EP3802898B1 - Alliage de molybdène à densité optimisée - Google Patents

Alliage de molybdène à densité optimisée Download PDF

Info

Publication number
EP3802898B1
EP3802898B1 EP19739199.8A EP19739199A EP3802898B1 EP 3802898 B1 EP3802898 B1 EP 3802898B1 EP 19739199 A EP19739199 A EP 19739199A EP 3802898 B1 EP3802898 B1 EP 3802898B1
Authority
EP
European Patent Office
Prior art keywords
molybdenum alloy
molybdenum
alloy
alloy according
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19739199.8A
Other languages
German (de)
English (en)
Other versions
EP3802898C0 (fr
EP3802898A1 (fr
Inventor
Manja Krüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Von Guericke Universitaet Magdeburg
Original Assignee
Otto Von Guericke Universitaet Magdeburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otto Von Guericke Universitaet Magdeburg filed Critical Otto Von Guericke Universitaet Magdeburg
Publication of EP3802898A1 publication Critical patent/EP3802898A1/fr
Application granted granted Critical
Publication of EP3802898C0 publication Critical patent/EP3802898C0/fr
Publication of EP3802898B1 publication Critical patent/EP3802898B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • C22C27/025Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/123Boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/131Molybdenum

Definitions

  • the present invention relates to a density-optimized and high-temperature-resistant alloy based on molybdenum-silicon-boron (Mo-Si-B), a process for its production and its use as a structural material.
  • Mo-Si-B molybdenum-silicon-boron
  • the ternary Mo-Si-B alloy system not only has a very high melting temperature (beyond 2000 °C), which enables application at temperatures well above 1000 °C, but is also characterized by good oxidation resistance, excellent creep resistance and a sufficient ductile-brittle transition temperature and fracture toughness.
  • the ternary Mo-Si-B alloy system is particularly suitable as a structural material for the production of components that are operated at very high temperatures, such as turbine blades and disks in gas turbines, for highly stressed components in aerospace engineering, but also for tools in forming technology.
  • the very good oxidation resistance of this alloy system is particularly advantageous for high-temperature applications, provided the silicide content is greater than 50%.
  • Protective measures to prevent oxidation such as the use of protective gas or the application of protective layers, can therefore be omitted for materials produced using powder metallurgy or other manufactured, very fine-grained materials with a core size of less than 10 ⁇ m and homogeneous phase distribution.
  • EN 25 34 379 A1 refers to a Mo-Si-B alloy, which may also contain vanadium, among other things. However, this is an amorphous alloy that is characterized by high thermal stability, i.e. it is stable even at high temperatures and does not begin to crystallize.
  • Mo-Si-B alloy which has Mo silicide and Mo-B silicide as its main components.
  • a Mo solid solution can also be present, which can contain other elements that form a solid solution with Mo, including vanadium.
  • the other element(s) are only present in the solid solution, not in the silicides.
  • US$5,693,156 relates to molybdenum alloys with the addition of silicon and boron to improve oxidation resistance, particularly at high temperatures.
  • a consideration of weight, in particular weight reduction, is neither made nor suggested.
  • this ternary Mo-Si-B alloy system would be a promising candidate as a structural material at high temperatures also for rotating or flying applications such as turbine material.
  • the alloy Mo-9Si-8B has a density of 9.5 g/cm 3 .
  • the object of the present invention to provide an alloy system based on Mo-Si-B which has a lower density than the known Mo-Si-B alloy system and can thus be used advantageously as a structural material for rotating or flying applications, in particular in aerospace technology, for example as a turbine material. Furthermore, the alloy system should retain the advantages of the ternary alloy system Mo-Si-B, in particular with regard to oxidation resistance.
  • the molybdenum alloy according to claim 1 contains an alloy system with 5 to 25 at% silicon (Si), 0.5 to 25 at% boron (B), 3 to 40 at% vanadium (V) and the remainder molybdenum with a molybdenum content of at least 40 at%, wherein the molybdenum alloy has a molybdenum-vanadium solid solution matrix and at least one silicide phase distributed therein, and the density of the molybdenum alloy is less than 8 g/cm 3 .
  • the molybdenum alloy has a vanadium content of 10 to 50 A% and at least one silicide phase selected from (Mo, V) 3 Si, (Mo, V) 5 SiB 2 and (Mo, V) 5 Si 3 .
  • Preferred content ranges are for Si 8-15 at%, B 7-20 at% and V 10-40 at%.
  • the alloy system according to the invention has a silicide phase content of at least 30% and in particular at least 50%.
  • vanadium is one of the so-called extended refractory metals, but has a significantly lower density of 6.11 g/cm 3 at 293.15 K than molybdenum with 10.28 g/cm 3 .
  • Another advantage of vanadium is that it has a similar atomic radius (134 pm) to molybdenum (145 pm) and the same crystal structure, namely body-centered cubic. This results in good miscibility and interchangeability of these two elements in the crystal lattice and thus good alloyability of the two elements.
  • vanadium has a high ductility, so its addition does not impair the toughness of the ternary Mo-Si-B alloy.
  • the vanadium-added alloys according to the invention have a density of less than 8 g/cm 3 at 293.15 K.
  • the ternary Mo-Si-B system has a Mo solid solution matrix that inherently has good toughness. Boron is deposited on interstitial sites and silicon on regular lattice sites in the Mo phase.
  • silicide phases can form during pre-alloying, for example during very long and high-energy alloying processes or during powder atomization. Silicide phases form at the latest during compaction of the powder and/or heat treatment. These phases, in particular Mo 3 Si (A15) and Mo 5 SiB 2 (T2), give the system a high level of strength, but reduce toughness due to their brittleness. With increasing concentration of silicon and boron, the proportion of silicide phases increases, which can form the matrix phase in the structure if a critical proportion is exceeded (approx. 50% when produced via the mechanical alloying process). It is expected that this will not only reduce toughness but also lead to a Shift of the brittle-ductile transition temperature towards higher temperatures. To avoid these disadvantages, it is therefore desirable to produce alloys with Mo solid solution phase as matrix phase.
  • V does not lead to a deterioration of the toughness of Mo-Si-B alloys, but to the stabilization of the Mo solid solution phase and, with a slightly increased solid solution content, to the improvement of the toughness of the overall system.
  • the addition of vanadium to the ternary Mo-Si-B alloy system not only leads to a reduction in density, but also to an improvement in strength while maintaining the same toughness.
  • the alloy system according to the invention has a structure in which the silicide phases are distributed in a Mo solid solution matrix, even with silicide phase proportions of more than 50%.
  • titanium (Ti) can be added to the Mo-Si-B-V base alloy in an amount of 0.5-30 at%.
  • the base alloy according to the invention can contain one or more additional alloying elements selected from the group consisting of Al, Fe, Zr, Mg, Li, Cr, Mn, Co, Ni, Cu, Zn, Ge, Ga, Y, Nb, Cd, Ca and La, each in a content of 0.01 at% to 15 at%, preferably up to 10 at% and/or one or more alloying elements selected from the group consisting of Hf, Pb, Bi, Ru, Rh, Pd, Ag, Au, Ta, W, Re, Os, Ir and Pt, each in a content of 0.01 at% to preferably at most 5 at%.
  • additional alloying elements selected from the group consisting of Al, Fe, Zr, Mg, Li, Cr, Mn, Co, Ni, Cu, Zn, Ge, Ga, Y, Nb, Cd, Ca and La, each in a content of 0.01 at% to 15 at%, preferably up to 10 at% and/or one or more alloying elements selected from the group consisting of Hf,
  • the latter group consists of heavy elements with a density of more than 9 g/cm 3 , which should be added in as small an amount as possible to avoid an increase in density.
  • the alloys according to the invention can still contain interstitially soluble elements such as oxygen, nitrogen and hydrogen. These are unavoidable impurities that cannot always be completely removed from the process. However, they are only present in the ppm range.
  • the alloys according to the invention are non-eutectic but also near-eutectic and eutectic alloys.
  • Non-eutectic alloys are alloys that do not correspond to the eutectic stoichiometry.
  • Near-eutectic alloys are alloys that are close to the eutectic in terms of their composition.
  • the non-eutectic alloys according to the invention are advantageously produced using powder metallurgical processes.
  • Powder mixtures consisting of the corresponding alloy components are treated by mechanical alloying, whereby both elemental powders and pre-alloyed powders can be used.
  • Various high-energy mills can be used for mechanical alloying, such as attritors, drop mills, vibrating mills, planetary ball mills.
  • the metal powder is intensively mechanically treated and homogenized down to the atomic level.
  • pre-alloying can also be carried out by means of an atomization process under protective gas.
  • the mechanically alloyed powder can then be compacted using FAST (Field Assisted Sintering Technology).
  • FAST Field Assisted Sintering Technology
  • a suitable FAST process is carried out, for example, under vacuum at a pressure of 50 MPa and a holding time of 15 minutes at 1600 °C, with heating and cooling at 100 K/min.
  • the powders can also be compacted by cold isostatic pressing, sintering for example at 1600 °C, and hot isostatic pressing (HIP) at 1500 °C and 200 MPa.
  • FAST Field Assisted Sintering Technology
  • the FAST process is preferred because the process times for sintering are considerably shorter than for hot pressing.
  • FAST also makes it possible to achieve greater strength and hardness, expressed here as microhardness, because grain growth is prevented during the process due to the significantly shorter process times. Fine grains in the structure result in better strength than coarser grains.
  • the density-optimized alloy according to the invention can be produced using an additive manufacturing process such as selective laser melting (SLM) or laser metal deposition (LMD).
  • SLM selective laser melting
  • LMD laser metal deposition
  • the processing is carried out here on the basis of mechanically alloyed or atomized and thus pre-alloyed powders, which have a lower melting point than pure ternary Mo-Si-B alloys due to the addition of V (and possibly Ti or other alloying elements) and are therefore easier to process using such processes.
  • One advantage of the additive manufacturing process is that components close to the final structure can be obtained in a cost-, time- and material-efficient manner.
  • Near-eutectic and eutectic alloys can be processed particularly well using additive processes, as particularly fine-grained structures with good mechanical strength can be produced.
  • Such alloys have a composition range of Mo-(7..19)Si-(6... 10)B-(5... 15)V or Mo-(7..19)Si-(6... 10)B-(5... 15)V-(5... 18)Ti.
  • these alloys are also suitable for other melting metallurgical processes, including directional solidification in the well-known Bridgman process.
  • the resulting powder mixtures were ground in a planetary ball mill from Retsch GmbH (model PM 4000) with the following parameters: number of revolutions 200 rpm temperature 20 °C (293.15 K) K/P ratio 14:1 (100 balls) Grinding time 30 hours
  • the alloys obtained according to 1. were heat treated.
  • the samples were each filled into ceramic dishes and annealed under argon inert gas for the entire duration of the heat treatment.
  • the samples obtained were given the following designation: MK3-WB, MK4-WB, MK5-WB and MK6-WB
  • the MK6-WB sample was compacted using FAST.
  • the sample was compacted under vacuum at a pressure of 50 MPa and held for 10 minutes at 1100 °C and 15 minutes at 1600 °C, heating and cooling at 100 K/min.
  • the sample obtained was named MK6 FAST.
  • the microstructure and morphology of the powder particles were analyzed using a Philips ESEM (SEM) XL30 scanning electron microscope.
  • the phase contrasts were displayed using BSE contrast.
  • the phases contained were assigned using EDX analysis.
  • sample preparation small amounts of the sample powder were cold embedded in epoxy resin as follows, then wet ground with SiC sandpaper with grain sizes of 800 and 1200 and polished with diamond suspension.
  • the samples were sputtered with a thin layer of gold before embedding.
  • the structure of the alloy MK6 FAST is in binarized form in Figure 2
  • the Mo solid solution phase is white and both silicide phases are black.
  • the density of MK6 FAST was determined using Archimedes' principle to be 7.8 g/cm 3 .
  • the EDX analysis confirmed the results of the XRD measurement.
  • the silicide phases (Mo,V) 3 Si and (Mo,V) 5 SiB 2 were formed in the structure of all samples. A higher proportion of vanadium was found in the silicide phases than in the solid solution matrix.
  • MK6 FAST The evaluation of MK6 FAST showed that it has the highest proportion of silicide phases in the microstructure compared to the heat-treated samples.
  • microhardness of the mechanically alloyed (ML) samples MK3, MK4, MK5, MK6 and MK6-Fast was measured.
  • the samples were prepared as for SEM analysis (see B. 2.), but without gold sputtering.
  • the microhardness of the silicides in the FAST sample is significantly higher than that of the solid solution phase.
  • the very fine and homogeneous distribution of the silicide phases and their proportion of approx. 55% ensure a high overall hardness of the alloy.
  • the overall hardness of the FAST sample is made up of the respective microhardnesses of the individual phases Mo,V solid solution phase and the two silicide phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Silicon Compounds (AREA)

Claims (10)

  1. Alliage de molybdène comprenant 5 à 25% en atome de silicium, 0,5 à 25% en atome de bore et 3 à 40% en atome de vanadium, éventuellement du titane (Ti) en une quantité de 0,5 à 30% en atome, éventuellement un ou plusieurs éléments d'alliage choisis dans le groupe constitué par Al, Fe, Zr, Mg, Li, Cr, Mn, Co, Ni, Cu, Zn, Ge, Ga, Y, Nb, Cd, Ca et La, à chaque fois en une teneur de 0,01% en atome à 15% en atome et/ou éventuellement un ou plusieurs éléments d'alliage choisis dans le groupe constitué par Hf, Pb, Bi, Ru, Rh, Pd, Ag, Au, Ta, W, Re, Os, Ir et Pt à chaque fois en une teneur de 0,01% en atome à 5% en atome,
    ainsi que, pour le reste, du molybdène en une proportion de molybdène d'au moins 40% en atome, l'alliage de molybdène présentant une matrice de cristaux mixtes de molybdène-vanadium et, répartie dans celle-ci, au moins une phase de siliciure et la masse volumique de l'alliage de molybdène étant inférieure à 8 g/cm3.
  2. Alliage de molybdène selon la revendication 1, au moins une phase de siliciure étant choisie parmi (Mo,V)3Si, (Mo,V)5SiB2 et (Mo,V)5Si3.
  3. Alliage de molybdène selon la revendication 1 ou 2, la teneur en Ti étant de 0,5 à 10% en atome.
  4. Alliage de molybdène selon l'une des revendications précédentes, la teneur en vanadium étant de 10% à 40% en atome.
  5. Alliage de molybdène selon l'une des revendications précédentes, la proportion de phases de siliciure représentant au moins 30%.
  6. Alliage de molybdène selon l'une des revendications 2 à 5,
    l'alliage présentant une structure comportant une matrice de cristaux mixtes de Mo-V et, réparti(s) dans celle-ci, du (Mo,V)3Si et/ou du (Mo,V)5SiB2.
  7. Alliage de molybdène selon la revendication 6, la phase (Mo,V)5Si3 étant en outre présente.
  8. Procédé pour la préparation d'un alliage de molybdène selon l'une des revendications précédentes,
    les éléments de départ étant alliés mécaniquement dans une première étape et ensuite compactés dans une deuxième étape par un procédé FAST (Field Assisted Sintering Technology - technologie de frittage assisté par champ) ou au moyen d'un procédé de compression isostatique à chaud.
  9. Utilisation d'un alliage de molybdène selon l'une des revendications 1 à 7 comme matériau de structure pour des applications rotatives ou volantes, en particulier dans la technologie aéronautique et aérospatiale.
  10. Utilisation d'un alliage de molybdène selon la revendication 9 comme matériau pour une turbine.
EP19739199.8A 2018-06-05 2019-06-04 Alliage de molybdène à densité optimisée Active EP3802898B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018113340.5A DE102018113340B4 (de) 2018-06-05 2018-06-05 Dichteoptimierte Molybdänlegierung
PCT/EP2019/064475 WO2019234016A1 (fr) 2018-06-05 2019-06-04 Alliage de molybdène à densité optimisée

Publications (3)

Publication Number Publication Date
EP3802898A1 EP3802898A1 (fr) 2021-04-14
EP3802898C0 EP3802898C0 (fr) 2024-05-22
EP3802898B1 true EP3802898B1 (fr) 2024-05-22

Family

ID=67253841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19739199.8A Active EP3802898B1 (fr) 2018-06-05 2019-06-04 Alliage de molybdène à densité optimisée

Country Status (6)

Country Link
US (1) US11492683B2 (fr)
EP (1) EP3802898B1 (fr)
JP (2) JP2021527162A (fr)
CN (1) CN112218964B (fr)
DE (1) DE102018113340B4 (fr)
WO (1) WO2019234016A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018113340B4 (de) 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Dichteoptimierte Molybdänlegierung
US11761064B2 (en) * 2020-12-18 2023-09-19 Rtx Corporation Refractory metal alloy
CN112919475A (zh) * 2021-03-10 2021-06-08 南京理工大学 一种合成二硅化钼粉体的方法
AT17662U1 (de) * 2021-11-04 2022-10-15 Plansee Se Bauteil aus Refraktärmetall
CN113975470B (zh) * 2021-11-22 2023-09-22 山东瑞安泰医疗技术有限公司 一种可降解金属钼基合金血管内支架制备方法
CN115896575B (zh) * 2022-11-07 2024-01-26 湖南科技大学 一种Mo-12Si-8.5B/Ag宽温域自润滑材料及其制备方法
DE102023108051A1 (de) 2023-03-29 2024-10-02 Deloro Wear Solutions GmbH Molybdän-basierte Legierung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1155609B (de) * 1956-12-04 1963-10-10 Union Carbide Corp Ausgangsmaterial zur Herstellung oxydationsbestaendiger und hochtemperaturfester Gegenstaende, insbesondere selbst regenerierende Schutzueberzuege fuer Metallkoerper
GB1476589A (en) * 1974-08-07 1977-06-16 Allied Chem Amorphous metal alloys
US5693156A (en) * 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
US5865909A (en) * 1995-07-28 1999-02-02 Iowa State University Research Foundation, Inc. Boron modified molybdenum silicide and products
US6497968B2 (en) * 2001-02-26 2002-12-24 General Electric Company Oxidation resistant coatings for molybdenum silicide-based composite articles
US6652674B1 (en) * 2002-07-19 2003-11-25 United Technologies Corporation Oxidation resistant molybdenum
US7005191B2 (en) * 2003-05-01 2006-02-28 Wisconsin Alumni Research Foundation Oxidation resistant coatings for ultra high temperature transition metals and transition metal alloys
AT6955U1 (de) * 2003-09-19 2004-06-25 Plansee Ag Ods-molybdän-silizium-bor-legierung
AT7187U1 (de) * 2004-02-25 2004-11-25 Plansee Ag Verfahren zur herstellung einer molybdän-legierung
US8268035B2 (en) * 2008-12-23 2012-09-18 United Technologies Corporation Process for producing refractory metal alloy powders
US8449817B2 (en) * 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
JP5394582B1 (ja) * 2012-06-07 2014-01-22 株式会社アライドマテリアル モリブデン耐熱合金
DE102015214730A1 (de) * 2014-08-28 2016-03-03 MTU Aero Engines AG Kriech- und oxidationsbeständige Molybdän - Superlegierung
DE102015209583A1 (de) 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
DE102015114092B4 (de) * 2015-08-25 2022-06-23 Otto-Von-Guericke-Universität Magdeburg Oxidationsbeständige Vanadiumlegierungen für hochtemperaturbeanspruchte Bauteile
DE102018113340B4 (de) 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Dichteoptimierte Molybdänlegierung

Also Published As

Publication number Publication date
DE102018113340B4 (de) 2020-10-01
CN112218964A (zh) 2021-01-12
EP3802898C0 (fr) 2024-05-22
WO2019234016A1 (fr) 2019-12-12
CN112218964B (zh) 2023-03-10
JP2024116201A (ja) 2024-08-27
DE102018113340A1 (de) 2019-12-05
EP3802898A1 (fr) 2021-04-14
JP2021527162A (ja) 2021-10-11
US20210238717A1 (en) 2021-08-05
US11492683B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
EP3802898B1 (fr) Alliage de molybdène à densité optimisée
EP3691815B1 (fr) Composant produit par fabrication additive et procédé de production de ce composant
DE69825057T2 (de) Binder mit verbesserter plastizität für einen cermet, verfahren zu seiner herstellung und anwendungen
DE69227503T2 (de) Hartlegierung und deren herstellung
DE1909781A1 (de) Metallpulver aus gekneteten Verbundteilchen und Verfahren zu deren Herstellung
WO2005028692A1 (fr) Alliage ods molybdene-silicium-bore
WO2019120347A1 (fr) Matériau réfractaire renforcé de particules
EP1999087A1 (fr) Matériau à base de borure fritté résistant a l'usure, mélange poudreux frittable destiné à la fabrication de ce matériau, procédé de fabrication du materiau et son utilisation
DE102013103896A1 (de) Verfahren zum Herstellen eines thermoelektrischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
DE69702949T2 (de) Kompositkarbidpulver zur Verwendung für Sinterkarbid und Verfahren zu dessen Herstellung
DE19640788C1 (de) Beschichtungspulver und Verfahren zu seiner Herstellung
EP3883708A1 (fr) Élément en métal réfractaire fabriqué de manière additive, procédé de fabrication additive et poudre
AT501142B1 (de) Röntgenröhre mit einem röntgentargetsubstrat und ein verfahren zu deren herstellung
EP3015199A2 (fr) Procede de fabrication d'un alliage cible resistant a de hautes temperatures, dispositif, alliage et composant correspondant
WO2021094560A1 (fr) Poudre sphérique pour la fabrication d'objets en 3d
EP3883711A1 (fr) Composant métallique réfractaire produit par fabrication additive, procédé de fabrication additive et poudre
DE112016003045T5 (de) Gussmaterial und Verfahren zur Herstellung eines Gussmaterials
DE102015114092B4 (de) Oxidationsbeständige Vanadiumlegierungen für hochtemperaturbeanspruchte Bauteile
DE102007052198B3 (de) Metallpulvermischung und deren Verwendung
DE2437444B2 (de) Verfahren zur Herstellung eines anisotropen Dauermagnetwerkstoffes aus einer Mangan-Aluminium-Kohlenstoff-Legierung
WO1995033079A1 (fr) Production d'alliages-mere de type intermetallique
DE102019104492A1 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
DE10117657A1 (de) Komplex-Borid-Cermet-Körper, Verfahren zu dessen Herstellung und Verwendung dieses Körpers
DE10210423C1 (de) Kupfer-Niob-Legierung und Verfahren zu ihrer Herstellung
AT265682B (de) Verbundstoff und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 25/00 20060101ALI20231031BHEP

Ipc: F01D 5/28 20060101ALI20231031BHEP

Ipc: C22C 1/04 20060101ALI20231031BHEP

Ipc: C22C 30/00 20060101ALI20231031BHEP

Ipc: C22C 32/00 20060101ALI20231031BHEP

Ipc: C22C 27/04 20060101ALI20231031BHEP

Ipc: C22C 27/02 20060101AFI20231031BHEP

INTG Intention to grant announced

Effective date: 20231204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019011314

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240530

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240626

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240822