EP3792572A1 - Safety coil device for a heat pump - Google Patents
Safety coil device for a heat pump Download PDFInfo
- Publication number
- EP3792572A1 EP3792572A1 EP20195908.7A EP20195908A EP3792572A1 EP 3792572 A1 EP3792572 A1 EP 3792572A1 EP 20195908 A EP20195908 A EP 20195908A EP 3792572 A1 EP3792572 A1 EP 3792572A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- working fluid
- heat pump
- air
- brine
- forced ventilation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 45
- 239000002775 capsule Substances 0.000 claims abstract description 25
- 230000002000 scavenging effect Effects 0.000 claims abstract description 10
- XZPVPNZTYPUODG-UHFFFAOYSA-M sodium;chloride;dihydrate Chemical compound O.O.[Na+].[Cl-] XZPVPNZTYPUODG-UHFFFAOYSA-M 0.000 claims abstract description 8
- 238000009434 installation Methods 0.000 claims abstract description 7
- 238000012546 transfer Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 238000009423 ventilation Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 11
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001294 propane Substances 0.000 claims description 5
- 238000011010 flushing procedure Methods 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000003380 propellant Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000003570 air Substances 0.000 description 44
- 238000005057 refrigeration Methods 0.000 description 8
- 239000003507 refrigerant Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000003463 adsorbent Substances 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 239000002360 explosive Substances 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 241000264877 Hippospongia communis Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/022—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/36—Responding to malfunctions or emergencies to leakage of heat-exchange fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/12—Preventing or detecting fluid leakage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
Definitions
- the invention relates to irregular states in refrigeration circuits in which a dangerous working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle.
- thermodynamic cycle such as the Clausius-Rankine cycle.
- These are mainly heat pumps, air conditioning systems and cooling devices, as are common in residential buildings.
- the invention relates to a heat pump which is installed inside a residential building and which also fulfills ventilation purposes.
- Residential buildings are understood to mean private houses, apartment complexes, hospitals, hotel facilities, restaurants and combined residential and commercial buildings in which people live and work permanently, in contrast to mobile devices such as car air conditioning systems or transport boxes, or industrial systems or medical devices. What these cycle processes have in common is that they generate useful heat or useful cooling using energy and form heat displacement systems.
- thermodynamic cycle processes that are used have been known for a long time, as are the safety problems that can arise when using suitable working fluids. Apart from water, the most well-known working fluids of the time are flammable and poisonous. In the past century they led to the development of safety refrigerants, which consisted of fluorinated hydrocarbons. However, it turned out that these safety refrigerants damage the ozone layer, lead to global warming, and that their safety-related harmlessness led to constructive inattention. Up to 70% of the turnover was accounted for by the need to refill leaky systems and their leakage losses, which was accepted as long as this was perceived as economically justifiable in individual cases and promoted the need for replacement.
- the problems that arise in the safety design of such systems are described in the WO 2015/032905 A1 clearly described.
- the lower ignition limit of R290 as a working fluid is around 1.7 percent by volume in air, which corresponds to 38 g / m 3 in air. If the refrigeration process is carried out in a hermetically sealed, but otherwise air-filled space with the working fluid R290 that surrounds it, the problem arises of recognizing a critical, explosive situation after a fault in which the working fluid escapes into this hermetically sealed space. Electrical sensors for the detection of critical concentrations are difficult to design to be explosion-proof, which is why the propane detection by the sensors themselves increases the risk of explosion considerably, with the exception of infrared sensors. R290 is also toxic if inhaled above a concentration of approx. 2 g / m 3 there are narcotic effects, headaches and nausea. This applies to people who are supposed to solve a recognized problem on site before there is a risk of explosion.
- R290 is also heavier than air, so it sinks to the ground in still air and collects there. So if some of the propane collects in a low-flow zone of the closed room in which the disturbed unit is located, the local explosion limits can be reached much faster than the quotient of the total room volume to the leaked R290 amount would lead to expect.
- the WO 2015/032905 A1 seeks to solve this problem by integrating a generator for electrical current in the opening or locking of this room and, when activated, in a first step generates and provides the electrical energy with which the sensor is activated, and in the event of an alarm the The lock then does not release, but causes ventilation of the locked room, and only allows unlocking and opening in a second step.
- the DE 10 2009 029 392 A1 describes an explosion-proof refrigeration system in which a fan evacuates the contaminated air inside a gas-tight housing in the event of a leak after all devices have been switched off. The leak is detected by a gas sensor. The extracted mixture is conveyed into the environment, where it is mixed with ambient air in a very short time and is diluted to such an extent that there is no longer an explosive mixture.
- the device is intended to be used wherever refrigeration systems are required for cooling and there is a need for heat at the same time, and is preferably used in a supermarket refrigeration system.
- the DE 10 2011 116 863 A1 describes a method for securing a device for a thermodynamic cycle which is operated with a process fluid, at least one environmentally hazardous, toxic and / or inflammable Contains or consists of a substance.
- a process fluid in particular ammonia, propane or propene
- the adsorbent is regenerated after use.
- Zeolite, also in combination with imidazole or phosphates, and also CuBTC are proposed as adsorbents.
- the adsorbent can be in the form of a bed, a molded part, a paint, a spray film or a coating.
- the support structure of the molded part can consist of a microstructure, lamellar structure, tube bundle, tube register and sheet metal and must be mechanically stable and greatly increase the surface area.
- the potentially contaminated air is usually circulated continuously, but it can also be initiated by a sensor that switches on the ventilation after a threshold value has been reached or if an accident is detected.
- the adsorption can be carried out inside or outside a closed space.
- the DE 20 2016 103 305 U1 describes an explosion-proof device for controlling the temperature of heat transfer fluids at different temperature levels, comprising an enclosure, a base element, a closed refrigerant circuit with the usual apparatus, a suction device with a fan and a gas sensor for the detection of flammable gas.
- the heat exchangers are positioned outside the housing. If the sensor strikes, a leak is suspected and the fan sucks the mixture out of the housing into a channel that leads to a location outside the housing.
- the device has its preferred location in a shopping mall.
- the object of the invention is therefore to provide a device and a method for safe and efficient flushing of a housing for a heat pump, which is installed in a residential building, and inside a counterclockwise thermodynamic cycle in a closed, hermetically sealed working fluid circulation by means of a dangerous , propane-containing working fluid is carried out, and the device also has a hot water function.
- the resulting overpressure means that the air mixture can escape from the capsule housing directly to the environment.
- a flow grille is used in the air duct for scavenging air, the flow ducts of which have duct widths that prevent ignitability by being smaller than the quenching diameter of an ignitable mixture, the diameter being the hydraulic diameter.
- the quenching diameter corresponds to the boundary layer of the flow as it would occur in an air duct without a flow grille.
- the grids themselves can be formed from thin sheets or from honeycombs or from spirals of corrugated sheet metal or segmented sheet metal, the design depends on the shape of the air duct for scavenging air, which can be designed as a flat duct, for example.
- a conveying fan is provided in the air duct for scavenging air, which is designed to be explosion-proof.
- the capsule housing must have an air inlet that is either integrated in the air duct or that is designed as openings in the capsule housing through which air can flow in but not out, for example through louvre flaps that can only be opened in one direction.
- an ejector and a pressurized gas container are connected to the air duct (103) for scavenging air as a device for forced ventilation, the ejector being operated with the pressurized gas from the pressurized gas container as propellant gas.
- the Pressurized gas container is filled with air or with inert gas or with oxygen-depleted air. This means that in the event of a malfunction, the ignitable gas mixture is diluted or rendered inert. This option is useful in the case of major leakages that rarely occur.
- an air stream is led out of the capsule housing and directed into an adsorber by means of a conveying fan.
- This adsorber can either vent into the room where the heat pump is installed or back into the capsule housing.
- the adsorber is also used as an upstream filter when venting into the outside area of the building; this avoids concentration peaks of gaseous working fluid in the gas mixture to be discharged, but venting must then take longer, with the adsorber being slowly desorbed or discharged. This results in an equalization.
- either the forced ventilation to the outside can be activated, which is to be carried out for larger concentrations or rapid increases in concentration, or only the forced ventilation by the adsorber for low concentrations of working fluid, or the equalization by the adsorber as an upstream filter.
- Fig. 1 shows a residential building 100, which is equipped with a brine-water heat pump 101, which is also used as a hot water device.
- the brine-water heat pump 101 has the hot water elements, such as the drinking water storage tank 2, the additional electrical heater 7, as well as the safety temperature limiter 6 and a conduit 1.
- An electrical switch box 3 with a controller board 4 and a connection for the voltage supply 5 are provided on the front.
- thermodynamic devices are arranged that lead the working fluid in the refrigeration circuit, these are the compressor 12, the expansion valve 14, the evaporator 18, the condenser 19 and the 3-way valve 8, plus the pumps for the heat transfer fluids, these are the heating circuit pump 9 and the brine pump 17, as well as the filling and draining valves for the heating circuit 10 and the brine circuit 16.
- Fig. 2 shows the changes made by the security concept.
- the part in which the thermodynamic apparatus is located is encapsulated by a capsule housing 107.
- this encapsulation is tight to the outside, but air can flow in from the outside.
- An air duct 103 leads from the capsule housing 107 through a wall opening as an external connection 104 directly to the outside.
- only protective grids or similar protective devices against the ingress of animals or dirt are provided at the outside outlet 105 of the air duct 103. It is useful if the air duct 103 is short and the heat pump 101 is set up directly on an outer wall 102.
- a non-return valve can be arranged to prevent the inflow of outside air during normal operation, otherwise a large amount of air can quickly escape in the event of a severe leak and a pressure build-up in the capsule housing 107 as well as in the entire housing of the heat pump 101 is certainly omitted.
- This venting can be supported by the explosion-proof conveyor fan 106 if necessary. In such cases, the heat pump is stopped immediately.
- the adsorber 111 which is connected directly to the capsule housing 107 via the suction connection 109, serves as a further safety measure. Furthermore, a gas sensor 108 is provided which switches on the conveyor fan 110 when working fluid is detected in the capsule housing 107. In this case, purified air is discharged into the interior at the interior outlet 112. This type of ventilation is selected for small leaks; in such cases the heat pump can continue to run in emergency mode for a while.
- the heat pump cannot be installed directly on an external wall. If the air duct is longer, the formation of an ignitable mixture in the air duct must also be taken into account and prevented. The following options are available for this.
- Fig. 3 shows the air duct (103) for purging air and, as a device for forced ventilation, an ejector (114) and a pressurized gas container (115) connected to it, the ejector being operated with the pressurized gas from the pressurized gas container as a propellant. In this way, a dilution of the gas mixture can be achieved.
- the measures with the conveyor fan 106 and the ejector 114 can also be used in combination.
- Fig. 4 shows the activated carbon adsorber 111 as an upstream filter.
- the gas can be sent directly to the outlet of the activated carbon adsorber as purified air can be fed back into the installation room via the inner outlet 112.
- the activated carbon adsorber acts as an activated carbon box; such an activated carbon box can be installed in a flat design behind the heat pump in a very space-saving manner.
- the gas concentration in the exhaust gas can be greatly reduced even in the case of larger leaks.
- the air duct is equipped with flow grids made of very thin sheet metal with sheet thicknesses in the tenths of a millimeter range.
- Figure 5a shows such an arrangement for a rectangular channel which can be connected to an activated carbon adsorber in a flat design in a space-saving manner.
- the flushing pipe grids 113 are inserted into the rectangular duct in a rectangular manner; the grid widths depend on the expected concentrations and the respective design speed of the gas flow.
- Figure 5b shows a corresponding arrangement for a round channel
- the flow grids can be formed by a spiral sheet or by several nested round sheets, which are held by sector boundaries or made of corrugated sheets, as they are also known for flame protection devices.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Ventilation (AREA)
Abstract
Sole-Wasser-Wärmepumpe zur sicheren Durchführung eines linksdrehenden thermodynamischen Kreisprozesses mittels eines gefährlichen Arbeitsfluids, welches in einem geschlossenen, hermetisch dichten Arbeitsfluidumlauf geführt wird, geeignet zur Aufstellung in einem Gebäude, aufweisend ein Wärmepumpengehäuse, mindestens einen Verdichter (12) für Arbeitsfluid, mindestens eine Entspannungseinrichtung (14) für Arbeitsfluid, mindestens zwei Wärmeübertrager (18,19) für Arbeitsfluid mit jeweils mindestens zwei Anschlüssen für Wärmeüberträgerfluide, wobei im Wärmepumpengehäuse ein Kapselgehäuse (107) vorgesehen wird, welches alle Apparate und Armaturen umschließt, die von Arbeitsfluid durchströmt werden, und ein Mauerdurchbruch (104) mit einem Luftkanal (103) für Spülluft vorgesehen wird, der mit dem Inneren des Kapselgehäuses (107) verbunden ist und an die Umwelt außerhalb des Gebäudes führt.Brine-water heat pump for the safe implementation of a counterclockwise thermodynamic cycle by means of a dangerous working fluid, which is guided in a closed, hermetically sealed working fluid circuit, suitable for installation in a building, having a heat pump housing, at least one compressor (12) for working fluid, at least one Expansion device (14) for working fluid, at least two heat exchangers (18, 19) for working fluid, each with at least two connections for heat transfer fluids, a capsule housing (107) being provided in the heat pump housing which encloses all apparatus and fittings through which the working fluid flows, and a wall opening (104) with an air duct (103) for scavenging air is provided, which is connected to the interior of the capsule housing (107) and leads to the environment outside the building.
Description
Die Erfindung betrifft irreguläre Zustände in Kältekreisen, in denen ein als Kältemittel wirkendes, gefährliches Arbeitsfluid in einem thermodynamischen Kreisprozess, wie zum Beispiel dem Clausius-Rankine-Kreisprozess, geführt wird. Vorwiegend sind dies Wärmepumpen, Klimaanlagen und Kühlgeräte, wie sie in Wohngebäuden gebräuchlich sind. Insbesondere betrifft die Erfindung eine Wärmepumpe, die innerhalb eines Wohngebäudes aufgestellt wird und auch Belüftungszwecke erfüllt.The invention relates to irregular states in refrigeration circuits in which a dangerous working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle. These are mainly heat pumps, air conditioning systems and cooling devices, as are common in residential buildings. In particular, the invention relates to a heat pump which is installed inside a residential building and which also fulfills ventilation purposes.
Unter Wohngebäuden werden dabei Privathäuser, Miethauskomplexe, Krankenhäuser, Hotelanlagen, Gastronomie und kombinierte Wohn- und Geschäftshäuser verstanden, in denen Menschen dauerhaft leben und arbeiten, im Unterschied zu mobilen Vorrichtungen wie KFZ-Klimaanlagen oder Transportboxen, oder auch Industrieanlagen oder medizintechnischen Geräten. Gemeinsam ist diesen Kreisprozessen, dass sie unter Einsatz von Energie Nutzwärme oder Nutzkälte erzeugen und Wärmeverschiebungssysteme bilden.Residential buildings are understood to mean private houses, apartment complexes, hospitals, hotel facilities, restaurants and combined residential and commercial buildings in which people live and work permanently, in contrast to mobile devices such as car air conditioning systems or transport boxes, or industrial systems or medical devices. What these cycle processes have in common is that they generate useful heat or useful cooling using energy and form heat displacement systems.
Ein erfolgreiches Beispiel aus dem bekannten Stand der Technik ist das geoTHERM-Plus-System; wie es in der Firmendruckschrift "System geoTHERM", Vaillant GmbH 03/2009, beschrieben ist. Hierbei wird Wärme aus einer Erdbohrung gewonnen, wobei diese Erdbohrung von einem Solekreislauf durchströmt wird, wobei sie Wärme aufnimmt oder abgibt. Die Wärmepumpe selbst wie auch ihre Installationen für die Nutzer werden innerhalb eines Gebäudes aufgestellt, woraus hohe Ansprüche an die Sicherheit folgen. Ein solches System bildet den nächstliegenden Stand der Technik.A successful example from the known state of the art is the geoTHERM-Plus-System; as described in the company publication "System geoTHERM", Vaillant GmbH 03/2009. Here, heat is obtained from an earth borehole, this earth borehole being traversed by a brine circuit, where it absorbs or gives off heat. The heat pump itself as well as its installations for the users are set up within a building, which results in high demands on safety. Such a system represents the closest prior art.
Die zum Einsatz kommenden thermodynamischen Kreisprozesse sind seit langem bekannt, ebenso die Sicherheitsprobleme, die bei der Verwendung geeigneter Arbeitsfluide entstehen können. Abgesehen von Wasser sind die bekanntesten damaligen Arbeitsfluide brennbar und giftig. Sie führten im vergangenen Jahrhundert zur Entwicklung der Sicherheitskältemittel, die aus fluorierten Kohlenwasserstoffen bestanden. Es zeigte sich jedoch, dass diese Sicherheitskältemittel die Ozonschicht schädigen, zur Klimaerwärmung führen, und dass ihre sicherheitstechnische Unbedenklichkeit zu konstruktiven Unachtsamkeiten führte. Bis zu 70 % des Umsatzes entfiel auf den Nachfüllbedarf undichter Anlagen und deren Leckageverluste, der hingenommen wurde, solange dies im Einzelfall als wirtschaftlich vertretbar empfunden wurde und Bedarf an Ersatzbeschaffung förderte.The thermodynamic cycle processes that are used have been known for a long time, as are the safety problems that can arise when using suitable working fluids. Apart from water, the most well-known working fluids of the time are flammable and poisonous. In the past century they led to the development of safety refrigerants, which consisted of fluorinated hydrocarbons. However, it turned out that these safety refrigerants damage the ozone layer, lead to global warming, and that their safety-related harmlessness led to constructive inattention. Up to 70% of the turnover was accounted for by the need to refill leaky systems and their leakage losses, which was accepted as long as this was perceived as economically justifiable in individual cases and promoted the need for replacement.
Der Einsatz dieser Kältemittel wurde aus diesem Grund Restriktionen unterworfen, in der Europäischen Union beispielsweise durch die F-Gas-Verordnung (EU) 517/2014. Dadurch werden praktisch alle ungefährlichen Sicherheitskältemittel verboten und es bleiben nur noch gefährliche Arbeitsfluide und Wasser zur Auswahl. Gefährlich bedeutet in diesem Fall, dass sie entweder giftig sind, wie zum Beispiel Ammoniak, oder entzündlich oder explosiv in Verbindung mit Luftsauerstoff sein können, jedoch kaum umweltschädlich sind.For this reason, the use of these refrigerants was subject to restrictions, in the European Union for example through the F-gas regulation (EU) 517/2014. As a result, practically all harmless safety refrigerants are banned and only dangerous working fluids and water remain to choose from. In this case, dangerous means that they are either toxic, such as ammonia, or flammable or explosive in connection with atmospheric oxygen, but are hardly harmful to the environment.
Die auftretenden Probleme bei der Sicherheitsauslegung solcher Anlagen werden in der
R290 ist auch schwerer als Luft, sinkt also in ruhender Luft auf den Boden und sammelt sich dort an. Sollte sich also ein Teil des Propans in einer strömungsarmen Zone des abgeschlossenen Raums, in dem sich das gestörte Aggregat befindet, sammeln, können die lokalen Explosionsgrenzen wesentlich schneller erreicht werden, als es der Quotient aus Gesamtraumvolumen zu ausgetretener R290-Menge erwarten lässt. Die
Die
Die
Die
Es ist auch bekannt, entzündliche und explosive Arbeitsfluide im Falle von Leckagen einfach ins Freie abzulassen. So erklärt die "Bundesfachschule Kälte Klima Technik" im Mai 2012, der Einfluss auf die globale Erderwärmung bei R290 sei sehr gering, daher sei das Ablassen in die Atmosphäre die bisher übliche Vorgehensweise, um dieses Kältemittel zu entsorgen. Es seien aber gewisse Sicherheitsvorkehrungen zu treffen, die das Auftreten einer explosionsfähigen Atmosphäre weitestgehend minimierten.It is also known to simply discharge flammable and explosive working fluids into the open in the event of a leak. In May 2012, the "Federal College of Refrigeration and Air Conditioning Technology" declared that the influence on global warming with R290 was very small, so draining it was necessary the usual procedure to dispose of this refrigerant into the atmosphere. However, certain safety precautions must be taken to minimize the occurrence of an explosive atmosphere as far as possible.
Die Aufgabe der Erfindung ist daher, eine Vorrichtung und ein Verfahren für eine sichere und effiziente Spülung eines Gehäuses für eine Wärmepumpe bereitzustellen, das in einem Wohngebäude aufgestellt ist, und in dessen Inneren ein linksdrehender thermodynamischer Kreisprozess in einem geschlossenen, hermetisch dichten Arbeitsfluidumlauf mittels eines gefährlichen, propanhaltigen Arbeitsfluids durchgeführt wird, und das Gerät auch eine Warmwasserfunktion aufweist.The object of the invention is therefore to provide a device and a method for safe and efficient flushing of a housing for a heat pump, which is installed in a residential building, and inside a counterclockwise thermodynamic cycle in a closed, hermetically sealed working fluid circulation by means of a dangerous , propane-containing working fluid is carried out, and the device also has a hot water function.
Die Erfindung löst diese Aufgabe zur sicheren Durchführung eines linksdrehenden thermodynamischen Kreisprozesses in einer Sole-Wasser-Wärmepumpe mittels eines gefährlichen Arbeitsfluids, welches in einem geschlossenen, hermetisch dichten Arbeitsfluidumlauf geführt wird, geeignet zur Aufstellung in einem Gebäude, aufweisend
- ein Wärmepumpengehäuse,
- mindestens einen Verdichter für Arbeitsfluid,
- mindestens eine Entspannungseinrichtung für Arbeitsfluid,
- mindestens zwei Wärmeübertrager für Arbeitsfluid mit jeweils mindestens zwei Anschlüssen für Wärmeüberträgerfluide,
- eine Einrichtung zur Zwangsbelüftung,
wobei - im Wärmepumpengehäuse ein Kapselgehäuse vorgesehen wird, welches alle Apparate und Armaturen umschließt, die von Arbeitsfluid durchströmt werden,
- mindestens ein Gassensor im Kapselgehäuse angeordnet wird, bei dessen Alarm die Zwangsbelüftung des Kapselgehäuses (107) aktiviert wird,
- ein Außenanschluss mit einem Luftkanal für Spülluft vorgesehen wird, der mit dem Inneren des Kapselgehäuses verbunden ist und an die Umwelt außerhalb des Gebäudes führt.
- a heat pump housing,
- at least one compressor for working fluid,
- at least one expansion device for working fluid,
- at least two heat exchangers for working fluid, each with at least two connections for heat transfer fluids,
- a device for forced ventilation,
in which - a capsule housing is provided in the heat pump housing, which encloses all apparatus and fittings through which the working fluid flows,
- at least one gas sensor is arranged in the capsule housing, in the event of which the forced ventilation of the capsule housing (107) is activated,
- an external connection with an air duct for scavenging air is provided, which is connected to the interior of the capsule housing and leads to the environment outside the building.
Sollte also eine Leckage auftreten, bewirkt der dabei entstehende Überdruck, dass das Luftgemisch aus dem Kapselgehäuse direkt zur Umwelt austreten kann.So if a leak occurs, the resulting overpressure means that the air mixture can escape from the capsule housing directly to the environment.
In einer Ausgestaltung ist vorgesehen, dass in dem Luftkanal für Spülluft ein Strömungsgitter eingesetzt ist, dessen Strömungskanäle Kanalweiten aufweisen, die eine Zündfähigkeit unterbinden, indem sie kleiner als der Quenching-Durchmesser eines zündfähigen Gemisches gewählt sind, wobei mit Durchmesser der hydraulische Durchmesser gemeint ist. Der Quenching-Durchmesser entspricht dabei der Grenzschicht der Strömung, wie sie in einem Luftkanal ohne Strömungsgitter auftreten würde. Die Gitter selbst können aus dünnen Blechen oder aus Waben oder aus Spiralen von gewelltem Blech oder segmentiertem Blech gebildet werden, die Bauart richtet sich nach der Form des Luftkanals für Spülluft, der beispielsweise als Flachkanal ausgebildet werden kann.In one embodiment, it is provided that a flow grille is used in the air duct for scavenging air, the flow ducts of which have duct widths that prevent ignitability by being smaller than the quenching diameter of an ignitable mixture, the diameter being the hydraulic diameter. The quenching diameter corresponds to the boundary layer of the flow as it would occur in an air duct without a flow grille. The grids themselves can be formed from thin sheets or from honeycombs or from spirals of corrugated sheet metal or segmented sheet metal, the design depends on the shape of the air duct for scavenging air, which can be designed as a flat duct, for example.
In einer weiteren Ausgestaltung ist vorgesehen, dass in dem Luftkanal für Spülluft ein Fördergebläse vorgesehen wird, welches explosionsgeschützt ausgeführt ist. Das Kapselgehäuse muss hierfür über einen Luftzugang verfügen, der entweder im Luftkanal integriert ist oder der als Öffnungen im Kapselgehäuse ausgeführt wird, durch welche Luft einströmen, aber nicht ausströmen kann, beispielsweise durch Jalousieklappen, die nur in eine Richtung zu öffnen sind.In a further embodiment it is provided that a conveying fan is provided in the air duct for scavenging air, which is designed to be explosion-proof. For this purpose, the capsule housing must have an air inlet that is either integrated in the air duct or that is designed as openings in the capsule housing through which air can flow in but not out, for example through louvre flaps that can only be opened in one direction.
In einer weiteren Ausgestaltung ist vorgesehen, dass an den Luftkanal (103) für Spülluft als Einrichtung zur Zwangsbelüftung ein Ejektor und ein Druckgasbehälter angeschlossen sind, wobei der Ejektor mit dem Druckgas aus dem Druckgasbehälter als Treibgas betrieben wird. In einer vorteilhaften Ausgestaltung ist vorgesehen, dass der Druckgasbehälter mit Luft oder mit Inertgas oder mit sauerstoffabgereicherter Luft befüllt ist. Hierdurch lässt sich erreichen, dass im Störfall eine Verdünnung oder Inertisierung des zündfähigen Gasgemisches stattfindet. Diese Möglichkeit ist bei selten auftretenden größeren Leckagefällen nützlich.In a further embodiment it is provided that an ejector and a pressurized gas container are connected to the air duct (103) for scavenging air as a device for forced ventilation, the ejector being operated with the pressurized gas from the pressurized gas container as propellant gas. In an advantageous embodiment it is provided that the Pressurized gas container is filled with air or with inert gas or with oxygen-depleted air. This means that in the event of a malfunction, the ignitable gas mixture is diluted or rendered inert. This option is useful in the case of major leakages that rarely occur.
In einer weiteren Ausgestaltung wird vorgesehen, dass ein Luftstrom aus dem Kapselgehäuse herausgeführt und mittels eines Fördergebläses in einen Adsorber geleitet wird. Dieser Adsorber kann entweder in den Aufstellungsraum der Wärmepumpe oder zurück ins Kapselgehäuse entlüften. In einer weiteren Variante wird der Adsorber auch als Vorschaltfilter bei einer Entlüftung in den Außenbereich des Gebäudes genutzt, hierdurch lassen sich Konzentrationsspitzen an gasförmigem Arbeitsfluid im abzuführenden Gasgemisch vermeiden, die Entlüftung muss dann allerdings länger erfolgen, wobei der Adsorber langsam desorbiert bzw. entladen wird. Es findet dadurch eine Vergleichmäßigung statt.In a further embodiment it is provided that an air stream is led out of the capsule housing and directed into an adsorber by means of a conveying fan. This adsorber can either vent into the room where the heat pump is installed or back into the capsule housing. In a further variant, the adsorber is also used as an upstream filter when venting into the outside area of the building; this avoids concentration peaks of gaseous working fluid in the gas mixture to be discharged, but venting must then take longer, with the adsorber being slowly desorbed or discharged. This results in an equalization.
Je nach detektierter Gaskonzentration kann entweder die Zwangsbelüftung nach außerhalb aktiviert werden, was bei größeren Konzentrationen oder schnellen Konzentrationsanstiegen vorzunehmen ist, oder nur die Zwangsbelüftung durch den Adsorber bei geringen Konzentrationen an Arbeitsfluid, oder die Vergleichmäßigung durch den Adsorber als Vorschaltfilter.Depending on the detected gas concentration, either the forced ventilation to the outside can be activated, which is to be carried out for larger concentrations or rapid increases in concentration, or only the forced ventilation by the adsorber for low concentrations of working fluid, or the equalization by the adsorber as an upstream filter.
Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert. Dabei zeigen:
-
Fig. 1 schematisch eine Wärmepumpe nach dem Stand der Technik, die in einem Wohngebäude steht, -
Fig. 2 dieselbe Wärmepumpe mit Sicherheitsausstattung, -
Fig. 3 die Wärmepumpe mit einem Ejektor, -
Fig. 4 die Wärmepumpe mit dem Adsorber als Vorschaltfilter, -
Fig. 5a und 5b zwei Strömungsgitter im Querschnitt des Spülkanals.
-
Fig. 1 schematically a heat pump according to the state of the art, which is located in a residential building, -
Fig. 2 the same heat pump with safety equipment, -
Fig. 3 the heat pump with an ejector, -
Fig. 4 the heat pump with the adsorber as an upstream filter, -
Figures 5a and 5b two flow grids in the cross section of the flushing channel.
Im unteren Teil sind die thermodynamischen Apparate angeordnet, die das Arbeitsfluid im Kältekreis führen, dies sind der Kompressor 12, das Expansionsventil 14, der Verdampfer 18, der Verflüssiger 19 sowie das 3-Wege-Ventil 8, hinzu kommen die Pumpen für die Wärmeträgerfluide, dies sind die Heizkreispumpe 9 und die Solepumpe 17, sowie die Füll- und Entleerventile für den Heizkreislauf 10 und den Solekreislauf 16.In the lower part, the thermodynamic devices are arranged that lead the working fluid in the refrigeration circuit, these are the
Es ist dabei frei wählbar, ob diese Anordnungen in der oben beschriebenen Weise vorgenommen werden, oder ob der Warmwasserteil und der Kältekreis nebeneinander oder genau andersrum übereinander angeordnet werden. Im Bodenbereich befinden sich das Typenschild 11, die Griffmulden 13 und die Kondensatwanne 15.You can freely choose whether these arrangements are made in the manner described above, or whether the hot water part and the refrigeration circuit are arranged next to one another or exactly the other way around, one above the other. The
Am Inneneinlass des Luftkanals, der sich im Kapselgehäuse 107 befindet, kann eine Rückschlagklappe angeordnet werden, um das Einströmen von Außenluft im Normalbetrieb zu verhindern, ansonsten kann im Fall einer schweren Leckage schnell eine große Menge Luft entweichen und ein Druckaufbau im Kapselgehäuse 107 wie auch im gesamten Gehäuse der Wärmepumpe 101 unterbleibt sicher. Diese Entlüftung kann durch das explosionsgeschützte Fördergebläse 106 bei Bedarf unterstützt werden. Die Wärmepumpe wird in solchen Fällen sofort gestoppt.At the inner inlet of the air channel, which is located in the
Als weitere Sicherheitsmaßnahme dient der Adsorber 111, der direkt über den Sauganschluss 109 an das Kapselgehäuse 107 angeschlossen ist. Weiterhin ist ein Gassensor 108 vorgesehen, der das Fördergebläse 110 einschaltet, wenn Arbeitsfluid im Kapselgehäuse 107 erkannt wird. In diesem Fall wird gereinigte Luft am Innenauslass 112 in den Innenraum abgegeben. Diese Art der Entlüftung wird bei kleinen Leckagen gewählt, die Wärmepumpe kann in solchen Fällen noch eine Weile im Notbetrieb weiterlaufen.The
Bei vielen Anwendungsfällen kann die Wärmepumpe aber nicht direkt an einer Außenwand aufgestellt werden. Ist der Luftkanal länger, muss auch die Bildung eines zündfähigen Gemischs im Luftkanal berücksichtigt und verhindert werden. Hierfür stehen folgende Möglichkeiten zur Verfügung.In many applications, however, the heat pump cannot be installed directly on an external wall. If the air duct is longer, the formation of an ignitable mixture in the air duct must also be taken into account and prevented. The following options are available for this.
Bei größeren Luftkanalquerschnitten ist jedoch nur schwer zu vermeiden, dass sich größere Mengen an Arbeitsfluid im Luftkanal ansammeln können, wenn dieser Luftkanal aufstellungsbedingt über eine weite Strecke geführt werden muss. Um ein Zünden im Luftkanal sicher zu unterbinden, dient die Ausstattung des Luftkanals mit Strömungsgittern, die aus sehr dünnen Blechen mit Blechstärken im Zehntelmillimeterbereich bestehen.In the case of larger air duct cross-sections, however, it is difficult to prevent larger quantities of working fluid from collecting in the air duct if this air duct has to be routed over a long distance due to the installation. In order to reliably prevent ignition in the air duct, the air duct is equipped with flow grids made of very thin sheet metal with sheet thicknesses in the tenths of a millimeter range.
Es versteht sich, dass die in den
- 11
- LeitungsführungskanalCable duct
- 22
- TrinkwasserspeicherDrinking water storage
- 33
- ElektroschaltkastenElectrical switch box
- 44th
- ReglerplatineController board
- 55
- Anschluss SpannungsversorgungPower supply connection
- 66th
- Sicherheitstemperaturbegrenzer STB der ZusatzheizungSafety temperature limiter STB of the additional heating
- 77th
- Elektrische ZusatzheizungElectric auxiliary heating
- 88th
- 3-Wege-Ventil3-way valve
- 99
- HeizkreispumpeHeating circuit pump
- 1010
- Füll-und Entleerventil HeizungskreislaufFilling and draining valve heating circuit
- 1111
- Typenschildtype label
- 1212th
- Kompressorcompressor
- 1313th
- GriffmuldenRecessed grips
- 1414th
- ExpansionsventilExpansion valve
- 1515th
- KondensatwanneCondensate pan
- 1616
- Füll- und Entleerventil SolekreislaufFilling and draining valve, brine circuit
- 1717th
- SolepumpeBrine pump
- 1818th
- VerdampferEvaporator
- 1919th
- VerflüssigerCondenser
- 100100
- WohngebäudeResidential buildings
- 101101
- WärmepumpeHeat pump
- 102102
- AußenwandOuter wall
- 103103
- LuftkanalAir duct
- 104104
- AußenanschlussExternal connection
- 105105
- AußenauslassExternal outlet
- 106106
- FördergebläseConveyor blower
- 107107
- KapselgehäuseCapsule housing
- 108108
- GassensorGas sensor
- 109109
- SauganschlussSuction connection
- 110110
- FördergebläseConveyor blower
- 111111
- AktivkohleadsorberActivated carbon adsorber
- 112112
- InnenauslassInner outlet
- 113113
- SpülrohrgitterFlush pipe grille
- 114114
- EjektorEjector
- 115115
- DruckgasbehälterPressurized gas container
Claims (9)
dadurch gekennzeichnet, dass
characterized in that
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019124531.1A DE102019124531A1 (en) | 2019-09-12 | 2019-09-12 | Safety flushing device for a heat pump |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3792572A1 true EP3792572A1 (en) | 2021-03-17 |
Family
ID=72474200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20195908.7A Pending EP3792572A1 (en) | 2019-09-12 | 2020-09-14 | Safety coil device for a heat pump |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3792572A1 (en) |
DE (1) | DE102019124531A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4194769A1 (en) * | 2021-12-07 | 2023-06-14 | Glen Dimplex Deutschland GmbH | Refrigerant system and refrigerant module |
EP4336119A1 (en) * | 2022-09-09 | 2024-03-13 | Vaillant GmbH | Moisture management and condensate drain for a heat pump housing |
EP4339529A1 (en) * | 2022-09-14 | 2024-03-20 | Vaillant GmbH | Service connection for a heat pump housing |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2020336808B2 (en) * | 2019-08-27 | 2023-04-27 | Faiveley Transport Leipzig Gmbh & Co. Kg | Climate control system for a rail vehicle (overpressure in the electrical box) |
EP4148358A1 (en) * | 2021-09-08 | 2023-03-15 | Carrier Corporation | Refrigerated display cabinet |
DE102022122979A1 (en) | 2022-09-09 | 2024-03-14 | Vaillant Gmbh | Tight heat pump housing |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE553295C (en) * | 1931-02-03 | 1932-06-23 | Bbc Brown Boveri & Cie | Encapsulated compression refrigeration machine |
DE4102245A1 (en) * | 1991-01-24 | 1992-08-13 | Ilka Maschinenfabrik Halle Gmb | SAFETY DEVICE FOR REFRIGERATOR UNITS WITH AMMONIA AS A REFRIGERANT |
DE29510024U1 (en) * | 1995-06-21 | 1995-11-09 | Ilka Mafa Kältetechnik GmbH, 06184 Döllnitz | Safety device for machine rooms with ammonia refrigeration units |
DE102009029392A1 (en) | 2009-09-11 | 2011-03-24 | WESKA Kälteanlagen GmbH | Explosion-proof refrigeration system with flammable refrigerant |
DE102011116863A1 (en) | 2011-10-25 | 2013-04-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for securing device for closed thermodynamic cycle, involves contacting adsorbent with environmentally hazardous, toxic and/or flammable material, and selectively binding flammable substance by adsorbent |
WO2015032905A1 (en) | 2013-09-05 | 2015-03-12 | Holger König | Method for preventing leakage from a container and a container having leakage safeguard |
DE102014112545A1 (en) * | 2014-09-01 | 2016-03-03 | Denso Automotive Deutschland Gmbh | Refrigerant circuit compact unit for a motor vehicle |
DE202016103305U1 (en) | 2016-06-22 | 2016-07-07 | Futron GmbH | Explosion-proof device for tempering heat transfer fluids |
EP3106780A1 (en) * | 2015-06-17 | 2016-12-21 | Vaillant GmbH | Heat pump assembly |
DE102017126952A1 (en) * | 2017-11-16 | 2019-05-16 | Vaillant Gmbh | Leak detection by adsorber |
EP3486575A1 (en) * | 2017-11-16 | 2019-05-22 | Vaillant GmbH | Device and method for a security drain of working fluid |
-
2019
- 2019-09-12 DE DE102019124531.1A patent/DE102019124531A1/en active Pending
-
2020
- 2020-09-14 EP EP20195908.7A patent/EP3792572A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE553295C (en) * | 1931-02-03 | 1932-06-23 | Bbc Brown Boveri & Cie | Encapsulated compression refrigeration machine |
DE4102245A1 (en) * | 1991-01-24 | 1992-08-13 | Ilka Maschinenfabrik Halle Gmb | SAFETY DEVICE FOR REFRIGERATOR UNITS WITH AMMONIA AS A REFRIGERANT |
DE29510024U1 (en) * | 1995-06-21 | 1995-11-09 | Ilka Mafa Kältetechnik GmbH, 06184 Döllnitz | Safety device for machine rooms with ammonia refrigeration units |
DE102009029392A1 (en) | 2009-09-11 | 2011-03-24 | WESKA Kälteanlagen GmbH | Explosion-proof refrigeration system with flammable refrigerant |
DE102011116863A1 (en) | 2011-10-25 | 2013-04-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for securing device for closed thermodynamic cycle, involves contacting adsorbent with environmentally hazardous, toxic and/or flammable material, and selectively binding flammable substance by adsorbent |
WO2015032905A1 (en) | 2013-09-05 | 2015-03-12 | Holger König | Method for preventing leakage from a container and a container having leakage safeguard |
DE102014112545A1 (en) * | 2014-09-01 | 2016-03-03 | Denso Automotive Deutschland Gmbh | Refrigerant circuit compact unit for a motor vehicle |
EP3106780A1 (en) * | 2015-06-17 | 2016-12-21 | Vaillant GmbH | Heat pump assembly |
DE202016103305U1 (en) | 2016-06-22 | 2016-07-07 | Futron GmbH | Explosion-proof device for tempering heat transfer fluids |
DE102017126952A1 (en) * | 2017-11-16 | 2019-05-16 | Vaillant Gmbh | Leak detection by adsorber |
EP3486575A1 (en) * | 2017-11-16 | 2019-05-22 | Vaillant GmbH | Device and method for a security drain of working fluid |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4194769A1 (en) * | 2021-12-07 | 2023-06-14 | Glen Dimplex Deutschland GmbH | Refrigerant system and refrigerant module |
EP4336119A1 (en) * | 2022-09-09 | 2024-03-13 | Vaillant GmbH | Moisture management and condensate drain for a heat pump housing |
EP4339529A1 (en) * | 2022-09-14 | 2024-03-20 | Vaillant GmbH | Service connection for a heat pump housing |
Also Published As
Publication number | Publication date |
---|---|
DE102019124531A1 (en) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3792572A1 (en) | Safety coil device for a heat pump | |
EP3486582B1 (en) | Device for leakage detection using absorber | |
EP3578895B1 (en) | Device and method for safe and energy-saving flushing of a housing | |
EP3693683A1 (en) | Diffusion barrier using protective layers | |
EP3693687B1 (en) | Adsorption cooling | |
EP4008979A1 (en) | Device for safely carrying out a left-turning thermodynamic cycle | |
EP3581861A2 (en) | Fluid absorption | |
EP3940314B1 (en) | Safety coil device for a heat pump | |
EP3748257B1 (en) | Device for the safe performance of a left-rotating thermodynamic circular process by means of a flammable working fluid with the use of fluidadsoption | |
EP3951282B1 (en) | Active waste air purification for a heat pump | |
EP3693078A1 (en) | Fill level sensor | |
DE102019118984A1 (en) | Diffusion barrier by means of protective layers | |
EP3486564B1 (en) | DEVICE FOR SAFE IMPLEMENTATION OF A LEFT-SWITCHING THERMODYNAMIC CLAUSIUS RANKINE PROCESS
BASED ON WORK FLUID ADSORPTION WITH INERTGAS DISPLACEMENT | |
EP3543629A1 (en) | No leak housing for a cycle process | |
EP3486575B1 (en) | Device and method for a security drain of working fluid | |
EP3705823A1 (en) | Service intervention | |
DE102019114738A1 (en) | Fluid adsorption | |
EP3647684B1 (en) | Safety zone of the condenser | |
DE102019121496A1 (en) | Safety flushing device for a heat pump | |
EP3719416B1 (en) | Device for the safe performance of a left-turning thermodynamic clausius-rankine cycle with r290 as the working fluid | |
EP3770520A1 (en) | Fire protection device | |
EP3492846B1 (en) | Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid | |
EP1175247B1 (en) | Life-saving system for closed rooms, in particular tunnels | |
DE102019118977A1 (en) | Adsorber cooling | |
EP3712531A1 (en) | Safety ventilation device for a heat pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210915 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220531 |