 发泡聚丙烯组合物
WO2019219902A1 (en) 2018-05-18 2019-11-21 Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. Improving rheological properties of thermoplastic polyolefin compositions
EP3584089A1 (de) 2018-06-19 2019-12-25 Borealis AG Polyolefinzusammensetzung mit verbessertem kontrast von lasermarkierungen
US20210253836A1 (en) 2018-07-13 2021-08-19 Borealis Ag Heterophasic polypropylene composition with improved balance of properties
CN112424235B (zh) 2018-08-02 2023-04-21 北欧化工公司 在多阶段聚合工艺中聚合乙烯的方法
CN112638959B (zh) 2018-09-26 2023-05-02 博里利斯股份公司 具有优异光学性能的丙烯共聚物
US20220135779A1 (en) * 2018-09-26 2022-05-05 Borealis Ag Propylene copolymer composition with excellent optical and mechanical properties
WO2020064313A1 (en) 2018-09-26 2020-04-02 Borealis Ag Propylene random copolymer for use in film applications
CN112771084B (zh) 2018-10-02 2022-01-14 博里利斯股份公司 用于硅烷接枝的塑性体的低速交联催化剂
SG11202106418WA (en) 2018-12-20 2021-07-29 Borealis Ag Biaxially oriented polypropylene film with improved breakdown strength
CA3145368A1 (en) 2019-07-01 2021-01-07 Borealis Ag Pipe made of peroxide-crosslinked polyethylene of high uv stability
EP3994187A1 (de) 2019-07-04 2022-05-11 Borealis AG Langkettige verzweigte propylenpolymerzusammensetzung
ES2910955T3 (es) 2019-07-08 2022-05-17 Borealis Ag Proceso de reducción del contenido de aldehído, y poliolefina reciclada con bajo contenido de aldehído
FI4017916T3 (fi) 2019-08-19 2023-08-08 Borealis Ag Polypropeeni-polyeteeniseoksia parannetuin ominaisuuksin

Also Published As

Publication number Publication date
WO2020064314A1 (en) 2020-04-02
US20210347971A1 (en) 2021-11-11
CN112638959B (zh) 2023-05-02
US11827777B2 (en) 2023-11-28
CN112638959A (zh) 2021-04-09
BR112021003474A2 (pt) 2021-05-18

Similar Documents

Publication Publication Date Title
US11827777B2 (en) Propylene copolymer with excellent optical properties
KR101514911B1 (ko) 밀봉 프로필렌 공중합체
US8889792B2 (en) Propylene/1-hexene copolymer composition with low sealing temperature
US8779062B2 (en) Propylene/1-hexene copolymer composition with broad sealing window
EP3856798A1 (de) Statistisches propylencopolymer zur verwendung in folienanwendungen
US9273201B2 (en) Sealing material of polypropylene with high melting temperature
EP3856837A1 (de) Propylencopolymerzusammensetzung mit hervorragenden optischen und mechanischen eigenschaften
EP2661465A1 (de) Abdichtungsmaterial aus polypropylen mit verbesserter optischer erscheinung
EP2820081A1 (de) Polypropylenzusammensetzung mit verbesserten abdichtungs- und wärmeeigenschaften
WO2022029156A1 (en) Polypropylene sheet
EP3883989B1 (de) Polypropylenzusammensetzung mit verbesserten optischen eigenschaften und aufhellungsbeständigkeit
RU2783705C2 (ru) Пропиленовый сополимер с превосходными оптическими свойствами
RU2775266C1 (ru) Композиция пропиленового сополимера с превосходными оптическими и механическими свойствами
RU2776211C1 (ru) Пропиленовый статистический сополимер для использования в пленках
RU2776211C9 (ru) Пропиленовый статистический сополимер для использования в пленках
BR112021003474B1 (pt) Copolímero de propileno com excelentes propriedades ópticas
KR101473075B1 (ko) 낮은 밀봉 온도를 갖는 프로필렌/1―헥센 공중합체 조성물

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOREALIS AG