EP3791107A1 - Procede d'assemblage d'une cuve etanche et thermiquement isolante - Google Patents

Procede d'assemblage d'une cuve etanche et thermiquement isolante

Info

Publication number
EP3791107A1
EP3791107A1 EP19730195.5A EP19730195A EP3791107A1 EP 3791107 A1 EP3791107 A1 EP 3791107A1 EP 19730195 A EP19730195 A EP 19730195A EP 3791107 A1 EP3791107 A1 EP 3791107A1
Authority
EP
European Patent Office
Prior art keywords
loading
wall
supporting structure
unloading tower
thermally insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19730195.5A
Other languages
German (de)
English (en)
Inventor
Geoffrey DETAILLE
Bertrand BUGNICOURT
Grégoire LAURENCE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3791107A1 publication Critical patent/EP3791107A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of tanks, sealed and thermally insulating, for the storage and / or transport of a fluid, such as a cryogenic fluid. Sealed and thermally insulating vessels are used in particular for the storage of liquefied natural gas (LNG), which is stored at atmospheric pressure at about -162 ° C.
  • LNG liquefied natural gas
  • the invention relates more particularly to a method of assembling such a sealed and thermally insulating vessel.
  • the document FR2785034 discloses a sealed and thermally insulating liquefied natural gas storage tank which is installed in the double hull of a ship.
  • the sealed and thermally insulating tank comprises walls which have a multilayer structure consisting successively of a secondary thermally insulating barrier resting against the inner hull of the ship, a secondary sealing membrane resting against the secondary thermally insulating barrier; a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the liquefied gas contained in the tank.
  • the tank is equipped with a loading / unloading tower to load the cargo in the tank, before its transport, and to unload the cargo, after its transport.
  • the secondary and primary thermally insulating barriers as well as the secondary and primary sealing membranes are mounted in the double hull of the ship and anchored to it and then the loading / unloading tower is mounted in the tank and attached to the double hull of the vessel.
  • Document JP S56146485 describes a method of assembling a sealed and thermally insulating tank according to the prior art.
  • An idea underlying the invention is to provide a method of assembling a sealed and thermally insulating tank which reduces the assembly time.
  • the invention provides a method for assembling a sealed and thermally insulating tank for storing a fluid inside a bearing structure, said bearing structure having a generally polyhedral shape defined by a plurality of walls, said plurality of walls having an upper wall, a lower wall, and a first transverse wall extending vertically between the top wall and the bottom wall; the assembly method comprising the following steps:
  • a scaffolding inside the support structure, said scaffolding having a support frame bearing against the bottom wall and a plurality of horizontal platforms, fixed on the support frame; each of the platforms having an opening; the openings of the platforms being arranged one above the other so as to provide a vertical passage through the platforms;
  • the platforms furthermore each have a bridge between the opening of said scaffold and the first transverse wall. These bridges allow access to the zones of the first transverse wall located between the loading / unloading tower and said first transverse wall in order to anchor at least the waterproofing membrane, while said loading / unloading tower extends inside the supporting structure.
  • the scaffold comprises an elevator capable of moving vertically through the portion of the openings adjacent to the first transverse wall.
  • an elevator is able to move between the loading / unloading tower and the first transverse wall when said loading / unloading tower extends inside the supporting structure, which allows the operators to access the zones. of the load-bearing structure behind the loading / unloading tower.
  • such a method may have one or more of the following characteristics.
  • the openings of the platforms are formed near the first transverse wall.
  • the first transverse wall is the wall of the carrier structure closest to the openings.
  • the gateways close the contour of the openings of the platforms.
  • the distance L between the loading / unloading tower and the sealing membrane of the first transverse wall is greater than 0.80 m, advantageously greater than 1 m and preferably greater than or equal to 1.50 m. m.
  • the distance L between the loading / unloading tower and the sealing membrane of the first transverse wall is less than 10 meters, advantageously less than 5 meters and preferably less than 3 meters. This optimizes the amount of cargo that can be discharged, especially when the vessel is onboard a vessel and the first transverse wall is a rear wall.
  • the loading / unloading tower comprises three masts which are fixed to each other by crosspieces and which each extend vertically along a central axis; the three central axes of the masts defining in projection in a horizontal plane the vertices of a triangle; said triangle being oriented with respect to the first transverse wall so that one of the three vertices of the triangle is arranged closer to the first transverse wall than are the other two vertices. This facilitates access to the areas of the first transverse wall behind the loading / unloading tower.
  • the triangle is equilateral.
  • the triangle is oriented so that a bisector of an angle of the triangle defined by two sides of the triangle joining at the apex of the triangle which is disposed closest to the first transverse wall forms with said first transverse wall at an angle between 45 ° and 135 °.
  • the angle a is between 70 and 110 °.
  • the angle a is equal to 90 °. This further facilitates access to the areas of the first transverse wall behind the loading / unloading tower.
  • the upper wall comprises a liquid dome projecting upwards from the upper wall of the supporting structure, the opening formed in the upper wall through which the loading / unloading tower is lowered being provided in the liquid dome and the attachment of the loading / unloading tower to the upper wall of the supporting structure comprising the steps of securing a cover on the liquid dome so as to cover the opening in the liquid dome and to secure said tower loading / unloading on said lid.
  • the loading / unloading tower comprises three hollow masts and the inside of the supporting structure is ventilated by at least one of the masts thereby forming a ventilation duct when the lid is fixed on the dome. liquid.
  • the liquid dome is positioned at a distance from the first transverse wall, the upper wall of the support structure comprising a horizontal portion connecting the first transverse wall of the supporting structure to a vertical transverse wall of the liquid dome.
  • the liquid dome has a vertical transverse wall which extends in the extension of the first transverse wall.
  • the liquid dome has two transverse walls and two lateral walls that extend vertically.
  • an insulating element of the thermally insulating barrier is anchored against a central part of the lid; the insulating elements of the thermally insulating barrier are anchored against the transverse and lateral walls of the liquid dome;
  • the temporary support means are equipped with lifting means, such as cylinders.
  • the support frame of the scaffolding is equipped with vertically retractable legs and by means of which said support frame bears against the lower wall of the supporting structure and successively retracts said feet.
  • a secondary thermally insulating barrier resting against the carrier structure and a secondary sealing membrane resting against the secondary thermally insulating barrier; the primary thermally insulating barrier resting against the secondary waterproofing membrane and successively retracting the feet during the anchoring of the heat barrier Secondary insulation and secondary waterproofing membrane on the bottom wall of the supporting structure.
  • the platforms have retractable edges, for example horizontally, and each of said edges is retracted as the thermally insulating barrier and the waterproofing membrane are anchored to the wall of the wall. the bearing structure opposite said edge.
  • the bridges have an edge opposite the first transverse wall which is retractable and said edge is retracted as the thermally insulating barrier and the waterproofing membrane are anchored on the first transverse wall.
  • each of the walls of the supporting structure is further anchored to a secondary heat-insulating barrier resting against the supporting structure and a secondary sealing membrane resting against the secondary thermally insulating barrier; the thermally insulating barrier resting against the secondary waterproofing membrane.
  • each wall of the tank has successively, from the outside towards the inside, in the thickness direction of the wall, a secondary heat-insulating barrier, a secondary sealing membrane anchored to the thermal barrier.
  • secondary insulation a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane anchored to the primary thermally insulating barrier and intended to be in contact with the fluid contained in the tank.
  • the carrier structure is embedded on a ship and the first transverse wall is a rear wall.
  • At least the primary waterproofing membrane is anchored to the first transverse wall after the descent of the loading / unloading tower.
  • at least the primary sealing membrane and the primary thermally insulating barrier are anchored to the first transverse wall after the descent of the loading / unloading tower.
  • at least the primary waterproofing membrane, the primary thermally insulating barrier and the membrane secondary sealing are anchored to the first transverse wall after the descent of the loading / unloading tower.
  • at least the primary waterproofing membrane, the primary heat-insulating barrier, the secondary waterproofing membrane and the secondary thermal-insulating barrier are anchored to the first transverse wall subsequent to the descent of the loading tower. unloading.
  • the support structure is constituted by the double hull of a ship.
  • FIG. 1 is a partial schematic view of a carrier structure for receiving the walls of a sealed tank and thermally insulating.
  • FIG. 2 is a schematic view of the multilayer structure of the walls of the tank.
  • FIG. 3 is a schematic view illustrating a loading / unloading tower and partially illustrating the supporting structure inside which it is mounted.
  • FIG. 4 is a schematic illustration showing the arrangement of the masts of the loading / unloading tower relative to the rear wall of the carrier structure according to one embodiment.
  • FIG. 5 is a schematic illustration showing the arrangement of the masts of the loading / unloading tower relative to the rear wall of the carrier structure according to another embodiment.
  • - Figure 6 is a partial longitudinal sectional view of the sealed and thermally insulating tank at the liquid dome and the loading / unloading tower according to one embodiment.
  • - Figure 7 is a partial longitudinal sectional view of the sealed and thermally insulating tank at the liquid dome and the loading / unloading tower according to another embodiment.
  • FIG. 8 is a schematic perspective view partially illustrating the supporting structure and the scaffold assembled within the carrier structure for the assembly of the sealed tank and thermally insulating; the platforms are not equipped with bridges arranged between the openings in the platforms and the rear wall of the supporting structure.
  • FIG. 9 is a diagrammatic perspective view partially illustrating the carrying structure as well as the scaffolding installed inside the carrying structure, the platforms being equipped with bridges arranged between the openings made in the platforms and the rear wall of the supporting structure.
  • FIG 10 is a top view of one of the platforms of the scaffold, as shown in Figure 8.
  • FIG. 11 is a top view of one of the platforms of the scaffold, as shown in Figure 9.
  • FIG. 12 is a schematic view of a support leg for cooperating with the base of the loading / unloading tower.
  • FIG. 13 is a schematic illustration of temporary support means providing support for the loading / unloading tower on the bottom wall of the supporting structure.
  • FIG. 14 is a schematic illustration of temporary support means providing support for the loading / unloading tower on insulating elements of the secondary thermally insulating barrier which are anchored against the lower wall of the supporting structure.
  • FIGS. 15 and 16 illustrate a sequence of assembly of the wall of the tank at the level of the liquid dome according to one embodiment.
  • the supporting structure 1 is formed by the double hull of a ship.
  • the supporting structure 1 has a general polyhedral shape.
  • the supporting structure 1 has two front walls 2 and rear 3, here octagonal.
  • the front wall 2 is shown only partially so as to allow visualization of the internal space of the supporting structure 1.
  • the front and rear walls 3 and 3 are cofferdam walls of the ship and extend transversely. to the longitudinal direction of the ship.
  • the supporting structure 1 also comprises an upper wall 4, a bottom wall 5 and side walls 6, 7, 8, 9, 10, 11.
  • the upper wall 4, the bottom wall 5 and the side walls 6, 7, 8, 9, 10, 1 1 extend in the longitudinal direction of the ship and connect the front walls 2 and rear 3.
  • the upper wall 4 comprises, close to the rear wall 3 of the supporting structure 1, a rectangular parallelepiped-shaped space, projecting upwards, called the liquid dome 12.
  • the liquid dome 12 is defined by two transverse walls, before 13 and rear 14, and two side walls 15, 16 which extend vertically and project from the upper wall 4 upwards.
  • the liquid dome 12 further comprises a horizontal cover, not shown in Figure 1, which is intended to cover sealing the opening formed between the front walls 13, rear 14 and side 15, 16 of the liquid dome 12.
  • the tank whose assembly process will be described later is a membrane tank having a multilayer structure.
  • each wall of the tank has successively, from the outside towards the inside, in the direction of thickness of the wall, a secondary heat-insulating barrier 17 comprising insulating elements resting against the carrier structure 1, a secondary sealing membrane 18 anchored to the insulating elements of the secondary heat-insulating barrier 17, a primary heat-insulating barrier 19 having insulating elements resting against the secondary sealing membrane 17 and a primary sealing membrane 20 anchored to the insulating elements of the primary thermally insulating barrier 19 and intended to be in contact with the fluid contained in the tank.
  • This multilayer structure of the tank is disposed on each of the walls 4, 5, 6, 7, 8, 9, This multilayer structure is also present on the walls of the liquid dome 12, except where the level of the cover where it is likely to be different.
  • each wall of the vessel may in particular be of the Mark III type, as described for example in FR2691520, of the N096 type as described for example in FR2877638, or of the Mark V type as described, for example, in W014057221. .
  • Each wall of the tank is anchored to the respective wall of the supporting structure 1, proceeding from the outside to the inside of the tank, that is to say:
  • the tank comprises a loading / unloading tower 21, illustrated in Figure 3, in particular to load the cargo in the tank before transport and / or unload the cargo after transport.
  • the loading / unloading tower 21 is installed in the vicinity of the rear wall 3 of the support structure 1, since during the unloading of the cargo, the ship leans backwards, which makes it possible to optimize the quantity of cargo likely to to be unloaded by the loading / unloading tower 21.
  • the loading / unloading tower 21 is suspended from the upper wall 4 of the supporting structure 1 and more particularly to the lid of the liquid dome 12.
  • the loading / loading tower 21 extends over substantially the entire height of the tank.
  • the loading / loading tower 21 supports, at its lower end, one or more unloading pumps of the cargo.
  • the base of the loading / unloading tower 21 cooperates with a support leg 36, illustrated in FIG. 12, which is fixed to the bottom wall 5 of the supporting structure 1 and which aims at ensuring a vertical retention of the tower loading / unloading 21.
  • the support foot 36 protrudes inside the tank and passes through the primary thermally insulating barriers 19 and secondary 17 and the primary 20 and secondary 18 primary sealing membranes of the bottom wall of the tank.
  • Such a support foot 36 is for example described in the applications FR3035475 and WO201 1 157915.
  • the loading / unloading tower 21 comprises a tripod structure, that is to say that it comprises three vertical poles 22, 23, 24 which are each attached to each other. 25.
  • Each of the masts 22, 23, 24 is hollow and passes through the lid of the liquid dome 12.
  • Each of the masts 22, 23, 24 thus forms either a loading and / or unloading line for loading or unloading. discharge fluid to or from the tank; either a relief well allowing the descent of an emergency pump and an unloading line in case of failure of the other unloading pumps.
  • two of the masts 22, 23 form an unloading line of the tank and are, for this purpose, each associated with an unloading pump 26, 27 attached to the lower end of the loading tower.
  • unloading 21 while the third mast 25 forms a relief well.
  • the loading / unloading tower 21 carries one or more loading lines, not shown, which do not constitute one of the poles 22, 23, 24 of the tripod structure.
  • the loading / unloading tower 21 is lowered inside the supporting structure 1 before all the walls of the tank are assembled and fixed to the supporting structure 1, and in particular before the primary waterproofing membrane of the rear wall is assembled and anchored on the rear wall 3 of the supporting structure 1.
  • FIGS 4 and 5 schematically illustrate the tripod structure of the masts 22, 23, 24 of the loading / unloading tower 21 in two different arrangements with respect to the rear wall 3 of the supporting structure 1.
  • the three masts 22, 23, 24 extend vertically.
  • the central axes of the three masts 22, 23, 24 define, in projection in a horizontal plane, the vertices ABC of a triangle.
  • the three poles 22, 23, 24 are arranged equidistant from each other so that the triangle ABC is an equilateral triangle.
  • the AC side of the triangle that is closest to the rear wall 3 of the supporting structure 1 is parallel to said rear wall 3.
  • two vertices A and C of the triangle are placed at an equal distance from the rear wall 3 of the supporting structure 1.
  • the orientation of the triangle ABC, defined by the central axis of the masts 22, 23, 24 of the loading / unloading tower 21, relative to the rear wall 3 of the supporting structure 1 is optimized in order to facilitate access to the areas of the rear wall 3 located behind the loading / unloading tower 21.
  • such an arrangement is advantageous in that it facilitates the mounting of the wall of the tank against the rear wall 3 of the structure carrier 1 while the loading / unloading tower 21 is already present inside the carrier structure 1.
  • the triangle ABC is oriented such that one of the vertices A of the triangle defined by the central axes of the three poles 23, 24, 25 is placed closer to the rear wall 3 than are the two other vertices B and C of the triangle.
  • the bisector 28 of the angle BAC of the triangle which is defined by the two sides of the triangle BA and AC joining at the apex A closest to the rear wall 3, forms with said wall rear angle an angle between 45 ° and 135 °, preferably between 70 ° and 1 10 °, and preferably of the order of 90 °.
  • the distance L is preferably greater than 0.80 meters, preferably greater than 1 meter and preferably greater than or equal to 1.50 meters.
  • the distance L between the tower of loading / unloading 21 and the destination location of the primary sealing membrane 21 of the rear wall is advantageously less than 10 meters, advantageously less than 5 meters and preferably less than 3 meters.
  • the lower end of the loading / unloading tower 21 is disposed at a vertical distance greater than 0.4 m and preferably greater than 0.5 m from the destination location of the primary sealing membrane of the lower wall of the vessel.
  • Figures 6 and 7 show in detail the liquid dome 12 and the upper part of a loading / unloading tower 21 according to two embodiments.
  • the liquid dome 12 is shifted towards the front of the vessel with respect to the rear wall 3 of the supporting structure 1.
  • the rear wall 14 of the liquid dome 12 does not extend in the same horizontal plane as the rear wall 3 of the supporting structure 1, that is to say in its extension, and is positioned towards the front of the ship relative to the rear wall 3.
  • the upper wall 4 of the supporting structure 1 comprises a horizontal portion 29 which connects the rear wall 3 of the supporting structure 1 to the rear wall 14 of the liquid dome 12.
  • the rear wall 14 of the liquid dome 12 extends in the extension of the rear wall 3 of the supporting structure 1 and the length of the liquid dome 12 along the axis longitudinal axis of the ship is dimensioned accordingly, that is to say, so that the loading / unloading tower 21 can be arranged at a distance of the rear wall 3 of the supporting structure 1 sufficient to allow the assembly of the rear wall of the tank.
  • the loading / unloading tower 21 is placed at a distance from the destination location of the primary sealing membrane intended to cover the rear wall 14 of the liquid dome which is preferably greater than 0.80 meters, preferably greater than 1 meter and preferably greater than or equal to 1.50 meters.
  • Figures 8 to 1 1 illustrate a scaffold 30 for use in assembling the vessel.
  • the scaffold 30 includes a support frame 31 and a plurality of platforms 32a, 32b, 32c which are attached to the support frame 31.
  • the platforms 32a, 32b, 32c are regularly spaced in the vertical direction and allow operators to access the different areas of the supporting structure 1 to anchor the vessel walls.
  • the platforms 32a, 32b, 32c are associated with each other by at least one staircase 42 allowing operators to move from one platform 32a, 32b, 32c to another.
  • each of the platforms 32a, 32b, 32c has an opening 34 formed near the rear wall 3 of the supporting structure 1.
  • the openings 34 are arranged one below the other, below the liquid dome 12 formed in the upper wall 4 of the supporting structure 1.
  • the openings 12 thus define a vertical passage which allows the loading / unloading tower 21 to pass through the platforms 32a, 32b, 32c.
  • each of the platforms 32a, 32b, 32c is equipped with a bridge 33 which is disposed between the opening 34 and the rear wall 3 of the supporting structure 1 and which thus closes the contour of one of the openings 34.
  • the gangways 33 are removably attached to the platforms 32a, 32b, 32c and can be removed as shown in particular in FIGS. 8 and 10, for example to facilitate the descent of the loading / unloading tower 21 inside the supporting structure 1.
  • Such bridges 33 allow access to the areas of the support structure 1 located behind the loading / unloading tower 21 when the loading / unloading tower 21 is at the interior of the carrier structure 1 and extends through the openings 34 formed in the platforms 32a, 32b, 32c.
  • the platforms 32a, 32b, 32c are devoid of gateways 33 as described below.
  • the scaffold 30 then comprises one or more elevators able to move vertically through the portion of the openings 34 adjacent to the rear wall 3 of the supporting structure 1.
  • an elevator is able to move between the loading / unloading tower 21 and the rear wall 3 of the supporting structure 1 when said loading / unloading tower 21 extends inside the supporting structure 1, this which allows the operators to access the areas of the supporting structure 1 located behind the loading / unloading tower 21.
  • the support frame 31 of the scaffold 30 has a plurality of legs 35.
  • the legs 35 are vertically retractable feet.
  • the feet 35 are able to be placed in abutment against the bottom wall 5 of the supporting structure 1, during the assembly of the scaffolding 30 inside the supporting structure 1, and then to be placed in abutment against the thermal barriers.
  • secondary insulation 17 and primary 19 and against the secondary waterproofing membranes 18 and primary 20 as and when they are assembled and anchored against the bottom wall 5 of the supporting structure 1.
  • the feet 35 are retractable over a length greater than or equal to the thickness of the multilayer structure of the bottom wall of the vessel.
  • the lower platform 32a of the scaffold 30 is disposed at a vertical distance from the bottom wall 5 of the supporting structure 1 which is greater than the thickness of the multilayer structure of the bottom wall of the vessel.
  • the positioning and the number of feet 35 are determined so that the pressure due to the weight of the scaffolding remains less than 2 bars at each of the feet 35, which makes it possible to avoid the deformations of the secondary thermally insulating barriers. 17 and primary 19 and secondary waterproofing membranes 18 and primary 20.
  • each of the platforms 32a, 32b, 32c are retractable, for example horizontally, and are thus suitable for retract as the assembly of the vessel wall on the wall of the supporting structure 1 facing.
  • the edge of the bridges 33 is also retractable.
  • the scaffold 30 is mounted inside the carrier structure 1 before the anchoring of any of the vessel walls to the carrier structure 1 begins.
  • a support leg 36 is then assembled and fixed against the bottom wall 5 of the supporting structure 1.
  • the loading / unloading tower 21 is lowered inside the supporting structure while the lid of the liquid dome 12 is not installed.
  • the loading / unloading tower 21 is introduced through the opening formed between the front 13, rear 14 and side 15, 16 walls of the liquid dome 12.
  • the loading / unloading tower 21 is then lowered inside. of the supporting structure 1 through the openings 24 formed in the platforms 32a, 32b, 32c of the scaffold 30.
  • the base of the loading / unloading tower 21 is guided by the support foot 36 so that said support leg 36 ensures precise positioning of the loading / unloading tower 21 and holding in vertical position.
  • the loading / unloading tower 21 is then supported on the lower wall of the support structure by temporary support means 38, shown schematically in FIG. 13.
  • the temporary support means 38 are advantageously provided with lifting means, such as cylinders, to adjust the vertical position of the loading / unloading tower 21.
  • the unloading / unloading tower 21 is lowered inside the supporting structure 1 before the secondary heat-insulating barrier 17 is anchored to the bottom wall 5 of the supporting structure 1 in the area facing said loading / unloading tower 21. Also, in such a case, the support means provisional 38 rest directly against the bottom wall 5 of the supporting structure 1.
  • the secondary thermally insulating barrier is anchored to the bottom wall 5 of the supporting structure 1, at least in the area facing the loading / unloading tower 21. Also, in this variant embodiment, the temporary support means 38 rest against insulating elements of the secondary thermally insulating barrier 17 which are anchored against the bottom wall 5 of the supporting structure 1.
  • the lid of the liquid dome 12 is attached and welded to the front 13, rear 14 and side walls 15, 16 of the liquid dome 12 so as to cover the opening formed therebetween.
  • the loading / unloading tower 21 can then be suspended on the lid, the masts 22, 23, 24 of the loading / unloading tower 21 passing through orifices in said lid. Temporary support means 38 can then be removed.
  • the ventilation of the The internal space of the tank is carried out through one or more of the masts 22, 23, 24 hollow of the loading / unloading tower 21 which then serve as a ventilation duct.
  • the assembly and anchoring of at least a portion of the multilayer structure of at least one wall of the tank are advantageously carried out in parallel with the above-mentioned operations of welding the lid of the liquid dome 12 and fixing the loading tower.
  • this is compared with the assembly methods of the state of the art in which the loading / unloading tower 21 had not descended inside the supporting structure 1 and attached thereto after the anchoring of all the walls of the tank, such an assembly method reduces the assembly time of the tank.
  • At least the primary sealing membrane of the rear wall of the tank and preferably the entire multilayer structure of the rear wall of the tank are mounted and anchored on the rear wall 3 of the supporting structure 1 after the operation of descent of the loading / unloading tower 21 inside the supporting structure 1.
  • This is made possible in particular by the presence of the bridges 33 which are arranged between the rear wall 3 of the supporting structure 1 and the tower loading / unloading 21 when said loading / unloading tower 21 extends inside the carrier structure 1.
  • the scaffold 30 can then be dismantled.
  • a portion 40 of the upper wall of the tank having insulating elements and optionally one or more sealing membranes are fixed in a central portion of the lid 39.
  • a peripheral portion 41 of the lid 39 is extending around the portion of the wall 40 of the upper wall is not coated with insulating elements.
  • transverse walls 13, 14 and lateral 15, 16 of the liquid dome 12 as well as advantageously the remainder of the upper wall 4 and the rear wall 3 are coated with a multilayer tank wall structure.
  • the anchoring of the multilayer structure in part or all of these areas of the support structure is advantageously performed at the same time as the anchoring of the portion 40 of the upper wall of the tank which is fixed against the central portion of the cover 39.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un procédé d'assemblage d'une cuve étanche et thermiquement isolante de stockage d'un fluide à l'intérieur d'une structure porteuse (1), le procédé d'assemblage comportant les étapes suivantes : - monter un échafaudage (30) à l'intérieur de la structure porteuse (30), ledit échafaudage (30) comportant une armature de support (31) en appui contre la paroi inférieure (5) et une pluralité de plateformes (32a, 32b, 32c) horizontales, fixées sur l'armature de support (31); - descendre une tour de chargement/déchargement (21) à l'intérieur de la structure porteuse (1) en introduisant ladite tour de chargement/déchargement (21) au travers d'ouvertures (34) des plateformes (32a, 32b, 32c); - fixer ladite tour de chargement/déchargement (21) à la paroi supérieure (4) de la structure porteuse (1); - ancrer à chacune des parois de la structure porteuse (1) au moins une barrière thermiquement isolante (19) et une membrane d'étanchéité (20); la membrane d'étanchéité (20) étant ancrée à une première paroi transversale (3) de la structure porteuse (1) postérieurement à la descente de la tour de chargement/déchargement (21) à l'intérieur de la structure porteuse (1).

Description

PROCEDE D'ASSEMBLAGE D'UNE CUVE ETANCHE ET THERMIQUEMENT
ISOLANTE
Domaine technique
L’invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, pour le stockage et/ou le transport d’un fluide, tel qu’un fluide cryogénique. Des cuves étanches et thermiquement isolantes sont notamment employées pour le stockage du gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -162°C.
L’invention concerne plus particulièrement un procédé d’assemblage d’une telle cuve étanche et thermiquement isolante.
Arrière-plan technologique
Le document FR2785034 divulgue une cuve étanche et thermiquement isolante de stockage de gaz naturel liquéfié qui est installée dans la double coque d'un navire.
La cuve étanche et thermiquement isolante comporte des parois qui présentent une structure multicouche constituée successivement d’une barrière thermiquement isolante secondaire reposant contre la coque interne du navire, d’une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire ; d’une barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et d’une membrane d’étanchéité primaire destinée à être en contact avec le gaz liquéfié contenu dans la cuve.
La cuve est équipée d'une tour de chargement/déchargement pour charger la cargaison dans la cuve, avant son transport, et pour décharger la cargaison, après son transport.
Lors de l’assemblage d’une telle cuve, les barrières thermiquement isolantes secondaires et primaires ainsi que les membranes d’étanchéités secondaire et primaire sont montées dans la double coque du navire et ancrées à celle-ci puis la tour de chargement/déchargement est montée dans la cuve et fixée à la double coque du navire.
Le procédé d’assemblage d’une telle cuve n’est pas pleinement satisfaisant, notamment en ce qu’il est particulièrement long.
On connaît le document JP S56146485 qui décrit un procédé d’assemblage d’une cuve étanche et thermiquement isolante selon l’art antérieur.
Résumé
Une idée à la base de l’invention est de proposer un procédé d’assemblage d’une cuve étanche et thermiquement isolante qui permette de réduire le temps d’assemblage.
Selon un mode de réalisation, l’invention fournit un procédé d'assemblage d'une cuve étanche et thermiquement isolante de stockage d’un fluide à l’intérieur d’une structure porteuse, ladite structure porteuse présentant une forme générale polyédrique définie par une pluralité de parois, ladite pluralité de parois comportant une paroi supérieure, une paroi inférieure et une première paroi transversale qui s’étend verticalement entre la paroi supérieure et la paroi inférieure; le procédé d’assemblage comportant les étapes suivantes :
- monter un échafaudage à l’intérieur de la structure porteuse, ledit échafaudage comportant une armature de support en appui contre la paroi inférieure et une pluralité de plateformes, horizontales, fixées sur l’armature de support ; chacune des plateformes présentant une ouverture ; les ouvertures des plateformes étant disposées les unes aux dessus des autres de manière à ménager au travers des plateformes un passage vertical ;
- descendre une tour de chargement/déchargement à l’intérieur de la structure porteuse en introduisant ladite tour de chargement/déchargement, d’une part, au travers d’une ouverture ménagée dans la paroi supérieure de la structure porteuse et, d’autre part, au travers des ouvertures des plateformes ;
- fixer ladite tour de chargement/déchargement à la paroi supérieure de la structure porteuse ;
- ancrer, directement ou indirectement, à chacune des parois de la structure porteuse au moins une barrière thermiquement isolante et une membrane d’étanchéité reposant contre ladite barrière thermiquement isolante ; la membrane d’étanchéité de la première paroi transversale étant ancrée à ladite première paroi transversale postérieurement à la descente de la tour de chargement/déchargement à l’intérieur de la structure porteuse.
Ainsi, un tel procédé d’assemblage permet, par comparaison avec les procédés d’assemblage de l’état de la technique, de réduire considérablement la durée d’assemblage car la fixation de la tour de chargement/déchargement sur la structure porteuse et/ou les tests d’étanchéité de la paroi de cuve dans la zone de la structure porteuse à laquelle la tour de chargement/déchargement est suspendue peuvent être réalisés en même temps que l’ancrage d’au moins une partie de la structure multicouche d’au moins l’une des parois de la cuve sur la structure porteuse, telle que la membrane d’étanchéité primaire de la première paroi transversale.
Selon un mode de réalisation, les plateformes présentent en outre chacune une passerelle entre l’ouverture dudit échafaudage et la première paroi transversale. Ces passerelles permettent d’accéder aux zones de de la première paroi transversale situées entre la tour de chargement/déchargement et ladite première paroi transversale en vue d’y ancrer au moins la membrane d’étanchéité, alors que ladite tour de chargement/déchargement s’étend à l’intérieur de la structure porteuse.
Selon un autre mode de réalisation, l’échafaudage comporte un ascenseur apte à se déplacer verticalement au travers de la portion des ouvertures adjacente à la première paroi transversale. Ainsi, un tel ascenseur est apte à se déplacer entre la tour de chargement/déchargement et la première paroi transversale lorsque ladite tour de chargement/déchargement s’étend à l’intérieur de la structure porteuse, ce qui autorise les opérateurs à accéder aux zones de la structure porteuse situées derrière la tour de chargement/déchargement.
Selon d’autres modes de réalisation avantageux, un tel procédé peut présenter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, les ouvertures des plateformes sont ménagées à proximité de la première paroi transversale.
Selon un mode de réalisation, la première paroi transversale est la paroi de la structure porteuse la plus proche des ouvertures. Selon un mode de réalisation, les passerelles ferment le contour des ouvertures des plateformes.
Selon un mode de réalisation, la distance L entre la tour de chargement/déchargement et la membrane d’étanchéité de la première paroi transversale est supérieure à 0,80 m, avantageusement supérieure à 1 m et de préférence supérieure ou égale à 1 ,50 m.
Selon un mode de réalisation, la distance L entre la tour de chargement/déchargement et la membrane d’étanchéité de la première paroi transversale est inférieure à 10 mètres, avantageusement inférieure à 5 mètres et de préférence inférieure à 3 mètres. Ceci permet d’optimiser la quantité de cargaison susceptible d'être déchargée, notamment lorsque la cuve est embarquée sur un navire et que la première paroi transversale est une paroi arrière.
Selon un mode de réalisation, la tour de chargement/déchargement comporte trois mâts qui sont fixés les uns aux autres par des traverses et qui s’étendent chacun verticalement selon un axe central ; les trois axes centraux des mâts définissant en projection dans un plan horizontal les sommets d’un triangle ; ledit triangle étant orienté par rapport à la première paroi transversale de telle sorte que l’un des trois sommets du triangle est disposé plus proche de la première paroi transversale que ne le sont les deux autres sommets. Ceci permet de faciliter l’accès aux zones de la première paroi transversale derrière la tour de chargement/déchargement.
Selon un mode de réalisation, le triangle est équilatéral.
Selon un mode de réalisation, le triangle est orienté de telle sorte qu’une bissectrice d’un angle du triangle défini par deux côtés du triangle se rejoignant au niveau du sommet du triangle qui est disposé le plus proche de la première paroi transversale forme avec ladite première paroi transversale un angle a compris entre 45° et 135°. Selon un mode de réalisation, l’angle a est compris entre 70 et 1 10°. Selon un mode de réalisation, l’angle a est égal à 90°. Ceci permet de faciliter encore davantage l’accès aux zones de la première paroi transversale derrière la tour de chargement/déchargement. Selon un mode de réalisation, la paroi supérieure comporte un dôme liquide faisant saillie vers le haut de la paroi supérieure de la structure porteuse, l’ouverture ménagée dans la paroi supérieure au travers de laquelle la tour de chargement/déchargement est descendue étant ménagée dans le dôme liquide et la fixation de la tour de chargement/déchargement à la paroi supérieure de la structure porteuse comportant les étapes de fixer un couvercle sur le dôme liquide de manière à recouvrir l’ouverture ménagée dans le dôme liquide et de fixer ladite tour de chargement/déchargement sur ledit couvercle.
Selon un mode de réalisation, la tour de chargement/déchargement comporte trois mâts creux et l’on aère l’intérieur de la structure porteuse par au moins l’un des mâts formant ainsi gaine d’aération lorsque le couvercle est fixé sur le dôme liquide.
Selon un mode de réalisation, le dôme liquide est positionné à distance de la première paroi transversale, la paroi supérieure de la structure porteuse comportant une portion horizontale reliant la première paroi transversale de la structure porteuse à une paroi transversale verticale du dôme liquide. Ceci permet à la tour de chargement/déchargement d’être disposée à une distance de la première paroi transversale suffisante pour permettre un accès entre la tour de chargement/déchargement et la première paroi transversale sans pour autant augmenter en conséquence la dimension du dôme liquide selon la direction longitudinale du navire.
Selon un autre mode de réalisation, le dôme liquide comporte une paroi transversale verticale qui s’étend dans le prolongement de la première paroi transversale.
Selon un mode de réalisation, le dôme liquide comporte deux parois transversales et deux parois latérales qui s’étendent verticalement.
Selon un mode de réalisation, après la fixation du couvercle sur l’ouverture du dôme liquide :
- l’on ancre contre une partie centrale du couvercle des éléments isolants de la barrière thermiquement isolante ; - l’on ancre contre les parois transversales et latérales du dôme liquide des éléments isolants de la barrière thermiquement isolante ; et
- postérieurement à l’ancrage des éléments isolants de la barrière thermiquement isolante contre la partie centrale du couvercle et contre les parois transversale et latérales du dôme liquide, l’on dispose dans un espace périphérique du couvercle, disposé autour de la partie centrale du couvercle, des éléments isolants de la barrière thermiquement isolante . Ainsi, il est possible d’assembler la paroi de cuve dans la zone du dôme liquide à laquelle est suspendue la tour de chargement déchargement parallèlement à l’assemblage du reste de la paroi supérieure de la cuve.
Selon un mode de réalisation, lors de la descente de la tour de chargement/déchargement à l’intérieur de la structure porteuse, l’on dispose des moyens de support provisoire entre la tour de chargement/déchargement et la paroi inférieure de la structure porteuse de manière à assurer un support de ladite tour de chargement/déchargement ; les moyens de support provisoire étant retirés après la fixation de la tour de chargement/déchargement à la paroi supérieure de la structure porteuse.
Selon un mode de réalisation, les moyens de support provisoires sont équipés de moyens de levage, tels que des vérins.
Selon un mode de réalisation, l’armature de support de l’échafaudage est équipée de pieds qui sont rétractables verticalement et au moyen desquels ladite armature de support est en appui contre la paroi inférieure de la structure porteuse et l’on rétracte successivement lesdits pieds lors de l’ancrage de la barrière thermiquement isolante et de la membrane d’étanchéité sur la paroi inférieure de la structure porteuse de manière à les faire successivement reposer contre la barrière thermiquement isolante et contre la membrane d’étanchéité.
Selon un mode de réalisation, l’on ancre en outre, à chacune des parois de la structure porteuse, une barrière thermiquement isolante secondaire reposant contre la structure porteuse et une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire ; la barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et l’on rétracte successivement les pieds lors de l’ancrage de la barrière thermiquement isolante secondaire et de la membrane d’étanchéité secondaire sur la paroi inférieure de la structure porteuse.
Selon un mode de réalisation, les plateformes présentent des bords rétractables, par exemple horizontalement, et l’on rétracte chacun desdits bords au fur et à mesure de l’ancrage de la barrière thermiquement isolante et de la membrane d’étanchéité sur la paroi de la structure porteuse en regard dudit bord.
Selon un mode de réalisation, les passerelles présentent un bord en regard de la première paroi transversale qui est rétractable et l’on rétracte ledit bord au fur et à mesure de l’ancrage de la barrière thermiquement isolante et de la membrane d’étanchéité sur la première paroi transversale.
Selon un mode de réalisation, l’on ancre en outre à chacune des parois de la structure porteuse, une barrière thermiquement isolante secondaire reposant contre la structure porteuse et une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire ; la barrière thermiquement isolante reposant contre la membrane d’étanchéité secondaire.
En d’autres termes, chaque paroi de la cuve présente successivement, de l’extérieur vers l’intérieur, selon la direction d’épaisseur de la paroi, une barrière thermiquement isolante secondaire, une membrane d’étanchéité secondaire ancrée à la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire ancrée à la barrière thermiquement isolante primaire et destinée à être en contact avec le fluide contenu dans la cuve.
Selon un mode de réalisation, la structure porteuse est embarquée sur un navire et la première paroi transversale est une paroi arrière.
Selon un mode de réalisation, au moins la membrane d’étanchéité primaire est ancrée à la première paroi transversale postérieurement à la descente de la tour de chargement/déchargement. Selon un mode de réalisation, au moins la membrane d’étanchéité primaire et la barrière thermiquement isolante primaire sont ancrées à la première paroi transversale postérieurement à la descente de la tour de chargement/déchargement. Selon un mode de réalisation, au moins la membrane d’étanchéité primaire, la barrière thermiquement isolante primaire et la membrane d’étanchéité secondaire sont ancrées à la première paroi transversale postérieurement à la descente de la tour de chargement/déchargement. Selon un mode de réalisation, au moins la membrane d’étanchéité primaire, la barrière thermiquement isolante primaire, la membrane d’étanchéité secondaire et la barrière thermiquement isolante secondaire sont ancrées à la première paroi transversale postérieurement à la descente de la tour de chargement/déchargement.
Selon un mode de réalisation, la structure porteuse est constituée par la double coque d’un navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La figure 1 est une vue schématique partielle d’une structure porteuse destinée à recevoir les parois d’une cuve étanche et thermiquement isolante.
- La figure 2 est une vue schématique de la structure multicouche des parois de la cuve.
- La figure 3 est une vue schématique illustrant une tour de chargement/déchargement et illustrant partiellement la structure porteuse à l’intérieur de laquelle elle est montée.
- La figure 4 est une illustration schématique représentant la disposition des mâts de la tour de chargement/déchargement par rapport à la paroi arrière de la structure porteuse selon un mode de réalisation.
- La figure 5 est une illustration schématique représentant la disposition des mâts de la tour de chargement/déchargement par rapport à la paroi arrière de la structure porteuse selon un autre mode de réalisation.
- La figure 6 est une vue partielle en coupe longitudinale de la cuve étanche et thermiquement isolante au niveau du dôme liquide et de la tour de chargement/déchargement selon un mode de réalisation. - La figure 7 est une vue partielle en coupe longitudinale de la cuve étanche et thermiquement isolante au niveau du dôme liquide et de la tour de chargement/déchargement selon un autre mode de réalisation.
- La figure 8 est une vue schématique en perspective illustrant partiellement la structure porteuse ainsi que l’échafaudage assemblé à l’intérieur de la structure porteuse en vue de l’assemblage de la cuve étanche et thermiquement isolante ; les plateformes n’étant pas équipées de passerelles disposées entre les ouvertures ménagées dans les plateformes et la paroi arrière de la structure porteuse.
- La figure 9 est une vue schématique en perspective illustrant partiellement la structure porteuse ainsi que l’échafaudage installée à l’intérieur de la structure porteuse, les plateformes étant équipées de passerelles disposées entre les ouvertures ménagées dans les plateformes et la paroi arrière de la structure porteuse.
- La figure 10 est une vue de dessus de l’une des plateformes de l’échafaudage, tel que représenté sur la figure 8.
- La figure 11 est une vue de dessus de l’une des plateformes de l’échafaudage, tel que représenté sur la figure 9.
- La figure 12 est une vue schématique d’un pied de support destiné à coopérer avec la base de la tour de chargement/déchargement.
- La figure 13 est une illustration schématique de moyens de support provisoire assurant le support de la tour de chargement/déchargement sur la paroi inférieure de la structure porteuse.
- La figure 14 est une illustration schématique de moyens de support provisoire assurant le support de la tour de chargement/déchargement sur des éléments isolants de la barrière thermiquement isolante secondaire qui sont ancrés contre la paroi inférieure de la structure porteuse.
- Les figures 15 et 16 illustrent une séquence d’assemblage de la paroi de la cuve au niveau du dôme liquide selon un mode de réalisation.
Description détaillée de modes de réalisation En relation avec la figure 1 , l’on observe la partie arrière d’une structure porteuse 1 destinée à recevoir les parois d’une cuve étanche et thermiquement isolante. La structure porteuse 1 est formée par la double coque d’un navire. La structure porteuse 1 présente une forme générale polyédrique. La structure porteuse 1 présente deux parois avant 2 et arrière 3, ici de forme octogonale. Sur la figure 1 , la paroi avant 2 n’est représentée que partiellement afin de permettre la visualisation de l’espace interne de la structure porteuse 1. Les parois avant 2 et arrière 3 sont des parois de cofferdam du navire et s’étendent transversalement à la direction longitudinale du navire. La structure porteuse 1 comporte également une paroi supérieure 4, une paroi inférieure 5 et des parois latérales 6, 7, 8, 9, 10, 11. La paroi supérieure 4, la paroi inférieure 5 et les parois latérales 6, 7, 8, 9, 10, 1 1 s’étendent selon la direction longitudinale du navire et relient les parois avant 2 et arrière 3.
La paroi supérieure 4 comporte, à proximité de la paroi arrière 3 de la structure porteuse 1 , un espace, de forme parallélépipédique rectangle, en saillie vers le haut, appelé dôme liquide 12. Le dôme liquide 12 est défini par deux parois transversales, avant 13 et arrière 14, et par deux parois latérales 15, 16 qui s’étendent verticalement et font saillie de la paroi supérieure 4 vers le haut. Le dôme liquide 12 comporte en outre un couvercle horizontal, non représenté sur la figure 1 , qui est destiné à recouvrir de manière étanche l’ouverture ménagée entre les parois avant 13, arrière 14 et latérales 15, 16 du dôme liquide 12.
La cuve dont le procédé d’assemblage sera décrit par la suite est une cuve à membrane présentant une structure multicouche. Aussi, comme représenté schématiquement sur la figure 2, chaque paroi de la cuve présente successivement, de l’extérieur vers l’intérieur, selon la direction d’épaisseur de la paroi, une barrière thermiquement isolante secondaire 17 comportant des éléments isolants reposant contre la structure porteuse 1 , une membrane d’étanchéité secondaire 18 ancrée aux éléments isolants de la barrière thermiquement isolante secondaire 17, une barrière thermiquement isolante primaire 19 comportant des éléments isolants reposant contre la membrane d’étanchéité secondaire 17 et une membrane d’étanchéité primaire 20 ancrée aux éléments isolants de la barrière thermiquement isolante primaire 19 et destinée à être en contact avec le fluide contenu dans la cuve. Cette structure multicouche de la cuve est disposée sur chacune des parois 4, 5, 6, 7, 8, 9, 10 de la structure porteuse 1. Cette structure multicouche est également présente sur les parois du dôme liquide 12, sauf où niveau du couvercle où elle est susceptible d’être différente.
A titre d’exemple, chaque paroi de la cuve peut notamment être de type Mark III, tel que décrit par exemple dans FR2691520, de type N096 tel que décrit par exemple dans FR2877638, ou de type Mark V tel que décrit par exemple dans W014057221.
Chaque paroi de la cuve est ancrée sur la paroi respective de la structure porteuse 1 , en procédant de l’extérieur vers l’intérieur de la cuve, c’est-à-dire :
- en ancrant les éléments isolants de la barrière thermiquement isolante secondaire 17 sur la paroi respective de la structure porteuse 1 ;
- en ancrant la membrane d’étanchéité secondaire 18 sur les éléments isolants de la barrière thermiquement isolante secondaire 17 ;
- en ancrant les éléments isolants de la barrière thermiquement isolante primaire 19 sur les éléments isolants de la barrière thermiquement isolante secondaire 17 ou sur la structure porteuse 1 au travers de la membrane d’étanchéité secondaire 18 ; puis
- en ancrant la membrane d’étanchéité primaire 20 sur les éléments isolants de la barrière thermiquement isolante primaire 19.
Par ailleurs, la cuve comporte une tour de chargement/déchargement 21 , illustrée sur la figure 3, permettant notamment de charger la cargaison dans la cuve avant son transport et/ou de décharger la cargaison après son transport. La tour de chargement/déchargement 21 est installée au voisinage de la paroi arrière 3 de la structure porteuse 1 , car lors du déchargement de la cargaison, le navire penche vers l'arrière, ce qui permet d'optimiser la quantité de cargaison susceptible d'être déchargée par la tour de chargement/déchargement 21.
La tour de chargement/déchargement 21 est suspendue à la paroi supérieure 4 de la structure porteuse 1 et plus particulièrement au couvercle du dôme liquide 12. La tour de chargement/chargement 21 s’étend sur sensiblement toute la hauteur de la cuve. La tour de chargement/chargement 21 supporte, à son extrémité inférieure, une ou plusieurs pompes de déchargement de la cargaison. La base de la tour de chargement/déchargement 21 coopère avec un pied de support 36, illustré sur la figure 12, qui est fixé à la paroi inférieure 5 de la structure porteuse 1 et qui vise à assurer un maintien en position verticale de la tour de chargement/déchargement 21 . Lorsque la cuve est assemblée, le pied de support 36 fait saillie à l’intérieur de la cuve et traverse les barrières thermiquement isolantes primaire 19 et secondaire 17 et les membranes d’étanchéité primaire 20 et secondaire 18 de la paroi inférieure de la cuve. Un tel pied de support 36 est par exemple décrit dans les demandes FR3035475 et WO201 1 157915.
En revenant à la figure 3, l’on observe que la tour de chargement/déchargement 21 comporte une structure tripode, c’est-à-dire qu’elle comporte trois mâts verticaux 22, 23, 24 qui sont chacun fixés les uns aux autres par des traverses 25. Chacun des mâts 22, 23, 24 est creux et traverse le couvercle du dôme liquide 12. Chacun des mâts 22, 23, 24 forme ainsi soit une ligne de chargement et/ou de déchargement permettant de charger ou de décharger du fluide vers ou depuis la cuve ; soit un puits de secours permettant la descente d’une pompe de secours et d’une ligne de déchargement en cas de défaillance des autres pompes de déchargement. Dans un mode de réalisation représenté, deux des mâts 22, 23 forment une ligne de déchargement de la cuve et sont, pour ce faire, chacun associés à une pompe de déchargement 26, 27 fixée à l’extrémité inférieure de la tour de chargement/déchargement 21 alors que le troisième mât 25 forme un puits de secours. Dans un tel mode de réalisation, la tour de chargement/déchargement 21 porte une ou plusieurs lignes de chargement, non représentées, qui ne constituent pas l’un des mâts 22, 23, 24 de la structure tripode.
De manière avantageuse, comme il sera détaillé par la suite, la tour de chargement/déchargement 21 est descendue à l’intérieur de la structure porteuse 1 avant que la totalité des parois de la cuve ne soient assemblées et fixées à la structure porteuse 1 , et notamment avant que la membrane d’étanchéité primaire de la paroi arrière ne soit assemblée et ancrée sur la paroi arrière 3 de la structure porteuse 1 .
Les figures 4 et 5 illustrent schématiquement la structure tripode des mâts 22, 23, 24 de la tour de chargement/déchargement 21 selon deux dispositions différentes par rapport à la paroi arrière 3 de la structure porteuse 1. Les trois mâts 22, 23, 24 s’étendent verticalement. Ainsi, les axes centraux des trois mâts 22, 23, 24 définissent, en projection dans un plan horizontal, les sommets ABC d’un triangle. De manière avantageuse, les trois mâts 22, 23, 24 sont disposés à égale distance les uns des autres de telle sorte que le triangle ABC est un triangle équilatéral.
Dans le mode de réalisation représenté sur la figure 4, le côté AC du triangle qui est le plus proche de la paroi arrière 3 de la structure porteuse 1 est parallèle à ladite paroi arrière 3. En d’autres termes, deux sommets A et C du triangle sont placés à une distance égale de la paroi arrière 3 de la structure porteuse 1.
Sur la figure 5, l’orientation du triangle ABC, défini par l’axe central des mâts 22, 23, 24 de la tour de chargement/déchargement 21 , par rapport à la paroi arrière 3 de la structure porteuse 1 est optimisée afin de faciliter l’accès aux zones de la paroi arrière 3 située derrière la tour de chargement/déchargement 21. Ainsi, une telle disposition est avantageuse en ce qu’elle facilite le montage de la paroi de la cuve contre la paroi arrière 3 de la structure porteuse 1 alors que la tour de chargement/déchargement 21 est déjà présente à l’intérieur de la structure porteuse 1 . Dans ce mode de réalisation, le triangle ABC est orienté de telle sorte que l’un des sommets A du triangle défini par les axes centraux des trois mâts 23, 24, 25 soit placé plus proche de la paroi arrière 3 que ne le sont les deux autres sommets B et C du triangle. En outre, de manière avantageuse, la bissectrice 28 de l’angle BAC du triangle, qui est défini par les deux côtés du triangle BA et AC se rejoignant au niveau du sommet A le plus proche de la paroi arrière 3, forme avec ladite paroi arrière 3 un angle a compris entre 45° et 135°, avantageusement entre 70° et 1 10°, et de préférence de l’ordre de 90°.
Quelle que soit la disposition de la tour de chargement/déchargement 21 , celle-ci est avantageusement placée à une distance L de l’emplacement de destination de la membrane d’étanchéité primaire 21 de la paroi arrière, représentée en pointillé sur les figures 4 et 5, qui est suffisante pour permettre l’installation de ladite paroi arrière de la cuve dans les zones situées derrière la tour de chargement/déchargement 21. La distance L est de préférence supérieure à 0,80 mètre, avantageusement supérieure à 1 mètre et de préférence supérieure ou égale à 1 ,50 mètre.
Afin d'optimiser la quantité de cargaison susceptible d'être déchargée par la tour de chargement/déchargement 21 , la distance L entre la tour de chargement/déchargement 21 et l’emplacement de destination de la membrane d’étanchéité primaire 21 de la paroi arrière est avantageusement inférieure à 10 mètres, avantageusement inférieure à 5 mètres et de préférence inférieure à 3 mètres.
Par ailleurs, selon un mode de réalisation, afin de permettre l’installation de la paroi inférieure de la cuve, après l’installation de la tour de chargement/déchargement 21 à l’intérieur de la structure porteuse 1 , l’extrémité inférieure de la tour de chargement/déchargement 21 est disposée à une distance verticale supérieure à 0,4 m et de préférence supérieure à 0,5 m de l’emplacement de destination de la membrane d’étanchéité primaire de la paroi inférieure de la cuve.
Les figures 6 et 7 représentent de manière détaillée le dôme liquide 12 et la partie supérieure d’une tour de chargement/déchargement 21 selon deux variantes de réalisation.
Dans la variante de réalisation représentée sur la figure 6, le dôme liquide 12 est décalé vers l’avant du navire par rapport à la paroi arrière 3 de la structure porteuse 1. En d’autres termes, la paroi arrière 14 du dôme liquide 12 ne s’étend pas dans le même plan horizontal que la paroi arrière 3 de la structure porteuse 1 , c’est- à-dire dans son prolongement, et est positionné vers l’avant du navire par rapport à la paroi arrière 3. Dès lors, la paroi supérieure 4 de la structure porteuse 1 comporte une portion horizontale 29 qui relie la paroi arrière 3 de la structure porteuse 1 à la paroi arrière 14 du dôme liquide 12. Ceci permet à la tour de chargement/déchargement 21 d’être disposée à une distance de la paroi arrière 3 de la structure porteuse 1 suffisante pour permettre un accès entre la tour de chargement/déchargement 21 et la paroi arrière 3 de la structure porteuse 1 autorisant l’assemblage de la paroi arrière de la cuve sans pour autant augmenter en conséquence la dimension du dôme liquide 12 selon la direction longitudinale du navire.
Au contraire, dans une autre variante de réalisation représentée sur la figure 7, la paroi arrière 14 du dôme liquide 12 s’étend dans le prolongement de la paroi arrière 3 de la structure porteuse 1 et la longueur du dôme liquide 12 selon l’axe longitudinal du navire est dimensionnée en conséquence, c’est-à-dire de manière à ce que la tour de chargement/déchargement 21 puisse être disposée à une distance de la paroi arrière 3 de la structure porteuse 1 suffisante pour autoriser l’assemblage de la paroi arrière de la cuve. Ainsi, dans un tel mode de réalisation, la tour de chargement/déchargement 21 est placée à une distance de l'emplacement de destination de la membrane d’étanchéité primaire destinée à recouvrir la paroi arrière 14 du dôme liquide qui est de préférence supérieure à 0,80 mètre, avantageusement supérieure à 1 mètre et de préférence supérieure ou égale à 1 ,50 mètre.
Les figures 8 à 1 1 illustrent un échafaudage 30, destiné à être utilisé pour l’assemblage de la cuve.
L’échafaudage 30 comporte une armature de support 31 et une pluralité de plateformes 32a, 32b, 32c qui sont fixées à l’armature de support 31 . Les plateformes 32a, 32b, 32c sont régulièrement espacées selon la direction verticale et permettent aux opérateurs d’accéder aux différentes zones de la structure porteuse 1 en vue d’y ancrer les parois de cuve. Les plateformes 32a, 32b, 32c sont associées les unes aux autres par au moins un escalier 42 permettant aux opérateurs de passer d’une plateforme 32a, 32b, 32c à une autre.
Par ailleurs, chacune des plateformes 32a, 32b, 32c comporte une ouverture 34 ménagée à proximité de la paroi arrière 3 de la structure porteuse 1. Les ouvertures 34 sont disposées les unes en dessous des autres, en dessous du dôme liquide 12 ménagé dans la paroi supérieure 4 de la structure porteuse 1. Les ouvertures 12 définissent ainsi un passage vertical qui autorise la tour de chargement/déchargement 21 à passer au travers des plateformes 32a, 32b, 32c.
Par ailleurs, de manière avantageuse, comme représenté sur les figures 9 et 1 1 , chacune des plateformes 32a, 32b, 32c est équipée d’une passerelle 33 qui est disposée entre l’ouverture 34 et la paroi arrière 3 de la structure porteuse 1 et qui ferme ainsi le contour de l’une des ouvertures 34. Selon un mode de réalisation, les passerelles 33 sont fixées de manière amovible aux plateformes 32a, 32b, 32c et peuvent être enlevées telle que représentée notamment sur les figures 8 et 10, par exemple afin de faciliter la descente de la tour de chargement/déchargement 21 à l’intérieur de la structure porteuse 1. De telles passerelles 33 permettent d’accéder aux zones de la structure porteuse 1 situées derrière la tour de chargement/déchargement 21 lorsque la tour de chargement/déchargement 21 est à l’intérieur de la structure porteuse 1 et s’étend au travers des ouvertures 34 ménagées dans les plateformes 32a, 32b, 32c.
Selon un mode de réalisation non représenté, les plateformes 32a, 32b, 32c sont dépourvues de passerelles 33 telles que décrites ci-dessous. L’échafaudage 30 comporte alors un ou plusieurs ascenseurs aptes à se déplacer verticalement au travers de la portion des ouvertures 34 adjacente à la paroi arrière 3 de la structure porteuse 1 . Ainsi, un tel ascenseur est apte à se déplacer entre la tour de chargement/déchargement 21 et la paroi arrière 3 de la structure porteuse 1 lorsque ladite tour de chargement/déchargement 21 s’étend à l’intérieur de la structure porteuse 1 , ce qui autorise les opérateurs à accéder aux zones de la structure porteuse 1 situées derrière la tour de chargement/déchargement 21.
L’armature de support 31 de l’échafaudage 30 comporte une pluralité de pieds 35. De manière avantageuse, les pieds 35 sont des pieds rétractables verticalement. Ainsi, les pieds 35 sont aptes à être disposés en appui contre la paroi inférieure 5 de structure porteuse 1 , lors du montage de l’échafaudage 30 à l’intérieur de la structure porteuse 1 , puis à être disposés en appui contre les barrières thermiquement isolantes secondaire 17 et primaire 19 et contre les membranes d’étanchéité secondaire 18 et primaire 20 au fur et à mesure de leur assemblage et ancrage contre la paroi inférieure 5 de la structure porteuse 1. Aussi, de manière avantageuse, les pieds 35 sont rétractables sur une longueur supérieure ou égale à l’épaisseur de la structure multicouche de la paroi inférieure de la cuve. En outre, la plateforme 32a inférieure de l’échafaudage 30 est disposée à une distance verticale de la paroi inférieure 5 de la structure porteuse 1 qui est supérieure à l’épaisseur de la structure multicouche de la paroi inférieure de la cuve.
Le positionnement et le nombre de pieds 35 sont déterminés de sorte à ce que la pression due au poids de l’échafaudage reste inférieure à 2 bars au niveau de chacun des pieds 35, ce qui permet d’éviter les déformations des barrières thermiquement isolantes secondaire 17 et primaire 19 et des membranes d’étanchéité secondaire 18 et primaire 20.
En outre de manière avantageuse, les bords de chacune des plateformes 32a, 32b, 32c sont rétractables, par exemple horizontalement, et sont ainsi aptes à se rétracter au fur et à mesure de l’assemblage de la paroi de cuve sur la paroi de la structure porteuse 1 en regard. Le bord des passerelles 33 est également rétractable.
Un procédé d’assemblage d’une cuve étanche et thermiquement isolante sera décrit ci-dessous.
L’échafaudage 30 est monté à l’intérieur de la structure porteuse 1 avant que l’ancrage de l’une quelconque des parois de cuve à la structure porteuse 1 ne commence.
Comme illustré sur la figure 12, un pied de support 36 est alors assemblé et fixé contre la paroi inférieure 5 de la structure porteuse 1 .
Par la suite, la tour de chargement/déchargement 21 est descendue à l’intérieur de la structure porteuse alors que le couvercle du dôme liquide 12 n’est pas installé. La tour de chargement/déchargement 21 est introduite au travers de l’ouverture ménagée entre les parois avant 13, arrière 14 et latérales 15, 16 du dôme liquide 12. La tour de chargement/déchargement 21 est par la suite descendue à l’intérieur de la structure porteuse 1 au travers des ouvertures 24 ménagées dans les plateformes 32a, 32b, 32c de l’échafaudage 30.
Comme représenté sur la figure 13, la base de la tour de chargement/déchargement 21 est guidée par le pied de support 36 de manière à ce que ledit pied de support 36 assure un positionnement précis de la tour de chargement/déchargement 21 et un maintien en position vertical.
La tour de chargement/déchargement 21 est alors supportée sur la paroi inférieure de la structure porteuse par des moyens de support provisoire 38, représentés schématiquement sur la figure 13. Les moyens de support provisoire 38 sont avantageusement pourvus de moyens de levage, tels que des vérins, permettant d’ajuster la position verticale de la tour de chargement/déchargement 21.
Dans le mode de réalisation représenté sur la figure 13, la tour de déchargement/déchargement 21 est descendue à l’intérieur de la structure porteuse 1 avant que la barrière thermiquement isolante secondaire 17 ne soit ancrée sur la paroi inférieure 5 de la structure porteuse 1 dans la zone en regard de ladite tour de chargement/déchargement 21. Aussi, dans un tel cas, les moyens de support provisoire 38 reposent directement contre la paroi inférieure 5 de la structure porteuse 1.
Dans la variante de réalisation illustrée sur la figure 14, la barrière thermiquement isolante secondaire est ancrée sur la paroi inférieure 5 de la structure porteuse 1 , au moins dans la zone en regard de la tour de chargement/déchargement 21 . Aussi, dans cette variante de réalisation, les moyens de support provisoire 38 reposent contre des éléments isolants de la barrière thermiquement isolante secondaire 17 qui sont ancrés contre la paroi inférieure 5 de la structure porteuse 1 .
Par la suite, le couvercle du dôme liquide 12 est rapporté puis soudé sur les parois avant 13, arrière 14 et latérales 15, 16 du dôme liquide 12 de manière à recouvrir l’ouverture ménagée entre ceux-ci.
La tour de chargement/déchargement 21 peut alors être suspendue sur le couvercle, les mâts 22, 23, 24 de la tour de chargement/déchargement 21 passant au travers d’orifices ménagés dans ledit couvercle. Les moyens de support provisoire 38 peuvent alors être retirés.
Selon un mode de réalisation, lorsque le couvercle du dôme liquide a été soudé sur les parois avant 13, arrière 14 et latérales 15, 16 du dôme liquide 12 de manière à recouvrir l’ouverture ménagée entre ceux-ci, l’aération de l’espace intérieur de la cuve est effectuée au travers d’un ou plusieurs des mâts 22, 23, 24 creux de la tour de chargement/déchargement 21 qui servent alors de gaine d’aération.
L’assemblage et l’ancrage d’au moins une partie de la structure multicouche d’au moins une paroi de la cuve sont avantageusement réalisés en parallèle des opérations précitées de soudage du couvercle du dôme liquide 12 et de fixation de la tour de chargement/déchargement 21 sur le couvercle du dôme liquide 12. Ainsi, par rapport aux procédés d’assemblage de l’état de la technique dans lesquels la tour de chargement/déchargement 21 n’était descendue à l’intérieur de la structure porteuse 1 et fixée à celle-ci qu’après l’ancrage de l’ensemble des parois de la cuve, un tel procédé d’assemblage permet de diminuer la durée d’assemblage de la cuve.
En particulier, au moins la membrane d’étanchéité primaire de la paroi arrière de la cuve et avantageusement toute la structure multicouche de la paroi arrière de la cuve sont montés et ancrés sur la paroi arrière 3 de la structure porteuse 1 après l’opération de descente de la tour de chargement/déchargement 21 à l’intérieur de la structure porteuse 1. Ceci est notamment rendu possible par la présence des passerelles 33 qui sont disposés entre la paroi arrière 3 de la structure porteuse 1 et la tour de chargement/déchargement 21 lorsque ladite tour de chargement/déchargement 21 s’étend à l’intérieur de la structure porteuse 1 .
Lorsque toutes les parois de la cuve ont été assemblées et ancrées à la structure porteuse 1 , l’échafaudage 30 peut alors être démonté.
En relation avec les figures 15 et 16, on décrit ci-dessous une séquence d’assemblage de la cuve à l’intérieur du dôme liquide 12 selon un mode de réalisation.
Dans ce mode de réalisation, après que le couvercle 39 du dôme liquide 12 ait été rapporté puis soudé sur les parois avant 13, arrière 14 et latérales 15, 16 du dôme liquide 12 puis que la tour de chargement/déchargement 21 ait été fixée audit couvercle 39, une partie 40 de la paroi supérieure de la cuve comportant des éléments isolants et optionnellement une ou plusieurs membranes d’étanchéités, sont fixées dans une portion centrale du couvercle 39. A ce stade, une portion périphérique 41 du couvercle 39 s’étendant autour de la partie de la paroi 40 de la paroi supérieure n’est pas revêtue par des éléments isolants.
Les parois transversales 13, 14 et latérales 15, 16 du dôme liquide 12 ainsi qu’avantageusement le reste de la paroi supérieure 4 et la paroi arrière 3 sont revêtue par une structure multicouche de paroi de cuve. L’ancrage de la structure multicouche dans une partie ou de la totalité de ces zones de la structure porteuse est avantageusement réalisé en même temps que l’ancrage de la partie 40 de la paroi supérieure de la cuve qui est fixée contre la portion centrale du couvercle 39.
Enfin, comme représenté sur la figure 16, dans une étape ultérieure, sont positionnées contre la portion périphérique 41 du couvercle 39 des éléments isolants, et optionnellement des membranes d’étanchéité afin d’assurer une continuité de l’isolation thermique.. Ainsi, les travaux de montage, d’assemblage et de tests de la tour de chargement/déchargement ainsi que les travaux d’assemblage d’au moins une partie de la structure multicouche des parois de la cuve peuvent être réalisés simultanément. Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Procédé d'assemblage d'une cuve étanche et thermiquement isolante de stockage d’un fluide à l’intérieur d’une structure porteuse (1 ), ladite structure porteuse (1 ) présentant une forme générale polyédrique définie par une pluralité de parois, ladite pluralité de parois comportant une paroi supérieure (4), une paroi inférieure (5) et une première paroi transversale (3) qui s’étend verticalement entre la paroi supérieure (4) et la paroi inférieure (5); le procédé d’assemblage comportant les étapes suivantes :
- monter un échafaudage (30) à l’intérieur de la structure porteuse (30), ledit échafaudage (30) comportant une armature de support (31 ) en appui contre la paroi inférieure (5) et une pluralité de plateformes (32a, 32b, 32c) horizontales, fixées sur l’armature de support (31 ) ; chacune des plateformes (32a, 32b, 32c) présentant une ouverture (34); les ouvertures (34) des plateformes (32a, 32b, 32c) étant disposées les unes aux dessus des autres de manière à ménager au travers des plateformes (32a, 32b, 32c) un passage vertical, les plateformes (32a, 32b, 32c) présentant en outre chacune une passerelle (33) entre l’ouverture dudit échafaudage (30) et la première paroi transversale (3) ;
- descendre une tour de chargement/déchargement (21 ) à l’intérieur de la structure porteuse (1 ) en introduisant ladite tour de chargement/déchargement (21 ), d’une part, au travers d’une ouverture ménagée dans la paroi supérieure (4) de la structure porteuse (1 ) et, d’autre part, au travers des ouvertures (34) des plateformes (32a, 32b, 32c) ;
- fixer ladite tour de chargement/déchargement (21 ) à la paroi supérieure (4) de la structure porteuse (1 ) ;
- ancrer à chacune des parois de la structure porteuse (1 ) au moins une barrière thermiquement isolante (19) et une membrane d’étanchéité (20) reposant contre ladite barrière thermiquement isolante (19) ; la membrane d’étanchéité (20) de la première paroi transversale (3) étant ancrée à ladite première paroi transversale (3) postérieurement à la descente de la tour de chargement/déchargement (21 ) à l’intérieur de la structure porteuse (1 ).
2. Procédé d’assemblage selon la revendication 1 , dans lequel la distance L entre la tour de chargement/déchargement (21 ) et la membrane d’étanchéité (20) de la première paroi transversale (3) est supérieure à 0,80 m.
3. Procédé d’assemblage selon la revendication 1 ou 2, dans lequel la distance L entre la tour de chargement/déchargement (21 ) et la membrane d’étanchéité (20) de la première paroi transversale (3) est inférieure à 5 m.
4. Procédé d’assemblage selon l’une quelconque des revendications 1 à 3, dans lequel la tour de chargement/déchargement (21 ) comporte trois mâts (22, 23, 24) qui sont fixés les uns aux autres par des traverses (25) et qui s’étendent chacun verticalement selon un axe central ; les trois axes centraux (A, B, C) des mâts (22, 23, 24) définissant en projection dans un plan horizontal les sommets d’un triangle (ABC) ; ledit triangle (ABC) étant orienté par rapport à la première paroi transversale (3) de telle sorte que l’un des trois sommets (A) du triangle (ABC) est disposé plus proche de la première paroi transversale (3) que ne le sont les deux autres sommets (B, C).
5. Procédé d’assemblage selon la revendication 4, dans laquelle le triangle (ABC) est orienté de telle sorte qu’une bissectrice (28) d’un angle du triangle (ABC) défini par deux côtés (AB, AC) du triangle (ABC) se rejoignant au niveau du sommet (A) du triangle (ABC) qui est disposé le plus proche de la première paroi transversale (3) forme avec la première paroi transversale (3) un angle a compris entre 45° et 135°.
6. Procédé d’assemblage selon la revendication 5, dans lequel l’angle a est égal à 90°.
7. Procédé d'assemblage selon l’une quelconque des revendications 1 à 6, dans lequel la paroi supérieure comporte un dôme liquide (12) faisant saillie vers le haut de la paroi supérieure (4) de la structure porteuse (1 ), dans lequel l’ouverture ménagée dans la paroi supérieure (4) au travers de laquelle la tour de chargement/déchargement (21 ) est descendue est ménagée dans le dôme liquide (12) et dans lequel la fixation de la tour de chargement/déchargement (21 ) à la paroi supérieure (4) de la structure porteuse (1 ) comporte les étapes de fixer un couvercle (39) sur le dôme liquide (12) de manière à recouvrir l’ouverture ménagée dans le dôme liquide (12) et de fixer ladite tour de chargement/déchargement (21 ) sur ledit couvercle (39).
8. Procédé d’assemblage selon la revendication 7, dans lequel la tour de chargement/déchargement (21 ) comporte trois mâts (22, 23, 24) creux et dans lequel l’on aère l’intérieur de la structure porteuse par au moins l’un des mâts (22, 23, 24) formant ainsi gaine d’aération lorsque le couvercle (39) est fixé sur le dôme liquide (12).
9. Procédé d’assemblage selon la revendication 7 ou 8, dans lequel le dôme liquide (12) est positionné à distance de la première paroi transversale (3), la paroi supérieure (4) de la structure porteuse comportant une portion horizontale (29) reliant la première paroi transversale (3) de la structure porteuse (1 ) à une paroi transversale (14) verticale du dôme liquide (12).
10. Procédé d’assemblage selon la revendication 7 ou 8, dans lequel le dôme liquide (12) comporte une paroi transversale (14) verticale qui s’étend dans le prolongement de la première paroi transversale (3).
1 1. Procédé d’assemblage selon l’une quelconque des revendications 7 à 10, dans lequel le dôme liquide (12) comporte deux parois transversales (13, 14) et deux parois latérales (15, 16) qui s’étendent verticalement et dans lequel après la fixation du couvercle (39) sur l’ouverture du dôme liquide :
- l’on ancre contre une partie centrale du couvercle (39) des éléments isolants de la barrière thermiquement isolante ;
- l’on ancre contre les parois transversales (13, 14) et latérales (15, 16) du dôme liquide (12) des éléments isolants de la barrière thermiquement isolante ; et
- postérieurement à l’ancrage des éléments isolants de la barrière thermiquement isolante contre la partie centrale du couvercle (39) et contre les parois transversale et latérales du dôme liquide, l’on dispose contre une portion périphérique du couvercle (39), disposé autour de la partie centrale du couvercle (39), des éléments isolants de la barrière thermiquement isolante .
12. Procédé d’assemblage selon l’une quelconque des revendications 1 à 1 1 , dans lequel, lors de la descente de la tour de chargement/déchargement (21 ) à l’intérieur de la structure porteuse (1 ), l’on dispose des moyens de support provisoire (38) entre la tour de chargement/déchargement (21 ) et la paroi inférieure (5) de la structure porteuse de manière à assurer un support de ladite tour de chargement/déchargement (21 ) et dans lequel les moyens de support provisoire (38) sont retirés après la fixation de la tour de chargement/déchargement (21 ) à la paroi supérieure (4) de la structure porteuse (1 ).
13. Procédé d’assemblage selon l’une quelconque des revendications 1 à 12, dans lequel l’armature de support (31 ) de l’échafaudage (30) est équipée de pieds (35) qui sont rétractables verticalement et au moyen desquels ladite armature de support (31 ) est en appui contre la paroi inférieure (5) de la structure porteuse (1 ) et dans lequel l’on rétracte successivement lesdits pieds (35) lors de l’ancrage de la barrière thermiquement isolante (19) et de la membrane d’étanchéité (20) sur la paroi inférieure (5) de la structure porteuse (1 ) de manière à les faire successivement reposer contre la barrière thermiquement isolante (19) et contre la membrane d’étanchéité (20).
14. Procédé d’assemblage selon l’une quelconque des revendications 1 à 13, dans lequel les plateformes (32a, 32b, 32c) présentent des bords rétractables, et dans lequel l’on rétracte chacun desdits bords au fur et à mesure de l’ancrage de la barrière thermiquement isolante (19) et de la membrane d’étanchéité (20) sur la paroi de la structure porteuse (1 ) en regard dudit bord.
15. Procédé d’assemblage selon l’une quelconque des revendications 1 à 14, dans lequel les passerelles présentent un bord en regard de la première paroi transversale (3) qui est rétractable horizontalement et dans lequel l’on rétracte ledit bord au fur et à mesure de l’ancrage de la barrière thermiquement isolante (19) et de la membrane d’étanchéité (20) sur la première paroi transversale (3).
16. Procédé d’assemblage selon l’une quelconque des revendications 1 à 15, dans lequel l’on ancre en outre à chacune des parois de la structure porteuse (1 ), une barrière thermiquement isolante secondaire (17) reposant contre la structure porteuse et une membrane d’étanchéité secondaire (18) reposant contre la barrière thermiquement isolante secondaire (17) ; la barrière thermiquement isolante (19) reposant contre la membrane d’étanchéité secondaire (18).
17. Procédé d’assemblage selon l’une quelconque des revendications 1 à 16, dans lequel la structure porteuse (1 ) est embarquée sur un navire et dans lequel la première paroi transversale (3) est une paroi arrière.
18. Procédé d’assemblage selon la revendication 17 dans lequel la structure porteuse (1 ) est constituée par la double coque d’un navire.
EP19730195.5A 2018-05-11 2019-05-07 Procede d'assemblage d'une cuve etanche et thermiquement isolante Withdrawn EP3791107A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853995A FR3081041B1 (fr) 2018-05-11 2018-05-11 Procede d'assemblage d'une cuve etanche et thermiquement isolante
PCT/FR2019/051042 WO2019215414A1 (fr) 2018-05-11 2019-05-07 Procede d'assemblage d'une cuve etanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
EP3791107A1 true EP3791107A1 (fr) 2021-03-17

Family

ID=63312035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19730195.5A Withdrawn EP3791107A1 (fr) 2018-05-11 2019-05-07 Procede d'assemblage d'une cuve etanche et thermiquement isolante

Country Status (7)

Country Link
EP (1) EP3791107A1 (fr)
JP (1) JP7322066B2 (fr)
KR (1) KR102655964B1 (fr)
CN (1) CN112105864B (fr)
FR (1) FR3081041B1 (fr)
SG (1) SG11202011192UA (fr)
WO (1) WO2019215414A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112586B1 (fr) * 2020-07-16 2022-07-01 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante.
FR3114863B1 (fr) 2020-10-02 2023-01-13 Gaztransport Et Technigaz Procédé d’assemblage et installation de cuve de stockage pour gaz liquéfié
FR3123409B1 (fr) * 2021-05-31 2023-12-08 Gaztransport Et Technigaz Installation de stockage d’un gaz liquéfié
FR3130931B1 (fr) 2021-12-17 2023-12-22 Gaztransport Et Technigaz Installation de stockage d’un gaz liquéfié comportant une cuve et une structure de dôme
FR3136034B1 (fr) 2022-05-24 2024-08-30 Gaztransport Et Technigaz Structure de dôme pour une cuve étanche et thermiquement isolante

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH582816A5 (fr) * 1975-02-14 1976-12-15 Vevey Atel Const Mec
JPS52111195A (en) * 1976-03-15 1977-09-17 Mitsubishi Heavy Ind Ltd Inboard working tower
JPS56146485A (en) * 1980-04-16 1981-11-13 Mitsui Eng & Shipbuild Co Ltd Building for ship incorporating spherical tank
FR2691520B1 (fr) 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2785034B1 (fr) 1998-10-23 2000-12-22 Gaz Transport & Technigaz Procede pour eliminer l'evaporation d'un gaz liquefie stocke dans une cuve etanche et isotherme, et dispositif pour sa mise en oeuvre
US6626319B2 (en) * 2001-06-04 2003-09-30 Electric Boat Corporation Integrated tank erection and support carriage for a semi-membrane LNG tank
NO316093B1 (no) * 2002-02-13 2003-12-08 Statoil Asa Anordning og fremgangsmate for stoping av et domformet tak pa en kryogen tank, samt forskalingssystem til bruk i forbindelse med stoping av slike tak
JP2004017844A (ja) 2002-06-18 2004-01-22 Chuo Build Industry Co Ltd Lng船防熱工事用足場
JP4200076B2 (ja) * 2003-10-15 2008-12-24 三井住友建設株式会社 円筒状構造物の修復装置
FR2877638B1 (fr) 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
KR100796069B1 (ko) * 2006-03-14 2008-01-21 대우조선해양 주식회사 카고탱크의 가스돔을 이용한 선박 건조 공기 단축방법
DE102006020699B4 (de) * 2006-05-04 2008-08-14 Warnow Design Gmbh Behälter zur Speicherung tiefkalter flüssiger Medien und Verfahren zu seiner Herstellung
EP2148808A4 (fr) * 2007-04-26 2013-09-18 Exxonmobil Upstream Res Co Réservoir ondulé indépendant de gaz naturel liquéfié
KR101026180B1 (ko) * 2008-10-07 2011-03-31 삼성중공업 주식회사 액화천연가스 운반선의 증발가스 억제장치
FR2961580B1 (fr) 2010-06-17 2012-07-13 Gaztransport Et Technigaz Cuve etanche et isolante comportant un pied de support
KR101294276B1 (ko) * 2010-12-30 2013-08-07 삼성중공업 주식회사 펌프 타워
FR2996520B1 (fr) 2012-10-09 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une membrane metalique ondulee selon des plis orthogonaux
FR3002515B1 (fr) * 2013-02-22 2016-10-21 Gaztransport Et Technigaz Paroi de cuve comportant un element traversant
US20170198863A1 (en) * 2014-06-04 2017-07-13 Panasonic Intellectual Property Management Co., Ltd. Heat insulator and heat-insulating vessel
JP2016098512A (ja) * 2014-11-19 2016-05-30 株式会社Ihi 円筒型タンクの構築方法
FR3035475B1 (fr) 2015-04-23 2017-04-28 Vallourec Oil & Gas France Element filete tubulaire dote d'un revetement metallique antigrippage et d'une couche lubrifiante
KR20170036178A (ko) * 2015-09-23 2017-04-03 삼성중공업 주식회사 펌프타워 및 이를 포함하는 화물창

Also Published As

Publication number Publication date
CN112105864A (zh) 2020-12-18
WO2019215414A1 (fr) 2019-11-14
KR102655964B1 (ko) 2024-04-11
FR3081041B1 (fr) 2021-03-19
CN112105864B (zh) 2022-03-04
JP7322066B2 (ja) 2023-08-07
SG11202011192UA (en) 2020-12-30
JP2021523070A (ja) 2021-09-02
FR3081041A1 (fr) 2019-11-15
KR20210020888A (ko) 2021-02-24

Similar Documents

Publication Publication Date Title
EP3791107A1 (fr) Procede d'assemblage d'une cuve etanche et thermiquement isolante
WO2019211537A1 (fr) Cuve de stockage et/ou de transport d'une cargaison d'un gaz liquide destinée à un navire
WO2016120540A1 (fr) Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire
EP3810978A1 (fr) Procede d'assemblage d'un dome liquide
WO2006027455A1 (fr) Methode et installation de chargement et dechargement de gaz naturel comprime
FR2894646A1 (fr) Terminal pour gaz naturel liquefie ou gaz de petrole liquefie,et procede de construction d'un tel terminal
EP0863260B1 (fr) Procédé d'assemblage de tronçons de jambes de support d'une plate-forme pétrolière
FR2780941A1 (fr) Cuve etanche et thermiquement isolante a barriere isolante perfectionnee, integree dans une structure porteuse de navire
EP1124026A1 (fr) Système d'échafaudage pour capacités de formes diverses
FR3097616A1 (fr) Procédé d’installation d’un ensemble d’entraînement d’une pompe d’une tour de déchargement d’une cuve d’un ouvrage flottant mettant en œuvre un dispositif de réglage
WO2021228751A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié comportant une ouverture munie d'une trappe additionnelle
WO2021144531A1 (fr) Double trappe d'accès pour une cuve de transport de gaz liquéfié
WO2010112748A1 (fr) Cuve de pointe bi-oblique pour gnl
WO2013182771A1 (fr) Toit de cuve etanche et thermiquement isolee
FR3111410A1 (fr) Dôme liquide d’une cuve de stockage pour gaz liquéfié
WO2022248295A1 (fr) Installation de transfert de fluide
WO2023227379A1 (fr) Structure de dôme pour une cuve étanche et thermiquement isolante
EP3678928B1 (fr) Ouvrage flottant comprenant une cuve apte a contenir du gaz combustible liquéfié
FR3112379A1 (fr) Structure de guidage pour une tour de chargement/déchargement d’une cuve destinée au stockage et/ou au transport de gaz liquéfié
RU2783720C2 (ru) Способ сборки герметичного и теплоизоляционного резервуара
FR3133619A1 (fr) Cuve adaptée pour être mise en œuvre dans l’élaboration de vins
EP4202285A1 (fr) Cuve de stockage de gaz liquéfié
FR3130740A1 (fr) Cuve de stockage de gaz liquéfié.
EP4222406A1 (fr) Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié
WO1993020307A1 (fr) Echafaudage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230725