EP3791408B1 - Verfahren zum herstellen einer atomfalle sowie atomfalle - Google Patents

Verfahren zum herstellen einer atomfalle sowie atomfalle Download PDF

Info

Publication number
EP3791408B1
EP3791408B1 EP19710350.0A EP19710350A EP3791408B1 EP 3791408 B1 EP3791408 B1 EP 3791408B1 EP 19710350 A EP19710350 A EP 19710350A EP 3791408 B1 EP3791408 B1 EP 3791408B1
Authority
EP
European Patent Office
Prior art keywords
electric conductor
contacting
layer
conductor element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19710350.0A
Other languages
English (en)
French (fr)
Other versions
EP3791408A1 (de
Inventor
Amado Bautista-Salvador
Christian Ospelkaus
Martina Wahnschaffe
Jonathan Morgner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesministerium fuer Wirtschaft und Energie
Original Assignee
Bundesministerium fuer Wirtschaft und Energie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesministerium fuer Wirtschaft und Energie filed Critical Bundesministerium fuer Wirtschaft und Energie
Publication of EP3791408A1 publication Critical patent/EP3791408A1/de
Application granted granted Critical
Publication of EP3791408B1 publication Critical patent/EP3791408B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0013Miniaturised spectrometers, e.g. having smaller than usual scale, integrated conventional components
    • H01J49/0018Microminiaturised spectrometers, e.g. chip-integrated devices, MicroElectro-Mechanical Systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • H01J49/4225Multipole linear ion traps, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps

Definitions

  • the invention relates to a method for producing an atomic trap and an atomic trap produced using it.
  • Atom traps are devices for storing neutral atoms and/or ions. In the case of ions, these are usually trapped by means of an electric field and, in the case of neutral atoms, by means of a magnetic field and cooling of the ions or neutral atoms to be trapped in the atom trap. For example, the method of laser cooling can be used for cooling.
  • Storage means in particular that the neutral atoms or ions do not leave the atomic trap or the respective field for a period of at least one second, preferably at least one minute, more preferably at least 10 minutes.
  • an atom trap is understood to be a device for generating such an electrical and/or magnetic field, by means of which atoms or ions can be stored.
  • any necessary cooling devices are not part of the claimed invention.
  • Inhomogeneous magnetic fields or inhomogeneous electric fields are preferably used to capture or store the neutral atoms or ions. It is possible, for example by means of photoionization, to first convert neutral atoms into ions and then store them in electric fields.
  • the ions can in particular be monoatomic, but also polyatomic ions, ie molecular ions.
  • Atomic traps are used, among other things, in quantum information processing, for example as quantum sensors or for quantum sensors. They can be formed from microtechnical structures. Here it is possible, for example and particularly advantageous to form multilayer atom traps. These have a plurality of superimposed layers, which in turn each have electrical conductor structures. It is necessary here for the individual layers to be reproducible and to be manufacturable with small deviations, since irregularities propagate and add up when the layers are applied one on top of the other. In the prior art, this often leads to manufacturing difficulties.
  • the different conductor structures in the individual layers should be conductively connected to one another, which is difficult to achieve in the prior art, especially in a process with the necessary reproducibility and freedom from irregularities and the required layer thicknesses and material combinations.
  • nuclear traps are very susceptible to electrical interference fields in particular.
  • Atomic traps require an electrical and/or magnetic field that is as well-defined as possible in terms of time, in particular that is constant, in order to store atoms and/or ions.
  • interference fields can be minimized, for example, by realizing large aspect ratios, so that charges accumulated on exposed dielectrics below the conductor layer generate the smallest possible electric fields at the location above the structure where the atoms are stored.
  • Aspect ratio is to be understood in particular as the height of the electrical conductor structures in comparison to the gaps between the same conductor elements.
  • the object of the present invention is to improve the production of nuclear traps.
  • the invention solves the problem by a method with the following steps: (a) application of an electrically conductive starting layer to a substrate, (b) application of at least one electrical conductor element to the starting layer by means of electrochemical deposition and/or in the lift-off method, (c ) Application of at least one contacting element by means of electrochemical deposition and/or in the lift-off process, so that the at least one contacting element is electrically conductively connected to the at least one electrical conductor element, (d) removing the starting layer in areas in which no electrical conductor element was applied , (e) applying an insulating layer which at least partially covers the at least one electrical conductor element and the at least one contacting element, (f) planarizing the insulating layer and exposing the at least one contacting element and (g) applying at least one further electrical conductor element by means of electro chemical deposition and/or in the lift-off process, so that the at least one further electrical conductor element is electrically conductively connected to the at least one contacting element.
  • the invention also achieves the object by means of an atom trap which is produced using the method according to the invention and which has at least one electrical conductor element applied by electrochemical deposition and/or in the lift-off method and at least one electrical conductor element applied by electrochemical deposition and/or in the lift-off method.
  • Method applied contacting element wherein the at least one electrical conductor element and the at least one contacting element have a layer thickness of at least 1 micron and an aspect ratio of at least 1.
  • the substrate is, for example, a wafer made of silicon dioxide or corundum.
  • the substrate can also be formed from a body made of electrically conductive material, for example silicon, which has an insulating, ie electrically non-conductive, coating, for example made of silicon dioxide or silicon nitride.
  • an electrically conductive starting layer is applied to this substrate, preferably made of an alloy or a metal, such as, for example copper, silver or nickel.
  • the starting layer is preferably formed from gold or an alloy containing gold.
  • Gold is little used in semiconductor technology because it has several disadvantageous properties. For example, it can contaminate laboratories designed as clean rooms, so that CMOS semiconductors can no longer be produced in laboratories that work with gold, for example. In addition, gold is very soft, difficult to polish, in particular mechanically, and is also expensive.
  • gold is preferably used because, for example, it is not very reactive and has only a low tendency for adsorbates to adhere.
  • At least one electrical conductor element is applied to the starting layer by means of electrochemical deposition and/or in the lift-off process.
  • the electrically conductive starting layer functions in particular as a counter-electrode for the electrochemical deposition, which is also referred to as galvanic deposition.
  • a structure is preferably first applied to the starting layer by means of photolithography.
  • the photoresist can be a positive or negative resist, for example, with the at least one electrical conductor element being applied by means of electrochemical deposition in the areas in which the starting layer is not covered by photoresist.
  • a further layer of photoresist is applied by means of photolithography, the photoresist applied in the previous step preferably having been removed beforehand.
  • photoresist which can be positive or negative resist. These are formed by electrochemical deposition in the areas where there is no photoresist.
  • These areas are located in particular above the conductor elements applied to the starting layer, so that the contacting elements are electrically conductively connected to them.
  • the starting layer is then removed in areas where no electrical conductor element was applied. Before this, in particular the previously applied photoresist is removed and the starting layer is removed, for example by wet or dry etching.
  • the substrate is preferably uncovered in all areas in which there is no electrical conductor element. Alternatively, only narrow areas of the starting layer are removed, so that the electrical conductor elements that are spaced apart from one another are no longer electrically conductively connected to one another via the starting layer, and areas in which the starting layer has not been removed remain.
  • the starting layer can also be removed before the at least one contacting element is applied.
  • the insulating layer preferably consists of a dielectric or a mixture of different dielectrics, such as a polyimide, a silicone or a polymer made from or with benzocyclobutene (BCB).
  • a dielectric or a mixture of different dielectrics such as a polyimide, a silicone or a polymer made from or with benzocyclobutene (BCB).
  • the insulating layer can be applied, for example, by means of spin coating. This is particularly preferred when the dielectric constituting the insulating layer is a polyimide or a polymer made from or with BCB.
  • the insulating layer is applied in such a way that it at least partially, preferably completely, covers the at least one conductor element and the at least one contacting element.
  • the insulating layer encloses the at least one conductor element and the at least one contacting element, preferably completely above the substrate and/or the starting layer.
  • the invention also solves the problem by a method with the steps: (a) applying an electrically conductive starting layer to a substrate, (b) applying at least one electrical conductor element to the starting layer by means of electrochemical deposition and/or in the lift-off method, ( c) removing the starting layer in areas where no electrical conductor element is applied, (d) applying an insulating layer which at least partially, in particular completely covers, the at least one conductor element, (e) removing the insulating layer in predetermined areas above the at least one electrical conductor element , so that the at least one conductor element is partially uncovered, (f) application of via elements by means of electrochemical deposition and/or in the lift-off process in the areas in which the at least one electrical conductor element is uncovered, and (g) application of at least one additional one electrical conductor element mi by means of electrochemical deposition and/or in the lift-off process, so that the at least one further electrical conductor element is electrically conductively connected to the at least one contacting element.
  • step (e) is carried out, namely the removal of the insulating layer in a predetermined area above the at least one electrical conductor element so that the at least one conductor element is exposed
  • the insulating layer is planarized, in particular by chemical-mechanical polishing.
  • a starting layer can be applied, which is covered with a photoresist, in particular at the points where no contact elements are provided. All statements made on the subject matter of the main claim also apply accordingly to this embodiment of the method according to the invention.
  • the insulating layer does not have a flat surface, but rather an uneven surface structure. This corresponds in particular to the underlying structures, so that the insulating layer has a greater height above the substrate in the areas in which electrical conductor elements and/or contacting elements are located than in those areas in which the insulating layer merely covers the substrate.
  • the insulating layer has a structure that corresponds to the underlying structure of the substrate, the remaining starting layer, the electrical conductor elements and the contacting elements.
  • the insulating layer is planarized and the at least one contacting element is exposed.
  • Planarization means in particular that the surface of the insulating layer is smoothed, so that it is in particular as flat as possible and preferably runs parallel to the surface of the substrate.
  • the insulating layer is preferably planarized by chemical-mechanical polishing.
  • the at least one contacting element is exposed in particular in one of the two alternative methods presented below.
  • the layer thickness of the material of the insulating layer covering the at least one contacting element is as small as possible. This layer thickness is preferably less than 500 nm, particularly preferably less than 250 nm.
  • photoresist is preferably first applied to the planarized insulating layer.
  • This photoresist can in turn be a positive or negative resist.
  • the photoresist is preferably applied to the insulating layer in such a way that it is not located in the areas below which the at least one contacting element is located. Particularly preferably, only areas below which the at least one contacting element is located remain free of photoresist.
  • the dielectric, ie the insulating layer, above the at least one contacting element can then be removed, for example by means of wet or dry etching, and this can thus be uncovered.
  • the resulting height difference between the insulating layer and the at least one contacting element compared to the substrate is preferably at most 500 nm, particularly preferably at most 250 nm.
  • the previously applied photoresist is preferably removed.
  • a further electrically conductive starting layer is particularly preferably applied, which is in particular located both on the insulating layer and on the previously exposed contacting elements.
  • each additional electrical conductor element is therefore electrically conductively connected to at least one underlying contacting element.
  • connection is preferably made via the applied further starting layer, so that the at least one further electrical conductor element and the at least one contacting element are not directly connected to one another, but are electrically conductively connected to one another via the further starting layer.
  • the electrical conductor elements and/or the contacting elements are preferably made of gold or copper or an alloy containing gold and/or copper.
  • Gold has a high electrical conductivity.
  • it is not very reactive and has a low tendency for adsorbates to stick. These can lead to the emergence of interference fields, which make it difficult or even impossible to capture the atoms and/or ions.
  • the at least one contacting element is preferably exposed by planarizing the insulating layer in step (f).
  • the insulating layer is planarized until it no longer covers the at least one contacting element.
  • material of the at least one contacting element it is possible in particular for material of the at least one contacting element to be removed by planarization in addition to the material of the insulating layer.
  • this method can, in the case of contacting elements made of soft material, such as pure gold, lead to smearing of the contacting element as soon as it is reached by the polishing wheel.
  • This method is therefore preferably used with sufficiently hard materials for the contacting element, such as copper or nickel or alloys, in particular gold alloys, with sufficient hardness.
  • the method preferably has a step (h) which, in particular, follows step (g) of the main claim, namely the application of at least one further electrical conductor element by means of electrochemical deposition and/or in the lift-off process, so that the at least one further electrical conductor element is electrically is conductively connected to the at least one contacting element is carried out.
  • Step (h) comprises removing the insulating layer in areas where no further electrical conductor element has been applied, so that gaps are formed.
  • a further electrically conductive starter layer has been applied to the insulating layer and the via elements, this is first removed in the areas in which no further electrical conductor element has been applied. This can also be done in the same step in which the insulating layer is removed in these areas. In other words, this exposes underlying layers. The insulating layer is removed, for example, until it reaches an underlying electrical conductor element or until it reaches the substrate.
  • a gap is to be understood here in particular as a material-free space which is delimited laterally in at least two spatial directions parallel to the substrate by applied structures.
  • it can be a material-free space that is completely surrounded, that is to say laterally in all four spatial directions parallel to the substrate.
  • it can also be a channel that is only delimited on two sides and runs through the atom trap from one side of the substrate to another side of the substrate parallel to the substrate.
  • such a gap forms a channel that does not completely run through the atomic trap.
  • this channel is surrounded by structures on three sides.
  • the gaps preferably have an aspect ratio of at least 1.
  • Aspect ratio is the height or depth of an object in relation to its smallest lateral extent.
  • the aspect ratio consequently relates to the ratio of the spatial depth of a gap to its smallest width, in particular parallel to the substrate.
  • the depth of a gap is to be understood in particular as a distance perpendicular to the substrate, from the lowest edge of a structural element laterally delimiting the gap to the bottom of the gap, which runs in particular parallel to this edge and is formed, for example, by an electrical conductor element or the substrate.
  • the gaps are as narrow as possible. They therefore preferably have an aspect ratio of at least 3, more preferably at least 4, even more preferably at least 5.
  • the method comprises the step of repeating steps (c) to (g) or (c) to (h) so that a multilayer atom trap is obtained.
  • the manufacturing method according to this embodiment is after the atomic trap Performance of steps (a) to (g) or (a) to (h) not completed. Rather, some of the steps are repeated at least once.
  • Further contacting elements are therefore preferably applied by means of electrochemical deposition and/or in the lift-off process, which are electrically conductively connected to the electrical conductor elements applied in step (g).
  • step (d) in particular does not have to be carried out.
  • Steps (c) to (g) or (c) to (h) are preferably carried out at least once, more preferably at least five times, more preferably at least ten times and more preferably at least twenty times.
  • a multi-layer structure of conductor elements is created, which are connected to one another via via elements in a direction perpendicular to the substrate.
  • the aspect ratio is preferably at least 1, more preferably at least 3, more preferably at least 4 and most preferably at least 5 means in particular the aspect ratio of the resulting gaps, i.e. in the finished, preferably multilayer atom trap.
  • An aspect ratio that is as large as possible is advantageous since it is less likely that interfering substances or adsorbates can penetrate these gaps and settle there. Such interfering substances or adsorbates, for example, allow the formation of electrical interference fields that make it difficult or even prevent the capture of neutral atoms or ions in the atom trap.
  • An aspect ratio that is as large as possible is also advantageous because dielectrics can carry surface charges in the lower region of the gap. These surface charges, when buried so deep in the interstices, create only small electric fields at the location of the stored atoms and thus disturb them less.
  • the electrical conductor elements are preferably applied with a layer thickness of at least 1 ⁇ m and/or the insulating layer and/or the at least one contacting element are applied with a layer thickness of at least 1 ⁇ m.
  • the contacting elements preferably also have a layer thickness of at least 1 ⁇ m.
  • Such a layer thickness of at least 1 ⁇ m can be realized, for example, with the method of electrochemical deposition, which is otherwise disadvantageous in microtechnology. This usually has the disadvantage that the elements produced are too thick and too irregular for many microtechnical applications.
  • the insulating layer preferably also has a layer thickness of at least 1 ⁇ m.
  • the thickness of the insulating layer preferably corresponds to the layer thickness of the contacting elements. It is preferably the same size or larger.
  • the layer thickness of the electrical conductor elements and/or the contacting elements and/or the insulating layer is preferably more than 3 ⁇ m, more preferably more than 5 ⁇ m and particularly preferably more than 10 ⁇ m.
  • the conductor elements and/or the contacting elements preferably have an aspect ratio of at least 1.
  • the spatial extent in the direction perpendicular to the substrate is at least equal to the smallest lateral extent, which in particular runs parallel to the substrate.
  • the conductor elements and/or the contacting elements particularly preferably have an aspect ratio of at least 3, more preferably at least 4, more preferably at least 5.
  • the substrate preferably has a recess for passing an atomic beam through, or such a recess is made in the substrate.
  • a recess can be, for example, a channel that runs through the substrate completely from a bottom to a top and is thus surrounded by the substrate in all four spatial directions parallel to the substrate.
  • the recess it is also possible for the recess to be surrounded by the substrate in only three spatial directions.
  • An atom beam can be directed through such a recess, from which atoms or ions are captured by the atom trap.
  • the atomic beam can also be an ion beam.
  • Such a beam can be generated, for example, by selectively heating a metal wire, such as a beryllium wire. It is also possible to generate ions from an atomic beam by means of photoionization and then capture and store them.
  • the substrate preferably has at least one substrate via element or this is introduced into the substrate.
  • the substrate has an upper side and an underside, with the method according to the invention being carried out in particular on the upper side of the substrate.
  • the at least one electrically conductive substrate via element preferably extends from the top to the bottom of the substrate.
  • the electrical conductor elements are preferably applied to the upper side of the substrate in such a way that they are electrically conductively connected to this at least one substrate via element.
  • the power source required for energizing the electrical conductor elements can be connected to the rear of the substrate.
  • the electrical current can then be introduced into the at least one electrical conductor element via the substrate via element. It is also possible that only a potential, in particular static voltages, is present at the electrical conductor elements. In other words, energizing the at least one electrical conductor element is possible, but not necessary.
  • An atom trap according to the invention is characterized in that it has conductor elements and contacting elements whose layer thickness is at least 1 ⁇ m. In particular, this only becomes possible as a result of the electrochemical deposition during production. Other manufacturing methods, such as sputtering, lead in particular to significantly lower layer thicknesses and are therefore technically not useful.
  • a high layer thickness is advantageous because, in particular, traps for neutral atoms must be able to carry high currents in order to provide field configurations with a stable and very large spatial inhomogeneity for storing the atoms.
  • the conductor elements and the contacting elements have an aspect ratio of at least 1, so that narrow structures are formed in particular.
  • Any gaps that may be formed preferably also have aspect ratios of at least 1. This ensures in particular that charges accumulated on dielectric layers in the wall region of the gaps below conductor elements cause interference fields that are as small as possible at the location of the atoms.
  • the atomic trap according to the invention is also characterized in particular by the fact that its structure can be scaled particularly easily. In other words, in particular almost any number of layers, in particular at least 10 layers, can be formed without irregularities propagating in such a way that a functional structure is no longer provided.
  • the metallic starting layer 2 here is in 1 already applied to the substrate 1, in particular over the entire surface and by means of gas phase deposition.
  • Photoresist 3 is then applied to this, in particular by means of spin coating or spray coating.
  • the photoresist is preferably either negative resist or positive resist.
  • positive resist a mask is used which is translucent at the points at which the subsequent electrical conductor elements 4 (4.1, 4.2) are to be arranged. Exposure causes the positive resist to become liquid or soluble in the exposed areas, so that it can be removed in these areas. As a result, the photoresist 3 is only arranged in the areas in which no electrical conductor elements 4 are to be applied. In this respect, it serves as a form or template for applying the at least one electrical conductor element 4.
  • the areas of the mask in which the subsequent electrical conductor elements 4 are not to be applied are translucent. In these areas, the photoresist 3 hardens under exposure. In the non-exposed areas, it can be removed accordingly and a mold or template is created for applying the at least one electrical conductor element 4.
  • the starting layer 2 acts as a counter-electrode during the galvanic deposition of the electrical conductor elements 4.1 and 4.2.
  • photoresist 3 which serves as a mold or template for the contacting elements 6 .
  • the previously applied photoresist can first be removed.
  • the contacting elements 6, in this case the three contacting elements 6.1 to 6.3, are applied by means of electrolytic deposition in the areas in which no photoresist 3 is present.
  • the photoresist 3 is then in particular completely removed. This can be done using a suitable solvent such as acetone.
  • the starting layer 2 is removed in the areas in which no conductor elements 4 are applied to it. It is preferably possible to remove the starting layer 2 and the photoresist 3 in a single work step.
  • the starting layer 2 can already be removed before the contacting elements 6 are applied.
  • An insulating layer 7 is then applied.
  • this consists of a polyimide and is applied by means of spin coating.
  • the insulating layer preferably completely covers the previously applied structures. Due to the different heights of the individual structures compared to the substrate 1, the insulating layer has a structure that corresponds in particular to the underlying structures.
  • the height of the insulating layer ie the distance between the surface and the underlying structure, is preferably almost constant. this is in 1 indicated as h1.
  • the absolute height of the insulating layer above the substrate varies and leads to the corresponding structure mentioned.
  • the insulating layer 7 is then planarized. It is preferably planarized by means of chemical-mechanical polishing, so that it then preferably has a constant height h2 above the substrate 1. Consequently, material of the insulating layer is removed.
  • the insulating layer 7 is planarized only to the extent, that is to say only so much material is removed, that the contacting elements 6.1 to 6.3 are still covered by the insulating layer 7.
  • the height of these the contacting elements 6.1. to 6.3 covering layer is in particular as small as possible. It is preferably less than 250 nm.
  • Photoresist 3 is then applied again, leaving out the areas below which the contacting elements 6.1. to 6.3. In these recessed areas, the insulating layer is removed, for example, by etching or a suitable solvent. Preferably, a removal method is used that does not attack the contacting elements 6 .
  • the height is still the, in particular constant, height h2.
  • a further electrically conductive starting layer 12 is then applied to the insulating layer 7 and the exposed contacting elements 6.1 to 6.3.
  • Photoresist 3 is again applied to this, which serves as a mold or template for the further electrical conductor elements 14.1 and 14.2. These are applied to the further starting layer 12 by means of electrochemical deposition.
  • the photoresist is then removed.
  • the further starting layer 12 is also removed in the areas in which no further electrical conductor element 14 is applied. This is done in two separate steps or preferably in one step.
  • the insulating layer 7 is now uncovered. This is then also removed, for example by etching, so that gaps 8 form. These gaps are delimited at the bottom by the electrical conductor elements 4 and/or the substrate. In the present case, the gap 8.1 is delimited by the electrical conductor element 4.1. The gap indicated at the edge 8.2. is, however, limited by the substrate 1.
  • Further contacting elements 16 can then be applied to the conductor elements 14 in order to obtain a multilayer atom trap.
  • the process steps outlined above can be repeated several times for this purpose.
  • figure 3 shows an atomic trap 20 according to the invention.
  • a plurality of multi-layer conductor structures 21 to 23 spatially separated from one another are shown schematically in this. These were made according to the in figure 1 and 2 applied to the substrate 1 outlined method.
  • the conductor structures 21 to 23 are preferably not conductively connected to one another and each have their own electrical connection 29 for energizing.
  • the conductor structures 21 to 23 serve to bring about an, in particular inhomogeneous, electric field above the atom trap.
  • ions 24.1 to 24.3 are captured and stored. These ions were previously identified using photoionization generated from neutral atoms.
  • a laser beam 25 is used for photoionization.
  • the conductor structures 22.1 and 22.2 are connected to AC voltage and the conductor structures 23.1 and 23.2 to ground.
  • the conductor structures 23 it is also possible for the conductor structures 23 to be connected to a non-zero DC voltage.
  • FIG 4 a further embodiment of an atomic trap 20 according to the invention is shown schematically.
  • This atom trap in turn has multilayer conductor structures 21 to 23, with a recess 26 in the form of a channel also being introduced into the substrate 1.
  • An atomic beam 27 is guided through this recess.
  • the atomic beam 27 can be generated by heating a metal wire, for example by heating a beryllium wire at a point to over 1000 K.
  • atoms of the atomic beam are converted into ions 24.1 to 24.3 by means of photoionization, which are stored in the electrical field that is caused by the multilayer conductor structures 21 to 23.
  • the substrate also has substrate through-plating elements 28, via which the multi-layer conductor structures 21 to 23 are energized. At least one substrate via element 28 is preferably assigned to each multilayer conductor structure 21 to 23 . By means of the substrate via elements 28, the current can be supplied in a particularly simple manner from the rear side of the substrate 1.
  • figure 5 shows an exemplary sectional view of a multi-layer atomic trap.
  • the sectional view corresponds to the atomic trap in the figures 1 and 2 illustrated manufacturing process.
  • Further contacting elements 16.1 and 16.2 were applied to the last applied conductor elements 14.1 and 14.2 by means of electrochemical deposition. These are preferably dimensioned identically as the contacting elements 6.1 to 6.3.
  • a further insulating layer 17 was applied by means of spin coating.
  • the contacting elements are exposed and a further starting layer (not shown) follows, which is superimposed on the further contacting elements 16.1 and 16.2 and the further insulating layer 17.
  • figure 5 It can be seen that the aspect ratio, that is to say the ratio of the width to the height of the gaps 8.1 and 8.2, increases as a result of the application of further layers. Gaps 8.1 and 8.2 in figure 5 a greater height than in figure 2 , resulting in a larger aspect ratio with the same width.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen einer Atomfalle sowie eine danach hergestellte Atomfalle.
  • Atomfallen sind Vorrichtungen zur Speicherung von neutralen Atomen und/oder Ionen. Diese werden üblicherweise im Falle von Ionen mittels eines elektrischen Feldes und im Falle von neutralen Atomen mittels eines magnetischen Felds sowie Kühlung der zu fangenden Ionen oder Neutralatome in der Atomfalle gefangen. Zur Kühlung kann beispielsweise das Verfahren der Laserkühlung eingesetzt werden.
  • Unter Speichern ist insbesondere zu verstehen, dass die Neutralatome oder Ionen die Atomfalle oder das jeweilige Feld über einen Zeitraum von zumindest einer Sekunde, vorzugsweise von zumindest einer Minute, weiter vorzugsweise von zumindest 10 Minuten nicht verlassen.
  • Im Rahmen dieser Beschreibung wird unter einer Atomfalle eine Vorrichtung zur Erzeugung eines solchen elektrischen und/oder magnetischen Feldes verstanden, mittels derer Atome oder Ionen speicherbar sind. Mit anderen Worten sind gegebenenfalls notwendige Kühlvorrichtungen nicht Teil der beanspruchten Erfindung.
  • Zum Fangen bzw. Speichern der Neutralatome oder Ionen werden bevorzugt inhomogene Magnetfelder oder inhomogene elektrische Felder verwendet. Es ist möglich, beispielsweise mittels Photoionisation, Neutralatome zunächst in Ionen zu überführen und diese dann in elektrischen Feldern zu speichern.
  • Bei den Ionen kann es sich insbesondere um einatomige, aber auch um mehratomige Ionen, also Molekül-Ionen, handeln.
  • Atomfallen werden unter anderem in der Quanteninformationsverarbeitung, beispielsweise als Quantensensoren oder für Quantensensoren, eingesetzt. Sie können aus mikrotechnischen Strukturen gebildet werden. Hierbei ist es beispielsweise möglich und insbesondere vorteilhaft, mehrlagige Atomfallen zu bilden. Diese weisen mehrere übereinanderliegende Lagen auf, die ihrerseits jeweils elektrische Leiterstrukturen aufweisen. Hierbei ist es notwendig, dass die einzelnen Lagen reproduzierbar und mit geringen Abweichungen herstellbar sind, da sich Unregelmäßigkeiten durch das Aufeinanderaufbringen der Lagen fortpflanzen und sich addieren. Dies führt im Stand der Technik häufig zu Herstellungsschwierigkeiten.
  • Darüber hinaus sollen die unterschiedlichen Leiterstrukturen in den einzelnen Lagen miteinander leitend in Verbindung stehen, was im Stand der Technik, insbesondere bei einem Prozess mit der notwendigen Reproduzierbarkeit und Freiheit von Unregelmäßigkeiten sowie den benötigten Schichtdicken und Materialkombinationen, nur schwierig zu realisieren ist.
  • Zudem sind Atomfallen sehr anfällig gegenüber insbesondere elektrischen Störfeldern. Atomfallen benötigen ein insbesondere zeitlich in sich möglichst wohldefiniertes, insbesondere konstantes elektrisches und/oder magnetisches Feld zum Speichern von Atomen und/oder Ionen.
  • Zur Erzeugung der elektrischen Felder müssen insbesondere hohe Spannungen von mehreren Volt bis zu mehreren Hundert Volt an die Leiterstrukturen angelegt werden, ohne die Strukturen zu beschädigen. Die resultierenden, insbesondere stark inhomogenen elektromagnetischen Felder dienen dazu, die Atome möglichst stark in der Atomfalle einzuschließen, sodass der hierdurch gegebene Einschluss wesentlich stärker ist als eventuell auftretende Störfelder.
  • Weiterhin lassen sich beispielsweise Störfelder minimieren, indem große Aspektverhältnisse realisiert werden, sodass auf exponierten Dielektrika unterhalb der Leiterschicht akkumulierte Ladungen möglichst kleine elektrische Felder am Ort oberhalb der Struktur erzeugen, wo die Atome gespeichert werden. Unter Aspektverhältnis ist insbesondere die Höhe der elektrischen Leiterstrukturen im Vergleich zu den Lücken zwischen denselben Leiterelementen zu verstehen.
  • Aus dem Artikel "Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols" von Hellwig et al, New J. Phys. 12 (2010), S. 065019-1 - 065019-10 wird die Herstellung einer Penning-Falle mit wabenförmiger Fallenstrukur beschrieben. Dazu wird in einem Formschritt Gold elektrochemisch abgeschieden. Die Herstellung von Strukturen, mittels derer komplexe magnetische Felder erzeugt werden können, ohne dass Störfelder auftreten, ist mit einem solchen Verfahren kaum möglich.
  • Aus dem Artikel "Experimental methods for trapping ions using microfabricated surface ion traps" von Hong et al, J. Vis. Exp. 126 (2017), S. e56060-1 - e56060-14 wird eine Paul-Falle beschrieben, die durch sukzessives Aufbringen von Leiterbahnen hergestellt wird. Die Leiterbahnen werden durch Aufschleudern von Fotolack, Strukturieren und Entfernen hergestellt. Mit dem dort beschriebenen Verfahren ist das Herstellen von Strukturen, die große elektrische Ströme mit hinreichend elektrischem Widerstand leiten, kaum möglich.
  • In der Dissertation "Integrated electromagnets and radiofrequency spectroscopy in a planar Paul trap" von Bautista-Salvador, Kapitel 3; Dissertation, Universität Ulm, 2015; DOI: 10.18725/OPARU-3352 wird die Herstellung einer Paul-Falle beschrieben, bei der Goldlagen elektrochemisch aufgebracht werden. In unterschiedlicher Richtung verlaufende Elektroden in verschiedenen Ebenen werden in der Dissertation nicht beschrieben.
  • In dem Artikel "Implementation of a Symmetrie surface-elektrode ion trap with field compensation using a modulated Raman effect" von Allcock et al, New J. Phys. 12 (2010), S. 053026-1 - 053026-18 wird ebenfalls eine Paul-Falle beschrieben, in der Elektroden durch elektrochemisches Abscheiden hergestellt wurden. Auch diese Druckschrift befasst sich nicht mit dem Aufbringen mehrerer Lagen an Elektroden.
  • Aus der US 2017/0316335 A1 ist ebenfalls eine Atomfalle bekannt, bei der die Leiterelemente durch Sputtern oder Aufdampfen hergestellt werden. Mit dem dort beschriebenen Verfahren ist das Herstellen von Strukturen, die große elektrische Ströme leiten, kaum möglich.
  • Die Aufgabe der vorliegenden Erfindung ist es, die Herstellung von Atomfallen zu verbessern.
  • Die Erfindung löst die Aufgabe durch ein Verfahren mit den Schritten: (a) Aufbringen einer elektrisch leitfähigen Startschicht auf ein Substrat, (b) Aufbringen zumindest eines elektrischen Leiterelements auf die Startschicht mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, (c) Aufbringen zumindest eines Kontaktierungselements mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine Kontaktierungselement elektrisch leitend mit dem zumindest einen elektrischen Leiterelement verbunden ist, (d) Entfernen der Startschicht in Bereichen, in denen kein elektrisches Leiterelement aufgebracht wurde, (e) Aufbringen einer Isolierschicht, die das zumindest eine elektrische Leiterelement und das zumindest eine Kontaktierungselement zumindest teilweise überdeckt, (f) Planarisieren der Isolierschicht und Freilegen des zumindest einen Kontaktierungselements und (g) Aufbringen zumindest eines weiteren elektrischen Leiterelements mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine weitere elektrische Leiterelement elektrisch leitend mit dem zumindest einen Kontaktierungselement verbunden ist.
  • Die Erfindung löst die Aufgabe zudem durch eine Atomfalle, die nach dem erfindungsgemäßen Verfahren hergestellt ist und die zumindest ein durch elektrochemische Abscheidung und/oder im Lift-Off-Verfahren aufgebrachtes elektrisches Leiterelement und zumindest ein durch elektrochemische Abscheidung und/oder im Lift-Off-Verfahren aufgebrachtes Kontaktierungselement aufweist, wobei das zumindest eine elektrische Leiterelement und das zumindest eine Kontaktierungselement eine Schichtdicke von zumindest 1 µm und ein Aspektverhältnis von zumindest 1 aufweisen.
  • Bei dem Substrat handelt es sich beispielsweise um einen Wafer aus Siliziumdioxid oder Korund. Das Substrat kann zudem aus einem Körper aus elektrisch leitfähigem Material gebildet sein, beispielsweise Silizium, der eine isolierende, also elektrisch nicht leitende, Beschichtung, beispielsweise aus Siliziumdioxid oder Siliziumnitrid, aufweist.
  • Auf dieses Substrat wird im ersten Schritt eine elektrisch leitfähige Startschicht aufgebracht, vorzugsweise aus einer Legierung oder einem Metall, wie beispielsweise Kupfer, Silber oder Nickel. Bevorzugt wird die Startschicht aus Gold oder einer goldhaltigen Legierung gebildet.
  • Gold wird in der Halbleitertechnik nur wenig verwendet, da es mehrere nachteilige Eigenschaften aufweist. So kann es beispielsweise als Reinräume ausgebildete Laboratorien kontaminieren, sodass beispielsweise in Laboratorien, in denen mit Gold gearbeitet wird, keine CMOS-Halbleiter mehr herstellbar sind. Darüber hinaus ist Gold sehr weich, schlecht insbesondere mechanisch polierbar und zudem teuer.
  • In der vorliegenden Erfindung wird Gold dennoch bevorzugt eingesetzt, da es beispielsweise wenig reaktiv ist und nur eine geringe Tendenz zum Anhaften von Adsorbaten aufweist.
  • In einem weiteren Schritte wird zumindest ein elektrisches Leiterelement mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren auf die Startschicht aufgebracht. Die elektrisch leitende Startschicht fungiert hierbei insbesondere als Gegenelektrode für die elektrochemische Abscheidung, die auch als galvanische Abscheidung bezeichnet wird.
  • Hierzu wird vorzugsweise zunächst mittels Fotolithografie eine Struktur auf die Startschicht aufgebracht. Bei dem Fotolack kann es sich beispielsweise um einen Positiv- oder Negativlack handeln, wobei das zumindest eine elektrische Leiterelement mittels elektrochemischer Abscheidung in den Bereichen aufgebracht wird, in denen die Startschicht nicht von Fotolack bedeckt ist.
  • Abschließend wird mittels Fotolithografie eine weitere Schicht Fotolack aufgetragen, wobei vorzugsweise der im vorherigen Schritt aufgetragene Fotolack zuvor entfernt wurde.
  • Mittels dieser Struktur aus Fotolack, der Positiv- oder Negativlack sein kann, wird die Lage der späteren Kontaktierungselemente vorgegeben. Diese werden mittels elektrochemischer Abscheidung in den Bereichen gebildet, in denen sich kein Fotolack befindet.
  • Diese Bereiche befinden sich insbesondere oberhalb der auf die Startschicht aufgebrachten Leiterelemente, so dass die Kontaktierungselemente elektrisch leitend mit diesen verbunden sind.
  • Anschließend wird die Startschicht in Bereichen, in denen kein elektrisches Leiterelement aufgebracht wurde, entfernt. Hiervor wird insbesondere der zuvor aufgebrachte Fotolack entfernt und die Startschicht beispielsweise durch Nass- oder Trockenätzen entfernt.
  • Bevorzugt ist das Substrat in allen Bereichen, in denen sich kein elektrisches Leiterelement befindet, freigelegt. Alternativ werden nur schmale Bereiche der Startschicht entfernt, sodass die voneinander beabstandeten elektrischen Leiterelemente nicht mehr elektrisch leitend über die Startschicht untereinander verbunden sind, und weiterhin Bereiche verbleiben, in denen die Startschicht nicht entfernt wurde.
  • Das Entfernen der Startschicht kann alternativ auch vor dem Aufbringen des zumindest einen Kontaktierungselements erfolgen.
  • Die Isolierschicht besteht vorzugsweise aus einem Dielektrikum oder einer Mischung unterschiedlicher Dielektrika, wie beispielsweise einem Polyimid, einem Silikon oder einem Polymer aus oder mit Benzocyclobuten (BCB).
  • Die Isolierschicht kann beispielsweise mittels Schleuderbelackung (engl. Spin-Coating) aufgebracht werden. Dies ist besonders bevorzugt, wenn es sich bei dem Dielektrikum, aus dem die Isolierschicht besteht, um ein Polyimid oder um ein Polymer aus oder mit BCB handelt.
  • Die Isolierschicht wird derart aufgebracht, dass sie das zumindest eine Leiterelement und das zumindest eine Kontaktierungselement zumindest teilweise, bevorzugt vollständig, überdeckt. Die Isolierschicht umschließt das zumindest eine Leiterelement und das zumindest eine Kontaktierungselement vorzugsweise vollständig oberhalb des Substrats und/oder der Startschicht.
  • Die Erfindung löst die Aufgabe zudem durch ein Verfahren mit den Schritten: (a) Aufbringen einer elektrisch leitfähigen Startschicht auf ein Substrat, (b) Aufbringen zumindest eines elektrischen Leiterelements auf die Startschicht mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, (c) Entfernen der Startschicht in Bereichen, in denen kein elektrisches Leiterelement aufgebracht ist, (d) Aufbringen einer Isolierschicht, die das zumindest eine Leiterelement zumindest teilweise, insbesondere vollständig überdeckt, (e) Entfernen der Isolierschicht in vorbestimmten Bereichen oberhalb des zumindest einen elektrischen Leiterelements, sodass das zumindest eine Leiterelement teilweise freigelegt wird, (f) Aufbringen von Durchkontaktierungselementen mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren in den Bereichen, in denen das zumindest einen elektrische Leiterelement freigelegt ist, und (g) Aufbringen zumindest eines weiteren elektrischen Leiterelements mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine weitere elektrische Leiterelement elektrisch leitend mit dem zumindest einen Kontaktierungselement verbunden ist. Optional erfolgt vor der Durchführung von Schritt (e), nämlich dem Entfernen der Isolierschicht in vorbestimmten Bereich oberhalb des zumindest einen elektrischen Leiterelements, sodass das zumindest das eine Leiterelement freigelegt wird, ein Planarisieren der Isolierschicht, insbesondere durch chemisch-mechanisches Polieren. Vor dem Aufbringen von Durchkontaktierungselementen in Schritt (f) kann eine Startschicht aufgebracht werden, welche insbesondere an den Stellen, an denen keine Kontaktierungselemente vorgesehen sind, mit einem Fotolack abgedeckt werden. Alle zum Gegenstand des Hauptanspruchs getroffenen Aussagen gelten entsprechend auch für diese Ausgestaltung des erfindungsgemäßen Verfahrens.
  • Durch die bisher aufgebrachten unterschiedlichen Strukturen, die insbesondere unterschiedliche Höhen aufweisen, weist die Isolierschicht keine ebene Oberfläche auf, sondern vielmehr eine unebene Oberflächenstruktur. Diese korrespondiert insbesondere zu den darunter liegenden Strukturen, sodass die Isolierschicht insbesondere eine größere Höhe über dem Substrat in den Bereichen aufweist, in denen elektrische Leiterelemente und/oder Kontaktierungselemente liegen, als in solchen Bereichen, in denen die Isolierschicht lediglich das Substrat überdeckt. Insbesondere weist die Isolierschicht eine Struktur auf, die der darunterliegenden Struktur aus Substrat, der verbleibenden Startschicht, den elektrischen Leiterelementen und den Kontaktierungselementen entspricht.
  • Die Isolierschicht wird nach dem Aufbringen planarisiert und das zumindest eine Kontaktierungselement freigelegt. Planarisieren bedeutet insbesondere, dass die Oberfläche der Isolierschicht geglättet wird, sodass sie insbesondere möglichst eben ist und bevorzugt parallel zur Oberfläche des Substrats verläuft. Das Planarisieren der Isolierschicht erfolgt bevorzugt durch chemisch-mechanisches Polieren.
  • Das Freilegen des zumindest einen Kontaktierungselements erfolgt insbesondere in einem der zwei im Folgenden dargestellten alternativen Verfahren.
  • Bevorzugt wird beim Planarisieren insbesondere so viel Material der Isolierschicht entfernt, dass das zumindest eine Kontaktierungselement zwar noch von der Isolierschicht überdeckt wird, die Schichtdicke des, das zumindest eine Kontaktierungselement überdeckenden, Materials der Isolierschicht jedoch möglichst gering ist. Diese Schichtdickte beträgt vorzugsweise weniger als 500 nm, besonders bevorzugt weniger als 250 nm.
  • Bevorzugt wird zum Freilegen des zumindest einen Kontaktierungselements zunächst Fotolack auf die planarisierte Isolierschicht aufgebracht. Bei diesem Fotolack kann es sich wiederum um Positiv- oder Negativlack handeln. Der Fotolack wird bevorzugt derart auf die Isolierschicht aufgebracht, dass er sich nicht in den Bereichen befindet, unterhalb derer sich das zumindest eine Kontaktierungselement befindet. Besonders bevorzugt bleiben ausschließlich Bereich frei von Fotolack, unterhalb derer sich das zumindest eine Kontaktierungselement befindet.
  • Anschließend kann beispielsweise mittels Nass- oder Trockenätzens das Dielektrikum, also die Isolierschicht, oberhalb des zumindest einen Kontaktierungselements entfernt werden und dieses so freigelegt werden.
  • Der hiernach entstehende Höhenunterschied zwischen der Isolierschicht und dem zumindest einen Kontaktierungselement gegenüber dem Substrat beträgt bevorzugt höchstens 500 nm, besonders bevorzugt höchstens 250 nm.
  • Vor dem Aufbringen des zumindest einen weiteren elektrischen Leiterelements wird vorzugsweise der zuvor aufgebrachte Fotolack entfernt.
  • Besonders bevorzugt wird vor dem Aufbringen des zumindest einen weiteren elektrischen Leiterelements eine weitere elektrisch leitfähige Startschicht aufgebracht, die sich insbesondere sowohl auf der Isolierschicht als auch auf den zuvor freigelegten Kontaktierungselementen befindet.
  • Das zumindest eine weitere elektrische Leiterelement wird derart aufgebracht, dass es elektrisch leitend mit dem zumindest einen Kontaktierungselement verbunden ist. Erfindungsgemäß ist daher jedes weitere elektrische Leiterelement elektrisch leitend mit zumindest einem darunterliegenden Kontaktierungselement verbunden. Es ist jedoch ebenfalls möglich, dass einige oder alle elektrischen Leiterelemente mit mehr als einem Kontaktierungselement verbunden sind.
  • Diese Verbindung erfolgt bevorzugt über die aufgebrachte weitere Startschicht, sodass das zumindest eine weitere elektrische Leiterelement und das zumindest eine Kontaktierungselement nicht in direkter Verbindung miteinander stehen, sondern elektrisch leitend miteinander über die weitere Startschicht verbunden sind.
  • Bevorzugt bestehen die elektrischen Leiterelemente und/oder die Kontaktierungselemente aus Gold oder Kupfer oder einer gold- und/oder kupferhaltigen Legierung.
  • Trotz der beschriebenen allgemeinen Nachteiligkeit der Verwendung von Gold in der Mikrotechnik ist es für die erfindungsgemäße Atomfalle bzw. das erfindungsgemäße Herstellungsverfahren für eine Atomfalle vorteilhaft. So weist Gold eine hohe elektrische Leitfähigkeit auf. Darüber hinaus ist es wenig reaktiv und hat eine geringe Tendenz zum Anhaften von Adsorbaten. Diese können zum Entstehen von Störfeldern führen, welche das Einfangen der Atome und/oder Ionen erschwert oder sogar verhindert.
  • Bevorzugt erfolgt das Freilegen des zumindest einen Kontaktierungselements durch das Planarisieren der Isolierschicht in Schritt (f).
  • Dies bedeutet, dass die Isolierschicht so lange planarisiert wird, bis sie das zumindest eine Kontaktierungselement nicht mehr überdeckt. Hierbei ist es insbesondere möglich, dass durch ein Planarisieren zusätzlich zu dem Material der Isolierschicht auch Material des zumindest einen Kontaktierungselements abgetragen wird.
  • Insbesondere wenn das Planarisieren der Isolierschicht mittels chemisch-mechanischem Polieren erfolgt, kann dieses Verfahren bei Kontaktierungselementen aus weichem Material, wie beispielsweise reinem Gold, zu einem Verschmieren des Kontaktierungselements führen, sobald dieses von der Polierscheibe erreicht wird.
  • Dieses Verfahren wird daher bevorzugt bei ausreichend harten Materialien für das Kontaktierungselement eingesetzt, wie beispielsweise Kupfer oder Nickel oder Legierungen, insbesondere Goldlegierungen, mit einer ausreichenden Härte.
  • Bevorzugt weist das Verfahren einen Schritt (h) auf, der insbesondere nach Schritt (g) des Hauptanspruchs, nämlich dem Aufbringen zumindest eines weiteren elektrischen Leiterelements mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine weitere elektrische Leiterelement elektrisch leitend mit dem zumindest einen Kontaktierungselement verbunden ist, durchgeführt wird. Der Schritt (h) umfasst das Entfernen der Isolierschicht in Bereichen, in denen kein weiteres elektrisches Leiterelement aufgebracht wurde, sodass Lücken ausgebildet werden.
  • Sofern eine weitere elektrisch leitende Startschicht auf die Isolierschicht und die Durchkontaktierungselemente aufgebracht wurde, wird diese zunächst in den Bereichen entfernt, in denen kein weiteres elektrisches Leiterelement aufgebracht wurde. Dies kann auch in demselben Arbeitsschritt geschehen, in dem auch die Isolierschicht in diesen Bereichen entfernt wird. Mit anderen Worten werden hierdurch darunterlegende Schichten freigelegt. Die Isolierschicht wird beispielsweise bis zum Erreichen eines darunterliegenden elektrischen Leiterelements oder aber bis zum Erreichen des Substrats entfernt.
  • Unter einer Lücke ist hierbei insbesondere ein materialfreier Raum zu verstehen, der seitlich in zumindest zwei Raumrichtungen parallel zum Substrat durch aufgebrachte Strukturen begrenzt wird. Es kann sich beispielsweise um einen vollständig, das heißt seitlich in alle vier Raumrichtungen parallel zum Substrat umgebenen materialfreien Raum handeln. Es kann sich aber auch um einen Kanal handeln, der lediglich zweiseitig begrenzt wird und die Atomfalle von einer Seite des Substrats zu einer anderen Seite des Substrats parallel zum Substrat durchzieht.
  • Zudem ist es möglich, dass eine solche Lücke einen Kanal ausbildet, der die Atomfalle nicht vollständig durchzieht. Mit anderen Worten wird dieser Kanal dreiseitig von Strukturen umgeben.
  • Bevorzugt weisen die Lücken ein Aspektverhältnis von zumindest 1 auf. Unter Aspektverhältnis wird die Höhe oder Tiefe eines Objekts im Verhältnis zu seiner kleinsten lateralen Ausdehnung verstanden.
  • Vorliegend bezieht sich das Aspektverhältnis folglich auf das Verhältnis der räumlichen Tiefe einer Lücke zu deren kleinster Breite, insbesondere parallel zum Substrat.
  • Unter Tiefe einer Lücke ist insbesondere ein Abstand senkrecht zu dem Substrat zu verstehen, der von der niedrigsten Kante eines die Lücke seitlich begrenzenden Strukturelementes bis zum insbesondere parallel zu dieser Kante verlaufenden Boden der Lücke, der beispielsweise durch ein elektrisches Leiterelement oder das Substrat gebildet wird.
  • Je größer das Aspektverhältnis ist, je größer also die Tiefe der Lücke im Verhältnis zu ihrer kleinsten Breite ist, desto vorteilhafter ist dies für eine Atomfalle. Mit anderen Worten ist es vorteilhaft, wenn die Lücken so schmal wie möglich sind. Sie weisen daher vorzugsweise ein Aspektverhältnis von zumindest 3, weiter vorzugsweise von zumindest 4, noch weiter vorzugsweise von zumindest 5 auf.
  • Bevorzugt weist das Verfahren den Schritt: Wiederholen der Schritte (c) bis (g) oder (c) bis (h), sodass eine mehrlagige Atomfalle erhalten wird, auf. Mit anderen Worten ist das Herstellungsverfahren gemäß dieser Ausführungsform der Atomfalle nach Durchführung der Schritte (a) bis (g) oder (a) bis (h) nicht beendet. Vielmehr wird ein Teil der Schritte zumindest einmal wiederholt.
  • Vorzugsweise werden also weitere Kontaktierungselemente mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren aufgebracht, die elektrisch leitend mit den in Schritt (g) aufgebrachten elektrischen Leiterelementen verbunden sind.
  • Sofern eine Startschicht aufgebracht worden ist und diese nicht zuvor bereits, beispielsweise zum Erzeugen von Lücken, entfernt wurde, so wird diese nun anschließend entfernt. Sofern keine Startschicht mehr in Bereichen, in denen kein elektrisches Leiterelement aufgebracht wurde, vorhanden ist, so muss insbesondere Schritt (d) nicht durchgeführt werden.
  • Die sich anschließenden Schritte werden analog den bereits dazu getroffenen Aussagen durchgeführt.
  • Vorzugsweise werden die Schritte (c) bis (g) oder (c) bis (h) zumindest einmal, weiter vorzugweise zumindest fünfmal, besonders bevorzugt zumindest zehnmal und weiter besonders bevorzugt zumindest zwanzigmal durchgeführt. Mit anderen Worten entsteht eine mehrlagige Struktur von Leiterelementen, die über Durchkontaktierungselemente in einer Richtung senkrecht zu dem Substrat miteinander verbunden sind.
  • Insbesondere in Bereichen, in denen zuvor Lücken ausgebildet wurden, wird kein erneutes Material aufgetragen. Mit anderen Worten vergrößert sich das Aspektverhältnis der Lücke mit jeder weiteren aufgebrachten Lage, da die sie umgebenden Strukturelemente höher werden.
  • Darunter, dass das Aspektverhältnis vorzugsweise zumindest 1, besonders bevorzugt zumindest 3, weiter besonders bevorzugt zumindest 4 und ganz besonders bevorzugt zumindest 5 beträgt, ist insbesondere das Aspektverhältnis der resultierenden Lücken, also in der fertigen, vorzugsweise mehrlagigen Atomfalle zu verstehen.
  • Mit anderen Worten ist es möglich, nicht aber notwendig, dass die genannten Aspektverhältnisse bereits beim Ausbilden der Lücken durch Entfernen von Material erreicht werden. Es ist vielmehr ausreichend, wenn das geforderte Aspektverhältnis in der fertigen Atomfalle, also beispielsweise nach mehrmaligem Wiederholen der Schritte (c) bis (g) oder (c) bis (h), erreicht wird.
  • Ein möglichst großes Aspektverhältnis ist vorteilhaft, da möglicherweise störende Substanzen oder Adsorbate nur mit geringerer Wahrscheinlichkeit in diese Lücken eindringen können und sich dort niederschlagen. Durch solche störenden Substanzen oder Adsorbate ist beispielsweise die Bildung von elektrischen Störfeldern möglich, die das Einfangen von Neutralatomen oder Ionen in der Atomfalle erschweren oder sogar verhindern. Ein möglichst großes Aspektverhältnis ist zudem vorteilhaft, weil Dielektrika im unteren Bereich der Lücke Oberflächenladungen tragen können. Diese Oberflächenladungen erzeugen, wenn sie so tief in den Lücken versteckt werden, nur geringe elektrische Felder am Ort der gespeicherten Atome und stören diese somit weniger.
  • Bevorzugt werden die elektrischen Leiterelemente mit einer Schichtdicke von zumindest 1 µm aufgebracht und/oder die Isolierschicht und/oder das zumindest eine Kontaktierungselement werden mit einer Schichtdicke von zumindest 1 µm aufgebracht.
  • Eine möglichst große Dicke der elektrischen Leiterelemente steht diametral zu den in der Mikrotechnik üblichen Versuchen zur weitergehenden Miniaturisierung. Im Falle von Atomfallen sind jedoch möglichst dicke Leiterelemente von Vorteil, da diese größere Ströme führen können. Insbesondere zum Fangen von Neutralatomen und für das dafür insbesondere notwendige Magnetfeld sind solche großen Ströme vorteilhaft oder sogar notwendig.
  • Bevorzugt weisen auch die Kontaktierungselemente eine Schichtdicke von zumindest 1 µm auf.
  • Eine solche Schichtdicke von zumindest 1 µm lässt sich beispielsweise mit dem ansonsten in der Mikrotechnik nachteiligen Verfahren der elektrochemischen Abscheidung realisieren. Dieses birgt üblicherweise den Nachteil, dass zu dicke und für viele mikrotechnische Anwendungen zu unregelmäßige Elemente erzeugt werden.
  • Bevorzugt weist auch die Isolierschicht eine Schichtdicke von zumindest 1 µm auf. Die Dicke der Isolierschicht korrespondiert bevorzugt zu der Schichtdicke der Kontaktierungselemente. Sie ist bevorzugt gleich groß oder größer.
  • Bevorzugt beträgt die Schichtdicke der elektrischen Leiterelemente und/oder der Kontaktierungselemente und/oder der Isolierschicht mehr als 3 µm, weiter bevorzugt mehr als 5 µm und besonders bevorzugt mehr als 10 µm.
  • Bevorzugt weisen die Leiterelemente und/oder die Kontaktierungselemente ein Aspektverhältnis von zumindest 1 auf. Mit anderen Worten ist die räumliche Ausdehnung in Richtung senkrecht zu dem Substrat zumindest gleich groß zur kleinsten lateralen Ausdehnung, die insbesondere parallel zu dem Substrat verläuft.
  • Besonders bevorzugt weisen die Leiterelemente und/oder die Kontaktierungselemente ein Aspektverhältnis von zumindest 3, weiter bevorzugt von zumindest 4, weiter besonders bevorzugt von zumindest 5 auf.
  • Bevorzugt weist das Substrat eine Ausnehmung zum Durchleiten eines Atomstrahls auf oder eine solche Ausnehmung wird in das Substrat eingebracht. Bei einer solchen Ausnehmung kann es sich beispielsweise um einen Kanal handeln, der das Substrat vollständig von einer Unterseite zu einer Oberseite durchzieht und damit in allen vier Raumrichtungen parallel zum Substrat von diesem umgeben ist. Es ist jedoch auch möglich, dass die Ausnehmung in nur drei Raumrichtungen von dem Substrat umgeben wird.
  • Durch eine solche Ausnehmung kann ein Atomstrahl geleitet werden, aus welchem Atome oder Ionen durch die Atomfalle eingefangen werden. Es kann sich bei dem Atomstrahl erfindungsgemäß ebenso um einen lonenstrahl handeln.
  • Ein solcher Strahl kann beispielsweise durch punktuelles Erhitzen eines Metalldrahtes, wie beispielsweise eines Berylliumdrahtes, erzeugt werden. Zudem ist es möglich, mittels Photoionisation aus einem Atomstrahl punktuell Ionen zu erzeugen und diese dann zu fangen und zu speichern.
  • Bevorzugt weist das Substrat zumindest ein Substrat-Durchkontaktierungselement auf oder dieses wird in das Substrat eingebracht. Das Substrat weist eine Oberseite und eine Unterseite auf, wobei das erfindungsgemäße Verfahren insbesondere an der Oberseite des Substrats durchgeführt wird. Von der Oberseite zur Unterseite des Substrats erstreckt sich vorzugsweise das zumindest eine elektrisch leitfähige Substrat-Durchkontaktierungselement.
  • Auf die Oberseite des Substrats werden die elektrischen Leiterelemente bevorzugt derart aufgebracht, dass sie elektrisch leitend mit diesem zumindest einen Substrat-Durchkontaktierungselement verbunden sind. Auf diese Weise lässt sich die zur Bestromung der elektrischen Leiterelemente notwendige Stromquelle rückseitig an das Substrat anschließen. Der elektrische Strom kann dann über das Substrat-Durchkontaktierungselement in das zumindest eines elektrische Leiterelement eingeleitet werden. Es ist ebenfalls möglich, dass an den elektrischen Leiterelementen lediglich ein Potential, insbesondere statische Spannungen, anliegt. Mit anderen Worten ist ein Bestromen des zumindest einen elektrischen Leiterelements möglich, nicht aber notwendig.
  • Eine erfindungsgemäße Atomfalle zeichnet sich dadurch aus, dass sie Leiterelemente und Kontaktierungselemente aufweist, deren Schichtdicke zumindest 1 µm beträgt. Dies wird insbesondere erst durch die elektrochemische Abscheidung bei der Herstellung möglich. Andere Herstellungsverfahren, wie beispielsweise Sputtern, führen insbesondere zu deutlich geringeren Schichtdicken und sind somit technisch sinnvoll nicht einsetzbar.
  • Eine hohe Schichtdicke ist vorteilhaft, weil insbesondere Fallen für Neutralatome hohe Ströme führen können müssen, um Feldkonfigurationen mit einer stabilen und sehr großen räumlichen Inhomogenität zur Speicherung der Atome bereitzustellen.
  • Darüber hinaus weisen die Leiterelemente und die Kontaktierungselemente ein Aspektverhältnis von zumindest 1 auf, sodass insbesondere schmale Strukturen ausgebildet sind. Vorzugsweise weisen auch etwaig ausgebildete Lücken Aspektverhältnisse von zumindest 1 auf. Hierdurch ist insbesondere gewährleistet, dass auf dielektrischen Schichten im Wandbereich der Lücken unterhalb von Leiterelementen akkumulierte Ladungen möglichst kleine Störfelder am Ort der Atome hervorrufen. Die erfindungsgemäße Atomfalle zeichnet sich zudem insbesondere dadurch aus, dass ihr Aufbau besonders einfach skalierbar ist. Mit anderen Worten können insbesondere nahezu beliebig viele Lagen, insbesondere zumindest 10 Lagen, ausgebildet werden, ohne dass sich Unregelmäßigkeiten derart fortpflanzen, dass ein funktionsfähiger Aufbau nicht mehr gegeben ist.
  • Im Folgenden werden Ausführungsformen der Erfindung anhand der beigefügten Zeichnungen erläutert. Es zeigen
  • Figur 1
    den ersten Teil einer Ablaufdarstellung eines erfindungsgemäßen Herstellungsverfahrens einer Atomfalle,
    Figur 2
    den zweiten Teil der Ablaufdarstellung des erfindungsgemäßen Herstellungsverfahrens,
    Figur 3
    eine schematische Darstellung einer erfindungsgemäßen Atomfalle,
    Figur 4
    eine schematische Darstellung einer weiteren Ausführungsform einer erfindungsgemäßen Atomfalle, mit einer Ausnehmung zum Durchleiten eines Atomstrahls sowie Substrat-Durchkontaktierungselementen, und
    Figur 5
    einen Ausschnitt einer schematischen Schnittdarstellung einer erfindungsgemäßen mehrlagigen Atomfalle.
  • In den Figuren 1 und 2 ist schematisch ein erfindungsgemäßes Herstellungsverfahren dargestellt.
  • Die hier metallische Startschicht 2 ist in Fig. 1 bereits auf das Substrat 1, insbesondere vollflächig und mittels Gasphasenabscheidung aufgebracht. Auf diese wird anschließend Fotolack 3, insbesondere mittels Schleuderbelackung oder Sprühbelackung aufgebracht.
  • Bei dem Fotolack handelt es sich vorzugsweise entweder um Negativlack oder Positivlack. Im Falle von Positivlack wird eine Maske verwendet, die an den Stellen lichtdurchlässig ist, an denen die späteren elektrischen Leiterelemente 4 (4.1, 4.2) angeordnet sein sollen. Durch Belichtung wird der Positivlack an den belichteten Stellen flüssig oder lösbar, sodass er in diesen Bereichen entfernt werden kann. In der Folge ist der Fotolack 3 nur noch in den Bereichen angeordnet, in denen keine elektrischen Leiterelemente 4 aufgebracht werden sollen. Er dient insofern als Form oder Schablone zum Aufbringen des zumindest einen elektrischen Leiterelements 4.
  • Im Falle des Negativlacks sind die Bereiche der Maske lichtdurchlässig, in denen die späteren elektrischen Leiterelemente 4 nicht aufgebracht werden sollen. In diesen Bereichen härtet der Fotolack 3 unter Belichtung aus. In den nicht belichteten Bereichen kann er entsprechend entfernt werden und es ergibt sich wiederum eine Form oder Schablone zum Aufbringen des zumindest einen elektrischen Leiterelements 4.
  • In Figur 1 wurden zwei elektrische Leiterelemente 4.1 und 4.2 aufgebracht. Diese sind räumlich voneinander getrennt und zunächst über die Startschicht 2 elektrisch leitend miteinander verbunden.
  • Die Startschicht 2 fungiert bei der galvanischen Abscheidung der elektrischen Leiterelemente 4.1 und 4.2 als Gegenelektrode.
  • Anschließend wird weiterer Fotolack 3 aufgebracht, der als Form oder Schablone für die Kontaktierungselemente 6 dient. Hierzu kann der zuvor aufgebrachte Fotolack zunächst entfernt werden. Es ist jedoch ebenfalls möglich, den weiteren Fotolack auf den bereits vorhandenen aufzubringen, diesen also vorher nicht zu entfernen.
  • Anschließend werden die Kontaktierungselemente 6, vorliegend die drei Kontaktierungselemente 6.1 bis 6.3, mittels elektrolytischer Abscheidung in den Bereichen aufgebracht, in denen kein Fotolack 3 vorhanden ist.
  • Der Fotolack 3 wird anschließend insbesondere vollständig entfernt. Dies kann mittels eines geeigneten Lösemittels, wie beispielsweise Aceton, geschehen.
  • Zudem wird die Startschicht 2 in den Bereichen, in denen keine Leiterelemente 4 auf sie aufgebracht sind, entfernt. Es ist vorzugsweise möglich, die Startschicht 2 und den Fotolack 3 in einem einzelnen Arbeitsschritt zu entfernen.
  • Die Startschicht 2 kann alternativ bereits vor dem Aufbringen der Kontaktierungselemente 6 entfernt werden.
  • Anschließend wird eine Isolierschicht 7 aufgebracht. Diese besteht vorliegend aus einem Polyimid und wird mittels Schleuderbelackung aufgebracht. Vorzugsweise überdeckt die Isolierschicht die zuvor aufgebrachten Strukturen vollständig. Aufgrund der unterschiedlichen Höhen der einzelnen Strukturen gegenüber dem Substrat 1, weist die Isolierschicht eine Struktur auf, die insbesondere zu den darunterliegenden Strukturen korrespondiert. Vorzugsweise ist die Höhe der Isolierschicht, also der Abstand zwischen Oberfläche und der darunterliegenden Struktur, nahezu konstant. Dies ist in Fig. 1 als h1 angedeutet. Die absolute Höhe der Isolierschicht über dem Substrat variiert jedoch und führt zu der genannten korrespondierenden Struktur.
  • Um diese störende Struktur der Isolierschicht zu entfernen wird die Isolierschicht 7 anschließend planarisiert. Sie wird vorzugsweise mittels chemisch-mechanischem Polieren planarisiert, sodass sie anschließend vorzugsweise eine konstante Höhe h2 über dem Substrat 1 aufweist. Es wird folglich Material der Isolierschicht abgetragen.
  • In der dargestellten Ausführungsform wird die Isolierschicht 7 nur so weit planarisiert, also nur so viel Material abgetragen, dass die Kontaktierungselemente 6.1 bis 6.3 noch von der Isolierschicht 7 überdeckt sind. Die Höhe dieser die Kontaktierungselemente 6.1. bis 6.3 überdeckenden Schicht ist insbesondere möglichst gering. Vorzugsweise beträgt sie weniger als 250 nm.
  • Anschließend wird erneut Fotolack 3 aufgebracht, der die Bereiche ausspart, unterhalb derer sich die Kontaktierungselemente 6.1. bis 6.3 befinden. In diesen ausgesparten Bereichen wird die Isolierschicht beispielsweise durch Ätzen oder ein geeignetes Lösemittel entfernt. Vorzugsweise wird ein Verfahren zur Entfernung eingesetzt, dass die Kontaktierungselemente 6 nicht angreift.
  • In den von dem Fotolack 3 überdeckten Bereichen der Isolierschicht 7 ist die Höhe weiterhin die, insbesondere konstante, Höhe h2.
  • Auf die Isolierschicht 7 und die freigelegten Kontaktierungselemente 6.1 bis 6.3 wird anschließend eine weitere elektrisch leitende Startschicht 12 aufgebracht.
  • Auf diese wird erneut Fotolack 3 aufgebracht, der als Form oder Schablone für die weiteren elektrischen Leiterelemente 14.1 und 14.2 dient. Diese werden mittels elektrochemischer Abscheidung auf die weitere Startschicht 12 aufgebracht.
  • Anschließend wird der Fotolack entfernt. Die weitere Startschicht 12 wird zudem in den Bereichen entfernt, in denen kein weiteres elektrisches Leiterelement 14 aufgebracht ist. Dies erfolgt in zwei separaten Schritten oder vorzugsweise in einem Arbeitsschritt.
  • In diesen Bereichen, in denen der Fotolack 3 und die Startschicht 2 entfernt wurden, ist nun die Isolierschicht 7 freigelegt. Diese wird anschließend, beispielsweise durch Ätzen, ebenfalls entfernt, sodass sich Lücken 8 ausbilden. Diese Lücken werden durch die elektrischen Leiterelemente 4 und/oder das Substrat nach unten begrenzt. Vorliegend wird die Lücke 8.1 durch das elektrische Leiterelement 4.1 begrenzt. Die am Rand angedeutete Lücke 8.2. wird hingegen durch das Substrat 1 begrenzt.
  • Anschließend können weitere Kontaktierungselemente 16 auf die Leiterelemente 14 aufgebracht werden, um eine mehrlagige Atomfalle zu erhalten. Die zuvor skizzierten Verfahrensschritte können dazu mehrfach wiederholt werden.
  • Es ist zudem möglich, das dargestellte Verfahren lediglich in bestimmten Bereichen des Substrats 1 durchzuführen. Es ist darüber hinaus möglich, das Verfahren in mehreren unterschiedlichen Bereichen desselben Substrats 1 durchzuführen.
  • Figur 3 zeigt eine erfindungsgemäße Atomfalle 20. In dieser sind mehrere mehrlagige und räumlich voneinander getrennte Leiterstrukturen 21 bis 23 schematisch dargestellt. Diese wurden entsprechend dem in Figur 1 und 2 skizzierten Verfahren auf das Substrat 1 aufgebracht. Die Leiterstrukturen 21 bis 23 sind untereinander vorzugsweise nicht leitend verbunden und weisen jeweils einen eigenen elektrischen Anschluss 29 zum Bestromen auf.
  • Die Leiterstrukturen 21 bis 23 dienen dazu, ein, insbesondere inhomogenes, elektrisches Feld oberhalb der Atomfalle hervorzurufen. In diesem werden vorliegend Ionen 24.1 bis 24.3 eingefangen und gespeichert. Diese Ionen wurden zuvor mittels Photoionisation aus Neutralatomen erzeugt. Zur Photoionisation wird ein Laserstrahl 25 eingesetzt.
  • Die mehrlagigen Leiterstrukturen 21.i (mit i = 1, 2) sind an Gleichspannung angeschlossen. Die Leiterstrukturen 22.1 und 22.2 sind an Wechselspannung und die Leiterstrukturen 23.1 und 23.2 an Masse angeschlossen. Es ist jedoch ebenfalls möglich, dass die Leiterstrukturen 23 an eine von 0 verschiedene Gleichspannung angeschlossen sind.
  • In Figur 4 ist eine weitere Ausführungsform einer erfindungsgemäßen Atomfalle 20 schematisch dargestellt. Diese Atomfalle weist wiederum mehrlagige Leiterstrukturen 21 bis 23 auf, wobei zusätzlich eine Ausnehmung 26 in Form eines Kanals in das Substrat 1 eingebracht wurde. Durch diese Ausnehmung wird ein Atomstrahl 27 geleitet.
  • Der Atomstrahl 27 kann durch Erhitzen eines Metalldrahtes erzeugt werden, beispielsweise durch punktuelles Erhitzen eines Berylliumdrahtes auf über 1000 K.
  • Vorliegend werden Atome des Atomstrahls mittels Photoionisation in Ionen 24.1 bis 24.3 überführt, welche in dem elektrischen Feld, das durch die mehrlagigen Leiterstrukturen 21 bis 23 hervorgerufen wird, gespeichert werden.
  • Das Substrat weist zudem Substrat-Durchkontaktierungselemente 28 auf, über die die mehrlagigen Leiterstrukturen 21 bis 23 bestromt werden. Vorzugsweise ist jeder mehrlagigen Leiterstruktur 21 bis 23 zumindest ein Substrat-Durchkontaktierungselement 28 zugeordnet. Mittels der Substrat-Durchkontaktierungselemente 28 kann das Bestromen auf besonders einfache Weise von der Rückseite des Substrats 1 aus erfolgen.
  • Figur 5 zeigt eine exemplarische Schnittdarstellung einer mehrlagigen Atomfalle. Die Schnittdarstellung entspricht der Atomfalle aus dem in den Figuren 1 und 2 dargestellten Herstellungsverfahren. Auf die zuletzt aufgebrachten Leiterelemente 14.1 und 14.2 wurden weitere Kontaktierungselemente 16.1 und 16.2 mittels elektrochemischer Abscheidung aufgebracht. Diese sind bevorzugt identisch dimensioniert wie die Kontaktierungselemente 6.1 bis 6.3. In den Bereichen, in denen kein weiteres Kontaktierungselement 16 auf die weiteren elektrischen Leiterelemente 14.1 und 14. 2 aufgebracht wurde, wurde eine weitere Isolierschicht 17 mittels Schleuderbelackung aufgebracht. In Figur 5 sind die Kontaktierungselemente freigelegt und es schließt sich eine nicht dargestellte weitere Startschicht an, die auf den weiteren Kontaktierungselementen 16.1 und 16.2 und der weiteren Isolierschicht 17 aufgelagert ist.
  • Figur 5 ist zu entnehmen, dass das Aspektverhältnis, also das Verhältnis der Breite zur Höhe der Lücken 8.1 und 8.2 durch das Aufbringen weiterer Lagen zunimmt. So weisen die Lücken 8.1 und 8.2 in Figur 5 eine größere Höhe auf als in Figur 2, was bei gleichbleibender Breite zu einem größeren Aspektverhältnis führt.
  • Bezugszeichenliste
  • 1
    Substrat
    2
    Startschicht
    3
    Fotolack
    4
    Elektrisches Leiterelement
    6
    Kontaktierungselement
    7
    Isolierschicht
    8
    Lücke
    12
    Weitere Startschicht
    14
    Weiteres elektrisches Leiterelement
    16
    Weiteres Kontaktierungselement
    17
    Weitere Isolierschicht
    20
    Atomfalle
    21
    Mehrlagige Leiterstruktur, an Gleichspannung angeschlossen
    22
    Mehrlagige Leiterstruktur, an Wechselspannung angeschlossen
    23
    Mehrlagige Leiterstruktur, an Masse angeschlossen
    24
    Ion
    25
    Laserstrahl
    26
    Ausnehmung
    27
    Atomstrahl
    28
    Substrat-Durchkontaktierungselement
    29
    Elektrischer Anschluss
    h
    Höhe

Claims (11)

  1. Verfahren zum Herstellen einer Atomfalle (20), mit den Schritten:
    (a) Aufbringen einer elektrisch leitfähigen Startschicht (2) auf ein Substrat (1),
    (b) Aufbringen zumindest eines elektrischen Leiterelements (4) auf die Startschicht (2) mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren,
    (c) Aufbringen zumindest eines Kontaktierungselements (6) mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine Kontaktierungselement (6) elektrisch leitend mit dem zumindest einen elektrischen Leiterelement (4) verbunden ist,
    (d) Entfernen der Startschicht (2) in Bereichen, in denen kein elektrisches Leiterelement (4) aufgebracht wurde,
    (e) Aufbringen einer Isolierschicht (7), die das zumindest eine elektrische Leiterelement (4) und das zumindest eine Kontaktierungselement (6) zumindest teilweise überdeckt,
    (f) Planarisieren der Isolierschicht (7) und Freilegen des zumindest einen Kontaktierungselements (6), und
    (g) Aufbringen zumindest eines weiteren elektrischen Leiterelements (14) mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine weitere elektrische Leiterelement (14) elektrisch leitend mit dem zumindest einen Kontaktierungselement (6) verbunden ist.
  2. Verfahren zum Herstellen einer Atomfalle (20), mit den Schritten:
    (a) Aufbringen einer elektrisch leitfähigen Startschicht (2) auf ein Substrat (1),
    (b) Aufbringen zumindest eines elektrischen Leiterelements (4) auf die Startschicht (2) mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren,
    (c) Entfernen der Startschicht (2) in Bereichen, in denen kein elektrisches Leiterelement (4) aufgebracht wurde,
    (d) Aufbringen einer Isolierschicht (7), die das zumindest eine elektrische Leiterelement (4) zumindest teilweise, insbesondere vollständig überdeckt,
    (e) Entfernen der Isolierschicht (7) in vorbestimmten Bereichen oberhalb des zumindest einen elektrischen Leiterelements (4), sodass das zumindest eine elektrische Leiterelement (4) teilweise freigelegt wird,
    (f) Aufbringen von Kontaktierungselementen (6) mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren in den Bereichen, in denen das zumindest eine elektrische Leiterelement (4) freigelegt ist, und
    (g) Aufbringen zumindest eines weiteren elektrischen Leiterelements (14) mittels elektrochemischer Abscheidung und/oder im Lift-Off-Verfahren, sodass das zumindest eine weitere elektrische Leiterelement (14) elektrisch leitend mit dem zumindest einen Kontaktierungselement (6) verbunden ist.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die elektrischen Leiterelemente (4) und/oder die Kontaktierungselemente (6) aus Gold oder Kupfer, oder einer gold- und/oder kupferhaltigen Legierung bestehen.
  4. Verfahren nach Anspruch 1, gekennzeichnet durch den Schritt:
    Freilegen des zumindest einen Kontaktierungselements (6) durch das Planarisieren der Isolierschicht (7) in Schritt (f).
  5. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch den Schritt:
    (h) Entfernen der Isolierschicht (7) in Bereichen, in denen kein weiteres elektrisches Leiterelement (14) aufgebracht wurde, sodass Lücken (8) ausgebildet werden.
  6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Lücken (8) ein Aspektverhältnis von zumindest 1 aufweisen.
  7. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch den Schritt:
    Wiederholen der Schritte (c) bis (g) oder (c) bis (h), sodass eine mehrlagige Atomfalle (20) erhalten wird.
  8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die elektrischen Leiterelemente (4, 14) mit einer Schichtdicke von zumindest 1 µm aufgebracht werden und/oder die Isolierschicht (7) und oder das zumindest eine Kontaktierungselement (6) mit einer Schichtdicke von zumindest 1 µm aufgebracht wird.
  9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterelemente (4, 14) und/oder die Kontaktierungselemente (6, 16) mit einem Aspektverhältnis von zumindest 1 aufgebracht werden.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat (1) eine Ausnehmung (26) zum Durchleiten eines Atomstrahls (27) aufweist oder eine solche Ausnehmung (26) in das Substrat (1) eingebracht wird.
  11. Atomfalle (20), hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 9, wobei das zumindest eine elektrische Leiterelement und das zumindest eine Kontaktierungselement eine Schichtdicke von zumindest 1 µm und ein Aspektverhältnis von zumindest 1 aufweisen.
EP19710350.0A 2018-05-09 2019-03-04 Verfahren zum herstellen einer atomfalle sowie atomfalle Active EP3791408B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018111220.3A DE102018111220B3 (de) 2018-05-09 2018-05-09 Verfahren zum Herstellen einer Atomfalle sowie Atomfalle
PCT/EP2019/055314 WO2019214863A1 (de) 2018-05-09 2019-03-04 Verfahren zum herstellen einer atomfalle sowie atomfalle

Publications (2)

Publication Number Publication Date
EP3791408A1 EP3791408A1 (de) 2021-03-17
EP3791408B1 true EP3791408B1 (de) 2022-05-11

Family

ID=65729323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19710350.0A Active EP3791408B1 (de) 2018-05-09 2019-03-04 Verfahren zum herstellen einer atomfalle sowie atomfalle

Country Status (4)

Country Link
US (1) US11264220B2 (de)
EP (1) EP3791408B1 (de)
DE (1) DE102018111220B3 (de)
WO (1) WO2019214863A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979298A1 (de) * 2020-09-30 2022-04-06 Infineon Technologies Austria AG Vorrichtung zur kontrolle von eingefangenen ionen und verfahren zu deren herstellung
DE102022129825B3 (de) 2022-11-11 2023-12-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterie und Verfahren zu deren Überwachung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052273A2 (en) * 2005-11-02 2007-05-10 Ben Gurion University Of The Negev Research And Development Authority Novel material and process for integrated ion chip
US7928375B1 (en) * 2007-10-24 2011-04-19 Sandia Corporation Microfabricated linear Paul-Straubel ion trap
KR101725788B1 (ko) 2014-10-31 2017-04-12 에스케이 텔레콤주식회사 절연층 노출을 방지한 이온 트랩 장치 및 그 제작 방법
US10141177B2 (en) * 2017-02-16 2018-11-27 Bruker Daltonics, Inc. Mass spectrometer using gastight radio frequency ion guide

Also Published As

Publication number Publication date
DE102018111220B3 (de) 2019-05-23
WO2019214863A1 (de) 2019-11-14
EP3791408A1 (de) 2021-03-17
US11264220B2 (en) 2022-03-01
US20210233756A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
DE10050076C2 (de) Verfahren zur Herstellung einer ferromagnetischen Struktur und ferromagnetisches Bauelement
EP1508164B1 (de) Verfahren zur herstellung eines halbleiterbauelementes und danach hergestelltes halbleiterbaulelement
DE102010029282A1 (de) Verfahren und Vorrichtung zur Herstellung einer Dünnschichtbatterie
WO2005038814A1 (de) Speichervorrichtung zur speicherung elektrischer ladung und verfahren zu deren herstellung
DE3043289C2 (de)
EP3791408B1 (de) Verfahren zum herstellen einer atomfalle sowie atomfalle
DE2313219B2 (de) Verfahren zur Herstellung einer Halbleiteranordnung mit einer auf mehreren Niveaus liegenden Metallisierung
EP1661168B1 (de) Herstellungsverfahren für eine Integrierte Schaltungsanordnung mit Kondensator
DE102014101475A1 (de) Ätzen von porösem Metall
WO2018029110A1 (de) Optoelektronischer halbleiterchip
DE19732250A1 (de) Verfahren zur Herstellung metallischer Mikrostrukturen
EP1193742A2 (de) Verfahren zum Herstellen von integrierten Schaltungsanordnungen sowie zugehörige Schaltungsanordnungen, insbesondere Tunnelkontaktelemente
EP2943988B1 (de) Verfahren und vorrichtung zum herstellen eines multilagenelektrodensystems
DE60312872T2 (de) Verfahren um ein Element herzustellen welches einen von magnetischem Material umgebenen elektrischen Leiter enthält
DE10326087B4 (de) Bauelement mit einer Nutzstruktur und einer Hilfsstruktur
WO2020002560A2 (de) Vorrichtung mit elektrischer kontaktstruktur
DE102017203643A1 (de) Verfahren zum Herstellen von thermoelektrischen Bausteinen
WO2018206399A1 (de) Verfahren zur herstellung eines strahlungsemittierenden halbleiterbauelements und strahlungsemittierendes halbleiterbauelement
WO2018104136A1 (de) Verfahren zur herstellung eines transistors
DE10130218A1 (de) Vorrichtung für ein Patch-Clamping von Vesikeln und Verfahren zu deren Herstellung
DE102007056992B4 (de) Verfahren zur Erzeugung von Submikrometer-Strukturen an einer ausgeprägten Topographie
DE102010000895A1 (de) Verfahren zum Herstellen und Verschließen eines Grabens eines Halbleiterbauelements
WO2006094821A2 (de) Verfahren zum herstellen einer dünnen magnesiumoxidschicht
DE102004058765B4 (de) Elektronisches Nanobauelement mit einer Tunnelstruktur und Verfahren zur Herstellung
DE10355599A1 (de) Verfahren zur Herstellung eines Polarisationsgitters zur Polarisation elektromagnetischer Strahlung in einer lithographischen Belichtungseinrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20211122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1492154

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004344

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004344

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

26N No opposition filed

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 5

Ref country code: DE

Payment date: 20230227

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 6

Ref country code: AT

Payment date: 20240318

Year of fee payment: 5