EP3836752B1 - Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem - Google Patents

Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem Download PDF

Info

Publication number
EP3836752B1
EP3836752B1 EP19215917.6A EP19215917A EP3836752B1 EP 3836752 B1 EP3836752 B1 EP 3836752B1 EP 19215917 A EP19215917 A EP 19215917A EP 3836752 B1 EP3836752 B1 EP 3836752B1
Authority
EP
European Patent Office
Prior art keywords
cookware
cooktop
heating
placement
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19215917.6A
Other languages
English (en)
French (fr)
Other versions
EP3836752C0 (de
EP3836752A1 (de
Inventor
Peter Favrholdt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ztove Aps
Original Assignee
Ztove Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ztove Aps filed Critical Ztove Aps
Priority to EP19215917.6A priority Critical patent/EP3836752B1/de
Publication of EP3836752A1 publication Critical patent/EP3836752A1/de
Application granted granted Critical
Publication of EP3836752C0 publication Critical patent/EP3836752C0/de
Publication of EP3836752B1 publication Critical patent/EP3836752B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/06Cook-top or cookware capable of communicating with each other

Definitions

  • the present invention relates to cooking by an induction cooktop with improved control, temperature regulation, and safety.
  • the invention is directed to cookware having an integrated thermal sensor and another sensor or sensors (e.g., accelerometer, microphone, wire, wire loop or any other) and a method for detection and identification of cookware placement on the cooktop surface, heating zones and within the automated cooking temperature control loop.
  • another sensor or sensors e.g., accelerometer, microphone, wire, wire loop or any other
  • Smart cooking employs systems, methods, and devices for cooking automation, digital regulation, and control by smartphones/apps, and cookware with different sensors, safety means, and other advanced features.
  • the temperature control is achieved by employing a temperature sensor inside the cookware, e. g., in the bottom plain of the pan or pot.
  • the cookware control electronics read an instant temperature value from the sensor and send it to the induction cooktop, or an external smart device and application (e.g., a smartphone) controlling operation of the cooktop. Therefore, the induction cooktop is controlled by an algorithm determining how much power to supply to the heating coil to achieve the desired temperature in the cookware.
  • Induction cooktops usually have several heating zones and control with manual setting of heating levels in the zones. Using more than one cookware item and several heating zones or even cooktops (e.g., in shared kitchens) simultaneously, the complexity may exceed convenience and reduce the efficiency and safety of smart cooking.
  • the right placement of the cookware onto the cooktop heating zone and in the temperature control loop can be verified by making heating power test pulses. It means, the cooktop controller provides one or more short power pulses to the induction heating coil and simultaneously, the temperature increase by the thermal sensor is measured in the cookware, as e.g. described in EP3001771A1 . This method can be used, but it is slow and less precise as the temperature changes rather slowly and with delay by several or tens of seconds.
  • Cida detecting device of cookware motion information during cooking which matches with cookware in use and comprises a sensor system and a processing module.
  • the sensor system acquires the motion information with the cookware and outputs the information to the processing module for processing to obtain motion change information of the cookware.
  • the adopted detecting device is used as a cookware motion information measuring medium, measures motion types of the cookware, and corresponding motion starting time and stop time of the motion types, then uses the processing module for processing measured information, and accordingly obtains cookware position change information.
  • FIG. 11-13 shows accelerometer and gyroscope signals during flipping, stirring, and whisking movements of the cooking utensil. These movement indications may be useful to identify what actions the user/cook is doing with the utensil; however, these movements and indications are not sufficient to detect cookware placement on the heating areas of the cooktop.
  • One more patent US9354207B2 discloses boil and boil-dry detection methods for cooking appliances using vibration sensors.
  • the method includes the steps: detecting vibrations that correspond to cookware situated on a burner assembly; generating a vibration signal based on the vibrations and performing signal processing on the vibration signal.
  • the method also includes the steps: collecting vibration data related to the vibration signal; detecting boiling and boil-dry conditions for a liquid contained within the cookware based at least in part on an evaluation of the vibration data.
  • the method may also include the steps: indicating the boiling and boil-dry conditions; controlling the burner assembly based at least in part on the boiling and boil-dry conditions.
  • a system comprises a heat source system and a processor.
  • the heat source system comprises a plurality of heat sources. Each heat source is operable to provide an amount of energy to be used for cooking a food item.
  • the processor is operable to determine that a cooking device system has been positioned on or in a first heat source of the plurality of heat sources, determine an identity of the cooking device system that has been placed on or in the first heat source, and correlate the determined identity of the cooking device system with an identity of the first heat source.
  • This application also mentions motion sensors in cookware and cookware movements employed to control the cooking process. Vibrations of the cookware are also mentioned, however, only in the sense of providing messages/indications by vibration or vibration by stirring. However, this type and origin of vibrations are not much useful to detect placement of cookware on the heating areas of the induction cooktop.
  • the reviewed prior art sources do not disclose that the alternating electric and magnetic field induced from heating coils and the respective cookware base vibrations occurring due to induction heating frequencies can be employed for identifying and helping to correct the placement of the cookware on the cooktop surface and heating zones.
  • This invention discloses using this type of vibrations and magnetic and/or electric field strength measurements for cookware placement on the cooktop and heating zones.
  • This invention discloses the use of the heating power, the induced alternating electric and/or magnetic field, and respective vibrations generated from the induction cooktop heating zones to the cookware placed onto the surface of the cooktop.
  • the heating power is supplied to induction coils by frequencies of several tens of kilohertz (for example, 25.8 kHz) which induces the alternating magnetic field. Additionally, this high-frequency magnetic field is often amplitude-modulated by the power line-frequency, e.g. 50Hz. Said alternating magnetic field moves the magnetic base of the cookware correspondingly, thus producing physical vibrations.
  • vibrations and magnetic field alternations can be detected by, e.g., a 1-, 2- or 3-axis accelerometer, or microphone and identified by their frequency and state transitions related to the heating power is on or off, and also to the heating power magnitude delivered to the induction coils.
  • Another option is measuring the induced electric and/or magnetic field by an integrated wire loop, an energy harvesting coil, a temperature sensor and/or associated wire or wires, or any other type of sensor.
  • cookware thermal sensor indications and changing heating power magnitude are applied to heating zones of the cooktop or several cooktops.
  • more than one accelerometer and/or more than one thermal sensor can be in a single cookware item (e. g. large pot), and analysis of temperature and/or vibration frequency characteristics can be employed to indicate precise and symmetric placement of the cookware item onto the heating zone of the cooktop.
  • the invention discloses a method for cookware placement onto the cooktop heating zones with the automated cooking control loop.
  • the method uses readings at least from the thermal sensor, 1-, 2- or 3-axis-accelerometer, microphone, wire, wire loop, or any other sensor, and heating power short pulses generating respective magnetic and/or electric field pulses, modulations and cookware vibrations for placement identification. These power pulses for magnetic vibrations are needed to be much shorter than using power pulses to imply temperature changes for placement.
  • a cookware type is disclosed having the implemented thermal sensor wire and the accelerometer or microphone or wire loop.
  • the method checks the placement state frequently thus allowing for the cooking system to know the actual state.
  • This method and cookware can be used in the cooking system either with an external device/app in the automated control loop or without it in the local mode/local control loop.
  • the indication of the cookware placement on the cooktop can be messaged to the operator/cook by simple sound signals or visual indications, e.g. light, or similar means, or displayed on a smart device (e.g., visually, graphically).
  • the present invention serves for a cooking system with multiple cookware items 2 having sensors and a cooktop 1 with several heating zones, or even a cluster of several cooktops, for example in a shared kitchen.
  • the system may comprise an external device/application 3 (e.g., smartphone, tablet, touchscreen device, etc.) in the automated temperature control loop of the cooking process.
  • an external device/application 3 e.g., smartphone, tablet, touchscreen device, etc.
  • the problem solved is to know the cookware 2 placement on the cooktop 1 heating zones. It is necessary to arrange the cooktop 1 heating coils 5 to produce a correct amount of magnetic induction and, therefore, to generate heat in the magnetic base layer of the cookware 2. Correspondingly, the cooktop 1 has to know how and what cookware items 2 are placed on the heating zones above their induction coils 5.
  • the "pot detect” feature allowing the cooktop to detect if any cookware item (pot, pan, a bowl) is placed onto a heating area/zone.
  • the cooktop controller shortly turns-on the heating power and checks if the supplied power is consumed by some cookware in the heating area. If the supplied power is not consumed, then the cookware placement state of that heating area is set to "pot not detected".
  • this feature allows the cooktop only to identify which heating areas are occupied with cookware items. It does not allow to the cookware items and external devices/app to know which cookware item 2 is placed on which heating area/coil 5 and if the placement is correct (right above the heating coil).
  • Cookware 2 with an integrated thermal sensor 11 reads the recent cooking temperature and then the automated temperature control loop 15 can identify which heating area provides temperature changing in which cookware item 2.
  • identification by the changing temperature is far not sufficient because temperature changes in the cookware are delayed by at least several or more seconds after the heating power pulse was applied.
  • Another problem is that when cookware has reached the maximum temperature that cannot be increased, the decrease of temperature after switching-off the heating power is prolonged and even less practical to identify the cookware placement.
  • a prerequisite to apply this method is the cooking system comprising a cooktop 1 having an integrated digital control module 8 with wireless connection means 10 and cookware items 2 having digital control modules 14 with wireless connection means. Also, an automated control loop 15 has to operate between the cooktop 1 and cookware items 2, for example, for automatic control of the cooking temperature.
  • the control loop 15 may also include an external device/app 3, e.g., a smartphone, a tablet or other external control devices.
  • cookware 2 items are supposed to have at least one additional sensor (e.g., 12, 13) allowing to detect and register the induction coil 5 magnetic signal faster than the thermal sensor 11 can do this by registering temperature changes only.
  • the highest frequency of the alternating magnetic field from the induction coil is the heating resonance frequency of several tens of kilohertz (e.g. in a cooktop the resonance frequency for induction heating can be as high as 26,5kHz or even more).
  • this heating power signal can be modulated by different power amplitude levels and frequencies of tens or hundreds of Hertz, which is a much higher frequency than the maximum rate of cooking temperature changes.
  • this heating power signal can be modulated by power line frequency, e.g., 50Hz.
  • heating power signals can be used. It can be advantageous to choose using some "artificial" patterns for modulation of the heating power signal, e.g. a pseudo-random sequence that can be detected by the pot/system but not confused with some extrinsic noise like stirring the pot contents by the user/cook, etc.
  • some "artificial" patterns for modulation of the heating power signal e.g. a pseudo-random sequence that can be detected by the pot/system but not confused with some extrinsic noise like stirring the pot contents by the user/cook, etc.
  • a different random modulation of the power signal can be used on each heating area, thus making the heating zones to have their heating power "signature". This also is helpful for the identification of cookware items placed onto different heating areas of the cooktop or even several cooktops (e.g., in a shared kitchen).
  • FIG. 3 A sample of a magnetic signal with "amplitude modulation" is presented in FIG. 3 . It was obtained from the alternating induction of a heating coil by measuring with a wire loop integrated into the cookware, such as a specially implemented wire loop or an energy harvesting coil, a thermal or other sensor and the associated wire or wires, or any additional embodiment of wire loop being applicable for measuring the magnetic strength signal. Alternatively or additionally, a single wire or wire loop or any other type sensor can be used to measure the strength of the induced electric field.
  • the resonant frequency of the induction circuit, coil and pot is, e.g., 25.8 kHz.
  • the power levels selected or driven by the temperature control loop 15 also affects the amplitude of these pulses.
  • the first narrow pulses 16 are the cookware detection pulses.
  • the subsequent wider pulses 17, 18, 19 with different magnitudes are heating pulses set for different power levels from 1800W to 530W.
  • the power last pulse 20 with discontinuities corresponds to the heating the cookware below a certain power level (e.g. ⁇ 350W).
  • This duty cycle period is in the order of seconds, e. g., the heating power is off for 0.25 seconds and on for 1.75 seconds.
  • cookware placement identification For the cookware placement identification, different additional sensors can be implemented in cookware items, such as:
  • the additional variables/parameters are defined and employed for identification and detection of cookware placement on the cooktop.
  • the list of the variables comprises at least these variables:
  • the wire-loop 13 integrated into the bottom plain of the cookware 2 measures the zero-level magnetic field, which is identified as the noise-floor of the signal ( FIG. 3 ).
  • heating power When heating power is turned on, in a digitally controlled induction cooktop, it can be done at high power in the beginning for a specified interval of time (to reach the right cooking temperature quickly).
  • the "Moving-placed” variable transits from “True” to “False” because of the heating vibration.
  • the "Placed-Heated/vibrated” variable is assigned with a high probability.
  • Heating-off vibration placed the digital control algorithm turns-off the heating power from the induction coil for a short time in some situations to detect the standstill transition becoming TRUE in correlation with the heat pulse turning off. This can be done, e. g., after a few seconds of heating right after turning on (described in the previous paragraph).
  • Heating Temperature rate of change at the beginning of the heating (at high power On or Off) there is observed a change of rate (the 2'nd order derivative) of the temperature. This happens with a bit longer delay (because the temperature measurement is rather slow, i. e., 5-10 seconds). But this correlation adds to the probability of the cookware being situated in this zone.
  • the listed variables and their control functions are implemented in the method and the respective algorithm of cookware placement, producing a reliable detection of the various situations in the kitchen and the cookware placement on the cooktop surface and the heating induction zones.
  • the cookware placement detection cycles can be initiated frequently and at various times, i.e., at the beginning of heating, after placement/movement of cookware, etc. It can also be initiated again if the probability of a cookware placement state drops below a certain level. This can happen, e. g., when cookware becomes too hot. Then the digital control module 8 reduces the power allowed to all cooking zones (so-called "Safe Reduce” function) this event can help detect placement of cookware items by using both "standstill" signal and temperature change signal.
  • the above principles of placement detection can also be used on a cooktop without the "Pot detect” signal where the heating coil is active always after Power-On in that heating area.
  • Some induction cooktops provide the "Pot not detected” signal only when that particular heating zone is turned on. The activated heating zone will not provide heating power unless there are cookware present and the signal "pot is not detected” is received after a second or so. But the speed of detection and the robustness of how easily the detection algorithm can fail is less that means the "Safe Reduce” function needs to be activated more often that leads to the control algorithm initiating a longer detection cycle "all heating zones off - and detect one by one".
  • the placement method requires physical modifications of cookware and respectively developed software in the digital control devices and modules of the cooking system (digital control module of the cooktop, digital control module of the cookware, and application software in the external device/app).
  • One embodiment of the cookware comprises a separate coil, especially for measuring the magnetic field strength from the cooktop induction coil.
  • Another embodiment of the cookware comprises the energy harvesting coil 13 that is used for energy harvesting from the cooktop induction coil 5 but can also be exploited for measuring the magnetic field strength from the induction coil ( FIG.2 ).
  • One more embodiment of the cookware has integrated one or more 1-, 2-, or 3-axis-accelerometers 12.
  • a single accelerometer can be integrated into the handle of the cookware ( FIG. 1 ). More than one 3-axis-accelerometers are combined, for example, in two opposite handles of a large pot.
  • One more embodiment of the cookware 2 has integrated 3-axis-accelerometers 12, thermal sensors 11 and energy harvesting coils 13.
  • One more embodiment of the cookware 2 has any integrated sensor and the associated wire or wires in the bottom plain of the cookware 2.
  • One more embodiment takes into account that during the cooking process, the control loop repeatedly changes the power level according to the measured temperature in the pot 2 and the temperature setpoint. Even when cookware is steady on the cooktop, the control loop is maintaining the set temperature; thus the power varies ("oscillates") in a wide range. The history of the past power levels from all active coils is then correlated with the history of previously detected field levels in the cookware items. The result of such calculation is probabilities identifying which cookware item is positioned on each coil/heating area.
  • the "modulation" of power level done by the control loop can be seen as a random modulation; however, it is known by the digital control module in the cooktop. Also, another modulation type can be added to the output of the User Interface panel, e.g., a sine wave modulation or another pseudo-random modulation that can easily be detected by sensors and digital processing algorithms. Any modulation technique could be used.
  • Additional modulation sources are the user actions, e.g., turning on/off the cooking zone or adjusting the power manually, and/or adding food thereby heating/cooling the pot resulting in changed power demand from the temperature control loop.
  • measuring the induction field strength in the cookware 2 placed on the cooktop 1 is done by one or more of these means:

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cookers (AREA)
  • Induction Heating Cooking Devices (AREA)

Claims (14)

  1. Verfahren zur Identifizierung einer Platzierung von Kochgeschirr durch eine Steuerschleife in einem Induktionskochsystem, wobei das Verfahren einen oder mehrere der folgenden Schritte umfasst
    - Einschalten der Heizleistung für die Induktionsspule (5) in mindestens einer Heizzone des Kochfeldes (1),
    - Abschalten der Heizleistung für die Induktionsspule (5) in mindestens einer Heizzone des Kochfeldes (1),
    - Modulieren der Heizleistung für die Induktionsspule (5) in mindestens einer Heizzone des Kochfeldes (1),
    - Auslesen von Temperaturwerten von einem Wärmesensor (11), der in dem Kochgeschirrartikel (2) integriert ist,
    - Auslesen von Messwerten anderer Art von einem oder mehreren Sensoren (11, 12, 13), die in dem Kochgeschirrartikel (2) integriert sind,
    dadurch gekennzeichnet, dass
    - der eine oder die mehreren Sensoren (11, 12, 13) eine Stärke mindestens eines von dem magnetischen und dem elektrischen Wechselfeld der Heizinduktion in mindestens einer Heizzone (5) des Kochfelds (1) erfassen;
    - der aktuelle Zustand der Platzierung von Kochgeschirr (2) auf der Oberfläche des Kochfelds (1) und der Heizzonen (5) identifiziert wird, indem die Heizinduktion für die Induktionsspule (5) moduliert wird und die Ablesungen (16, 17, 18, 19, 20) der Stärke mindestens eines von dem magnetischen und dem elektrischen Wechselfeld von dem einen oder den mehreren Sensoren (11, 12, 13) analysiert werden, wobei der eine oder die mehreren Sensoren (11, 12, 13) den Wärmesensor (11) oder andere Sensoren, Draht, Drähte (12, 13) oder eine Kombination davon umfassen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sensor mindestens ein 1-, 2- oder 3-Achsen-Beschleunigungsmesser (12) oder ein Mikrofon ist, der/das an dem Kochgeschirr (2) angebracht oder in dieses integriert ist, um die Stärke des magnetischen Wechselfelds durch die physischen Schwingungen des Kochgeschirrs (2) zu erfassen.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sensor eine Drahtschleife ist, die zur Energiegewinnung (13) verwendet wird, der Temperatursensor (11) und ein zugehöriger Draht oder zugehörige Drähte oder jeder andere speziell dafür vorgesehene Sensor oder jede andere speziell dafür vorgesehene Drahtschleife mit den zugehörigen Drähten ist, die in die Bodenfläche des Kochgeschirrs integriert sind, um die Stärke von mindestens einem von dem magnetischen und elektrischen Feldsignal zu messen, die von der Induktionsspule (5) empfangen werden.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass Werte von den Sensoren (11, 12, 13) wiederholt oder auf Anforderung in einem vordefinierten Zeitintervall ausgelesen und in allen oder einigen der intelligenten Vorrichtungen in der automatisierten Temperatursteuerschleife aktualisiert werden, wie Kochfeld (1), Kochgeschirrartikel (2) und externe Vorrichtungen/Apps (3).
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass Verlaufsdaten des 1-, 2- oder 3-Achsen-Beschleunigungsmessers (12) oder Mikrofons nach Anspruch 2, Drähte oder Drahtschleifen (13) nach Anspruch 3 und Wärmesensoren (11) nach Anspruch 1 gesammelt, angeordnet und in dem Kochgeschirr-Digitalmodul (14) zu genaueren Identifizierungen des Platzierungszustands von Kochgeschirr und Erkennung von die Zustandsänderungen gespeichert werden.
  6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die erkannte Änderung des Platzierungszustandes des Kochgeschirrs (2) dem Benutzer über externe Signalisierungungsmittel, mindestens Ton und Lichtangeber, Funktionsanzeigen, angegeben wird.
  7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die erkannte Änderung des Platzierungszustands des Kochgeschirrs verwendet wird, um die Signale zu modifizieren, die von den Steueralgorithmen zum Steuern der Leistung für die Heizzonen verwendet werden.
  8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Amplitudenmodulation, die Phasenmodulation und die digitalen Modulationen auf das Heizleistungssignal und Signalverarbeitungsalgorithmen angewendet werden, um die Platzierung des Kochgeschirrs (2) auf dem Kochfeld (1) zu identifizieren.
  9. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Heizleistungsmodulationen durch die Temperatursteuerschleife, die durch Benutzereingriffe direkt auf das manuelle Steuerfeld (7) oder indirekt durch Zugabe oder Rühren von heißen/kalten Speisen verursacht werden, verwendet werden, um die Platzierung des Kochgeschirrs (2) auf dem Kochfeld (1) zu identifizieren.
  10. Kochsystem, umfassend ein Kochfeld (1), das ein integriertes digitales Steuermodul (8) mit drahtlosen Verbindungsmitteln (10) und Kochgeschirrartikeln (2) aufweist, die digitale Steuermodule (14) mit drahtlosen Verbindungsmitteln aufweisen, wobei eine automatisierte Steuerschleife (15) zwischen dem Kochfeld (1) und den Kochgeschirrartikeln (2) zur automatischen Steuerung der Kochtemperatur betrieben wird;
    wobei die Kochgeschirrartikel (2) einen integrierten Wärmesensor (11) umfassen, der dazu konfiguriert ist, die neueste Kochtemperatur auszulesen;
    dadurch gekennzeichnet, dass die Kochgeschirrartikel (2) mindestens einen zusätzlichen Sensor (12, 13) umfassen, der dazu konfiguriert ist, das Magnetsignal der Induktionsspule (5) schneller zu erkennen und zu erfassen, als der Wärmesensor (11) dies tun kann, indem er nur Temperaturänderungen erfasst.
  11. Kochsystem nach Anspruch 10, wobei die Steuerschleife (15) eine externe Vorrichtung/App (3), z. B. ein Smartphone, ein Tablet oder andere externe Steuervorrichtungen, beinhaltet.
  12. Kochsystem nach Anspruch 10 oder 11, wobei der mindestens eine zusätzliche Sensor (12, 13) dazu konfiguriert ist, Signale von 0,5 Hz bis 26,5 kHz, wie etwa 0,5 Hz, 1 Hz, 50 Hz, 25,8 kHz oder 26,5 kHz, zu erkennen.
  13. Kochsystem nach einem der Ansprüche 10 bis 12, wobei der mindestens eine zusätzliche Sensor (12, 13) ein 1-, 2- oder 3-Achsen-Beschleunigungsmesser (12) oder ein Mikrofon ist, der/das an dem Kochgeschirr (2) angebracht oder darin integriert ist, um die Stärke des magnetischen Wechselfeldes durch die physikalischen Vibrationen des Kochgeschirrs (2) zu erfassen, oder eine Drahtschleife, die zur Energiegewinnung (13) verwendet wird, der Temperatursensor (11) und ein zugehöriger Draht oder zugehörige Drähte oder jeder andere speziell dafür vorgesehene Sensor oder jede andere speziell dafür vorgesehene Drahtschleife mit den zugehörigen Drähten ist, die in die Bodenfläche des Kochgeschirrs zum Messen einer Stärke von mindestens einem von dem magnetischen und dem elektrischen Feldsignal, die von der Induktionsspule (5) empfangen werden, integriert sind.
  14. Kochsystem nach einem der Ansprüche 10 bis 13, wobei die automatisierte Steuerschleife (15) dazu konfiguriert ist, Amplitudenmodulation, Phasenmodulation oder digitale Modulation auf das Heizleistungssignal anzuwenden, und das Kochsystem Signalverarbeitungsalgorithmen umfasst, um die Platzierung des Kochgeschirrs (2) auf dem Kochfeld (1) zu identifizieren.
EP19215917.6A 2019-12-13 2019-12-13 Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem Active EP3836752B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19215917.6A EP3836752B1 (de) 2019-12-13 2019-12-13 Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19215917.6A EP3836752B1 (de) 2019-12-13 2019-12-13 Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem

Publications (3)

Publication Number Publication Date
EP3836752A1 EP3836752A1 (de) 2021-06-16
EP3836752C0 EP3836752C0 (de) 2023-06-07
EP3836752B1 true EP3836752B1 (de) 2023-06-07

Family

ID=68916330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19215917.6A Active EP3836752B1 (de) 2019-12-13 2019-12-13 Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem

Country Status (1)

Country Link
EP (1) EP3836752B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036612A1 (de) * 2021-09-08 2023-03-16 BSH Hausgeräte GmbH Gargeschirrsensorvorrichtung
BE1030778B1 (de) * 2022-08-16 2024-03-18 Miele & Cie Funktionsgargeschirr und Verfahren zum Betreiben
WO2024046640A1 (de) * 2022-08-30 2024-03-07 BSH Hausgeräte GmbH Induktionsenergieübertragungssystem
WO2024094265A1 (en) * 2022-11-04 2024-05-10 Ztove Aps Induction cookware for providing power instructions to an induction hob
WO2024094267A1 (en) * 2022-11-04 2024-05-10 Ztove Aps Handover of cookware between cooking zones
CN115988692B (zh) * 2022-12-02 2023-08-22 中山安亚思电子科技有限公司 电磁炉智能厨具控制方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201710159U (zh) 2009-07-09 2011-01-19 深圳市爱可机器人技术有限公司 烹饪过程中锅具运动信息检测装置
US9354207B2 (en) * 2012-08-22 2016-05-31 Whirlpool Corporation Boil and boil-dry detection methods for cooking appliances using vibration sensors
EP2999301B1 (de) * 2014-09-18 2019-03-06 Electrolux Appliances Aktiebolag Induktionskochfeld mit Siededetektion und Induktionsenergiesteuerung, Verfahren zum Erwärmen von Speisen mit einem Induktionskochfeld und Computerprogrammprodukt
PL3001771T3 (pl) * 2014-09-29 2017-09-29 E.G.O. Elektro-Gerätebau GmbH Sposób identyfikowania garnka na punkcie grzejnym pola grzejnego oraz system pola grzejnego z garnkiem
EP3172996B1 (de) 2015-11-30 2021-01-13 Whirlpool Corporation Kochsystem
US20190125120A1 (en) 2016-02-18 2019-05-02 Meyer Intellectual Properties Limited Cooking system for tracking a cooking device
KR102642315B1 (ko) * 2017-02-20 2024-03-04 삼성전자주식회사 조리장치, 및 그 제어방법

Also Published As

Publication number Publication date
EP3836752C0 (de) 2023-06-07
EP3836752A1 (de) 2021-06-16

Similar Documents

Publication Publication Date Title
EP3836752B1 (de) Kochgeschirrplatzierung durch heizungsregelkreis in einem induktionskochsystem
US20230199919A1 (en) Induction hob with boiling detection and induction energy control, method for heating food with an induction hob and computer program product
CN105455603B (zh) 检测炉圈的烹饪点上的锅的身份的方法和有锅的炉圈系统
JP5043833B2 (ja) 誘導加熱調理器、誘導加熱調理方法、誘導加熱調理プログラム、共振音検知装置、共振音検知方法及び共振音検知プログラム
US8884196B2 (en) Cooking device for a cooking container
EP3225143A1 (de) Hängende vorrichtung zur bereitstellung von kochinformationen
CN102763051A (zh) 用于控制烹饪过程的方法
AU2018280071B2 (en) Method for controlling a cooking process by using a liquid
CN107143893B (zh) 一种电磁炉炊具的控制方法及其电磁炉炊具
JP2010080187A (ja) 誘導加熱調理器
CN109124336B (zh) 烹饪控制方法及烹饪控制装置、压力烹饪器具
JP2006066149A (ja) 誘導加熱調理器
JP4270075B2 (ja) 加熱調理器
CN211424484U (zh) 电磁炉和锅具
US20230094391A1 (en) Household appliance with acceleration detection and/or measuring means and control unit and method for controlling a household appliance
CN111380086A (zh) 电磁加热器具及其的温度控制方法和检测装置
TW202350014A (zh) 多功能感應爐中之物體偵測技術
WO2024005761A1 (en) Induction cooking device and control method thereof
JPWO2018212057A1 (ja) 水位検知装置および誘導加熱機器、ならびに、これらを備えた水位検知システム
JP4613670B2 (ja) 誘導加熱調理装置
JP2010080186A (ja) 誘導加熱調理器
JPH0675427B2 (ja) 誘導加熱調理器
JP2007141705A (ja) 誘導加熱調理器
JP2013164908A (ja) 加熱調理器およびその駆動方法
JP2011171207A (ja) 加熱調理器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FAVRHOLDT, PETER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1578429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019029960

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230614

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230707

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20231226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019029960

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240308