EP3803923B1 - Induktives bauelement und verfahren zu seiner herstellung - Google Patents

Induktives bauelement und verfahren zu seiner herstellung Download PDF

Info

Publication number
EP3803923B1
EP3803923B1 EP19727378.2A EP19727378A EP3803923B1 EP 3803923 B1 EP3803923 B1 EP 3803923B1 EP 19727378 A EP19727378 A EP 19727378A EP 3803923 B1 EP3803923 B1 EP 3803923B1
Authority
EP
European Patent Office
Prior art keywords
sections
leg
inductive component
shape
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19727378.2A
Other languages
English (en)
French (fr)
Other versions
EP3803923C0 (de
EP3803923A1 (de
Inventor
Harald Hundt
Björn STUWE
Johannes Beichler
Klemens Trabold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP3803923A1 publication Critical patent/EP3803923A1/de
Application granted granted Critical
Publication of EP3803923B1 publication Critical patent/EP3803923B1/de
Publication of EP3803923C0 publication Critical patent/EP3803923C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/303Clamping coils, windings or parts thereof together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/08Winding conductors onto closed formers or cores, e.g. threading conductors through toroidal cores

Definitions

  • the invention relates to an inductive component and a method for its production.
  • toroidal cores and inductive components having thick wire windings the mechanical stress on the toroidal cores is high due to the winding tension that occurs during winding.
  • the wire In order to ensure that the wires fit snugly, the wire must be pulled taut as it is pulled through the toroidal core. The forces that occur are essentially absorbed by the edges of the toroidal core.
  • the toroidal core itself or a housing encasing it must therefore have an appropriate strength in order to avoid damage to the toroidal core or other impairments. Since toroidal cores have to have a small volume and be highly permeable in numerous areas of application, the core material must be protected from the forces acting on it with regard to magnetostriction.
  • the housing or other casing should be self-supporting and absorb the forces occurring during winding without deforming and without passing the forces on to the toroidal core.
  • inductive components which have a core and a winding made up of a large number of sections connected to one another are given in the publications DE 38 32 659 A1 , DE 10 2016 210746 A1 , U.S. 2010/253459 A1 , WO 2017/141838 A1 described.
  • WO 2015/158200 A1 , U.S. 2012/326820 A1 , EP 3 214 750 A1 , DE 10 2004 001255 A1 , and DE 10 2009 046570 A1 disclose further inductive components.
  • An inductive component which has a core made of soft magnetic material in the form of a ring, which core has a core cross-section, and a winding which surrounds the core and is composed of two electrically conductive sections.
  • the sections each have a basic U-shape with two legs, of which the first leg is longer than the second leg and the first leg is curved and towards its end projects away from a plane spanned by the basic U-shape.
  • the sections are placed side by side on the core so that the basic U-shape of each section surrounds the core cross-section on three sides.
  • the first leg of one section is mechanically and electrically connected to the second leg of the other section.
  • the ends of the first leg of one of the sections and the second leg of the other of the sections can be plugged into one another.
  • the first leg of one of the sections is flattened at its end and has an opening of a specific shape.
  • the second branch of the other of the sections has at its end a shape complementary to the particular shape of the opening, so that the second branch of the other of the sections is inserted in the opening of the first branch of one of the sections.
  • a method for producing an inductive component in which two electrically conductive sections are placed next to one another, forming a winding, on a core made of soft magnetic material in the form of a ring and having a core cross section placed on the core so that the basic U-shape of each section surrounds the core cross-section on three sides
  • the sections each have a basic U-shape with two legs, of which the first leg is longer than the second leg and the first leg is curved and towards its end stands away from a plane spanned by the basic U-shape.
  • the first leg of one section is mechanically and electrically connected to the second leg of the other section.
  • the ends of the first leg of one of the sections and the second leg of the other of the sections can be plugged into one another.
  • the first leg of one of the sections is flattened at its end and an opening of specified shape is made in the flat.
  • the second leg of the other of the sections has at its end a shape complementary to the particular shape of the opening and the second leg of the other of the sections is inserted in the opening of the first leg of one of the sections.
  • ring core or just core for short
  • connection technique to form a winding become.
  • These conductor pieces can be formed, for example, by basically U-shaped or UI-shaped brackets, the type of conductor pieces and the manner of use in detail depending on the spatial structure and the number of connection points.
  • the connection technology is easy to implement and inexpensive if only the smallest possible number of connection points is provided and the connection points are on the outer circumference of the toroidal core.
  • connection points per turn i.e. exactly one connection point per turn
  • this can be achieved, for example, by a U-shaped bracket and a bend after attachment.
  • this bending step usually takes place over the edge of the toroidal core, which in turn involves an impermissible action of force on the toroidal core.
  • a specially shaped conductor bracket is used, which is placed on the toroidal core and, if necessary, brought into the position for one turn by rotating it with as little force as possible for the toroidal core.
  • the toroidal core has, for example, amorphous or nanocrystalline material and, for example, the shape of a ribbon or is made entirely of this.
  • the band can have a permeability of between 200 and 150,000 inclusive, for example.
  • connection technology is also important. A winding is no longer reliable if there is just one insufficient connection point, up to the point where the entire component fails.
  • Each connection point is a combination of a mechanical function, i.e. stable positioning of the conductors, and an electrical function, i.e. establishing and maintaining a permanently low-impedance electrical contact.
  • the aim here is an electrical connection point in which the mechanical and electrical functions can be set largely independently or separately from one another.
  • N nestable loops each of which forms one turn, can be put together to form a continuous winding with N turns.
  • FIG. 13 shows, in a three-dimensional view, an example of such a single bracket 100 in an approximately U-shape, having two terminations 101 and 102 at the ends of two legs 103 and 104 of the U-shape.
  • the U-shape of the bracket can be square or round or have any other configuration. A more angular shape with rounded corners is shown.
  • the leg 104 of the U-shaped bracket is longer than the other leg 103 and is approximately at the height of the end 101, i.e.
  • angles ⁇ , ⁇ may be equal to or around 90 degrees ( ⁇ 45 degrees), such as between 80 degrees and 100 degrees inclusive.
  • figure 2 shows the bracket 100 in plan view.
  • the two legs 103 and 104 are at a distance a from one another.
  • the distance a and thus the opening of the U-shape is dimensioned such that the bracket 100 can be plugged with its opening over a toroidal core with a width b.
  • bracket 100 is shown when it has been placed over a toroidal core 300 of width b.
  • the length of legs 103 and 104 is determined by height (in figure 3 not shown but in figure 4 shown as height h) of the ring core 300.
  • FIG 4 shows a three-dimensional representation of the case in which the bracket 100 and another identical bracket 100 'are placed on the toroidal core 300 and connected to each other.
  • a termination 101 of each of the brackets 100 and 100' is in the form of a round rod, while the respective other end 102 of the brackets 100 and 100' is pressed flat and is provided with a (through) opening 400 in the resulting surface , which is complementary to the rod of the conclusion 101 in terms of shape and dimensions, that is to say it corresponds or fits into one another.
  • a termination 101 of the bracket 100 is attached to the toroidal core 300 by rotating (with rotatory elastic or non-elastic deformation) the end section of the leg 104 around the other section of the leg 104 in the area of its central bend and by inserting the termination 101 of the Bracket 100 in the opening 400 of the bracket 101', which is also attached to the toroidal core 300, is connected to the latter.
  • figure 5 shows an example of a current-compensated choke, i.e. a common-mode interference suppression choke 500 (or another inductive component such as a transformer, choke, etc.), with two (identical) windings 501 and 502 constructed in the manner described above on a toroidal core 503.
  • a current-compensated choke i.e. a common-mode interference suppression choke 500 (or another inductive component such as a transformer, choke, etc.)
  • two (identical) windings 501 and 502 constructed in the manner described above on a toroidal core 503.
  • special end brackets 504 and 505 can be used, each of which is used as the first or last bracket of a winding and which each have an extended (and possibly specially designed) termination 506, as a result of which simpler electrical contacting is made possible.
  • the extended, rod-shaped terminations 506 can easily be inserted into holes in a printed circuit board and soldered, welded or clamped there to conductor tracks on the printed circuit board. All the connections between the individual brackets are on the outside of the toroidal core and are therefore easily accessible during manufacture, testing and repair of the component.
  • the common-mode interference suppression choke 500 can also have more than two windings, which are then arranged in four sectors of the toroidal core instead of in two.
  • the toroidal core encloses an inner circumference and the sections in the inner circumference can have a shape corresponding to segments of a circle, for example to enable closer winding.
  • the opening of the U-shape of the bracket are also chosen to be larger than the subsequent distance between the turns.
  • the end section of the longer leg 104 can, for example, be rotationally bent from a position X to a position Y, so that a smaller distance c is created between the windings than the distance a, whereby the sector of a turn (or the pitch of the winding) becomes smaller.
  • a (non-elastic) bending of the bracket is now necessary, but this takes place in a rotary movement of the wire to the side of the toroidal core (for example, example in the inner opening of the toroid) without significant forces acting on the toroid.
  • bracket terminations 101 and 101' shown are produced by a suitable method such as resistance welding, laser welding, soldering, hard soldering, pressing, pressing in, electrically conductive gluing or a wide variety of combinations, or an existing contact (such as by prior pressing in) can be improved.
  • the connection points between the stirrups are easy to manufacture due to the exposed, easily accessible position on the outer circumference of the core, but also easy to monitor individually by means of visual inspection and measurement of electrical properties.
  • figure 7 shows in detail the connection technology used, for example, in the in figure 4 shown arrangement can be used before connecting, that is, before the nesting.
  • the termination 101 of the bracket 100 (not fully shown in figure 7 ) is in turn designed in the form of a round rod, while the respective other end 102 of the bracket 100' (not fully shown in figure 7 ) was pressed flat.
  • the (through) opening 400 has again been made in the resulting area, which is complementary to the round rod of the closure 101 in terms of shape and dimensions.
  • the end 101 of the bracket 100 should then be inserted and guided through (possibly pressed) perpendicularly to the flattening of the end 101' in its opening 400.
  • figure 8 shows a further embodiment, in which the rod-shaped closure 101 has a recess or taper 800, which then results in a form-fitting connection in the opening 400 by pressing together, so that the brackets can be mechanically fixed to one another, and thus possibly for a subsequent (further) Connection process such as welding or soldering no longer have to be maintained.
  • figure 9 shows the two in figure 8 separately shown terminations 101 and 102 after mating. By applying pressure F to the sides of the finish 102, compression and consequent non-elastic flexing then occurs. Such a procedure also allows an alternative connection technique by soldering.
  • brackets are mechanically connected in the manner shown, but also (sufficiently) electrically connected by pressing them together, a suitable, high electric current can be sent through the entire winding, which heats the brackets by means of Joule heat. Once the soldering temperature has been reached, soldering can be carried out by feeding solder to the contact points. If the solder was applied as a paste to all contact points, it is also possible to simultaneously solder all contacts with a current pulse of a specific duration.
  • figure 10 shows an embodiment in which instead of in figure 8 recess or taper 800 shown, an elevation or thickening 1000 is formed on the end 101. Pressing already takes place when the terminations 101 and 102 are plugged together.
  • the connection technology that can then be used corresponds largely to that described above.
  • the parallel strands are associated with high production costs (long stripping time) and a somewhat larger installation space.
  • the technology presented herein provides for dividing the winding into sections, such as straps, that can be clipped (or slid) onto the core and joined together, for example, by automated soldering.
  • windings made of solid wire with a larger diameter can be applied to a toroidal core, with the special features of toroidal tape cores such as those made of highly permeable material, which are usually correspondingly sensitive to mechanical influences, being taken into account.
  • the technology allows the use of existing cores with existing plastic housings for wire gauges previously not possible due to the stress of winding from the pressure on the toroid.
  • this special type of "wrapping" is practically stress-free and energy-free.
  • the wire diameter used can be of any size and is theoretically only limited by the inner diameter of the core and the number of stirrup segments used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

  • Die Erfindung betrifft ein Induktives Bauelement und ein Verfahren zu seiner Herstellung.
  • Bei der Herstellung von Ringkernen und Dickdrahtwicklungen aufweisenden induktiven Bauelementen ist die mechanische Belastung der Ringkerne durch den beim Bewickeln auftretenden Wickelzug hoch. Um ein enges Anliegen der Drähte zu erreichen, muss der Draht beim Durchziehen durch den Ringkern straff gezogen werden. Die dabei auftretenden Kräfte werden im Wesentlichen von den Kanten des Ringkerns aufgenommen. Der Ringkern selbst oder ein diesen umhüllendes Gehäuse muss somit eine entsprechende Festigkeit haben, um Beschädigungen des Ringkerns oder sonstige Beeinträchtigungen zu vermeiden. Da bei zahlreichen Einsatzgebieten Ringkerne ein kleines Volumen aufweisen und hochpermeabel sein sollen, ist das Kernmaterial im Hinblick auf die Magnetostriktion vor darauf einwirkenden Kräften zu schützen. Demnach sollte das Gehäuse oder eine sonstige Umhüllung selbsttragend sein, und die bei der Bewicklung auftretenden Kräfte aufnehmen ohne sich zu verformen und ohne die Kräfte an den Ringkern weiterzugeben. Beispiele für induktive Bauelemente, welche einen Kern und eine Wicklung aus einer Vielzahl von miteinander verbundenen Teilstücken aufweisen, sind in den Publikationen DE 38 32 659 A1 , DE 10 2016 210746 A1 , US 2010/253459 A1 , WO 2017/141838 A1 beschrieben. WO 2015/158200 A1 , US 2012/326820 A1 , EP 3 214 750 A1 , DE 10 2004 001255 A1 , und DE 10 2009 046570 A1 offenbaren weitere induktive Bauelemente.
  • Problematisch ist es allerdings, Ringkerne in einem üblichen Gehäuse mit dickeren Drähten zu bewickeln beispielsweise für den Einsatz mit höheren Strömen. Bei üblichen Kunststoffgehäusen für Ringkerne mit Wandstärken von 1-2 mm enden die Möglichkeiten zum Bewickeln mit üblichen Wickeltechniken bei Drahtdurchmessern von 2-3 mm Kupferdraht. Um die Verwendung dickerer Drähte zu gestatten, können beispielsweise deutlich festere Kunststoffgehäuse zum Einsatz kommen oder mehradrige Litzen, wie etwa Hochfrequenzlitzen, zum Bewickeln verwendet werden. Stärkere Gehäuse vertragen höhere Zugkräfte, erhöhen meist aber die Kosten und das Bauvolumen. Mehradrige Litzen verbessern die Zugkraftverteilung, haben aber andere Nachteile wie zum Beispiel ein schlechteres Hochfrequenzverhalten durch erhöhte Kapazitäten zwischen den Windungen, höhere Drahtkosten und höhere Kosten für die Anschlusstechnik.
  • Es ist daher wünschenswert, induktive Bauelemente mit empfindlichem Magnetmaterial, die mit den vorhandenen Kunststoffgehäusen und deren Festigkeit verträglich ist, sowie ein Herstellverfahren für solche Ringkerne bereitzustellen.
  • Es wird ein induktives Bauelement bereit gestellt, das einen einen Kernquerschnitt aufweisenden Kern aus weichmagnetischem Material in Ringform und eine den Kern umgebenden Wicklung, die aus zwei elektrisch leitenden Teilstücken zusammengesetzt ist, aufweist. Die Teilstücke haben jeweils eine U-Grundform mit zwei Schenkeln, von denen der erste Schenkel länger ist als der zweite Schenkel und der erste Schenkel gebogen ist und zu seinem Ende hin von einer durch die U-Grundform aufgespannten Ebene weg steht. Die Teilstücke sind nebeneinander auf den Kern aufgesteckt, so dass die U-Grundform jedes Teilstücks den Kernquerschnitt an drei Seiten umgibt. Der erste Schenkel eines Teilstücks ist mechanisch und elektrisch mit dem zweiten Schenkel des anderen Teilstücks verbunden. Der erste Schenkel eines der Teilstücke und der zweite Schenkel des anderen der Teilstücke sind an ihren Enden ineinander steckbar ausgebildet. Der erste Schenkel des einen der Teilstücke ist an seinem Ende abgeflacht und weist eine Öffnung von bestimmter Form auf. Der zweite Schenkel des anderen der Teilstücke weist an seinem Ende eine zu der bestimmten Form der Öffnung komplementäre Form auf, so dass der zweite Schenkel des anderen der Teilstücke in die Öffnung des ersten Schenkels des einen der Teilstücke eingeführt ist.
  • Zudem wird Verfahren zum Herstellen eines induktives Bauelementes bereit gestellt, bei dem auf einen einen Kernquerschnitt aufweisenden Kern aus weichmagnetischem Material in Ringform zwei elektrisch leitende Teilstücke eine Wicklung bildend nebeneinander auf den Kern aufgesteckt werden, so dass die U-Grundform jedes Teilstücks den Kernquerschnitt an drei Seiten umgibt Die Teilstücke haben jeweils eine U-Grundform mit zwei Schenkeln, von denen der erste Schenkel länger ist als der zweite Schenkel und der erste Schenkel gebogen ist und zu seinem Ende hin von einer durch die U-Grundform aufgespannten Ebene weg steht. Der erste Schenkel eines Teilstücks wird mechanisch und elektrisch mit dem zweiten Schenkel des anderen Teilstücks verbunden. Der erste Schenkel eines der Teilstücke und der zweite Schenkel des anderen der Teilstücke sind an ihren Enden ineinander steckbar ausgebildet. Der erste Schenkel des einen der Teilstücke wird an seinem Ende abgeflacht und eine Öffnung von bestimmter Form wird in die Abflachung eingebracht. Der zweite Schenkel des anderen der Teilstücke weist an seinem Ende eine zu der bestimmten Form der Öffnung komplementäre Form auf und der zweite Schenkel des anderen der Teilstücke wird in die Öffnung des ersten Schenkels des einen der Teilstücke eingeführt.
  • Der Erfindung wird nachfolgend anhand der in den Figuren der Zeichnung dargestellten Ausführungsbeispiele näher erläutert, wobei ähnliche oder identische Elemente mit denselben Bezugszeichen versehen sind.
    • Figur 1 zeigt in dreidimensionaler Ansicht ein beispielhaftes Teilstück zur Verwendung bei einer aus zwei oder mehreren solcher Teilstücke zusammengesetzten Wicklung.
    • Figur 2 zeigt in Draufsicht das in Figur 1 gezeigte Teilstück.
    • Figur 3 zeigt in Draufsicht das in Figur 1 gezeigte Teilstück, wenn es auf einen Ringkern aufgesteckt ist.
    • Figur 4 zeigt in dreidimensionaler Ansicht das in Figur 1 gezeigte Teilstück und ein weiteres Teilstück, wenn sie auf einen Ringkern aufgesteckt und miteinander verbunden sind.
    • Figur 5 zeigt in dreidimensionaler Ansicht eine beispielhafte Gleichtakt-Entstördrossel mit zwei aus Teilstücken zusammengesetzten Wicklungen auf einem Ringkern.
    • Figur 6 zeigt in dreidimensionaler Ansicht eine alternative Ausgestaltung des in Figur 3 gezeigten Teilstücks auf einem Ringkern zur Erzielung eines verringerten Windungsabstandes.
    • Figur 7 zeigt in dreidimensionaler Ansicht die beispielhafte Ausgestaltung der Enden von Teilstücken vor dem Verbinden.
    • Figur 8 zeigt in dreidimensionaler Ansicht eine alternative Ausgestaltung der Enden von Teilstücken vor dem Verbinden.
    • Figur 9 zeigt in dreidimensionaler Ansicht die in Figur 7 dargestellten Enden von Teilstücken nach dem Verbinden.
    • Figur 10 zeigt in dreidimensionaler Ansicht eine weitere alternative Ausgestaltung der Enden von Teilstücken vor dem Verbinden.
    • Figur 11 zeigt in einem Impedanz-Frequenz-Diagramm den Vergleich von Messungen einer aus Starkdraht aufgebauten Gleichtakt-Entstördrossel und einer mit den hierin beschriebenen Teilstücken aufgebauten Gleichtakt-Entstördrossel.
  • Es ist vorgesehen, eine oder mehrere Wicklungen aus vorgebogenen Leiterstücken zusammenzusetzen, die auf oder über einen ringförmigen, weichmagnetischen Kern, im Folgenden allgemein kurz als Ringkern oder nur Kern bezeichnet, gesteckt werden und dann mit einer geeigneten Verbindungstechnik miteinander zu einer Wicklung elektrisch und mechanisch verbunden werden. Diese Leiterstücke können zum Beispiel durch im Grunde U-förmige oder UI-förmige Bügel gebildet werden, wobei die Art der Leiterstücke sowie die Art und Weise der Verwendung im Einzelnen vom räumlichen Aufbau und der Anzahl der Verbindungsstellen abhängt. So ist zum Beispiel die Verbindungstechnik einfach umsetzbar und kostengünstig, wenn nur eine möglichst kleine Anzahl an Verbindungsstellen vorgesehen wird und die Verbindungsstellen am Außenumfang des Ringkerns liegen. Wenn man von der kleinstmöglichen Anzahl an Verbindungsstellen pro Windung, also genau einer Verbindungsstelle pro Windung, ausgeht, kann dies beispielsweise durch eine U-Bügelform und eine Biegung nach dem Aufstecken erreicht werden. Dieser Biegeschritt erfolgt aber üblicher Weise über die Kante des Ringkerns, womit wiederum eine unzulässige Krafteinwirkung auf den Ringkern verbunden ist. Um dies zu verhindern kommt ein speziell geformter Leiterbügel zum Einsatz, der ein Aufstecken auf den Ringkern und gegebenenfalls durch eine für den Ringkern weitestgehend kräftefreie Drehung in die Position für eine Windung gebracht wird. Der Ringkern weist beispielsweise amorphes oder nanokristallines Material und beispielsweise die Form eines Bandes auf oder ist vollständig aus diesem hergestellt. Das Band kann dabei beispielsweise eine Permeabilität zwischen einschließlich 200 und einschließlich 150000 aufweisen.
  • Wirtschaftlich bedeutsam ist die Möglichkeit der Verwendung von möglichst wenigen verschieden geformten Drahtbügeln, das heißt, die Anzahl verschiedener Bügelformen kann gering gehalten werden. Darüber hinaus ist aber auch die Verbindungstechnik von Bedeutung. Eine Wicklung ist alleine schon bei einer einzigen nicht ausreichenden Verbindungsstelle nicht mehr zuverlässig bis hin zu einem Ausfall des gesamten Bauelements. Dabei ist jede Verbindungsstelle eine Kombination aus mechanischer Funktion, das heißt, stabiler Positionierung der Leiter, sowie elektrischer Funktion, das heißt, Herstellen und Aufrechterhaltung eines dauerhaft niederohmigen elektrischen Kontaktes. Es wird dabei eine elektrische Verbindungsstelle angestrebt, bei der die mechanischen und elektrischen Funktionen weitgehend unabhängig oder getrennt voneinander eingestellt werden können. Dies wird beispielsweise dadurch erreicht, indem entsprechend ausgebildete Enden benachbarter Bügel ineinander gesteckt werden, so das eine gewisse mechanische Verbindung bereits vorhanden ist, ohne dass eine abschließende elektrische Kontaktierung beispielsweise durch Löten oder Schweißen erfolgt. Zum Beispiel können N in einander steckbare Bügel, von denen jeder jeweils eine Windung bildet, zusammengesteckt eine durchgehende Wicklung mit N Windungen ergeben.
  • Figur 1 zeigt in dreidimensionaler Ansicht ein Beispiel eines derartigen einzelnen Bügels 100 in annähernder U-Form, der zwei Abschlüsse 101 und 102 an den Enden zweier Schenkel 103 und 104 der U-Form aufweist. Der Einfachheit halber sind keine speziellen Ausbildungen eines oder beider Abschlüsse 101 und 102 dargestellt. Die U-Form des Bügels kann dabei eckig oder rund oder irgendeine andere Ausgestaltung haben. Gezeigt ist eine mehr eckige Form mit abgerundeten Ecken. Der Schenkel 104 des u-förmigen Bügels ist länger als der andere Schenkel 103 und ist in etwa in der Höhe des Abschlusses 101, also in etwa in einem mittleren Bereich des Schenkels 104, von diesem weg gebogen derart, dass sich zwei bestimmte Winkel α, β gegenüber einer durch die U-Form aufgespannten Fläche bilden. Beispielsweise können einer oder beide Winkel α, β genau oder um die 90 Grad (± 45 Grad) sein, wie zum Beispiel zwischen einschließlich 80 Grad und einschließlich 100 Grad.
  • Figur 2 zeigt den Bügel 100 in der Draufsicht. Wie daraus zu erkennen ist, haben die beiden Schenkel 103 und 104 einen Abstand a voneinander. Der Abstand a und damit die Öffnung der U-Form ist so bemessen, dass der Bügel 100 mit seiner Öffnung über einen Ringkern mit einer Breite b gesteckt werden kann.
  • In Figur 3 ist der Bügel 100 gezeigt, wenn er über einen Ringkern 300 mit der Breite b gesteckt worden ist. Die Länge der Schenkel 103 und 104 richtet sich, gegebenenfalls zusammen mit anderen Aspekten, nach der Höhe (in Figur 3 nicht gezeigt, aber in Figur 4 als Höhe h dargestellt) des Ringkerns 300.
  • Figur 4 zeigt in einer dreidimensionalen Darstellung den Fall, bei dem der Bügel 100 und ein weiterer identischer Bügel 100' auf den Ringkern 300 aufgesteckt und miteinander verbunden sind. Jeweils ein Abschluss 101 der Bügel 100 und 100' ist beim gezeigten Ausführungsbeispiel in Form eines Rundstabes ausgeführt, während das jeweils andere Ende 102 der Bügel 100 und 100' flächig gepresst und in der so entstandenen Fläche mit einer (Durchgangs-) Öffnung 400 versehen ist, welche hinsichtlich Formgebung und Maßen zu dem Rundstab des Abschlusses 101 komplementär ist, das heißt damit korrespondiert beziehungsweise ineinander passt. Ein Abschluss 101 des Bügels 100 wird dabei nach dem Aufstecken auf den Ringkern 300 durch Drehung (mit rotatorischer elastischer oder nichtelastischer Verformung) des endseitigen Abschnitts des Schenkels 104 um den anderen Abschnitt des Schenkels 104 im Bereich seiner mittleren Biegung sowie durch Einstecken des Abschlusses 101 des Bügels 100 in die Öffnung 400 des ebenfalls auf den Ringkern 300 aufgesteckten Bügels 101' mit diesem verbunden.
  • Das Aufstecken kann so erfolgen, dass zunächst der endseitige Abschnitt des Schenkels 104 in die Innenöffnung des Ringkerns 300 in Richtung der Höhe h des Ringkerns 300 ganz eingeführt wird, wobei der die Schenkel verbindende Abschnitt des Bügels 100 in radialer Richtung des Ringkerns 300 verläuft. Der Bügel wird dann um die Längsachse dieses Abschnittes gekippt und schräg zur Breite b des Ringkerns 300 ausgerichtet.
  • Durch Hinzufügen weiterer Bügel und Verbinden der Bügel - wie oben im Zusammenhang mit Figur 4 erläutert - ergibt sich eine gleichgeformte Kette einer Vielzahl von miteinander verbundener Bügel, die eine oder mehrere Wicklungen bilden. Figur 5 zeigt als Beispiel eine stromkompensierte Drossel, das heißt eine Gleichtakt-Entstördrossel 500 (oder ein sonstiges induktives Bauelement wie etwa ein Transformator, Drossel etc.), mit zwei in der oben beschriebenen Weise aufgebauten (identischen) Wicklungen 501 und 502 auf einem Ringkern 503. Optional können spezielle Endbügel 504 und 505, die jeweils als erste beziehungsweise letzte Bügel einer Wicklung Verwendung finden und die jeweils einen verlängertem (und eventuell besonders ausgebildeten) Abschluss 506 aufweisen, wodurch eine einfachere elektrische Kontaktierung ermöglicht wird. Beispielsweise können die verlängerten, rundstabförmigen Abschlüsse 506 leicht in Bohrungen einer Leiterplatte eingesetzt und dort mit Leiterbahnen der Leiterplatte verlötetet, verschweißt oder geklemmt werden. Sämtliche Verbindungen der einzelnen Bügel untereinander sind an der Außenseite des Ringkerns und damit leicht zugänglich bei Herstellung, Überprüfung und Reparatur des Bauelementes. Die Gleichtakt-Entstördrossel 500 kann auch mehr als zwei Wicklungen aufweisen, die dann statt in zwei in vier Sektoren des Ringkerns angeordnet sind. Der Ringkern umschließt einen Innenumfang und die Teilstücke in dem Innenumfang können eine Form haben, die Kreissegmenten entspricht, um beispielsweise eine engere Bewicklung zu ermöglichen.
  • Gemäß einem in Figur 6 gezeigten weiteren Ausführungsbeispiel kann in Abänderung des in Figur 3 gezeigten Ausführungsbeispiels die Öffnung der U-Form des Bügels, also der lichte Abstand a deren beider Schenkel 103 und 104, auch größer gewählt werden als der spätere Abstand zwischen den Windungen. Dazu kann nach dem Aufstecken des Bügels 100 auf den Ringkern 300 beispielsweise der Endabschnitt des längeren Schenkels 104 rotatorisch von einer Position X in eine Position Y verbogen werden, so dass ein gegenüber dem Abstand a kleinerer Abstand c zwischen den Windungen geschaffen wird, wodurch der Sektor einer Windung (beziehungsweise die Steigung der Wicklung) kleiner wird. Nun ist zwar eine (nichteleastische) Verbiegung des Bügels erforderlich, diese erfolgt jedoch in einer Drehbewegung des Drahtes seitlich des Ringkerns (zum Beispiel in der Innenöffnung des Ringkerns), ohne dass wesentliche Kräfte auf den Ringkern einwirken.
  • Bei allen vorstehend beschriebenen Ausführungsbeispielen sowie bei allen anderen denkbaren Ausführungsformen kann die elektrische Verbindung der Bügelabschlüsse, beispielsweise der in Figur 4 gezeigten Bügelabschlüsse 101 und 101' durch ein geeignetes Verfahren wie zum Beispiel Widerstandschweißen, Laserschweißen, Löten, Hartlöten, Verpressen, Einpressen, elektrisch leitendem Verkleben oder verschiedensten Kombinationen hergestellt oder ein bestehender Kontakt (wie zum Beispiel durch vorheriges Einpressen) verbessert werden. Die Verbindungsstellen zwischen den Bügeln sind durch die exponierte, gut zugängliche Lage am Außenumfang des Kerns leicht herzustellen, aber auch mittels Sichtprüfung und Messung elektrischer Eigenschaften leicht einzeln zu überwachen.
  • Figur 7 zeigt im Detail die Verbindungstechnik, die beispielsweise bei der in Figur 4 dargestellten Anordnung zum Einsatz kommen kann, vor dem Verbinden, das heißt, vor dem Ineinanderstecken. Der Abschluss 101 des Bügels 100 (nicht vollständig gezeigt in Figur 7) ist wiederum in Form eines Rundstabes ausgeführt, während das jeweils andere Ende 102 des Bügels 100' (nicht vollständig gezeigt in Figur 7) flächig gepresst wurde. In der so entstandenen Fläche ist wiederum die (Durchgangs-) Öffnung 400 eingebracht worden, welche hinsichtlich Formgebung und Maßen zu dem Rundstab des Abschlusses 101 komplementär ist. Der Abschluss 101 des Bügels 100 soll dann senkrecht zur Abflachung des Abschlusses 101' in dessen Öffnung 400 ein- und durchgeführt (gegebenenfalls eingepresst) werden. Im zusammengesetzten Zustand (wie in Figur 4 gezeigt) steht ein Endabschnitt des rundstabförmigen Abschlusses 101 durch die Öffnung 400 des flachen Abschlusses 102 hindurch diesem über und bildet dabei eine thermische Senke, da dieser Abschnitt nicht stromdurchflossen ist und somit vom Strom selbst nicht erwärmt wird, wodurch es Wärme von benachbarten stromdurchflossenen Abschnitten abführen kann. Damit wird die Verbindungsstelle (indirekt) gekühlt und wird immer eine geringere Temperatur aufweisen als andere Abschnitte der jeweiligen Bügel beziehungsweise der Wicklung.
  • Figur 8 zeigt eine weitere Ausführungsform, bei der der rundstabförmige Abschluss 101 eine Vertiefung oder Verjüngung 800 aufweist, welche dann in der Öffnung 400 durch Zusammenpressen eine formschlüssige Verbindung ergibt, so dass die Bügel untereinander mechanisch fixiert werden können, und somit eventuell für einen nachfolgenden (weiteren) Verbindungsprozess wie etwa Schweißen oder Löten nicht mehr gehalten werden müssen. Figur 9 zeigt die beiden in Figur 8 getrennt dargestellten Abschlüsse 101 und 102 nach dem Zusammenstecken. Durch Ausüben von Druck F auf die Seiten des Abschlusses 102 erfolgt dann das Zusammenpressen und in Folge ein nichteleastisches Verbiegen. Eine derartige Vorgehensweise ermöglicht auch eine alternative Verbindungstechnik durch Löten. Sind alle Bügel in der gezeigten Weise mechanisch, aber durch das Zusammenpressen auch (ausreichend) elektrisch verbunden, kann man ein geeigneter, hoher elektrischer Strom durch die gesamte Wicklung geschickt werden, der die Bügel mittels Joule'scher Wärme aufheizt. Ist die Löttemperatur erreicht, kann durch das Zuführen von Lot an die Kontaktstellen die Lötung erfolgen. Wurde das Lot als Paste auf alle Kontaktstellen aufgebracht, ist auch eine gleichzeitige Lötung aller Kontakte mit einem Stromimpuls bestimmter zeitlicher Dauer möglich.
  • Figur 10 zeigt eine Ausführungsform, bei der anstelle der in Figur 8 gezeigten Vertiefung oder Verjüngung 800 eine Erhebung oder Verdickung 1000 an den Abschluss 101 angeformt ist. Ein Verpressen erfolgt dabei bereits beim Zusammenstecken der Abschlüsse 101 und 102. Die danach einsetzbare Verbindungstechnik entspricht dabei weitgehend der oben Beschriebenen.
  • Es wurden Vergleichsmessungen an unterschiedlichen Typen von Gleichtakt-Entstördrosseln durchgeführt, deren Ergebnissen aus Figur 11 ersichtlich sind. Zum Einen wurden zwei Typen von Drosseln mit der oben beschriebenen "Bügeltechnologie" und zum Anderen damit vergleichbare, herkömmliche zwei Typen von Drosseln in "Starkdrahttechnologie" mit dreifach parallelen Strands vermessen. Demnach hat bei der Bügeltechnologie die zugehörige Impedanzkurve über der Frequenz eine Eigenresonanz (Impedanzeinbruch) bei höheren Frequenzen als die bei der der herkömmlichen Starkdrahttechnologie auftretende Impedanzkurve über der Frequenz. Eine Dämpfung eines Gleichtakt-Störsignales ist mit der "Starkdrahttechnologie" bis beispielsweise 8-10MHz, mit der "Bügeltechnologie" jedoch beispielsweise bis 15-20MHz möglich.
  • Durch die zunehmend höheren Lastströme in Filteranwendungen besteht ein Zwang zu Wicklungen mit immer dickeren Drähten, damit das induktive Bauelement nicht überhitzt. Oberhalb von 3mm Drahtdurchmesser kann die Handbewicklung der Kerne bei solchen Anwendungen nicht mehr wie üblich mittels einer Häkelnadel realisiert werden, da die Wickelkräfte zu hoch für die bewickelnde Person sind und mit zunehmender Windungszahl das Kupfer noch zusätzlich verhärtet. Weiterhin kann der Kunststofftrog die mechanischen Kräfte nicht mehr aufnehmen und der Kern läuft Gefahr deformiert zu werden. Die bisherige Lösung sah vor die Wicklungen mit mehreren parallelen Drähten (engl. Strands) zu versehen. Dabei erhöhen sich jedoch drastisch die Wicklungskapazitäten (Cw) und die Eigenresonanz verschiebt sich zu niedrigeren Frequenzen. Eine Dämpfung oberhalb weniger MHz ist damit nicht mehr möglich. Zudem sind die parallelen Strands mit hohen Fertigungskosten (hohe Abisolierzeit) und einem etwas größeren Bauraum verbunden. Das hierin vorgestellte Technologie sieht eine Aufteilung der Wicklung in Teilstücke wie etwa Bügel vor, die auf den Kern gesteckt (oder geschoben werden) und zum Beispiel mittels automatischem Löten miteinander verbunden werden können.
  • Es können somit mit der oben beschriebenen Technologie Wicklungen aus Massivdraht mit größerem Durchmesser auf einem Ringkern aufgebracht werden, wobei auf die Besonderheiten von Ringbandkernen wie beispielsweise solchen aus hochpermeablem Material, welche in der Regel entsprechend empfindlich gegen mechanische Einflüsse sind, Rücksicht genommen werden kann. Ferner gestattet die Technologie die Verwendung von vorhandenen Kernen mit vorhandenen Kunststoffgehäusen für Drahtstärken, die bisher auf Grunde der Belastung beim Bewickeln durch den Druck auf den Ringkern nicht möglich waren. Für den Kern ist diese spezielle Art der "Bewicklung" praktisch stress- und kräftefrei. Der verwendete Drahtdurchmesser kann dabei beliebig groß ausfallen und wird theoretisch erst durch den Innendurchmesser des Kerns und die Anzahl der verwendeten Bügelsegmente begrenzt.

Claims (26)

  1. Induktives Bauelement (500) mit:
    einem einen Kernquerschnitt aufweisenden Kern (300; 503) aus weichmagnetischem Material in Ringform und
    einer den Kern (300; 503) umgebenden Wicklung (501), die aus zwei elektrisch leitenden Teilstücken (100, 100') zusammengesetzt ist, wobei
    die Teilstücke (100, 100') jeweils eine U-Grundform mit zwei Schenkeln (103, 104) haben, von denen der erste Schenkel (104) länger ist als der zweite Schenkel (103) und der erste Schenkel (104) gebogen ist und zu seinem Ende (102) hin von einer durch die U-Grundform aufgespannten Ebene weg steht;
    die Teilstücke (100, 100') nebeneinander auf den Kern (300; 503) aufgesteckt sind, so dass die U-Grundform jedes Teilstücks (100, 100') den Kernquerschnitt an drei Seiten umgibt,
    der erste Schenkel (104) eines Teilstücks (100) mechanisch und elektrisch mit dem zweiten Schenkel (103) des anderen Teilstücks (100') verbunden ist,
    gekennzeichnet dadurch, dass
    der erste Schenkel (104) eines der Teilstücke (100) und der zweite Schenkel (103) des anderen der Teilstücke (100') an ihren Enden (101, 102) ineinander steckbar ausgebildet sind, und
    der erste Schenkel (104) des einen der Teilstücke (100) an seinem Ende (102) abgeflacht ist und eine Öffnung (400) von bestimmter Form aufweist und der zweite Schenkel (103) des anderen der Teilstücke (100') an seinem Ende (101) eine zu der bestimmten Form der Öffnung komplementäre Form aufweist, so dass der zweite Schenkel (103) des anderen der Teilstücke (100') in die Öffnung (400) des ersten Schenkels (104) des einen der Teilstücke (100) eingeführt ist.
  2. Induktives Bauelement (500) nach Anspruch 1, bei dem der erste Schenkel (104) zu seinem Ende (102) hin unter zwei Winkeln gegenüber der durch die U-Grundform aufgespannten Ebene weg steht, wobei mindestens einer der beiden Winkel zwischen 80 Grad und 100 Grad beträgt.
  3. Induktives Bauelement (500) nach Anspruch 2, bei dem mindestens einer der beiden Winkel 90 Grad beträgt.
  4. Induktives Bauelement (500) nach einem der Ansprüche 1 bis 3, bei dem der zweite Schenkel (103) des anderen der Teilstücke (100') in die Öffnung (400) des ersten Schenkels (104) des einen der Teilstücke (100) rechtwinklig zur Abflachung eingeführt ist.
  5. Induktives Bauelement (500) nach einem der Ansprüche 1 bis 4, bei dem
    die Öffnung (400) beim ersten Schenkel (104) des einen der Teilstücke (100) rund ausgebildet ist und einen Öffnungsdurchmesser hat und
    das Ende (101) des zweiten Schenkels (103) des anderen der Teilstücke (100') rundstabförmig ausgebildet ist mit einem Stabdurchmesser, der geringfügig kleiner ist als der Öffnungsdurchmesser.
  6. Induktives Bauelement (500) nach Anspruch 5, bei dem das Ende (101) des zweiten Schenkels (103) des anderen der Teilstücke (100') formschlüssig in die Öffnung (400) beim ersten Schenkel (104) des einen der Teilstücke (100) eingepresst ist.
  7. Induktives Bauelement (500) nach einem der Ansprüche 1 bis 6, bei dem der erste Schenkel (104) eines der Teilstücke (100) und der zweite Schenkel (103) des anderen der Teilstücke (100') an ihren Enden (101, 102) durch mindestens eine Verbindung aus der Gruppe Weichlötung, Hartlötung, Verschweißung und elektrisch leitende Verklebung miteinander verbunden sind.
  8. Induktives Bauelement (500) nach einem der Ansprüche 1 bis 7, bei dem die Teilstücke (100, 100') aus Runddraht gefertigt sind.
  9. Induktives Bauelement (500) nach Anspruch 8, bei dem der Runddraht einen Durchmesser hat, der zwischen einschließlich 2mm und einschließlich 50mm liegt.
  10. Induktives Bauelement (500) nach Anspruch 8 oder 9, bei dem der Runddraht Kupfer aufweist oder aus Kupfer besteht.
  11. Induktives Bauelement (500) nach einem der Ansprüche 1 bis 10, bei dem die Teilstücke (100, 100') zumindest teilweise mit einer elektrisch isolierenden Schicht umhüllt sind.
  12. Induktives Bauelement (500) nach Anspruch 1 bis 11, bei dem der Kern (300; 503) amorphes oder nanokristallines Band aufweist, wobei das Band eine Permeabilität von 200 - 150000 aufweist.
  13. Induktives Bauelement (500) nach Anspruch 1 bis 12, bei dem der Kern (300; 503) von einem elektrisch isolierenden Gehäuse des induktiven Bauelements umschlossen ist
  14. Induktives Bauelement (500) nach Anspruch 13, bei dem das Gehäuse Kunststoff aufweist oder aus Kunststoff besteht.
  15. Induktives Bauelement (500) nach einem der Ansprüche 1 bis 14, das mindestens eine zusätzliche, aus Teilstücken zusammengesetzte Wicklung (502) oder mindestens ein zusätzliches Teilstück der einen Wicklung oder beides aufweist.
  16. Induktives Bauelement (500) nach Anspruch 15, bei dem das erste und letzte Teilstück (504, 505) einer genannten Wicklung (501, 502) einen zur externen Kontaktierung ausgebildeten ersten beziehungsweise zweiten Schenkel aufweist.
  17. Verfahren zum Herstellen eines induktives Bauelementes (500), bei dem
    auf einen Kernquerschnitt aufweisenden Kern (300; 503) aus weichmagnetischem Material in Ringform zwei elektrisch leitende Teilstücke (100, 100') eine Wicklung (501) bildend nebeneinander auf den Kern (300; 503) aufgesteckt werden, so dass die U-Grundform jedes Teilstücks (100, 100') den Kernquerschnitt an drei Seiten umgibt, wobei die Teilstücke (100, 100') jeweils eine U-Grundform mit zwei Schenkeln (103, 104) haben, von denen der erste Schenkel (104) länger ist als der zweite Schenkel (103) und der erste Schenkel (104) gebogen ist und zu seinem Ende (102) hin von einer durch die U-Grundform aufgespannten Ebene weg steht,
    der erste Schenkel (104) eines Teilstücks (100) mechanisch und elektrisch mit dem zweiten Schenkel (103) des anderen Teilstücks (100') verbunden wird,
    der erste Schenkel (104) eines der Teilstücke (100) und der zweite Schenkel (103) des anderen der Teilstücke (100') an ihren Enden (101, 102) ineinander steckbar ausgebildet sind,
    der erste Schenkel (104) des einen der Teilstücke (100) an seinem Ende (102) abgeflacht wird und eine Öffnung (400) von bestimmter Form in die Abflachung eingebracht wird und
    der zweite Schenkel (103) des anderen der Teilstücke (100') an seinem Ende (101) eine zu der bestimmten Form der Öffnung (400) komplementäre Form aufweist und der zweite Schenkel (103) des anderen der Teilstücke (100') in die Öffnung (400) des ersten Schenkels (104) des einen der Teilstücke (100) eingeführt wird.
  18. Verfahren nach Anspruch 17, bei dem der erste Schenkel (104) zu seinem Ende (102) hin unter zwei Winkeln gegenüber der durch die U-Grundform aufgespannten Ebene weg gebogen wird, wobei mindestens einer der beiden Winkel zwischen 80 Grad und 100 Grad beträgt.
  19. Verfahren nach Anspruch 18, bei dem mindestens einer der beiden Winkel 90 Grad beträgt.
  20. Verfahren nach einem der Ansprüche 17 bis 19, bei dem der zweite Schenkel (103) des anderen der Teilstücke (100') in die Öffnung (400) des ersten Schenkels (104) des einen der Teilstücke (100) rechtwinklig zur Abflachung eingeführt wird.
  21. Verfahren nach einem der Ansprüche 17 bis 20, bei dem
    die Öffnung (400) beim ersten Schenkel (104) des einen der Teilstücke (100) rund ausgebildet ist und einen Öffnungsdurchmesser hat und
    das Ende (101) des zweiten Schenkels (103) des anderen der Teilstücke (100') rundstabförmig ausgebildet ist mit einem Stabdurchmesser, der geringfügig kleiner ist als der Öffnungsdurchmesser.
  22. Verfahren nach Anspruch 21, bei dem das Ende (101) des zweiten Schenkels (103) des anderen der Teilstücke (100') formschlüssig in die Öffnung (400) beim ersten Schenkel (104) des einen der Teilstücke (100) eingepresst wird.
  23. Verfahren nach einem der Ansprüche 17 bis 22, bei dem der erste Schenkel (104) eines der Teilstücke (100) und der zweite Schenkel (103) des anderen der Teilstücke (100') an ihren Enden (101, 102) durch mindestens eine Verbindung aus der Gruppe Weichlötung, Hartlötung, Verschweißung und elektrisch leitende Verklebung miteinander verbunden werden.
  24. Verfahren nach einem der Ansprüche 17 bis 23, bei dem die Teilstücke aus Runddraht gefertigt sind.
  25. Verfahren nach einem der Ansprüche 17 bis 24, bei dem die Teilstücke (100, 100') zumindest teilweise mit einer elektrisch isolierenden Schicht umhüllt sind oder werden.
  26. Verfahren einem der Ansprüche 17 bis 25, bei dem die ersten Schenkel (104) beider Teilstücke an jeweils ihrer Biegung nach dem Aufstecken auf den Kern (300; 503) im Bereich der vorhandenen Biegung rotatorisch verbogen werden.
EP19727378.2A 2018-05-30 2019-05-28 Induktives bauelement und verfahren zu seiner herstellung Active EP3803923B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018112975.0A DE102018112975B4 (de) 2018-05-30 2018-05-30 Induktives bauelement und verfahren zu seiner herstellung
PCT/EP2019/063805 WO2019229054A1 (de) 2018-05-30 2019-05-28 Induktives bauelement und verfahren zu seiner herstellung

Publications (3)

Publication Number Publication Date
EP3803923A1 EP3803923A1 (de) 2021-04-14
EP3803923B1 true EP3803923B1 (de) 2023-09-06
EP3803923C0 EP3803923C0 (de) 2023-09-06

Family

ID=66676539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19727378.2A Active EP3803923B1 (de) 2018-05-30 2019-05-28 Induktives bauelement und verfahren zu seiner herstellung

Country Status (4)

Country Link
US (1) US20210217550A1 (de)
EP (1) EP3803923B1 (de)
DE (1) DE102018112975B4 (de)
WO (1) WO2019229054A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173065B2 (ja) * 2020-02-19 2022-11-16 株式会社村田製作所 インダクタ部品
JP7147803B2 (ja) * 2020-03-16 2022-10-05 株式会社村田製作所 インダクタ部品およびその製造方法
DE102020134147A1 (de) 2020-12-18 2022-06-23 Vacuumschmelze Gmbh & Co. Kg Induktives bauelement mit magnetkern und mittels additiver fertigung hergestellter wicklung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765448A (en) * 1950-05-26 1956-10-02 Siemens Ag Saturable switching reactor
DE8016996U1 (de) 1980-06-24 1980-09-18 Radwainski, Herbert, 1000 Berlin Bewickelungen von geschlossenen kernen fuer elektro-magnetische induktionsspulen
IT1222910B (it) * 1987-10-14 1990-09-12 Bassani Spa Metodo di avvolgimento delle spire dell'avvolgimento di una bobina con nucleo toroidale e bobina ottenuta con tale metodo
DE102004001255B4 (de) * 2004-01-07 2006-04-27 Vacuumschmelze Gmbh & Co. Kg Entstörelement und Verfahren zu seiner Herstellung
US20100253459A1 (en) 2009-04-03 2010-10-07 Zimmerman Alan W Inductor Having Separate Wire Segments
DE102009046570B4 (de) * 2009-11-10 2016-07-28 Vacuumschmelze Gmbh & Co. Kg Induktive Anordnung und Verfahren zum Herstellen einer induktiven Anordnung
TW201301315A (zh) * 2011-06-24 2013-01-01 Delta Electronics Inc 磁性元件
WO2015158200A1 (zh) * 2014-04-14 2015-10-22 特富特科技(深圳)有限公司 一种磁性元件的固定装置、环形变压器和环形电抗器
WO2017141838A1 (ja) * 2016-02-15 2017-08-24 株式会社村田製作所 コイル部品及びコイル部品の製造方法
US20170256354A1 (en) * 2016-03-03 2017-09-07 Hamilton Sundstrand Corporation Multiple parallel semiconductor switching system including current sharing filter inductor
DE102016210746A1 (de) 2016-06-16 2017-12-21 Vacuumschmelze Gmbh & Co. Kg Induktives Bauelement, stromkompensierte Drossel und Verfahren zum Herstellen eines induktiven Bauelements
JP6631584B2 (ja) * 2017-04-20 2020-01-15 株式会社村田製作所 インダクタ及びインダクタの製造方法
JP7352154B2 (ja) * 2019-09-19 2023-09-28 株式会社村田製作所 インダクタ部品およびインダクタ部品の製造方法

Also Published As

Publication number Publication date
US20210217550A1 (en) 2021-07-15
DE102018112975B4 (de) 2024-02-22
DE102018112975A1 (de) 2019-12-05
EP3803923C0 (de) 2023-09-06
EP3803923A1 (de) 2021-04-14
WO2019229054A1 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
EP3803923B1 (de) Induktives bauelement und verfahren zu seiner herstellung
EP2200052B1 (de) Stromkompensierte Drossel und Verfahren zur Herstellung einer Stromkompensierten Drossel
EP2912671B1 (de) Mikrowellenkabel sowie verfahren zum herstellen und anwendung eines solchen mikrowellenkabels
DE602005002323T2 (de) Antenne und Funkkommunikationsendgerät mit dieser Antenne
DE102017111675A1 (de) Bürstenloser Gleichstrommotor, Ständerteil und Wicklungsverfahren davon
DE19740428C2 (de) Ringförmige Spule mit kreisförmigem Windungsquerschnitt und Verfahren zu ihrer Herstellung
EP3129993A1 (de) Entstördrossel
DE2445565A1 (de) Hochfrequenz-koaxialkabel und verfahren zu seiner herstellung
EP2251877B1 (de) Verfahren zur Herstellung einer Scheibenwicklung
DE102005038440B3 (de) Elektrischer Verbindungspin mit Drahtwicklung und Wicklungsumkehr sowie Verfahren zu dessen Herstellung
DE202017104818U1 (de) Anwickelpfosten
EP1287537B1 (de) Induktives miniaturbauelement für smd-montage, sowie verfahren zu seiner herstellung
DE1253353B (de) Wickelstromwandler mit einer aus Flachband hergestellten Primaerwicklung
DE2554550C2 (de) Luftdrosselspule
DE3030487A1 (de) Auf einem vorgegebenen wickelkoerper aufgebrachte, ueberlappungsfreie, einlagige zylinderwicklung
DE19508072C2 (de) Verfahren zur Herstellung einer Isolierung für Wicklungsausleitungen mit angeschlossenen Ableitungen von Leistungstransformatoren
WO1992020079A1 (de) Spulenkörper und verfahren zu seiner herstellung
DE102004001859B4 (de) Induktives Bauelement mit zwei Wicklungen und Herstellverfahren
EP0967690B1 (de) Verfahren zum Verbinden eines dünnen Drahtes mit einem stromleitenden Kontaktelement und Produkte dieses Verfahrens
DE102011005165B4 (de) Spule mit einer Wicklung, die eine Durchmesserreduzierung aufweist, Stromsensor mit einer solchen Spule und Verfahren zur Herstellung einer solchen Spule und eines solchen Stromsensors
DE102018122552A1 (de) Induktives Bauelement und Verfahren zum Herstellen des induktiven Bauelements
DE1954644C3 (de) Richtkoppler
DE2357981A1 (de) Verfahren zur herstellung eines schmelzeinsatzes fuer eine geraetesicherung
WO2009000633A1 (de) Wendel und verfahren zur herstellung einer wendel
DE3037121A1 (de) Verfahren zum aufbringen von koppelschleifen auf hochfrequenz-uebertragerkoerper

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009261

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231005

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906