EP3820835A1 - Solutions stables d'amides alcalins et leur procédé de préparation - Google Patents

Solutions stables d'amides alcalins et leur procédé de préparation

Info

Publication number
EP3820835A1
EP3820835A1 EP19736638.8A EP19736638A EP3820835A1 EP 3820835 A1 EP3820835 A1 EP 3820835A1 EP 19736638 A EP19736638 A EP 19736638A EP 3820835 A1 EP3820835 A1 EP 3820835A1
Authority
EP
European Patent Office
Prior art keywords
methyltetrahydropyran
alkali metal
molar ratio
solutions
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19736638.8A
Other languages
German (de)
English (en)
Inventor
Dirk Dawidowski
Annika Hörberg
Uwe Lischka
Theresa SCHMIDT
Johannes KLÖSENER
Ulrich Wietelmann
Peter Rittmeyer
Stefan SCHNIPPERING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albemarle Germany GmbH
Original Assignee
Albemarle Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albemarle Germany GmbH filed Critical Albemarle Germany GmbH
Publication of EP3820835A1 publication Critical patent/EP3820835A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/07Monoamines containing one, two or three alkyl groups, each having the same number of carbon atoms in excess of three
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/90Stabilisation; Use of additives

Definitions

  • Ether-based solvents are among the most important industrially used
  • cyclic tetrahydrofuran has established itself as one of the most important aprotic donor solvents for reactions using salt-like, basic and organometallic reagents. It has good ones
  • Lithium powder and THF react exothermically depending on the lithium concentration from 100-120 ° C ("tone set").
  • the decomposition energy released is in the
  • the invention has as its object alkali amide solutions, in particular
  • alkali metal amides MNR 1 R 2 where M is an alkali metal selected from Li, Na, K, Rb, Cs; R 1 and R 2 independently of one another are linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms or they are together a cycloalkyl radical, the alkali metal amides in
  • M is preferably lithium and R 1 and R 2 are isopropyl groups.
  • the strongly basic reagent is then lithium diisopropylamide (LDA). It is particularly preferred that the solvent mixture in addition to 4-methyltetrahydropyran at least one liquid at room temperature
  • Contains hydrocarbon and the molar ratio between the alkali metal amide LDA and 4-methyltetrahydropyran is preferably between 1: 0.5 to 1: 3.
  • the preparation is in methyltetrahydropyran or in a
  • Solvent mixture containing methyltetrahydropyran i.e. instead of THF, a solvent with a similarly good solvency but significantly improved stability to alkali metals and metal dialkylamides is used.
  • the molar ratio between metal dialkylamide and methyltetrahydropyran is at least 0.5: 1, preferably at least 1: 1.
  • a solvent is a
  • Methyltetrahydropyran particularly preferably 4-methyltetrahydropyran (4-MTHP), used.
  • 4-MTHP boils at 105 ° C and has only a very low solubility in water (1.5%). In comparison to the water-miscible THF, the low water solubility enables easy product isolation
  • methyltetrahydropyrans in particular 4-MTHP, have a significantly improved thermal stability towards alkali metals and alkali amide bases. This effect comes as a surprise to a person skilled in the art because methyltetrahydropyrans have an at least comparable polarity and thus a similarly strong donicity to THF and the same
  • Structural elements i.e. CO bonds that are in principle susceptible to bases, are contained in a ring system.
  • R 1 and R 2 are preferably selected from the group consisting of: methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, octyl, decyl, 2-ethylhexyl, cyclopentyl, cyclohexyl.
  • Cyclic amides are preferably metal piperidides, in particular the metal 2,2,6,6-tetramethylpiperidide. The metal is preferably selected from lithium and sodium. In a preferred embodiment, only solvents are used
  • Methyltetrahydropyrans especially only 4-methyltetrahydropyran used.
  • Mixtures of at least one methyltetrahydropyran and at least one hydrocarbon solvent are particularly preferably used as solvents.
  • Aliphatic, cycloaliphatic or aromatic compounds are preferred as the hydrocarbon, either alone or as a mixture of several
  • At least one compound is selected as the hydrocarbon from the group consisting of pentanes, hexanes, heptanes, octanes, decanes,
  • Cyclohexane, methylcyclohexane, benzene, toluene, ethylbenzene, xylenes and / or cumene are used.
  • the alkali amide solution according to the invention contains the partially hydrogenated form of this hydrogen acceptor in the amount determined by the synthesis stoichiometry.
  • the hydrogenated hydrogen acceptor is, for example, ethylbenzene when styrene is used or 2-methyl-2-butene when isoprene is used.
  • the alkali metal is preferably used in powder form or as granules with grain sizes ⁇ 100 ml or ⁇ 10 mm.
  • the molar ratio between alkali metal and methyltetrahydropyran is preferably 1: 0.5 to 1: 3.
  • Hydrogen acceptor A selected from the group consisting of a-aryl olefins or 1, 3-diene with 4 to 12 carbon atoms added.
  • the hydrogen acceptor A is particularly preferably selected from the group consisting of: styrene, a-methylstyrene, butadiene, isoprene or 1,3-cyclohexadiene and is preferably in a molar ratio of 0.3 to 0.6: 1, based on the one used
  • reaction temperature is between 0 and 200 ° C., preferably 20 to 110 ° C.
  • the improved stability properties are first demonstrated using the ether solvent / lithium metal system as an example.
  • thermochemical tests were carried out using the RADEX system from Systag / Switzerland.
  • Mixtures of 0.09 g lithium metal powder with particle size ⁇ 100 ml and 1.8 g ether solvent were filled under argon protective gas into steel autoclaves and heated to a final temperature of 250 ° C. While the mixture of Li and THF decomposes strongly exothermically from a temperature of approx. 80 ° C (peak temperature 150 ° C, heat of decomposition -150 J / g), no exotherm can be observed in the case of the mixture with 4-MTHP. Rather, a weak endotherm is registered at an oven temperature of around 190 ° C, which can be attributed to the melting of the metallic lithium. This means that the lithium metal / 4-MTHP system is much more stable and therefore
  • alkali amides are prepared in a manner similar to that known from the process using THF (see US 4,595,779): either by direct
  • M is an alkali metal selected from Li, Na, K, Rb, Cs;
  • R 1 and R 2 are, independently of one another, linear, branched or cyclic alkyl groups having 1 to 8 C atoms or they together represent a cycloalkyl radical
  • Hydrogen acceptor A means an a-aryl olefin or a 1,3-diene with 4 to 12 carbon atoms.
  • R 1 and R 2 are particularly preferred and independently of one another: methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, octyl, decyl, 2- Ethylhexyl, cyclopentyl, cyclohexyl.
  • Piperidine and 2,2,6,6-tetramethylpiperidine are preferably used as cyclic amines.
  • Preferred hydrogen acceptors are styrene, ⁇ -methylstyrene, butadiene, isoprene and 1,3-cyclohexadiene.
  • the hydrogen acceptor is preferably used in a molar ratio of 0.3 to 0.6: 1 based on the amount of amine used.
  • the alkali metal is preferably used either in powder form or as granules with grain sizes ⁇ 100 ml or ⁇ 10 mm.
  • Methyltetrahydropyran particularly preferably pure 4-methyltetrahydropyran can be used. However, mixtures of one are preferred
  • Room temperature liquid hydrocarbon and a methyltetrahydropyran used.
  • Aliphatic, cycloaliphatic or aromatic compounds either in pure form or in a mixture, can be used as the hydrocarbon.
  • Particularly preferred aliphatics are: pentanes, hexanes, heptanes, octanes and decanes, preferred cycloaliphatics are cyclohexane and methylcyclohexane, preferred aromatics are benzene, toluene, ethylbenzene, xylenes and cumene.
  • the mixing ratio between methyltetrahydropyran and hydrocarbons can be between 10: 1 to 1:10 (the numbers represent weight ratios).
  • Molar ratio between alkali metal and methyltetrahydropyran is preferably 1: 0.5 to 1: 3.
  • reaction can also be carried out at higher levels
  • Temperatures are carried out using liquid alkali metals.
  • the latter process control is particularly preferred for the low-melting alkali metals sodium, potassium, rubidium and cesium.
  • the reaction temperature is generally between 0 and 200 ° C, preferably 20 to 110 ° C.
  • the alkali metal amide solutions prepared by the process according to the invention in a solvent containing methyltetrahydropyran or a hydrocarbon-containing solvent mixture preferably have a concentration of at least 0.3 mol / kg, particularly preferably at least 0.5 mol / kg.
  • the molar ratio between the alkali metal amide and the methyltetrahydropyran is preferably between 1: 0.5 and 1: 3.
  • a solution of lithium diisopropylamide (LDA) in a mixture of at least one methyltetrahydropyran and at least one hydrocarbon is particularly preferred.
  • the process products produced according to the invention are used as bases in organic synthesis, for example for selective enolizations.
  • Fig. 1 The thermal behavior (Radex test) of a mixture of 0.09 g Li powder and 1.8 g THF
  • Fig. 2 The thermal behavior (Radex test) of a mixture of 0.09 g Li powder and 1.8 g 4-MTHP
  • the reaction mixture is then filtered through a glass frit. 251 g of a clear yellowish product solution were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention a pour objet la préparation de solutions d'amides de métaux alcalins MNR1R2, M désignant un métal alcalin choisi parmi Li, Na, K, Rb, Cs ; R1 et R2 désignant, indépendamment l'une de l'autre, des groupes alkyle linéaires, ramifiés ou cycliques ayant 1 à 8 atomes de C ou, conjointement, un radical cycloalkyle, les amides de métaux alcalins étant présents dans le méthyltétrahydropyrane ou dans un mélange de solvants contenant du méthyltétrahydropyrane. Elle a également pour objet un procédé pour leur préparation.
EP19736638.8A 2018-07-11 2019-06-28 Solutions stables d'amides alcalins et leur procédé de préparation Pending EP3820835A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018211495 2018-07-11
PCT/EP2019/067477 WO2020011567A1 (fr) 2018-07-11 2019-06-28 Solutions stables d'amides alcalins et leur procédé de préparation

Publications (1)

Publication Number Publication Date
EP3820835A1 true EP3820835A1 (fr) 2021-05-19

Family

ID=67184991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19736638.8A Pending EP3820835A1 (fr) 2018-07-11 2019-06-28 Solutions stables d'amides alcalins et leur procédé de préparation

Country Status (5)

Country Link
US (1) US20210371435A1 (fr)
EP (1) EP3820835A1 (fr)
JP (1) JP7423593B2 (fr)
CN (1) CN112654598A (fr)
WO (1) WO2020011567A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595779A (en) * 1984-12-24 1986-06-17 Lithium Corporation Of America, Inc. Stable lithium diisopropylamide and method of preparation
DE3943841C2 (de) * 1988-02-25 2000-07-13 Lithium Corp Of America Gaston Bimetallische Organoamid-Zusammensetzungen und Verfahren zu ihrer Herstellung
US5002689A (en) * 1988-02-25 1991-03-26 Lithium Corporation Of America Preparation of organometallic amide compositions
DE19605571C1 (de) * 1996-02-15 1997-02-27 Metallgesellschaft Ag Stabile Lösung eines Lithiumdiorganoamids und Verfahren zu ihrer Herstellung
US5679850A (en) * 1996-10-22 1997-10-21 Cyprus Foote Mineral Company Lithium diisapropylamide
CN101486721B (zh) 2009-02-17 2011-04-20 浙江联盛化学工业有限公司 二异丙基胺基锂在制备1-甲基环丙烯中的应用

Also Published As

Publication number Publication date
US20210371435A1 (en) 2021-12-02
CN112654598A (zh) 2021-04-13
WO2020011567A1 (fr) 2020-01-16
JP7423593B2 (ja) 2024-01-29
JP2021530490A (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
US4595779A (en) Stable lithium diisopropylamide and method of preparation
EP0718235B1 (fr) Méthode de préparation d'hydrure d'aluminium exempt d'éther et d'halogénure
EP1988095A2 (fr) Procédé de fabrication d'acides de bore aminoaryle ou hétéroaryl et leurs dérivés
EP3820835A1 (fr) Solutions stables d'amides alcalins et leur procédé de préparation
DE69807700T2 (de) Herstehhung von alkalimetal diarylphosphid und cycloalkyldiarylphosphine
DE19858855A1 (de) Verfahren zur Herstellung von ortho-substituierten Arylmetallverbindungen und deren Umsetzung mit Elektrophilen
DE2511674A1 (de) Verfahren zur herstellung von aethylbenzol
EP3277624A2 (fr) Hydrures métalliques hautement réactifs, procédé de production et application
DE69920049T2 (de) Herstellung von alkalimetall-substituierten borohydridreagenzien
DE2052144C3 (de) Verfahren zur Herstellung von Alkalialuminiumdialkyldihydriden sowie stabile Lösungen von Alkalialuminiumdialkyldihydriden
EP3613748B1 (fr) Procédé de fabrication de composés de trialkylgallium
DE10146233C1 (de) Verfahren zur Herstellung von reinen Aryllithiumverbindungen und deren Verwendung
EP1272496B1 (fr) Procede de production de monohydridoboranates et monohydridoaluminates de metal alcalin
EP1463736B1 (fr) Procede de production de composes d'alkyllithium sous pression reduite
CN109232385B (zh) 一种二氯化镁(2,2,6,6-四甲基哌啶)锂盐的制备方法
DE2724111B1 (de) Verfahren zur Herstellung von UEbergangsmetall-Olefin-Komplexen sowie von Alkalimetall-UEbergangsmetall-Olefin-Komplexen
DE1670585A1 (de) Verfahren zur Herstellung von substituierten 2-Mercapto-4,6-dichlor-s-triazinen
DE19808239C1 (de) Verfahren zum erweiterten Einsatz von Ultraschall bei Feststoff/Fluid-Umsetzungen
EP0645392A1 (fr) Solutions non-pyrophores et stables de lithiumdiorganoamides et procédé pour les préparer
DE10027604C2 (de) Lösungen von Lithium-Pyrrolidin in THF/Kohlenwasserstoffen, sowie Verfahren zu ihrer Herstellung und ihre Verwendung
DE19605571C1 (de) Stabile Lösung eines Lithiumdiorganoamids und Verfahren zu ihrer Herstellung
EP3081529A1 (fr) Procede de liberation d'hydrogene a partir d'un additif d'ammoniac et borane et utilisation de catalyseurs depourvus de metal de transition destines a la liberation d'hydrogene a partir d'un additif d'ammoniac et de borane
AT269115B (de) Verfahren zur Herstellung von alkylsubstituierten aromatischen Kohlenwasserstoffen
DE837696C (de) Verfahren zur Herstellung von Trimethylaminchlorhydrat
DE102007020401A1 (de) Verfahren zur Herstellung von Aminoaryl- bzw. heteroarylboronsäuren und ihren Derivaten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230626

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALBEMARLE GERMANY GMBH