EP3793741B1 - Method for improving the productivity of grinding plants - Google Patents
Method for improving the productivity of grinding plants Download PDFInfo
- Publication number
- EP3793741B1 EP3793741B1 EP19728863.2A EP19728863A EP3793741B1 EP 3793741 B1 EP3793741 B1 EP 3793741B1 EP 19728863 A EP19728863 A EP 19728863A EP 3793741 B1 EP3793741 B1 EP 3793741B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grinding
- wear
- geometry
- protection layer
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 28
- 239000002347 wear-protection layer Substances 0.000 claims description 16
- 239000010410 layer Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C15/00—Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
- B02C15/003—Shape or construction of discs or rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C15/00—Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
- B02C15/004—Shape or construction of rollers or balls
- B02C15/005—Rollers or balls of composite construction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C25/00—Control arrangements specially adapted for crushing or disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C4/00—Crushing or disintegrating by roller mills
- B02C4/28—Details
- B02C4/30—Shape or construction of rollers
- B02C4/305—Wear resistant rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2210/00—Codes relating to different types of disintegrating devices
- B02C2210/02—Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
Definitions
- the present invention relates to a method for improving the productivity of grinding plants, the optimum wear geometry of grinding plants being preserved by applying a protective layer, and thus the susceptibility to repair of the plants being reduced and their productivity being improved.
- the comminution effect of grinding tools is particularly influenced by signs of wear.
- the specific energy requirement during the grinding process changes depending on wear. The energy requirement runs through a so-called “bathtub curve", with the energy requirement initially decreasing, then transitioning into a constant phase and finally rising steeply as the wear of the grinding aggregates progresses.
- grinding tools made of cast steel can be made more wear-resistant by build-up welding.
- build-up welding a high-alloy material is applied to highly stressed components as surface protection.
- the welding materials contain chromium and carbon, with other carbide-forming substances such as niobium, vanadium or others being used depending on the desired wear resistance.
- the third group of materials includes the grinding parts made of compound casting. Two or more materials are constructively combined to form a composite material.
- the grinding tools are preferably made of a metal matrix composite material, with ceramic shaped pieces being embedded in a ductile cast iron. In this way, particularly hard and wear-resistant grinding tools are obtained.
- WO2016101952 discloses a method for forming a wear surface on a roller body and correspondingly a grinding roller comprising a grinding surface coated with a thin anti-wear layer.
- the object of the present invention is to offer a method that makes it possible to increase the service life of grinding aggregates or grinding bodies beyond the level known from the prior art.
- the task is solved by a method for improving the productivity of grinding plants, which initially includes the step of setting the optimal wear geometry of the grinding aggregates by conventional operation of the grinding plant.
- the wear geometry is optimal when the specific energy requirement of the grinding plant reaches a minimum for a given throughput.
- the achievement of the optimal wear geometry is controlled and determined by continuous measurement and recording of the energy requirement.
- the optimal wear geometry is then preserved by applying a thin wear protection layer to the surface of the grinding aggregates or grinding bodies, in particular grinding rollers and grinding plates.
- the thin anti-wear layer is preferably applied by build-up welding or laser cladding.
- Hard metals or carbidic hard materials such as WC, CrC, TiC, VC, TaC and NbC, can be used as the material for the wear protection layer, with hard metals being applied in a preferred embodiment of the present invention, which are doped with appropriate carbide-forming substances depending on the desired wear resistance become.
- the method according to the invention is particularly suitable for vertical roller grinding plants, the grinding aggregates or grinding media to be coated being grinding rollers and grinding plates.
- the layer thickness of the applied anti-wear layer is preferably 1 to 5 mm.
- the invention also relates to grinding bodies which have grinding surfaces coated on the surface with a thin anti-wear layer.
- the grinding bodies have an optimal wear geometry, which is determined by continuous measurement and recording of the energy requirement during the grinding process and is defined as the geometry at which a minimum of the energy requirement is achieved for a given throughput.
- the wear protection layer is a build-up welded layer.
- a further advantageous embodiment of the present invention provides that the grinding bodies are parts of a vertical roller grinding system and the coated surfaces are the grinding surfaces of grinding rollers and grinding plates.
- the layer thickness of the thin anti-wear layer is advantageously 1 to 5 mm.
- the present invention is based on the finding and the idea that the grinding media or grinding aggregates in most known grinding processes eventually form an optimal wear geometry that is only made possible by the wear of the grinding media and that adjusts itself automatically after a certain period of operation of the grinding plant.
- the energy requirement runs through what is known as a "bathtub curve", with the energy requirement initially decreasing, then transitioning into a constant phase and finally rising steeply as the grinding aggregates wear out.
- the achievement of the optimal wear geometry can be read from the energy consumption.
- the optimal wear geometry is reached when the energy consumption is at a minimum with a constant throughput. This condition, in which the product quality also remains at a constant level, corresponds to the optimum for the grinding process.
- the present invention is based on the idea of preserving the ideal state, in which the grinding media have their optimum wear geometry, and thus improving the productivity (yield, costs and quality) of the product to be ground. Since this state is reflected in the achievement of a minimum of the energy requirement, the optimal point in time for conservation of the corresponding geometry can be determined in a simple manner by continuous measurement and recording of the energy requirement.
- a thin anti-wear layer is applied at this time to the part of the surface of the grinding aggregates or grinding media that is susceptible to wear, so that the geometry of the grinding media is not changed, while the wear resistance of the surface is increased and the geometry is thereby preserved. With continued operation of the plant, the geometry will now change less quickly in comparison to a geometry that has not been conserved, so that the ideal state is retained for longer and the grinding plant can be operated over a longer period of time without additional downtime.
- the invention is to be explained in more detail below using a numerical example for a grinding plant for cement. According to conservative estimates, the measures described above should improve the availability of the grinding plant by more than 5%, which corresponds to a productivity increase of 5%. With a production of 200 t/h, this corresponds to an additional production of 86,400 t/a, which would correspond to an additional income of 1,036,800 € with a realistic profit of 12 €/t. At the same time, with a typical energy requirement of 28 kWh/t, continuous operation with optimal wear geometry would save an estimated at least 3% in energy costs, which corresponds to energy costs of approx. 0.15 €/kWh for an annual production of 1.5 million tons (90% utilization was calculated ) would correspond to €189,000.
- the figure 1 is a sectional view of a section of a vertical roller grinding plant, such as that used in the cement industry.
- a stationary, rotatable cylindrical grinding roller 1 is resiliently pressed against a rotary driven grinding table or grinding track 4, the grinding track 4 being reinforced with grinding plates 2 in the area against which the grinding rollers 1 are pressed.
- the grinding aggregates or grinding media are in their original state and have a smooth, intact profile 5, 6.
- the figure 2 shows the same arrangement as figure 1 after prolonged grinding operation, with the grinding rollers 1 and also the grinding plates 2 now showing their typical wear profiles 7, 8.
- FIG 3 a section of a grinding roller 1 can be seen in a sectional view, with the grinding roller 1 having reached its optimal wear profile 7 .
- the original profile 5 is drawn in dashed lines in this representation.
- FIG 4 finally shows in the same representation as figure 3 the grinding roller 1, whose optimal wear profile 7 is now preserved with a thin wear protection layer 9, which is shown in dashed lines in the present case.
- the grinding plates 2 also have an optimal wear profile, which is preserved in the same way with a thin wear protection layer.
- the drawings described above are intended to be illustrative only and not limiting. That's how it can be The principle of the idea according to the invention can be applied to any other grinding plant in which an optimal wear geometry is also established during operation on its wearing parts. Also, the formation of the wear protection layer is not limited to build-up welding, but can be realized by any other known technique, it only having to be ensured that the right point in time for the preservation of the optimal wear geometry is selected in order to exploit the optimum of the advantages of the present invention .
- the present invention can advantageously also be combined with other known methods for increasing the wear resistance of grinding aggregates or for safeguarding production. If, for example, as in the DE 203 21 584 U1 described, grinding rollers can be swiveled out during operation of the plant virtually without stopping production, the optimal wear profiles on the surfaces of the grinding rollers can be preserved without resulting in a loss of production, whereby the repair interval for the plant is then extended at the same time.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Crushing And Grinding (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Produktivität von Mahlanlagen, wobei die optimale Verschleißgeometrie von Mahlanlagen durch Aufbringen einer Schutzschicht konserviert wird und damit die Reparaturanfälligkeit der Anlagen reduziert und ihre Produktivität verbessert wird.The present invention relates to a method for improving the productivity of grinding plants, the optimum wear geometry of grinding plants being preserved by applying a protective layer, and thus the susceptibility to repair of the plants being reduced and their productivity being improved.
Die Zerkleinerungswirkung von Mahlwerkzeugen wird insbesondere durch Verschleißerscheinungen beeinflusst. Je härter die zu mahlenden Partikel sind, umso größer ist der Materialabtrag bzw. der Verschleiß beim Mahlwerkzeug, wodurch wiederum der Durchsatz und die Produktqualität der Mahlanlage beeinflusst werden. Der spezifische Energiebedarf beim Mahlprozess ändert sich in Abhängigkeit vom Verschleiß. Dabei durchläuft der Energiebedarf eine sogenannte "Badewannenkurve", wobei der Energiebedarf zunächst abnimmt, dann in eine konstante Phase übergeht und schließlich bei fortschreitendem Verschleiß der Mahlaggregate steil ansteigt.The comminution effect of grinding tools is particularly influenced by signs of wear. The harder the particles to be ground, the greater the material removal or wear on the grinding tool, which in turn influences the throughput and product quality of the grinding plant. The specific energy requirement during the grinding process changes depending on wear. The energy requirement runs through a so-called "bathtub curve", with the energy requirement initially decreasing, then transitioning into a constant phase and finally rising steeply as the wear of the grinding aggregates progresses.
Zurzeit werden unterschiedliche Techniken angewendet, um die Kosten von Mahlprozessen zu reduzieren und die Produktqualität und den Mühlendurchsatz zu stabilisieren. So werden beispielsweise verschlissene Mahlaggregate oder Mahlkörper ausgetauscht oder einer Reparaturschweißung unterzogen, wobei in beiden Fällen die ursprüngliche Geometrie der Mahlaggregate wiederhergestellt wird.Various techniques are currently being used to reduce the costs of grinding processes and to stabilize product quality and mill throughput. For example, worn grinding aggregates or grinding bodies are replaced or subjected to repair welding, with the original geometry of the grinding aggregates being restored in both cases.
Die Verbesserung des Verschleißschutzes und Minimierung des Verschleißes von Mahlanlagen führt zu einer Steigerung der Verfügbarkeit der Anlage, einer Reduzierung der Ausfallzeiten und einer Verlängerung der Wartungsintervalle. Dabei werden heute insbesondere drei unterschiedliche Werkstoffgruppen eingesetzt, um die Mahlaggregate vor Verschleiß zu schützen.Improving wear protection and minimizing wear and tear on grinding plants leads to increased plant availability, reduced downtime and longer maintenance intervals. Today, three different groups of materials in particular are used to protect the grinding aggregates from wear.
So haben sich Mahlteile aus Chromgusseisen als Standardwerkstoffe im täglichen Einsatz bewährt. Diese Werkstoffe haben eine sehr gute Beständigkeit gegen Abrasion, so dass man bei einer durchgängigen Härte von 630 bis 800 HV20 einen gleichmäßigen vorhersehbaren Verschleiß erhält und die Reparaturintervalle entsprechend planen kann. Die Standzeit dieser Materialien kann durch Auftragschweißen zusätzlich erhöht werden.Grinding parts made of chrome cast iron have proven themselves as standard materials in daily use. These materials have very good resistance to abrasion, so that with a consistent hardness of 630 to 800 HV20 uniform, predictable wear and can plan the repair intervals accordingly. The service life of these materials can be further increased by build-up welding.
Ganz allgemein können Mahlwerkzeuge aus Stahlguss durch Auftragschweißen verschleißfester gemacht werden. Beim Auftragschweißen wird ein hochlegiertes Material als Oberflächenschutz auf hochbelastete Bauteile aufgebracht. Die Schweißwerkstoffe sind chrom- und kohlenstoffhaltig, wobei je nach angestrebter Verschleißfestigkeit weitere karbidbildende Stoffe, wie z.B. Niob, Vanadium oder andere, eingesetzt werden.In general, grinding tools made of cast steel can be made more wear-resistant by build-up welding. During build-up welding, a high-alloy material is applied to highly stressed components as surface protection. The welding materials contain chromium and carbon, with other carbide-forming substances such as niobium, vanadium or others being used depending on the desired wear resistance.
Die dritte Werkstoffgruppe umfasst die Mahlteile aus Verbundguss. Dabei werden zwei oder mehrere Werkstoffe konstruktiv zu einem Verbundwerkstoff kombiniert. Die Mahlwerkzeuge bestehen vorzugsweise aus einem Metallmatrix-Verbundwerkstoff, wobei keramische Formstücke in einem duktilen Gusseisen eingelagert sind. Auf diese Weise erhält man besonders harte und verschleißfeste Mahlwerkzeuge.The third group of materials includes the grinding parts made of compound casting. Two or more materials are constructively combined to form a composite material. The grinding tools are preferably made of a metal matrix composite material, with ceramic shaped pieces being embedded in a ductile cast iron. In this way, particularly hard and wear-resistant grinding tools are obtained.
So wird in der
In der
In der
Die oben beschriebenen Maßnahmen zur Erhöhung der Verschleißfestigkeit von Mahlaggregaten bzw. zur Sicherung der Produktion werden heute erfolgreich eingesetzt. Dennoch ist auch heute noch der Verschleiß der Mahlkörper bei den Mahlprozessen qualitäts- und kostenbestimmender Faktor, so dass weiterhin ein Bedarf besteht, Möglichkeiten und Verfahren zu finden, den Verschleiß von Mahlaggregaten bzw. Mahlkörpern zu reduzieren.The measures described above to increase the wear resistance of grinding aggregates and to ensure production are successful today deployed. Nevertheless, even today the wear of the grinding bodies in the grinding processes is a quality and cost-determining factor, so that there is still a need to find possibilities and methods to reduce the wear of grinding aggregates or grinding bodies.
Aufgabe der vorliegenden Erfindung besteht nun darin, ein Verfahren anzubieten, das es ermöglicht, die Standzeit von Mahlaggregaten bzw. Mahlkörpern über das aus dem Stand der Technik bekannte Maß hinaus zu erhöhen.The object of the present invention is to offer a method that makes it possible to increase the service life of grinding aggregates or grinding bodies beyond the level known from the prior art.
Gelöst wird die Aufgabe durch ein Verfahren zur Verbesserung der Produktivität von Mahlanlagen, das zunächst den Schritt umfasst, die optimale Verschleißgeometrie der Mahlaggregate durch konventionelles Betreiben der Mahlanlage einzustellen. Die optimale Verschleißgeometrie liegt dann vor, wenn der spezifische Energiebedarf der Mahlanlage bei vorgegebenem Durchsatz ein Minimum erreicht. Das Erreichen der optimalen Verschleißgeometrie wird durch kontinuierliche Messung und Aufzeichnung des Energiebedarfs kontrolliert und bestimmt. Die optimale Verschleißgeometrie wird dann durch Aufbringen einer dünnen Verschleißschutzschicht auf die Oberfläche der Mahlaggregate oder Mahlkörper, insbesondere Mahlwalzen und Mahlplatten, konserviert.The task is solved by a method for improving the productivity of grinding plants, which initially includes the step of setting the optimal wear geometry of the grinding aggregates by conventional operation of the grinding plant. The wear geometry is optimal when the specific energy requirement of the grinding plant reaches a minimum for a given throughput. The achievement of the optimal wear geometry is controlled and determined by continuous measurement and recording of the energy requirement. The optimal wear geometry is then preserved by applying a thin wear protection layer to the surface of the grinding aggregates or grinding bodies, in particular grinding rollers and grinding plates.
Für das Aufbringen der Verschleißschutzschicht kommen alle bekannten Verfahren in Frage. Vorzugsweise wird die dünne Verschleißschutzschicht durch Auftragschweißen oder Laser-Cladding aufgetragen.All known methods can be used for applying the wear protection layer. The thin anti-wear layer is preferably applied by build-up welding or laser cladding.
Als Material für die Verschleißschutzschicht können Hartmetalle oder karbidische Hartstoffe, wie z.B. WC, CrC, TiC, VC, TaC und NbC, eingesetzt werden, wobei bei einer bevorzugten Ausgestaltung der vorliegenden Erfindung Hartmetalle aufgetragen werden, die je nach angestrebter Verschleißfestigkeit mit entsprechenden karbidbildenden Stoffe gedopt werden.Hard metals or carbidic hard materials, such as WC, CrC, TiC, VC, TaC and NbC, can be used as the material for the wear protection layer, with hard metals being applied in a preferred embodiment of the present invention, which are doped with appropriate carbide-forming substances depending on the desired wear resistance become.
Das erfindungsgemäße Verfahren ist besonders geeignet für Vertikal-Rollenmahlanlagen, wobei die zu beschichtenden Mahlaggregate oder Mahlkörper Mahlwalzen und Mahlplatten sind.The method according to the invention is particularly suitable for vertical roller grinding plants, the grinding aggregates or grinding media to be coated being grinding rollers and grinding plates.
Die Schichtdicke der aufgetragenen Verschleißschutzschicht beträgt vorzugsweise 1 bis 5 mm.The layer thickness of the applied anti-wear layer is preferably 1 to 5 mm.
Gegenstand der Erfindung sind auch Mahlkörper, die oberflächig mit einer dünnen Verschleißschutzschicht beschichtete Mahlflächen aufweisen. Erfindungsgemäß besitzen die Mahlkörper eine optimale Verschleißgeometrie, die durch kontinuierliche Messung und Aufzeichnung des Energiebedarfs während des Mahlvorgangs bestimmt wird und dabei als die Geometrie definiert ist, bei der ein Minimum des Energiebedarfs bei vorgegebenem Durchsatz erreicht wird.The invention also relates to grinding bodies which have grinding surfaces coated on the surface with a thin anti-wear layer. According to the invention, the grinding bodies have an optimal wear geometry, which is determined by continuous measurement and recording of the energy requirement during the grinding process and is defined as the geometry at which a minimum of the energy requirement is achieved for a given throughput.
Bei einer vorteilhaften Ausführungsform ist die Verschleißschutzschicht eine auftragsgeschweißte Schicht.In an advantageous embodiment, the wear protection layer is a build-up welded layer.
Eine weitere vorteilhafte Ausgestaltung der vorliegenden Erfindung sieht vor, dass die Mahlkörper Teile einer Vertikal-Rollenmahlanlage sind und die beschichteten Oberflächen die Mahlflächen von Mahlwalzen und Mahlplatten sind. Vorteilhaft beträgt dabei die Schichtdicke der dünnen Verschleißschutzschicht 1 bis 5 mm.A further advantageous embodiment of the present invention provides that the grinding bodies are parts of a vertical roller grinding system and the coated surfaces are the grinding surfaces of grinding rollers and grinding plates. The layer thickness of the thin anti-wear layer is advantageously 1 to 5 mm.
Der vorliegenden Erfindung liegen die Erkenntnis und die Idee zugrunde, dass die Mahlkörper oder Mahlaggregate bei den meisten bekannten Mahlvorgängen irgendwann eine optimale Verschleißgeometrie ausbilden, die erst durch den Verschleiß der Mahlkörper ermöglicht wird und sich nach einer bestimmten Betriebsdauer der Mahlanlage selbsttätig einstellt. Dabei durchläuft der Energiebedarf eine sogenannte "Badewannenkurve", wobei der Energiebedarf zunächst abnimmt, dann in eine konstante Phase übergeht und schließlich bei stärkerem Verschleiß der Mahlaggregate steil ansteigt. Somit lässt sich das Erreichen der optimalen Verschleißgeometrie aus dem Energieverbrauch ablesen. Die optimale Verschleißgeometrie ist dann erreicht, wenn der Energieverbrauch bei einem konstanten Durchsatz ein Minimum aufweist. Dieser Zustand, bei dem auch die Produktqualität auf einem konstanten Niveau bleibt, entspricht dem Optimum für den Mahlprozess.The present invention is based on the finding and the idea that the grinding media or grinding aggregates in most known grinding processes eventually form an optimal wear geometry that is only made possible by the wear of the grinding media and that adjusts itself automatically after a certain period of operation of the grinding plant. The energy requirement runs through what is known as a "bathtub curve", with the energy requirement initially decreasing, then transitioning into a constant phase and finally rising steeply as the grinding aggregates wear out. Thus, the achievement of the optimal wear geometry can be read from the energy consumption. The optimal wear geometry is reached when the energy consumption is at a minimum with a constant throughput. This condition, in which the product quality also remains at a constant level, corresponds to the optimum for the grinding process.
Bei längerer Betriebsdauer verändert sich aufgrund des fortschreitenden Verschleißes die Geometrie der Mahlkörper und der Energiebedarf steigt bei gleichzeitig sinkender Produktivität an. Ab einer bestimmten Verschleißgeometrie steigt der Verschleiß der Mahlkörper so rapide an, dass die Mahlkörper ausgebessert oder ausgewechselt werden müssen, wenn ein qualitativ und quantitativ ausgeglichener Mahlbetrieb gewährleistet sein soll. In diesem Stadium ist die Mahlanlage besonders anfällig für Produktionsunterbrechungen, da es bei unruhigem Mahlverlauf zu Vibrationsspitzen kommt, die eine Unterbrechung der kontinuierlichen Produktion erforderlich machen, um einen Totalausfall der Anlage zu verhindern. Das Ergebnis ist, dass die Verfügbarkeit der Anlage sinkt, die Produktqualität abnimmt und die Produktausbeute drastisch zurückgeht. Dieser Zustand wird bei allen derzeitigen Mahltechniken nach einer bestimmten Betriebsdauer erreicht und muss durch eine Reparatur oder den Ersatz der Mahlkörper behoben werden, da ein weiterer Betrieb der Anlage an dieser Stelle ökonomisch nicht mehr sinnvoll ist.With longer periods of operation, the geometry of the grinding media changes due to progressive wear and the energy requirement increases while productivity decreases at the same time. Above a certain wear geometry, wear increases Grinding media so rapidly that the grinding media must be repaired or replaced if a qualitatively and quantitatively balanced grinding operation is to be guaranteed. At this stage, the grinding plant is particularly susceptible to production interruptions, as vibration peaks occur if the grinding process is not smooth, which means that continuous production must be interrupted in order to prevent a total breakdown of the plant. The result is that plant availability decreases, product quality decreases and product yield drops drastically. With all current grinding technologies, this state is reached after a certain period of operation and must be remedied by repairing or replacing the grinding media, since continued operation of the system at this point no longer makes economic sense.
Der vorliegenden Erfindung liegt nun die Idee zugrunde, den Idealzustand, bei dem die Mahlkörper ihre optimale Verschleißgeometrie besitzen, zu konservieren und damit die Produktivität (Ausbeute, Kosten und Qualität) des zu mahlenden Produktes zu verbessern. Da sich dieser Zustand im Erreichen eines Minimums des Energiebedarfs widerspiegelt, kann durch eine kontinuierliche Messung und Aufzeichnung des Energiebedarfs auf einfache Weise der optimale Zeitpunkt für eine Konservierung der entsprechenden Geometrie festgestellt werden. Erfindungsgemäß wird zu diesem Zeitpunkt eine dünne Verschleißschutzschicht auf den verschleißanfälligen Teil der Oberfläche der Mahlaggregate oder Mahlkörper aufgebracht, so dass die Geometrie der Mahlkörper nicht verändert wird, während die Verschleißfestigkeit der Oberfläche heraufgesetzt wird und dadurch die Geometrie konserviert wird. Bei einem weiteren Betrieb der Anlage wird sich nun die Geometrie im Vergleich zu einer nicht konservierten Geometrie weniger schnell verändern, so dass der Idealzustand länger erhalten bleibt und die Mahlanlage über einen längeren Zeitraum ohne zusätzlichen Stillstand betrieben werden kann.The present invention is based on the idea of preserving the ideal state, in which the grinding media have their optimum wear geometry, and thus improving the productivity (yield, costs and quality) of the product to be ground. Since this state is reflected in the achievement of a minimum of the energy requirement, the optimal point in time for conservation of the corresponding geometry can be determined in a simple manner by continuous measurement and recording of the energy requirement. According to the invention, a thin anti-wear layer is applied at this time to the part of the surface of the grinding aggregates or grinding media that is susceptible to wear, so that the geometry of the grinding media is not changed, while the wear resistance of the surface is increased and the geometry is thereby preserved. With continued operation of the plant, the geometry will now change less quickly in comparison to a geometry that has not been conserved, so that the ideal state is retained for longer and the grinding plant can be operated over a longer period of time without additional downtime.
Durch wiederholte Anwendung dieses Verfahrens kann die Anlage über einen langen Zeitraum kontinuierlich im optimalen Geometriebereich betrieben werden. Insbesondere kann der Betrieb zusätzlich durch regelmäßige Verschleißmessungen überwacht werden und in Abhängigkeit vom Verschleißzustand der Mahlkörper können die notwendigen Regenerations- bzw. Konservierungsmaßnahmen unternommen werden, um die optimale Verschleißgeometrie zu erhalten und einen kontinuierlichen Betrieb zu ermöglichen.Repeated application of this process allows the system to be operated continuously in the optimum geometry range over a long period of time. In particular, the operation can also be monitored by regular wear measurements and depending on the state of wear of the grinding media the necessary regeneration or preservation measures can be taken to maintain the optimal wear geometry and to enable continuous operation.
Im Folgenden soll die Erfindung anhand eines Zahlenbeispiels für eine Mahlanlage für Zement näher erläutert werden. Nach vorsichtigen Schätzungen sollten durch die oben beschriebenen Maßnahmen die Verfügbarkeit der Mahlanlage um mehr als 5 % verbessert werden, was somit einer Produktivitätssteigerung von 5 % entspricht. Bei einer Produktion von 200 t/h entspricht dies einer Mehrproduktion von 86.400 t/a, was bei einem realistischen Gewinn von 12 €/t einem zusätzlichen Ertrag von 1.036.800 € entsprechen würde. Gleichzeitig würde man bei einem typischen Energiebedarf von 28 kWh/t durch den kontinuierlichen Betrieb mit optimaler Verschleißgeometrie schätzungsweise mindestens 3 % an Energiekosten einsparen, was bei Energiekosten von ca. 0.15 €/kWh bei einer Jahresproduktion von 1.5 Mio Tonnen (gerechnet wurden 90% Auslastung) 189.000 € entsprechen würde.The invention is to be explained in more detail below using a numerical example for a grinding plant for cement. According to conservative estimates, the measures described above should improve the availability of the grinding plant by more than 5%, which corresponds to a productivity increase of 5%. With a production of 200 t/h, this corresponds to an additional production of 86,400 t/a, which would correspond to an additional income of 1,036,800 € with a realistic profit of 12 €/t. At the same time, with a typical energy requirement of 28 kWh/t, continuous operation with optimal wear geometry would save an estimated at least 3% in energy costs, which corresponds to energy costs of approx. 0.15 €/kWh for an annual production of 1.5 million tons (90% utilization was calculated ) would correspond to €189,000.
Bevorzugte Ausführungsformen der Erfindung werden im Folgenden anhand von Zeichnungen beschrieben, wobei diese lediglich als Erläuterung gedacht und nicht einschränkend auszulegen sind. In den Zeichnungen zeigen:
Figur 1- eine Schnittdarstellung eines Ausschnitts einer Vertikal-Rollenmahlanlage,
Figur 2- eine Schnittdarstellung eines Ausschnitts einer Vertikal-Rollenmahlanlage,
Figur 3- eine Schnittdarstellung eines Ausschnitts einer Walze einer Vertikal-Rollenmahlanlage und
Figur 4- eine weitere Schnittdarstellung eines Ausschnitts einer Walze einer Vertikal-Rollenmahlanlage.
- figure 1
- a sectional view of a section of a vertical roller mill,
- figure 2
- a sectional view of a section of a vertical roller mill,
- figure 3
- a sectional view of a section of a roller of a vertical roller mill and
- figure 4
- another sectional view of a section of a roller of a vertical roller mill.
Im Folgenden wird die Erfindung anhand der oben aufgeführten Zeichnungen ausführlich erläutert.The invention is explained in detail below with reference to the drawings listed above.
Die
Die
In der
Die
Auch bei den Mahlplatten 2 stellt sich ein optimales Verschleißprofil ein, welches auf die gleiche Weise mit einer dünnen Verschleißschutzschicht konserviert wird. Auf eine zusätzliche zeichnerische Darstellung der Mahlplatten 2, die ein vergleichbares optimales Verschleißprofil wie die Mahlwalzen 1 aufweisen, wurde an dieser Stelle verzichtet.The grinding
Wie bereits eingangs erwähnt wurde, sind die oben beschriebenen Zeichnungen lediglich als Erläuterung gedacht und nicht als Einschränkung zu sehen. So kann das Prinzip der erfindungsgemäßen Idee auf jede andere Mahlanlage angewendet werden, bei der sich während des Betriebs an ihren Verschleißteilen ebenfalls eine optimale Verschleißgeometrie einstellt. Auch ist die Ausbildung der Verschleißschutzschicht nicht auf das Auftragschweißen beschränkt, sondern kann durch jede andere bekannte Technik realisiert werden, wobei lediglich gewährleistet sein muss, dass der richtige Zeitpunkt für die Konservierung der optimalen Verschleißgeometrie gewählt wird, um das Optimum der Vorteile der vorliegenden Erfindung auszuschöpfen.As mentioned at the outset, the drawings described above are intended to be illustrative only and not limiting. That's how it can be The principle of the idea according to the invention can be applied to any other grinding plant in which an optimal wear geometry is also established during operation on its wearing parts. Also, the formation of the wear protection layer is not limited to build-up welding, but can be realized by any other known technique, it only having to be ensured that the right point in time for the preservation of the optimal wear geometry is selected in order to exploit the optimum of the advantages of the present invention .
So kann die vorliegende Erfindung vorteilhaft auch mit anderen bekannten Verfahren zur Erhöhung der Verschleißfestigkeit von Mahlaggregaten bzw. zur Sicherung der Produktion kombiniert werden. Wenn beispielsweise, wie in der
- 11
- Mahlwalzegrinding roller
- 22
- Mahlplattegrinding plate
- 33
- Mahlraumgrinding room
- 44
- Mahlbahngrinding track
- 55
- Ursprungsprofil (Mahlwalze)Original profile (grinding roller)
- 66
- Ursprungsprofil (Mahlplatte)Original profile (grinding plate)
- 77
- Verschleißprofil (Mahlwalze)wear profile (grinding roller)
- 88th
- Verschleißprofil (Mahlplatte)wear profile (grinding plate)
- 99
- Verschleißschutzschichtwear protection layer
Claims (10)
- A method for improving the productivity of grinding plants, the method comprising the steps of:- reaching the optimum wear geometry of the grinding units by conventional operation of the grinding plant, the optimum wear geometry being present when the specific energy requirement of the grinding plant reaches a minimum at a prespecified throughput, and- preserving the optimal wear geometry,wherein the energy requirement is continuously measured and recorded during the grinding method to verify when the optimal wear geometry is reached, and the optimal wear geometry is preserved by applying a thin wear protection layer (9) to the surface of the grinding units (1, 2).
- The method according to claim 1,
characterized in that
the thin wear protection layer (9) is applied by means of buildup welding. - The method according to claim 1 or 2,
characterized in that
the material for the wear protection layer (9) is selected from the group comprising hard metal, WC, CrC, TiC, VC, TaC and NbC. - The method according to any one of claims 1 to 3,
characterized in that
a hard metal layer is applied as a thin wear protection layer (9). - The method according to any one of claims 1 to 4,
characterized in that
the grinding plant is a vertical roller grinding plant, and the grinding units or grinding elements to be coated are grinding rollers (1) and grinding plates (2). - The method according to any one of claims 1 to 5,
characterized in that
the layer thickness of the thin wear protection layer (9) is 1 to 5 mm. - Grinding elements having grinding surfaces which are coated with a thin wear protection layer (9),
wherein the grinding elements have an optimal wear geometry, characterized in that the optimal wear geometry of the grinding elements (1, 2) is determined by continuous measurement and recording of the energy requirement during the grinding process, and is defined as the geometry for which a minimum of the energy requirement is reached at a prespecified throughput. - The grinding elements according to claim 7,
characterized in that
the wear protection layer (9) is a buildup-welded layer. - The grinding elements according to claim 7 or 8,
characterized in that
the grinding elements are part of a vertical roller grinding plant, and the coated surfaces are the grinding surfaces of grinding rollers (1) and grinding plates (2). - The grinding elements according to any one of claims 7 to 9,
characterized in that
the layer thickness of the thin wear protection layer (9) is 1 to 5 mm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018111621.7A DE102018111621B4 (en) | 2018-05-15 | 2018-05-15 | Processes to improve the productivity of grinding plants |
PCT/DE2019/100414 WO2019219124A1 (en) | 2018-05-15 | 2019-05-07 | Method for improving the productivity of grinding plants |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3793741A1 EP3793741A1 (en) | 2021-03-24 |
EP3793741C0 EP3793741C0 (en) | 2023-06-07 |
EP3793741B1 true EP3793741B1 (en) | 2023-06-07 |
Family
ID=66776065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19728863.2A Active EP3793741B1 (en) | 2018-05-15 | 2019-05-07 | Method for improving the productivity of grinding plants |
Country Status (13)
Country | Link |
---|---|
US (1) | US11654439B2 (en) |
EP (1) | EP3793741B1 (en) |
JP (1) | JP7186246B2 (en) |
KR (1) | KR102493521B1 (en) |
CN (1) | CN112203769B (en) |
AU (1) | AU2019269861B2 (en) |
CA (1) | CA3100098C (en) |
DE (1) | DE102018111621B4 (en) |
ES (1) | ES2958194T3 (en) |
MX (1) | MX2020012089A (en) |
PL (1) | PL3793741T3 (en) |
WO (1) | WO2019219124A1 (en) |
ZA (1) | ZA202007023B (en) |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4389767A (en) * | 1980-12-10 | 1983-06-28 | Combustion Engineering, Inc. | Method of manufacturing pulverizer rolls |
JPS5810143U (en) | 1981-07-06 | 1983-01-22 | 日本電気株式会社 | central processing unit |
JPS63143949A (en) * | 1986-12-09 | 1988-06-16 | アイエヌジ商事株式会社 | Crushing surface member used for crusher |
DE3921419A1 (en) | 1989-06-29 | 1991-01-10 | Loesche Gmbh | GRINDING SURFACE OF GRIND MILLS |
US5050810A (en) * | 1990-01-16 | 1991-09-24 | Parham Robert L | One-piece pulverizing roller |
JP2520729Y2 (en) * | 1991-07-04 | 1996-12-18 | 川崎重工業株式会社 | Grinding roller for vertical mill |
DE4235297A1 (en) * | 1992-10-20 | 1994-04-21 | Krupp Polysius Ag | Grinding roll mfr. by build-up welding - with the end regions of the hard anti-wear layer of the roll separated from its central region |
DE4235298A1 (en) * | 1992-10-20 | 1994-04-21 | Krupp Polysius Ag | Grinding roll mfr. by build-up welding of anti-wear layer - with the anti-wear layer made up of separate blocks |
DE4235499A1 (en) * | 1992-10-21 | 1994-04-28 | Krupp Polysius Ag | Applicn of hard wear-resistant layer onto a grinding roll - with pockets in the roll edge regions for retention of the material being ground. |
JP3147136B2 (en) * | 1994-04-08 | 2001-03-19 | 宇部興産株式会社 | Vertical crusher |
JPH11309596A (en) | 1998-04-23 | 1999-11-09 | Kurimoto Ltd | Reproducing method of consumable member vertical roll mill |
JPH11309696A (en) * | 1998-04-28 | 1999-11-09 | Brother Ind Ltd | Device for selecting depth of cut with cutting edge |
JP2000354778A (en) | 1999-06-17 | 2000-12-26 | Babcock Hitachi Kk | Structure of pulverizing part of roller mill |
DE10137131A1 (en) * | 2001-07-30 | 2003-02-13 | Polysius Ag | Roller for high pressure fluidized bed grinder has surface profiling with wear-resistant profiled bodies whose wear resistance matches stresses on rolling surface to achieve uniform wear over width of roller |
DE20321584U1 (en) | 2003-09-12 | 2008-04-24 | Loesche Gmbh | Roller mill, in particular for the production of cement |
DE102004043562B4 (en) * | 2004-09-09 | 2016-09-29 | Khd Humboldt Wedag Gmbh | Press roller ring bandage and method for its production |
DE102005028568B4 (en) * | 2005-06-21 | 2007-06-06 | Verschleiß-Technik Dr.-Ing. Hans Wahl GmbH & Co. | Method for producing a wearing part for a cone crusher and a wearing part |
CA2645361A1 (en) | 2006-03-13 | 2007-09-20 | Cargill Inc. | Yeast cells having disrupted pathway from dihydroxyacetone phosphate to glycerol |
US8281473B2 (en) * | 2010-04-23 | 2012-10-09 | Flsmidth A/S | Wearable surface for a device configured for material comminution |
CN105149049B (en) * | 2010-07-26 | 2019-02-05 | Ing商事株式会社 | Vertical roller mill |
US20140291428A1 (en) * | 2011-12-21 | 2014-10-02 | Flsmidth A/S | Insert arrangement for a roller wear surface |
EP3154699B1 (en) * | 2014-06-10 | 2018-07-18 | FLSmidth A/S | Wear-resistant roller |
CN203944423U (en) * | 2014-06-30 | 2014-11-19 | 盛金平 | The arc tooth plate with the toothed roll crusher of antifriction metal (AFM) |
CN204034783U (en) * | 2014-08-04 | 2014-12-24 | 广州市金宇风动钎机有限公司 | Breaker roll |
CN107107065B (en) * | 2014-12-22 | 2019-10-15 | Fl史密斯公司 | Wear resistant roll |
CN105536957B (en) | 2016-01-28 | 2018-03-06 | 中国科学院上海高等研究院 | A kind of impeller and connected superfine pulverizer, System of Ultra Thin Power Rubbing |
CN109219671B (en) * | 2016-06-03 | 2020-08-21 | 东华隆株式会社 | Method for manufacturing powder roller |
GB2559422A (en) * | 2017-02-07 | 2018-08-08 | Mec Holding Gmbh | A method of repairing a grinding parts used in a roller mill and to grinding parts so repaired |
JP7275728B2 (en) | 2018-03-26 | 2023-05-18 | 大日本印刷株式会社 | Low-solvent odor gas barrier laminate using solventless adhesive, and low-solvent odor gas barrier packaging material and packaging bag comprising the laminate |
KR102152721B1 (en) * | 2020-01-30 | 2020-09-07 | 주식회사 정원엔지니어링 | Crushing apparatus of pulverizer and the method of manufacturing the same |
CN113457793B (en) * | 2021-07-20 | 2022-05-17 | 天津水泥工业设计研究院有限公司 | Design method of vertical mill grinding structure with different grinding areas |
-
2018
- 2018-05-15 DE DE102018111621.7A patent/DE102018111621B4/en active Active
-
2019
- 2019-05-07 PL PL19728863.2T patent/PL3793741T3/en unknown
- 2019-05-07 AU AU2019269861A patent/AU2019269861B2/en active Active
- 2019-05-07 MX MX2020012089A patent/MX2020012089A/en unknown
- 2019-05-07 ES ES19728863T patent/ES2958194T3/en active Active
- 2019-05-07 CN CN201980031719.2A patent/CN112203769B/en active Active
- 2019-05-07 EP EP19728863.2A patent/EP3793741B1/en active Active
- 2019-05-07 KR KR1020207033012A patent/KR102493521B1/en active IP Right Grant
- 2019-05-07 WO PCT/DE2019/100414 patent/WO2019219124A1/en active Application Filing
- 2019-05-07 JP JP2020564475A patent/JP7186246B2/en active Active
- 2019-05-07 US US17/055,254 patent/US11654439B2/en active Active
- 2019-05-07 CA CA3100098A patent/CA3100098C/en active Active
-
2020
- 2020-11-11 ZA ZA2020/07023A patent/ZA202007023B/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR112020023205A2 (en) | 2021-02-23 |
MX2020012089A (en) | 2021-03-29 |
EP3793741C0 (en) | 2023-06-07 |
JP7186246B2 (en) | 2022-12-08 |
AU2019269861A1 (en) | 2020-12-10 |
KR102493521B1 (en) | 2023-01-30 |
ZA202007023B (en) | 2021-07-28 |
CN112203769A (en) | 2021-01-08 |
CA3100098C (en) | 2023-12-12 |
AU2019269861B2 (en) | 2023-03-16 |
US20210268511A1 (en) | 2021-09-02 |
CA3100098A1 (en) | 2019-11-21 |
WO2019219124A1 (en) | 2019-11-21 |
JP2021523828A (en) | 2021-09-09 |
EP3793741A1 (en) | 2021-03-24 |
DE102018111621A1 (en) | 2019-11-21 |
PL3793741T3 (en) | 2024-02-19 |
US11654439B2 (en) | 2023-05-23 |
ES2958194T3 (en) | 2024-02-05 |
KR20210008350A (en) | 2021-01-21 |
DE102018111621B4 (en) | 2020-01-23 |
CN112203769B (en) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2708324B1 (en) | Table top for the spring support table of a spring end grinding machine and spring end grinding machine with the same | |
EP3052239B1 (en) | Method for operating a system comprising at least a device having a rotating surface | |
AT504385B1 (en) | METHOD FOR PRODUCING A SNAIL FOR AN EXTRUDER AND SNAIL | |
WO2005046936A1 (en) | Divided grinding tool | |
EP3793741B1 (en) | Method for improving the productivity of grinding plants | |
DE102019004876A1 (en) | drumstick | |
DE102004043562A1 (en) | Press roller ring bandage and method for its production | |
DE3925098A1 (en) | Grinder - has wear parts on two rotating sections which are replaceable to extend component life | |
DE102010007817B4 (en) | platen | |
WO2017198253A1 (en) | Bearing and pin bush | |
WO2013189759A1 (en) | Profiled lining for a roller press | |
WO2015155135A2 (en) | Method for post-processing a large toothing and indexable cutting insert for post-processing a large toothing | |
WO2011098284A2 (en) | Method and device for applying a surface layer to a roller and use of said method and device | |
EP3181293A1 (en) | Finishing tool possessing locally varying cutting ability | |
EP0694374A2 (en) | Scraper for fine roll mill, milling raw materials for ceramic products | |
DE10327494A1 (en) | Rotary pump housing or pump housing closure has wear disc made of composite materials with metal part and a cast hybrid component | |
DE102020108582A1 (en) | Jet nozzle for a solid jet medium | |
WO2024121270A1 (en) | Mechanically, in particular tribologically, stressed component and method for its production | |
DE4436741A1 (en) | Method of trimming grinding discs with shaped edges | |
DE2451765A1 (en) | Disintegrating mill with blades - grooves between welded on blades filled up to blade height with synthetic resin | |
EP3278927A1 (en) | Cutting disk | |
DE102009047853A1 (en) | Pelleting press and method for operating a pelleting press | |
DE102014006427A1 (en) | Roller with wear protection layer for a roller press | |
DE9417926U1 (en) | Device for grinding work rolls of a roll stand | |
DE4429792A1 (en) | Grinding mineral esp. brick raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220307 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221011 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1573340 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019008056 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20230629 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230706 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019008056 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240308 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 6 Effective date: 20240409 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240517 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240522 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240602 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240614 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240426 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240429 Year of fee payment: 6 |