WO2013182771A1 - Toit de cuve etanche et thermiquement isolee - Google Patents

Toit de cuve etanche et thermiquement isolee Download PDF

Info

Publication number
WO2013182771A1
WO2013182771A1 PCT/FR2013/051104 FR2013051104W WO2013182771A1 WO 2013182771 A1 WO2013182771 A1 WO 2013182771A1 FR 2013051104 W FR2013051104 W FR 2013051104W WO 2013182771 A1 WO2013182771 A1 WO 2013182771A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
tank
circular beam
squares
center
Prior art date
Application number
PCT/FR2013/051104
Other languages
English (en)
Inventor
James GAZEAU
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Publication of WO2013182771A1 publication Critical patent/WO2013182771A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/022Land-based bulk storage containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/015Bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/234Manufacturing of particular parts or at special locations of closing end pieces, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to the field of the manufacture of sealed and thermally insulated tanks.
  • the present invention relates to tanks for containing cold liquids, for example tanks for the storage of liquefied natural gas.
  • LNG liquefied natural gas
  • a terrestrial tank is described in particular in patent FR 1546524.
  • This tank comprises an arch to which a ceiling is suspended by cables.
  • the ceiling consists of a framework of crossed beams of cryogenic steel supporting plywood panels on which are distributed in several layers bales or bags filled with an insulating material such as perlite.
  • the cables are anchored in the vault by means of anchors.
  • the implementation of such a ceiling and vault architecture is complex because it requires in particular a large number of assembly operations.
  • the invention provides a sealed and thermally insulated tank comprising:
  • a cylindrical wall comprising an insulation barrier and a sealing barrier resting on the insulation barrier
  • a suspended ceiling comprising a floor and a support structure carrying the floor, the support structure being fixed to the hangers, the support structure comprising a plurality of beams arranged in the form of a plurality of concentric squares whose diagonals are aligned, said squares being rigidly connected to each other, each of the sides of a square being constituted by a single beam.
  • such a tank may comprise one or more of the following characteristics.
  • the support structure comprises connecting beams extending along the diagonals of the concentric squares and radially with respect to a center of the cylindrical wall and which are connected to the ends of the single beams constituting each of the sides of the squares. to rigidly connect the concentric squares to each other.
  • the support structure comprises at least three concentric squares, the spacing between successive squares being regular.
  • the floor comprises rigid elongated sheets, a rigid sheet having corrugations or ribs extending in a longitudinal direction of the sheet, the sheets being positioned and fixed to the support structure so that the longitudinal direction of the sheet is each time parallel to a diagonal squares.
  • the support structure further comprises a circular beam delimiting the periphery of the support structure, intermediate beams being arranged between the square furthest from the center and the circular beam, each intermediate beam being connected in its ends to the circular beam so as to form a chord of the circle defined by the circular beam.
  • the lines extend perpendicularly to the suspended ceiling of the tank.
  • the beams and hangers are bolted together.
  • the suspended ceiling comprises a thermal insulation layer.
  • the invention also provides a sealed and thermally insulated tank comprising:
  • a cylindrical wall with a circular section comprising an insulation barrier and a sealing barrier resting on the insulation barrier, a roof in the form of a dome,
  • a suspended ceiling comprising a floor and a support structure carrying the floor and having ceiling beam, the lines being fixed to the ceiling beams,
  • the stiffening structure comprising:
  • first circular beam and a second concentric circular beam whose center is located vertically to the center of the squares, the first circular beam having a diameter smaller than the diameter of the second circular beam
  • a plurality of secondary radial beams being distributed circumferentially around the second circular beam and extending from the second circular beam radially with respect to the center of the vessel and towards the cylindrical wall of the vessel, the number of secondary radial beams being higher the number of primary radial beams so that the distance between two successive secondary radial beams at their ends farthest from the center of the vessel is substantially equal to the spacing between two primary radial beams at the second circular beam,
  • the lines having a first series of lines attached to the primary radial beams and a second series of lines attached to the secondary radial beams.
  • the secondary radial beams extend towards the cylindrical wall up to a determined distance from the center of the circular beams, the primary radial beams further extending radially towards the cylindrical wall up to said distance predetermined.
  • An idea underlying the invention is to provide a suspended ceiling vessel comprising a ceiling beam structure in the form of concentric squares so as to allow a simple manufacture and assembly of the ceiling and so as to provide on the structure of beam enough points of attachment for the lines which carry the suspended ceiling.
  • Certain aspects of the invention start from the idea of providing a sealed and thermally insulating tank in which the ceiling of the tank is suspended from the roof by means of a stiffening structure consisting of beams and on which the lines can be fixed in a regular manner, in particular by attaching the lines to beams extending radially relative to the center of the tank, the number of radially extending beams increasing as a function of the distance from the center of the tank.
  • Some aspects of the invention start from the idea of providing such a beam structure that is easy to construct using standard building elements and / or reducing and facilitating assembly steps.
  • Figure 1 is a partial perspective view of a section of the upper part of a sealed and thermally insulating tank comprising a dome and a suspended ceiling.
  • Figure 2 is a partial perspective view of structures belonging to the dome € 5 ⁇ suspended ceiling shown in Figure 1.
  • Figure 3 is a top view of the structure supporting the dome shown in Figure 2.
  • Figure 4 is a top view of the structures shown in Figure 2.
  • the earth tank shown in FIG. 1 comprises a support structure 1 forming an outer rigid enclosure and consisting essentially of a cylindrical portion 2, a bottom (not shown) and a roof 3.
  • the cylindrical portion may have a circular inner contour or polygonal.
  • the cylindrical portion 2 has a horizontal section whose inner contour 30 is polygonal.
  • Such a polygonal contour may in particular have a regular polygon shape.
  • the outer contour of the cylindrical wall 2 is circular.
  • Such a cylindrical wall having a polygonal inner contour is in particular described in the document FR2951521. In other embodiments, the inner contour and the outer contour are both circular.
  • the cylindrical portion 2, the bottom and the roof 3 are made of prestressed concrete.
  • the cylindrical portion 2 and the bottom have sealed and insulating walls, not shown.
  • the sealed and thermally insulating walls consist of a thermal insulation barrier which itself carries a sealing membrane which constitutes the internal sealed chamber of the tank.
  • the thermal insulation barrier consists of a set of heat insulating elements juxtaposed and fixed on the entire cylindrical portion 2 and the bottom of the tank.
  • a roof 3 having a dome shape bears on the cylindrical portion 2 of the vessel and covers the whole of the cylindrical portion 2.
  • a metal reinforcing structure 4 supports the roof 3 of the tank and bears against the cylindrical portion 2 of the supporting structure 1.
  • the reinforcing structure 4 consists of support beams 5 which follow the inner contour of the domed roof. More particularly, the support beams 5 rest on a sealed metal coating 6 which covers the entire lower surface of the dome and allow the stiffening of the roof 3.
  • the sealed metal coating 6 is sealingly connected to the sealing membrane of the cylindrical part 2.
  • a set of lines 7 extends under the support beams 5 and carries a suspended ceiling 8 which constitutes the upper insulating wall of the tank.
  • the connection between the suspended ceiling 8 and the sealed wall of the cylindrical portion 2 is sufficiently joined to prevent any drop of solid bodies, for example glass wool, in the tank and in the liquefied natural gas.
  • this connection is not necessarily sealed to the passage of gas between the space under the suspended ceiling 8 and the space between the roof of the tank 3 and the suspended ceiling 8.
  • the lines 7 are fixed by bolting on the 4.
  • the lines 7, in the form of metal strips can be bolted to support plates welded to the lower part of the beams 5 and extending under the beams 5 in a vertical direction.
  • the suspended ceiling comprises a ceiling structure 9 consisting of metal beams 10 on which the lines 7 are rigidly connected.
  • a floor 1 1 made using metal sheets 12 is supported by the ceiling structure 8.
  • the floor 1 1 carries a thermal insulation barrier 13 consisting of juxtaposed parallelepiped heat insulating elements.
  • the metal beams of the reinforcing structure 4 and the ceiling structure 9 consist essentially of profiled beams having a section 1 or H. These beams are essentially bolted together.
  • Figure 2 show in more detail the arrangement of the beams 5 and 10 of a portion of the suspended ceiling 8 and an embodiment of the roof 3 of the tank.
  • the ceiling structure 9 is mainly composed of beams 20 and 22 arranged in the form of squares 29 concentric with respect to the center of the tank 24 and nested in an outer ring constituted by a circular beam 23.
  • Each side of each square 29 is parallel to a respective side of each of the other squares 29.
  • FIG. 4 represents a view of a sector of the reinforcing structure 4 and of the ceiling structure 8 which makes it possible in particular to illustrate in more detail the geometry of the ceiling structure 8.
  • Each of the sides of the squares 29 consists of a side beam 21 made using a long profile.
  • the spacing between two successive side beams 21 belonging to two respective squares 29 and consecutive is constant.
  • the squares of beams 21 are interconnected by means of four diagonal beams 20 extending at the diagonals of the squares and radially with respect to the center of the tank 24. These four diagonal beams 20 are connected to the ends of the beams of side 21. Thus a single diagonal beam 20 rigidly interconnects all the beams 21 associated with a respective corner of the concentric squares. Thus, only four diagonal beams 20 are necessary to maintain all the beams 21 forming the squares 29 while providing a large number of points of attachment for the lines 7. At its end farthest from the center of the tank 24, the radial beam 20 is connected to a circular beam 23 corresponding to the contour of the ceiling 8 of the tank.
  • Intermediate beams 22 are positioned between the last of the squares 29, designated by the number 99, and the ring constituted by a circular beam 23. These intermediate beams 22 extend parallel to the sides of the squares 29 and are spaced according to the same interval as the side beams 21. Each intermediate beam 22 is connected at its ends to the circular beam 23.
  • Such a structure of beams allows the use of long beam length and possibly allows the realization of the sides of the squares 29 using beams made in one piece. Moreover, this type of beam arrangement allows a facilitated implementation that requires few assembly operations and can be easily performed using bolting. Thus the implementation of the tank requires little specialized labor for welding. In addition, in this type of structure, the angles between the beams are little varied and the structure requires few special parts, which facilitates the implementation and assembly.
  • the spacing between the successive side beams 21 of the various squares 29 and the external beams is regular.
  • the arrangement of the beams 21 and 22 provides a set of possible fasteners for the lines 7 which is regular when one moves away from the center of the tank. This regular arrangement of the lines also allows a general gain in material to achieve the ceiling 8 and the roof 3.
  • the floor 1 1 of the ceiling 8 is made using stiff metal sheets 12.
  • the stiff sheets 1 2 have a shape of elongated and ribbed metal plates. The ribs extend parallel to the length of the sheet 12 and allow the stiffening of the sheet.
  • the sheets are juxtaposed on the ceiling structure 9 and fixed at an angle to the sides of the squares 29. More precisely, the stiff plates 12 are arranged in a direction forming an angle of 45 ° with respect to the direction of the side beams 21. Such an arrangement makes it possible to obtain a continuous rigidity of the assembly formed by the ceiling structure 9 and the floor 1 1.
  • the ceiling 8 is then anchored to the lines 7.
  • FIGS. 2 to 4 also illustrate an embodiment of the reinforcement structure 4 to which the ceiling 8 can be suspended using the suspension lines 7.
  • the reinforcing structure 4 of the dome has a substantially radial arrangement with respect to the center of the vessel.
  • the reinforcing structure 4 consists in particular of beams 5 extending radially with respect to the center 24 of the cylindrical vessel, called radial beams 14, 15 and 1 6.
  • the various radial beams 14, 15 and 16 are connected between they by 3 concentric rings 17, 18 and 19 also made of metal beams 5.
  • FIG. 4 is a view and of the assembly of the reinforcement structure 4 in which the position of the beams 5 is projected onto a horizontal plane.
  • a first series of so-called main beams 14 extends from the first ring 17 to the cylindrical portion 2 of the supporting structure 1 of the vessel.
  • the main beams 1 4 are fixed on the outer circumference of the ring 1 7 and through the rings 18 and 19.
  • the rings 18 and 19 consist of beams fixed between two main beams 1 4 consecutive.
  • the center of the reinforcing structure 4 is composed of four beams 27 forming a grid that are connected to the first ring, a central beam 28 extending in the center of the tank between two beams 27.
  • the grid thus forms a square central.
  • the square of the ceiling structure 9 closest to the center 24 of the tank has the same dimensions as the central square of the reinforcement structure and is superimposed on this one.
  • Hangers 7 are fixed between the two respective squares of the structures 4 and 9.
  • a second series of so-called median beams extends from a second ring 18 to a third ring 19.
  • a median beam 15 is each time positioned between two main beams 14 consecutive.
  • a third series of so-called external beams 16 extends from a third ring 19 to the cylindrical portion 2 of the supporting structure 1.
  • Two external beams 1 6 are each time positioned between two main beams 14 consecutive.
  • the distance between the rings 17, 18 and 19 consecutive and between the ring 1 7 and the center of the tank is determined so that the spacing between two consecutive radial beams circumferentially is substantially regular regardless of the position relative to the center of the tank and therefore does not exceed a certain value.
  • the second ring 18 and the third ring 19 are concentric with respect to the center of the tank 24 and respectively represent about one third and two thirds of the internal diameter of the cylindrical portion 2.
  • the distance between the center of the tank 24 and the first ring 17 is substantially equal to half the distance between the second ring 18 and the center of the tank 24.
  • the spacing between two main beams 14 at the second ring 18 is substantially equal to the spacing at the third ring 19 between two adjacent radial beams that reach the third ring 19.
  • a similar finding can be made at the level of the cylindrical wall, with two adjoining beams extending from the third ring 19.
  • the diameter ratio between a ring on which two consecutive beams arrive and another ring on which two other consecutive beams arrive should preferably not be substantially greater than the ratio between the angles defined each time by said pairs of consecutive beams of said rings.
  • the distance between the beams 100 and 101 at the level of the second ring 18 depends on the angle 25 between the beams 100 and 101 and the distance of the second ring 18 with respect to the center of the tank 24.
  • the distance between the beams 100 and 102 at the third ring level depends on the angle 26 between the beams 100 and 102 and the distance between the third ring 19 and the center of the tank 24.
  • the angle between the beams 100 and 102 is equivalent to half the angle between the beams 100 and 101, and the diameter of the second ring 18 corresponds to half the diameter of the third ring 19.
  • the distance between the beams 100 and 101 is similar to the distance between the 100 and 102.
  • the ceiling structure 9 above has been described in connection with the radial reinforcing structure 4, this ceiling structure can be associated with other types of reinforcement structures.
  • the reinforcing structure can be made using parallel beams in the projection plane described above, which extend from one side to the other of the tank.
  • the lines may in particular be attached to the structures 4 and 8 at the intersections between the beams of the reinforcing structure 4 and the ceiling beams 8 according to the projection plane described above.
  • the lines thus preferably extend in a vertical direction.
  • the arrangement of the beams of the structures 4 and 8 allows a homogeneous distribution of the lines 7 within the tank.
  • the shape of the ceiling structure 9, reinforcement structure 4 and floor 1 1 allow their implementation and implementation using standard materials and components available commercially.

Abstract

Cuve étanche et thermiquement isolée comportant : une paroi cylindrique (2) comportant une barrière d'isolation et une barrière d'étanchéité en appui sur la barrière d'isolation, un toit (3), une structure de raidissage (4) supportant le toit, des suspentes (7) fixées à la structure de raidissage et s'étendant sous la structure de raidissage, un plafond suspendu comportant un plancher (11) et une structure de support (9) portant le plancher, la structure de support étant fixées aux suspentes, la structure de support comportant une pluralité de poutres (10) agencées sous la forme d'une pluralité de carrés concentriques dont les diagonales sont alignées, lesdits carrés étant reliés rigidement entre eux et centrés par rapport au centre de la cuve, chacun des côtés d'un carré étant constitué d'une poutre unique.

Description

Toit de cuve étanche et thermiquement isolée
L'invention se rapporte au domaine de la fabrication de cuves étanches et thermiquement isolées. En particulier, la présente invention se rapporte à des cuves destinées à contenir des liquides froids, par exemple des cuves pour le stockage terrestres de gaz naturel liquéfié.
Des cuves étanches et thermiquement isolantes peuvent être utilisées dans différentes industries pour stocker des produits chauds ou froids. Par exemple, dans le domaine de l'énergie, le gaz naturel liquéfié (GNL) est un liquide qui peut être stocké à pression atmosphérique à environ -1 63°C dans des cuves de stockage terrestres.
Une cuve terrestre est notamment décrite dans le brevet FR 1546524. Cette cuve comprend une voûte à laquelle est suspendu un plafond par des câbles. Le plafond est constitué d'une charpentes de poutres croisées en acier cryogénique supportant des panneaux de contreplaqué sur lesquels sont repartis en plusieurs couches des ballots ou sacs remplis d'une matière isolante tel que de la perlite. Les câbles sont ancrés dans la voûte au moyen de pattes d'ancrage. Toutefois, la mise en oeuvre d'une telle architecture de plafond et de voûte est complexe car elle nécessite notamment un nombre important d'opérations d'assemblage.
Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolée comportant :
une paroi cylindrique comportant une barrière d'isolation et une barrière d'étanchéité en appui sur la barrière d'isolation,
un toit,
une structure de raidissage supportant le toit disposé sur la structure de raidissage,
des suspentes fixées à la structure de raidissage et s'étendant sous la structure de raidissage,
un plafond suspendu comportant un plancher et une structure de support portant le plancher, la structure de support étant fixée aux suspentes, la structure de support comportant une pluralité de poutres agencées sous la forme d'une pluralité de carrés concentriques dont les diagonales sont alignées, lesdits carrés étant reliés rigidement entre eux, chacun des côtés d'un carré étant constitué d'une poutre unique.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Selon des modes de réalisation, la structure de support comporte des poutres de liaison s'étendant selon les diagonales des carrés concentriques et radialement par rapport à un centre de la paroi cylindrique et qui sont reliées aux extrémités des poutres uniques constituant chacun des côtés des carrés de manière à relier rigidement les carrés concentriques entre eux.
Selon des modes de réalisation, la structure de support comporte au moins trois carrés concentriques, l'écartement entre carrés successifs étant régulier.
Selon des modes de réalisation, le plancher comporte des tôles allongées rigides, une tôle rigide présentant des ondulations ou nervure s'étendant selon une direction longitudinale de la tôle, les tôles étant positionnées et fixées à la structure de support de manière que la direction longitudinale de la tôle soit à chaque fois parallèle à une diagonale des carrés.
Selon des modes de réalisation, la structure de support comporte en outre une poutre circulaire délimitant la périphérie de la structure de support, des poutres intermédiaires étant agencées entre le carré le plus éloigné du centre et la poutre circulaire, chaque poutre intermédiaire étant reliée en ses extrémités à la poutre circulaire de manière à former une corde du cercle défini par la poutre circulaire.
Selon des modes de réalisation, les suspentes s'étendent perpendiculairement au plafond suspendu de la cuve.
Selon des modes de réalisation, les poutres et les suspentes sont liées par boulonnage. Selon des modes de réalisation, le plafond suspendu comporte une couche d'isolation thermique.
Selon un mode de réalisation, l'invention fournit aussi une cuve étanche et thermiquement isolée comportant :
une paroi cylindrique à section circulaire comportant une barrière d'isolation et une barrière d'étanchéité en appui sur la barrière d'isolation, un toit sous la forme d'un dôme,
une structure de raidissage supportant le toit et suivant la surface intérieure du toit en forme de dôme,
des suspentes fixées à la structure de raidissage et s'étendant sous la structure de raidissage,
un plafond suspendu comportant un plancher et une structure de support portant le plancher et comportant des poutre de plafond, les suspentes étant fixées aux poutres de plafond,
la structure de raidissage comportant :
une première poutre circulaire et une seconde poutre circulaire concentriques dont le centre est situé à la verticale du centre des carrés, la première poutre circulaire ayant un diamètre inférieur au diamètre de la seconde poutre circulaire, et
une pluralité de poutres radiales, distribuées circonferentiellement autour de la première poutre circulaire,
une pluralité de poutres radiales primaires chacune s'étendant entre la première poutre circulaire et la seconde poutre circulaire,
une pluralité de poutres radiales secondaires étant distribuées circonférentiellement autour de la seconde poutre circulaire et s'étendant depuis la seconde poutre circulaire radialement par rapport au centre de la cuve et vers la paroi cylindrique de la cuve, le nombre de poutres radiales secondaires étant plus élevé que le nombre de poutres radiales primaires de manière que l'écartement entre deux poutre radiales secondaire successives au niveau de leurs extrémités les plus éloignées du centre de la cuve est sensiblement égal à l'écartement entre deux poutres radiales primaire au niveau de la seconde poutre circulaire,
les suspentes comportant une première série de suspentes accrochées aux poutres radiales primaires et une seconde série de suspentes accrochées aux poutres radiales secondaires.
Selon des modes de réalisation, les poutres radiales secondaires s'étendent vers la paroi cylindrique jusqu'à une distance déterminée par rapport au centre des poutres circulaires, les poutres radiales primaire s'étendant en outre radialement vers la paroi cylindrique jusqu'à ladite distance prédéterminée.
Une idée à la base de l'invention est de fournir un plafond suspendu de cuve comportant une structure de poutres de plafond sous la forme de carré concentriques de manière à permettre une fabrication et un assemblage simple du plafond et de manière à fournir sur la structure de poutre suffisamment de points d'attache pour les suspentes qui portent le plafond suspendu.
Certains aspects de l'invention partent de l'idée de fournir une cuve étanche et thermiquement isolante dans laquelle le plafond de la cuve est suspendu au toit par l'intermédiaire d'une structure de raidissage constituée de poutres et sur laquelle les suspentes peuvent être fixées de manière régulière, notamment en attachant les suspentes à des poutres s'étendant radialement par rapport au centre de la cuve, le nombre de poutres s'étendant radialement augmentant en fonction de l'éloignement par rapport au centre de la cuve.
Certains aspects de l'invention partent de l'idée de fournir une telle structure de poutres qui soit facile à construire en utilisant des éléments de construction standards et/ou en réduisant et facilitant les étapes d'assemblage.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
Sur ces dessins :
• La figure 1 est une vue partielle en perspective d'une coupe de la partie supérieure d'une cuve étanche et thermiquement isolante comprenant un dôme et un plafond suspendu.
• La figure 2 est une vue partielle en perspective de structures appartenant au dôme€5† au plafond suspendu illustrés dans la figure 1 .
• La figure 3 est une vue d'ensemble de dessus de la structure soutenant le dôme présentée dans la figure 2.
• La figure 4 est une vue de dessus des structures présentées dans la figure 2.
Le réservoir terrestre présenté dans la figure 1 comporte une structure porteuse 1 formant une enceinte rigide extérieure et constituée essentiellement d'une partie cylindrique 2, un fond (non représenté) et un toit 3. La partie cylindrique peut présenter un contour intérieur 30 circulaire ou polygonal. Par exemple, dans le mode de réalisation présenté en référence à la figure 1 , la partie cylindrique 2 présente une section horizontale dont le contour intérieur 30 est polygonal. Un tel contour polygonal peut notamment présenter une forme de polygone régulier. Le contour extérieur de la paroi cylindrique 2 est quant à lui circulaire. Une telle paroi cylindrique comportant un contour intérieur polygonal est notamment décrite dans le document FR2951521 . Dans d'autres modes de réalisation, le contour intérieur et le contour extérieur sont tous les deux circulaires.
La partie cylindrique 2, le fond et le toit 3 sont réalisé en béton précontraint. La partie cylindrique 2 et le fond portent des parois étanches et isolantes, non représentées. Les parois étanches et thermiquement isolantes sont constituées d'une barrière d'isolation thermique qui porte elle-même une membrane d'étanchéité qui constitue l'enceinte étanche interne de la cuve. La barrière d'isolation thermique est constituée d'un ensemble d'éléments calorifuges juxtaposés et fixés sur toute la partie cylindrique 2 et le fond de la cuve. Une telle paroi étanche et thermiquement isolante est notamment décrite dans le document FR-A-2951521 ou dans le brevet FR- 1546524.
Un toit 3 présentant une forme de dôme prend appui sur la partie cylindrique 2 de la cuve et recouvre l'ensemble de la partie cylindrique 2.
Une structure de renforcement métallique 4 soutient le toit 3 de la cuve et prend appuis sur la partie cylindrique 2 de la structure porteuse 1 . La structure de renforcement 4 est constituée de poutres de soutien 5 qui suivent le contour interne du toit en forme de dôme. Plus particulièrement, les poutres de soutien 5 s'appuient sur un revêtement métallique étanche 6 qui recouvre toute la surface inférieure du dôme et permettent le raidissage du toit 3. Le revêtement métallique étanche 6 est relié de manière étanche à la membrane d'étanchéité de la partie cylindrique 2.
Un ensemble de suspentes 7 s'étend sous les poutres de soutien 5 et porte un plafond suspendu 8 qui constitue la paroi isolante supérieure de la cuve. La liaison entre plafond suspendu 8 et la paroi étanche de la partie cylindrique 2 est suffisamment jointive pour empêcher toute chute de corps solide, par exemple de la laine de verre, dans la cuve et dans le gaz naturel liquéfié. Toutefois, cette liaison n'est pas nécessairement étanche au passage de gaz entre l'espace situé sous le plafond suspendu 8 et l'espace entre le toit de la cuve 3 et le plafond suspendu 8. Les suspentes 7 sont fixées par boulonnage sur la structure de renforcement 4. Par exemple, les suspentes 7, sous la forme de bandes métalliques, peuvent être boulonnées sur des plaque de support soudées sur la partie inférieure des poutres 5 et s'étendant sous les poutres 5 selon une direction verticale.
En particulier, le plafond suspendu comporte une structure de plafond 9 constituée de poutres métalliques 10 sur lesquelles les suspentes 7 sont rigidement reliées. Un plancher 1 1 réalisé à l'aide de tôles métalliques 12 est supporté par la structure de plafond 8. Le plancher 1 1 porte quant à lui une barrière d'isolation thermique 13 constituée d'éléments calorifuges parallélépipédiques juxtaposés. Ainsi les suspentes 7 traversent le plancher 1 1 ainsi que la barrière d'isolation thermique 13. Les poutres métalliques de la structure de renforcement 4 et de la structure de plafond 9 sont constituées essentiellement de poutres profilées présentant une section en 1 ou H. Ces poutres sont essentiellement boulonnées entre elles.
La figure 2 montrent plus en détail l'agencement des poutres 5 et 10 d'une partie du plafond suspendu 8 et d'un mode de réalisation du toit 3 de la cuve.
La structure de plafond 9 est principalement constituée de poutres 20 et 22 agencées sous la forme de carrés 29 concentriques par rapport au centre de la cuve 24 et imbriqués dans un anneau extérieur constitué d'une poutre circulaire 23. Chacun des côté de chaque carrés 29 est parallèle à un côté respectif de chacun des autres carrés 29.
La figure 4 représente une vue d'un secteur de la structure de renforcement 4 et de la structure de plafond 8 qui permet notamment d'illustrer plus en détail la géométrie de la structure de plafond 8.
Chacun des côtés des carrés 29 est constitué d'une poutre de côté 21 réalisée à l'aide d'un profilé long. L'écartement entre deux poutres de côté 21 successives appartenant à deux carrés respectifs 29 et consécutifs est constant.
Les carrés de poutres 21 sont reliés entre eux par l'intermédiaire de quatre poutres diagonales 20 s'étendant au niveau des diagonales des carrés et radialement par rapport au centre de la cuve 24. Ces quatre poutres diagonales 20 sont reliées aux extrémités des poutres de côté 21 . Ainsi une unique poutre diagonale 20 permet de relier rigidement entre eux l'ensemble des poutres 21 associées à un coin respectif des carrés concentriques. Ainsi, seulement quatre poutres diagonales 20 sont nécessaires au maintien de l'ensemble des poutres 21 formant les carrés 29 tout en permettant de fournir un nombre important de point d'attaches pour les suspentes 7. A son extrémité la plus éloignées du centre de la cuve 24, la poutre radiale 20 est reliée à une poutre circulaire 23 correspondant au contour du plafond 8 de la cuve.
Des poutres intermédiaires 22 sont positionnées entre le dernier des carrés 29, désigné par le numéro 99, et l'anneau constitué d'une poutre circulaire 23. Ces poutres intermédiaires 22 s'étendent parallèlement aux côtés des carrés 29 et sont espacées selon le même intervalle que les poutres de côté 21 . Chaque poutre intermédiaire 22 est reliée en ses extrémités à la poutre circulaire 23.
Un telle structure de poutres permet l'utilisation de poutre de longueur importante et permet éventuellement la réalisation des côtés des carrés 29 à l'aide de poutres réalisées d'une seule pièce. Par ailleurs, ce type d'agencement de poutres permet une mise en œuvre facilitée qui nécessite peu d'opérations d'assemblage et qui peut être aisément réalisée à l'aide de boulonnage. Ainsi la mise en œuvre de la cuve nécessite peu de main d'oeuvre spécialisée pour le soudage. En outre, dans ce type de structure, les angles entre les poutres sont peu variés et la structure nécessite peu de pièces spéciales, ce qui facilite donc la mise en œuvre et l'assemblage.
L'écartement entre les poutres de côté successives 21 des différents carrés 29 et les poutres externes est régulier. Ainsi, la disposition des poutres 21 et 22 fournit un ensemble d'attaches possibles pour les suspentes 7 qui est régulier lorsque l'on s'éloigne du centre de la cuve. Cette disposition régulière des suspentes permet en outre un gain général de matière pour réaliser le plafond 8 et le toit 3.
Comme cela est visible sur la figure 1 , le plancher 1 1 du plafond 8 est réalisé à l'aide de tôles métalliques raides 12. Les tôles raides 1 2 présentent une forme de plaques métalliques allongées et nervurées. Les nervures s'étendent parallèlement à la longueur de la tôle 12 et permettent le raidissage de la tôle.
Après assemblage des poutres de la structure de plafond 9, les tôles sont juxtaposées sur la structure de plafond 9 et fixées en biais par rapport aux côtés des carrés 29. Plus précisément, les tôles raides 12 sont agencées selon une direction formant un angle de 45° par rapport à la direction des poutres de côté 21 . Un tel agencement permet d'obtenir une rigidité continue de l'ensemble formé par la structure de plafond 9 et le plancher 1 1 . Le plafond 8 est ensuite ancré aux suspentes 7.
Les figures 2 à 4 illustrent par ailleurs un mode de réalisation de la structure de renforcement 4 à laquelle le plafond 8 peut être suspendu à l'aide des suspentes 7.
La structure de renforcement 4 du dôme présente un agencement essentiellement radial par rapport au centre de la cuve. Ainsi, la structure de renforcement 4 est notamment constituée de poutres 5 s'étendant radialement par rapport au centre 24 de la cuve cylindrique, dites poutres radiales 14, 15 et 1 6. Les différentes poutres radiales 14, 15 et 1 6 sont reliées entre elles par 3 anneaux concentriques 17, 18 et 19 constitués eux aussi de poutres métalliques 5.
L'architecture particulière de la structure de renforcement 4 va maintenant être décrite plus en détail en référence à la figure 4. La figure 4 est une vue et d'ensemble de la structure de renforcement 4 dans laquelle la position des poutres 5 est projetée sur un plan horizontal.
Une première série de poutres 14 dites principales s'étend depuis le premier anneau 1 7 jusqu'à la partie cylindrique 2 de la structure porteuse 1 de la cuve. Les poutres principales 1 4 sont fixées sur la circonférence extérieure de l'anneau 1 7 et traversent les anneaux 18 et 19. A cet effet, les anneaux 18 et 19 sont constitués de poutres fixées entre deux poutres principales 1 4 consécutives.
Le centre de la structure de renforcement 4 est composé quant à lui de quatre poutres 27 formant un quadrillage qui sont reliées au premier anneau, une poutre centrale 28 s'étendant au centre de la cuve entre deux poutres 27. Le quadrillage forme ainsi un carré central. Le carré de la structure de plafond 9 le plus proche du centre 24 de la cuve présente les mêmes dimensions que le carré central de la structure de renforcement et est superposé à celui-ci. Des suspentes 7 sont fixées entre les deux carrés respectifs des structures 4 et 9.
Une deuxième série de poutres 15 dites médianes s'étendent depuis un second anneau 18 jusqu'à un troisième anneau 19. Une poutre médiane 15 est à chaque fois positionnée entre deux poutres principales 14 consécutives.
Enfin une troisième série de poutres 1 6 dites externes s'étend depuis un troisième anneau 19 jusqu'à la partie cylindrique 2 de la structure porteuse 1 . Deux poutres externes 1 6 sont à chaque fois positionnées entre deux poutres principales 14 consécutives.
La distance entre les anneaux 17, 18 et 19 consécutifs et entre l'anneau 1 7 et le centre de la cuve est déterminée de manière que l'écartement entre deux poutre radiales consécutives circonférentiellement soit sensiblement régulier quel que soit la position par rapport au centre de la cuve et ne dépasse donc pas une certaine valeur.
A cet effet, sur la projection de la position des poutres, le second anneau 18 et le troisième anneau 19 sont concentriques par rapport au centre de la cuve 24 et représentent respectivement environ un tiers et deux tiers du diamètre intérieur de la partie cylindrique 2. De plus, la distance entre le centre de la cuve 24 et le premier anneau 1 7 est sensiblement égale à la moitié de la distance entre le second anneau 18 et le centre de la cuve 24.
Ainsi, l'écartement entre deux poutres principales 14 au niveau du second anneau 18 est sensiblement égal à l'écartement au niveau du troisième anneau 19 entre deux poutres radiales attenantes qui atteignent le troisième anneau 19. Une constatation similaire peut être faite au niveau de la paroi cylindrique, avec deux poutres attenantes s'étendant depuis le troisième anneau 19.
De manière générale, le rapport de diamètre entre un anneau sur lequel arrive deux poutres consécutives et un autre anneau sur lequel arrivent deux autres poutres consécutives ne doit, de préférence, pas être sensiblement supérieur au rapport entre les angles définis à chaque fois par lesdites paires de poutres consécutives desdits anneaux.
A titre illustratif, et en référence à la figure 4, la distance entre les poutres 100 et 101 au niveau du second anneau 18 dépend de l'angle 25 entre les poutres 100 et 101 et de la distance du second anneau 18 par rapport au centre de la cuve 24.
De manière analogue, la distance entre les poutres 100 et 102 au niveau troisième anneau dépend de l'angle 26 entre les poutres 100 et 102 et de la distance entre le troisième anneau 19 et le centre de la cuve 24. Or, l'angle entre les poutres 100 et 102 équivaut à la moitié de l'angle entre les poutres 100 et 101 , et le diamètre du second anneau 18 correspond à la moitié du diamètre du troisième anneau 19. Ainsi, si l'angle 26 est suffisamment faible, la distance entre les poutres 100 et 101 est similaire à la distance entre les 100 et 102.
Bien que la structure de plafond 9 ci-dessus ait été décrite en lien avec la structure de renforcement 4 radiale, cette structure de plafond peut être associée à d'autres types de structures de renforcement. Par exemple, la structure de renforcement peut être réalisée à l'aide de poutres parallèles dans le plan de projection décrit ci-dessus, qui s'étendent d'un côté à l'autre de la cuve.
Les suspentes peuvent notamment être fixées aux structures 4 et 8 au niveau des intersections entre les poutres de la structure de renforcement 4 et les poutres du plafond 8 selon le plan de projection décrit ci-dessus. Les suspentes s'étendent ainsi préférablement selon une direction verticale. L'agencement des poutres des structures 4 et 8 permet une répartition homogène des suspentes 7 au sein du réservoir.
Par ailleurs, la forme des structure de plafond 9, structure de renforcement 4 et plancher 1 1 permettent leur réalisation et mise en oeuvre à l'aide de matériaux et composants standards disponibles dans le commerce. Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe «comporten), «comprendre» ou «inclure» et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou «une» pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche e† thermiquement isolée comportant :
une paroi cylindrique (2) à section circulaire ou polygonale comportant une barrière d'isolation et une barrière d'étanchéité en appui sur la barrière d'isolation,
un toit (3) ,
une structure de raidissage (4) supportant le toit disposé sur la structure de raidissage,
des suspentes (7) fixées à la structure de raidissage et s'étendant sous la structure de raidissage,
un plafond suspendu comportant un plancher ( 1 1 ) et une structure de support (9) portant le plancher, la structure de support étant fixée aux suspentes,
la structure de support comportant une pluralité de poutres ( 10) agencées sous la forme d' une pluralité de carrés (29) concentriques dont les diagonales sont alignées, lesdits carrés étant reliés rigidement entre eux , caractérisé en ce que chacun des côtés d'un carré est constitué d'une poutre unique (21 ) .
dans laquelle la structure de support (9) comporte en outre quatre poutres de liaison (20) s' étendant selon les diagonales des carrés concentriques et radialement par rapport à un centre de la paroi cylindrique (2) et qui sont reliées aux extrémités des poutres uniques (21 ) constituant chacun des côtés des carrés concentriques (29) de manière à relier rigidement les carrés concentriques entre eux.
2. Cuve selon la revendication 1 , dans laquelle la structure de support (9) comporte au moins trois carrés (29) concentriques, l'écartement entre carrés successifs étant régulier.
3. Cuve selon la revendication 1 ou 2, dans laquelle le plancher comporte des tôles allongées rigides ( 12) , une tôle rigide présentant des ondulations ou nervure s'étendant selon une direction longitudinale de la tôle, les tôles étant positionnées et fixées à la structure de support de manière que la direction longitudinale de la tôle soit à chaque fois parallèle à une diagonale des carrés (29).
4. Cuve selon l'une des revendications 1 à 3, dans laquelle la structure de support (9) comporte en outre une poutre circulaire (23) délimitant la périphérie de la structure de support, des poutres intermédiaires (22) étant agencées entre le carré (99) le plus éloigné du centre et la poutre circulaire, chaque poutre intermédiaire étant reliée en ses extrémités à la poutre circulaire de manière à former une corde du cercle défini par la poutre circulaire.
5. Cuve selon l'une des revendications 1 à 4, dans laquelle : le toit (2) présente la forme d'un dôme,
la structure de raidissage suit la surface intérieure du toit en forme de dôme, la structure de raidissage comportant :
une première poutre circulaire ( 1 7) et une seconde poutre circulaire (18) concentriques dont le centre est situé à la verticale du centre des carrés, la première poutre circulaire ayant un diamètre inférieur au diamètre de la seconde poutre circulaire, et
une pluralité de poutres radiales (14, 15, 1 6), distribuées circonférentiellement autour de la première poutre circulaire,
une pluralité de poutres radiales primaires ( 100, 101 ) chacune s'étendant entre la première poutre circulaire ( 1 7) et la seconde poutre circulaire (18), une pluralité de poutres radiales secondaires (100, 101 , 102) étant distribuées circonférentiellement autour de la seconde poutre circulaire et s'étendant depuis la seconde poutre circulaire radialement par rapport au centre de la cuve et vers la paroi cylindrique de la cuve,
le nombre de poutres radiales secondaires étant plus élevé que le nombre de poutres radiales primaires de manière que l'écartement entre deux poutre radiales secondaire successives ( 100, 101 , 10) au niveau de leurs extrémités les plus éloignées du centre de la cuve est sensiblement égal à l'écartement entre deux poutres radiales primaire ( 100, 101 ) au niveau de la seconde poutre circulaire, les suspentes comportant une première série de suspentes accrochées aux poutres radiales primaires et une seconde série de suspentes accrochées aux poutres radiales secondaires.
6. Cuve selon la revendication 5, dans laquelle les poutres radiales secondaires s'étendent vers la paroi cylindrique jusqu'à une distance déterminée par rapport au centre des poutres circulaires, les poutres radiales primaire s' étendant en outre radialement vers la paroi cylindrique jusqu'à ladite distance prédéterminée.
7. Cuve selon l'une des revendications 1 à 6, dans laquelle les suspentes (7) s'étendent perpendiculairement au plafond suspendu de la cuve.
8. Cuve selon l'une des revendications 1 à 7, dans laquelle les poutres et les suspentes (7) sont liées par boulonnage.
9. Cuve selon l'une des revendications 1 à 8, dans laquelle le plafond suspendu comporte une couche d'isolation thermique.
PCT/FR2013/051104 2012-06-05 2013-05-21 Toit de cuve etanche et thermiquement isolee WO2013182771A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255227 2012-06-05
FR1255227A FR2991429B1 (fr) 2012-06-05 2012-06-05 Toit de cuve etanche et thermiquement isolee

Publications (1)

Publication Number Publication Date
WO2013182771A1 true WO2013182771A1 (fr) 2013-12-12

Family

ID=48614048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051104 WO2013182771A1 (fr) 2012-06-05 2013-05-21 Toit de cuve etanche et thermiquement isolee

Country Status (2)

Country Link
FR (1) FR2991429B1 (fr)
WO (1) WO2013182771A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124838A1 (fr) * 2021-12-31 2023-07-06 中国石油天然气集团有限公司 Structure de plafond suspendu de réservoir à membrane, et réservoir à membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121196B1 (fr) * 2021-03-24 2024-03-15 Gaztransport Et Technigaz Installation de stockage de gaz liquéfié comportant une structure porteuse polygonale, et procédé de traçage pour la construction de cette installation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1546524A (fr) 1967-06-21 1968-11-22 Gaz De France Réservoir de stockage pour gaz liquéfié à basse température
FR2951521A1 (fr) 2009-10-20 2011-04-22 Gaztransp Et Technigaz Cuve polygonale pour gnl

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1250220A (fr) * 1968-12-06 1971-10-20
NO328739B1 (no) * 2004-10-25 2010-05-03 Concryo As Tank for lagring av LNG eller andre kryogene fluider

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1546524A (fr) 1967-06-21 1968-11-22 Gaz De France Réservoir de stockage pour gaz liquéfié à basse température
FR2951521A1 (fr) 2009-10-20 2011-04-22 Gaztransp Et Technigaz Cuve polygonale pour gnl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124838A1 (fr) * 2021-12-31 2023-07-06 中国石油天然气集团有限公司 Structure de plafond suspendu de réservoir à membrane, et réservoir à membrane

Also Published As

Publication number Publication date
FR2991429A1 (fr) 2013-12-06
FR2991429B1 (fr) 2015-02-20

Similar Documents

Publication Publication Date Title
EP3362732B1 (fr) Cuve étanche et thermiquement isolante
EP2906867B1 (fr) Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
EP2959206B1 (fr) Paroi de cuve comportant un element traversant
EP2583021B1 (fr) Cuve etanche et isolante comportant un pied de support
JP5722793B2 (ja) 極低温液体貯蔵タンク
FR2739675A1 (fr) Cuve terrestre pour le stockage du liquide a basse temperature
FR3023257A1 (fr) Cuve etanche et isolante disposee dans une double coque flottante
EP2880356B1 (fr) Paroi de cuve etanche et thermiquement isolante comportant des elements porteurs espaces
FR3030014A1 (fr) Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
FR3052227A1 (fr) Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
EP3631283B1 (fr) Cuve etanche et thermiquement isolante
WO2014167206A1 (fr) Bloc isolant pour la fabrication d'une paroi de cuve etanche et isolante
WO2017207904A1 (fr) Cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
WO2019215414A1 (fr) Procede d'assemblage d'une cuve etanche et thermiquement isolante
EP2986885B1 (fr) Cuve étanche et thermiquement isolante
WO2013182771A1 (fr) Toit de cuve etanche et thermiquement isolee
WO2013182776A1 (fr) Element calorifuge de cuve etanche et thermiquement isolee comportant un panneau de couvercle renforce
EP4269863A1 (fr) Paroi de cuve comportant une conduite traversante
WO2021144531A1 (fr) Double trappe d'accès pour une cuve de transport de gaz liquéfié
EP4146975A1 (fr) Cuve étanche et thermiquement isolante comprenant des éléments de remplissage anti-convectif
FR3112379A1 (fr) Structure de guidage pour une tour de chargement/déchargement d’une cuve destinée au stockage et/ou au transport de gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13728454

Country of ref document: EP

Kind code of ref document: A1