EP3788618B1 - Impedanzanpassungsvorrichtung, akustische wandlervorrichtung und verfahren zum herstellen einer impedanzanpassungsvorrichtung - Google Patents

Impedanzanpassungsvorrichtung, akustische wandlervorrichtung und verfahren zum herstellen einer impedanzanpassungsvorrichtung Download PDF

Info

Publication number
EP3788618B1
EP3788618B1 EP19722580.8A EP19722580A EP3788618B1 EP 3788618 B1 EP3788618 B1 EP 3788618B1 EP 19722580 A EP19722580 A EP 19722580A EP 3788618 B1 EP3788618 B1 EP 3788618B1
Authority
EP
European Patent Office
Prior art keywords
impedance matching
impedance
microchannels
acoustic
microstructures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19722580.8A
Other languages
English (en)
French (fr)
Other versions
EP3788618A1 (de
Inventor
Severin Schweiger
Sandro KOCH
Mario GRAFE
Nicolas LANGE
Jörg AMELUNG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3788618A1 publication Critical patent/EP3788618A1/de
Application granted granted Critical
Publication of EP3788618B1 publication Critical patent/EP3788618B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the present invention relates to an impedance matching device, to a converter device having such an impedance matching device, to a system having said converter device and to a method of manufacturing an impedance matching device.
  • the present invention further relates to an acoustic impedance adjustment and in particular to a system for adjusting an acoustic impedance.
  • the acoustic impedance describes the resistance of a medium to the acoustic flow, which is created by an applied acoustic pressure. At interfaces of materials with different acoustic impedances, part of the acoustic energy is reflected, the proportion of which essentially results from the size of the acoustic impedance jump. As a result, the energy that can be transferred between the sound transducers and the acoustic load medium is reduced and the efficiency of the system is reduced.
  • Acoustic matching layers are essential for optimized energy transfer, especially in air.
  • Fig. 9 shows three different methods of adjusting the acoustic impedance.
  • So-called Single Step Matching Systems (SMS; one-step matching systems) create one Impedance step between the ultrasonic transducer side (such as CMUT) and the medium side (load).
  • Multiple Step Matching Systems (MMS) consist of two or more impedance steps.
  • Gradient Matching Systems (GMS; gradient-based matching systems) describe an exponential impedance curve, which enables the best degree of transmission.
  • the characteristic acoustic impedance Z is plotted on the ordinate, which is reduced between the CMUT and the medium in the present diagram.
  • microstructured materials that are manufactured using methods from the semiconductor industry. These methods include coating processes, structuring using lithography and etching processes. For example, using these three processes, an acoustic impedance match was created in order to structure silicon oxide on a silicon wafer. A polymer was then applied using a coating process and fixed to an ultrasonic transducer [7]. In another example, anisotropic etching processes were used to separate silicon in high aspect ratio posts and then fill the spaces with epoxy resin (composite) to create an acoustic impedance match [8]. A gradual progression is made possible using the methods mentioned. In one example, round, conically tapering silicon rods were created and again embedded in epoxy [9]. Another example of gradual acoustic impedance adjustment uses an unspecified micromachining process to create a structured layer system made of copper, PZT (lead zirconate titanate) and parylene [10].
  • EP 1 477 778 A1 describes the use of a first and a second acoustic matching layer with different, discontinuous material densities.
  • An object of the present invention is therefore to provide an acoustic impedance matching device, a transducer device, a system with such a transducer device and a method for producing an acoustic impedance matching device, which enable efficient acoustic impedance matching.
  • the inventors have recognized that by forming microstructures with small dimensions in the sub-micrometer range, extremely precise and therefore efficient acoustic impedance matching can be achieved.
  • the impedance matching device is designed to adapt an acoustic impedance of a medium contacted on the second side to an acoustic impedance of a sound transducer contacted on the first side.
  • the impedance matching body comprises microchannels which have a structural dimension of at most 500 nanometers along at least one spatial direction.
  • the microchannels are branched microchannels whose number varies monotonically between the first and second sides; and wherein the microchannels form cavities in the impedance matching body, wherein an effective material density of an impedance matching material of the impedance matching body between the first side and the second side is monotonically variable by a monotonically increasing or monotonically decreasing a volume of the cavities, and effects the adjustment of the characteristic acoustic impedance.
  • the microchannels are formed as structures that taper towards the first or second side and have the structural extent at least in a region of minimal extent.
  • a method for producing an impedance matching device includes a step of providing an impedance matching body with a first and an opposite second side, which is designed to adapt a sound impedance of a medium contacted on the first side to a sound impedance of a sound transducer contacted on the second side; so that the impedance matching body comprises microchannels which have a structural dimension of at most 500 nm along at least one spatial direction.
  • the method is carried out so that the microchannels are branched microchannels, the number of which is monotonically variable between the first and second sides; and so that the microchannels form cavities in the impedance matching body, so that an effective material density of an impedance matching material of the impedance matching body between the first side and the second side is monotonically variable by a monotonic increase or monotone decrease of a volume of the cavities, and effects the adjustment of the acoustic characteristic impedance; and/or is carried out so that the microchannels are formed as structures that taper towards the first or second side, and have the structural extent at least in a region of minimal extent.
  • Fig. 1 shows a schematic block diagram of an impedance matching device 10 for adjusting a characteristic sound impedance.
  • the impedance matching device includes an impedance matching body 12 having a first side 14 and a second side 16. The sides 14 and 16 are arranged opposite one another.
  • the impedance matching device can be designed to be traversed by a sound, ie an acoustic wave, from side 14 to side 16 along a sound passage direction 18a and/or to be traversed by a sound wave from side 16 to side 14 along an opposite direction Sound passage direction 18b to be passed through.
  • the sound wave can be generated by a sound transducer that can be contacted with the side 14.
  • the side 16 can be contactable with a medium, for example a human body, a liquid or air or the like.
  • the impedance matching device 10 can be designed to adapt an acoustic impedance of the medium to an acoustic impedance of the sound transducer and/or vice versa.
  • the impedance matching body 12 can, for example, have an acoustic impedance in an area of the side 14 that is adapted to the sound transducer and further have an acoustic impedance in the area of the side 16 that is adapted to the target medium.
  • the impedance matching body 12 includes microstructures, for example branched microstructures 22 1 and 22 2 and/or in-plane microstructures 22 3 .
  • the microstructures 22 1 , 22 2 and/or 22 3 can be formed as cavities in a material of the impedance matching body 12, wherein the cavities can be filled or unfilled. A filling of the cavities can completely or partially have a different material than a base material or remaining material 24 of the impedance matching body 12. This means that the microstructures 22 to 22 3 can be understood as a cavity, a channel structure and/or an inclusion in the material 24 .
  • the microstructures 22 1 to 22 3 are each individually or jointly formed so that they have a structural extent 26 1 , 26 2 and/or 26 3 along at least one spatial direction, which is at most 500 nanometers, preferably at most 300 nanometers and particularly preferably at most is 100 nanometers.
  • the structural extent 26 1 , 26 2 and/or 26 3 can be understood as the longest distance between any two points on an outer surface of the microstructure, whereby the two arbitrary points in a cross section of the microstructure 22 1 to 22 3 are opposite.
  • the structural dimensions can be arranged along any spatial direction x, y and/or z.
  • the points can be arranged in a longitudinal section or cross section, the longitudinal section running, for example, through a plane which is defined by the diameter of the tubular structure.
  • the structural extent of one or more microstructures can be a dimension perpendicular to an axial extension direction of the respective microstructure.
  • One idea of the present exemplary embodiments lies in the use of the resolution power of a method described herein, which can be, for example, 100 nm or less, in order to produce structures precisely, ie with high resolution.
  • the structural extent can be the diameter of a round microstructure 22.
  • the microstructure 22 2 can be fluidically coupled to the microstructure 22 1 , so that an average value of a volume occupied by the microstructures 22 1 and 22 2 increases from side 14 towards side 16, but alternatively can also decrease, This means that an average value of the acoustic impedance can increase or decrease towards page 14, or alternatively it can also be constant, as is the case in connection with the Fig. 4a to 4d is described. This can cause a variable density ⁇ of the material 24 and thus a change in the characteristic sound impedance between the sides 14 and 16. If a material or a filling of the microstructures 22 1 and 22 2 has a greater material density than the material 24, the acoustic impedance of the impedance matching device 10 can increase from side 14 to side 16.
  • the microstructures can have a first impedance matching material and that a second impedance matching material, for example the material 24, can be arranged in intermediate regions between the microstructures.
  • the microstructures can be formed, for example, from a cured polymer material or a metal material. Alternatively, any other material can be used. Polymer materials and/or metal materials described can be processed precisely and can be used directly as microstructures, as described in connection with the manufacturing processes described herein. Alternatively, such structures can also serve as a template or negative mold to enable the molding of other materials.
  • At least one microstructure can also be arranged perpendicular thereto, for example parallel to an x-direction, which can be arranged, for example, perpendicular to a surface normal of the first side 14 and/or the second side 16 can.
  • microstructures By forming the microstructures with the defined structural dimension of at most 500 nanometers, preferably at most 300 nanometers or preferably at most 100 nanometers, an extremely fine and therefore precise adjustment of the characteristic sound impedance along the sound passage direction 18a and / or 18b can be set. This enables efficient operation of the impedance matching device even with small dimensions of the impedance matching device 10.
  • Embodiments enable a continuous transition between the respective impedance values, for example the medium and the sound transducer, which is not possible or can only be achieved with difficulty in known concepts.
  • Embodiments create concepts for an acoustic impulse response and their manufacturing processes, for example or even primarily using the multiple photon absorption lithography process to produce layer systems that adapt the acoustic sound impedance between sound transducers and the medium.
  • One goal is an ideal coupling of the acoustic energy from the sound transducer into the load medium (transmission case) and/or from the load medium into the sound transducer (reception case).
  • a single channel structure 22 1 in the area of side 14 can branch out into a large number of channel structures, for example in the sense of a river delta.
  • a material or the absence of material can be described as at least a local material density ⁇ 2 that is different from a material density ⁇ 1 of the material 24.
  • the increasing volume fraction of the microstructures 22 i enables an overall density of the impedance matching body 10 that is increasingly influenced by the microstructures 22 along the sound passage direction 18a, which can influence or determine the characteristic sound impedance and thus describes an increasing influence on the characteristic sound impedance by such a material.
  • the microstructures 22 can define cavities.
  • An effective material density of the impedance matching body 12 can be monotonically variable between the sides 14 and 16 through the cavities.
  • the impedance matching material 24 with a density ⁇ 1 can increasingly be traversed by the impedance matching material ⁇ 2 , so that a variable effective density of the impedance matching body is obtained on a spatial average.
  • the monotonous increase or decrease in the volume of the microstructures can thus lead to a monotonous change in the density of the material 24 in order to bring about the adaptation of the characteristic acoustic impedance.
  • the cavities can, for example, be formed or enclosed by the microstructures. Alternatively or additionally, at least one of the microstructures 22 can define an area outside a cavity, so that the cavity is formed away from the microstructures 22.
  • the microstructures 22 can define branched microchannels, the number of which varies monotonically between the sides 14 and 16 to effect the change in the density of the material 24.
  • FIG. 2 Microcavities in a layer system whose effective density and thus the characteristic sound impedance are changed by cavities, channels or inclusions.
  • the desired acoustic impedance curve can be generated by connected cavities 22.
  • the largest number of channels and thus the lowest acoustic impedance can be arranged on the medium side of the layer system, ie side 16.
  • At least one other property such as the shape, the position and/or the volume of the microstructures can also be changed in order to achieve the related properties Fig. 1 to obtain the variable density or material density described.
  • This change in density can be monotonous, as can be achieved, for example, by the monotonically variable number of microchannels described.
  • the change in all properties can be uniform, that is, with the same rate of change along the direction of sound passage.
  • a variable rate of change can be set up.
  • the rate of change of one, several or all properties within the impedance matching body can be determinable, that is, can be predetermined and can be designed advantageously through appropriate acoustic calculations and/or simulations, which can enable good or improved sound transmission.
  • a positional variance of the microstructures can arise from the spacing ratio of the structures to one another, or from the ratio of the position of the structures relative to one of the outer walls of the impedance matching body.
  • a targeted positioning of the structures in a concentrically changing manner can enable the creation of a focusing layer which has no curvature of the outer walls.
  • the impedance matching body can have a distance decreasing from the center in the radiation direction between the individual structures.
  • the microchannels can also have other shapes, such as shapes such as spirals, round or non-round drops, cubes or the like.
  • the microstructures can all be uniform but also intentionally different in shape and/or size.
  • Such a shape can describe the microstructure as a whole, but combinations are also possible, such as a microchannel that has a drop in places or areas, a round or non-round cavity or a cube, i.e. i.e., forming or comprising polygonal surfaces and/or a microchannel which runs in a spiral shape.
  • a drop can be understood as a non-linear and/or continuous change in cross-section, with a sphere being one of the possible shapes, but which can also be stretched longitudinally.
  • the shape can alternatively or additionally have a variable shape/cross-section implemented along the, for example, spiral course and/or the exemplary spiral can be connected to further microstructures at at least one end or along a course. This is only to be understood as an example; one or more arbitrary shapes can be combined with one another.
  • Fig. 3 shows a schematic side sectional view of an impedance matching device 30 according to an exemplary embodiment, in which the microstructures are formed as structures that taper towards the side 14.
  • the tapered structures can have areas 28i of minimal extent, with the areas 28i of minimum extent being related to the structure extent.
  • the microstructures 22 i can taper conically, so that the regions 28 can represent the ends or tips of the conical structures.
  • the microstructures are formed individually or in combination, for example pyramid-shaped, conical or otherwise tapered.
  • FIG. 3 an embodiment with tapering structures, in which the main material 24 is divided into conically tapering structures, whereby the tapering of the material 24 can take place towards the side 16.
  • the taper can start directly on the sides 14 or 16, but can alternatively also be spaced away from this.
  • the desired acoustic impedance curve is, for example generated by several, conically tapering volumes of the microstructures 22i . This can cause the lowest acoustic impedance of the impedance matching body to be on side 16.
  • the microstructures 22 can also be used as SMS and/or MMS according to other exemplary embodiments.
  • Fig. 4a shows a schematic side sectional view of an impedance matching device 40a, in which the impedance matching body is formed such that the microstructures 22 form a lattice structure which extends along a direction perpendicular to the sound passage directions 18a and/or 18b.
  • the impedance matching body 12 can have an on average unchanged or constant acoustic impedance, which is, for example, lower than the higher of the acoustic impedances arranged on the sides 14 and 16 and/or higher than the lower of these acoustic impedances.
  • the microstructures 22 can form a hexagonal grid or a honeycomb structure in the side section shown.
  • the impedance matching device 40a enables SMS.
  • Fig. 4b shows a schematic side sectional view of an impedance matching device 40b, in which the microstructures form a hexagonal/triangular pattern, for example by forming several in-plane microstructures, such as the microstructure 22, perpendicular to the sound passage directions 18a and / or 18b and several in different directions perpendicular thereto arranged microstructures that intersect the in-plane microstructure diagonally, either the microstructure 22 2 and/or 22 3 , which extend in an oblique arrangement between the sides 14 and 16.
  • the microstructures form a hexagonal/triangular pattern, for example by forming several in-plane microstructures, such as the microstructure 22, perpendicular to the sound passage directions 18a and / or 18b and several in different directions perpendicular thereto arranged microstructures that intersect the in-plane microstructure diagonally, either the microstructure 22 2 and/or 22 3 , which extend in an oblique arrangement between the sides 14 and 16.
  • Fig. 4c shows a schematic side sectional view of an impedance matching device 40c, in which the microstructures are arranged in a triangular grid pattern, so that cavities 32 have a triangular shape in the side sectional view shown.
  • the microstructures 22 can be formed, for example, from the material 24, whereby the cavities 32 can represent filled or unfilled cavities.
  • Fig. 4d shows a schematic side sectional view of an impedance matching device 40d, in which the microstructures 22 to 22 3 also form a lattice structure, the lattice structure being formed according to a diamond pattern.
  • the impedance matching devices 40a, 40b, 40c and/or 40d may have a substantially homogeneous or constant acoustic impedance between the sides 14 and 16.
  • An impedance matching device may include an impedance matching body formed in multiple layers and having at least a first layer and a second layer arranged on each other.
  • the first layer can have a first layer characteristic impedance and the second layer can have a second layer characteristic impedance, the two layer characteristic impedances being the same, but preferably different from one another.
  • the same patterns can be used in accordance with Fig. 4a to 4d can be used, for example based on different opening cross sections of the cavities 32 and/or different patterns can be used, for example by arranging different impedance matching bodies 12.
  • the microstructures 22 can form a lattice structure, which is arranged along a direction perpendicular to the sound passage directions and extends along this direction, for example along the x-direction.
  • the cavities 32 may extend along the same or a different direction perpendicular to the sound passage directions 18a and 18b in the impedance matching body, for example along the y-direction.
  • the cavities can have a polygonal cross-section based on an arrangement of the microstructures 22, alternatively the cross-section can also be formed according to a free-form surface, be elliptical or even round.
  • the adaptation layer system includes a framework-like grid with variable framework elements.
  • the microgrids mentioned are in the Fig. 4a to 4d shown as sectional images of various lattice structures, where Fig. 4a a hexagonal grid, Fig. 4b a hexagonal/triangular grid, Fig. 4c a triangular grid and Fig. 4d show a diamond grid.
  • the grids can be arranged in grid planes, wherein the grid planes can run, for example, parallel to the sides 14 and/or 16, wherein an impedance matching device can have one or more grid planes.
  • the desired acoustic impedance curve can be created using differently aligned and connected connecting pieces.
  • the lattice structures can be formed as two-dimensional or three-dimensional lattice structures. Three-dimensional lattice structures can be characterized by changing the lattice constant and/or the thickness and shape of the connections. This enables high rigidity compared to tapered structures and/or easy processing with the method since the structure is easy to implement with a developer solution.
  • Fig. 5 shows a schematic side sectional view of an impedance matching device 50, in which the microstructures 22 to 22 3 define an acoustic path 34 between the sides 14 and 16.
  • the acoustic path 34 can run through the cavity 32, which is defined by the microstructures 22 to 22 3 .
  • a vacuum, a fluid, for example a gas, and/or a solid can be arranged in the cavity 32, with a material of the microstructures 22 1 to 22 3 preferably having a higher acoustic impedance than the impedance matching body 12 in a region of the acoustic path, for example the cavity 32.
  • the acoustic path 34 can provide a travel time extension for sound transmitted through the acoustic path 34.
  • the transit time extension can be provided based on a path extension compared to the direct connection 36, which means that the transit time extension and therefore a phase shift can be obtained due to the longer path or the path extension of the acoustic path 34.
  • the acoustic path 34 may have a plurality or plurality of path sections 38 1 to 38 4 .
  • the impedance matching device 50 is shown such that four path sections 38 1 to 38 4 are arranged in series one behind the other, a different number of at least one path section, at least two path sections, at least three path sections, at least five path sections, for example six, eight or ten path sections or be implemented more.
  • Parallel path sections can also be arranged with respect to one or more path sections.
  • the path sections 38 1 to 38 4 can be arranged individually, in groups or overall perpendicular to the sound passage directions 18a and / or 18b, so that the acoustic path 34 in the area of the path sections 38 1 to 38 4 runs perpendicular to the sound passage directions 18a and / or 18b or has at least one directional component perpendicular to the sound passage directions 18a and / or 18b.
  • the path sections may extend in different planes of the impedance matching body 12 between sides 14 and 16, for example when the planes are considered to be parallel to sides 14 and/or 16.
  • the path sections 38 1 , 38 2 , 38 3 and 38 4 can each have an acoustically effective cross section 42 1 , 42 2 , 42 3 or 42 4 , which is determined by the size or extent of the cavity 32 in the area of the respective path section 38 1 up to 38 4 can be influenced.
  • the acoustically effective cross section 42 i of a path section 38 i can be determined or influenced by a distance between adjacent microstructures 22 1 and 22 2 , 22 2 and 22 3 and/or a microstructure 22 1 or 22 3 to its side 14 or 16 .
  • the acoustically effective cross sections 42 1 to 42 4 can be the same or different from one another, with, for example, a decreasing acoustic cross section along a sound passage direction 18a or 18b can cause an increase in an acoustic sound characteristic impedance.
  • a taper 44 1 , 44 2 and/or 44 3 of the acoustic path 34 or the acoustically effective cross section can be arranged between two possibly successive path sections 38 1 and 38 2 , 38 2 and 38 3 and/or 38 3 and 38 4 .
  • Such a taper can be obtained, for example, by a distance between the microstructures and boundary structures 46 1 and/or 46 2 , for example side wall structures.
  • microstructures 22 4 and/or 22 5 can be provided, although other materials and/or dimensions and/or geometries can also be used, as long as these structures have a higher acoustic impedance than the cavity 32 in the area of the corresponding path section.
  • the additional arrangement of the microstructures 22 4 and 22 5 entails a corresponding manufacturing effort, this enables a precise adjustment of the acoustic impedance of the impedance matching device 50.
  • the tapers 44 1 to 44 3 can be manufactured easily, since they are, for example, from a distance between the microstructures 22 1 to 22 3 to the boundary structures 46 1 and/or 46 2 can result.
  • An acoustically effective cross section 42 i of at least one path section 38 i can be variable over its axial extent, for example along the x direction. This can be achieved, for example, by a variable dimension of at least one of the microstructures 22 1 , 22 2 and/or 22 3 along the sound passage direction 18a and/or 18b; alternatively or additionally, additional structures can also be provided in the course of the path section 38 i .
  • the acoustically effective cross sections 42i can be set individually, in groups or as a whole. This means that an acoustically effective cross section of two adjacent path sections can be different from one another.
  • Fig. 5 a coiled structure in which the matching layer system consists of coiled or coiled structures that increase the travel time of the sound wave.
  • the wound structures are shown as a section through an elementary cell of a layer system applied to a sound transducer.
  • the desired acoustic impedance curve can be generated by several intertwined channels. This means that the characteristic sound impedance can be influenced by the speed of sound through the wave transit time until the wave arrives on the medium side of the layer system.
  • each of these embodiments may provide a single-stage, multi-stage, or gradient-like acoustic impedance matching course.
  • the different exemplary embodiments can be combined with one another in any way, so that differently formed microstructures and/or lattice structures can be arranged in different planes perpendicular to the direction of sound passage and/or parallel thereto. This can be done in one piece, for example, by forming the microstructures differently in different areas of the impedance matching body.
  • a multi-piece arrangement can also take place, for example by mechanically and/or acoustically coupling impedance matching bodies according to various exemplary embodiments and each forming a layer of a multi-layer impedance matching body.
  • a course of the acoustic impedance between the first side 14 and the second side 16 of the overall impedance matching body can be continuous or discontinuous.
  • An example of a continuous course can be a linear and/or exponential development of the course of the characteristic sound impedance along the direction of sound passage 18a and/or 18b.
  • the impedance matching device is designed such that the impedance matching body has different characteristic sound impedances on the different sides.
  • One of the sides can, for example, be adapted to an acoustic impedance of a MUT acoustic transducer, so that the acoustic impedance of the impedance matching body matches the acoustic impedance of the MUT acoustic transducer within a tolerance range of ⁇ 50%, ⁇ 25% or ⁇ 10%, that is means the values of the acoustic impedance, the acoustic impedance values agree.
  • the acoustic impedance on the other side can, if possible, match the acoustic impedance of a target medium or at least be close to it, for example a fluid, such as air.
  • Fig. 6 shows a schematic block diagram of a converter device 60 according to an exemplary embodiment.
  • the transducer device 60 includes, for example, the impedance matching device 10.
  • the transducer device 60 further includes a sound transducer element 48, which can both be configured to generate a sound wave based on a control signal and, alternatively or additionally, can be configured to generate an electrical one based on an incoming sound wave to provide signal.
  • the transducer element 48 can be implemented as or include a sound actuator and/or sound sensor.
  • the impedance matching device 10 is coupled, for example, on the side 14 to the sound transducer element 48, for example in that the impedance matching body is mechanically firmly coupled to the sound transducer element 48.
  • the impedance matching device 10 can be deposited on the sound transducer element 48 or vice versa.
  • the transducer device 60 is described as having the sound transducer element 48 acoustically coupled to the side 14, the sound transducer element 48 may alternatively also be acoustically coupled to the side 16.
  • the other side 16 or 14 can be configured to be contacted with a medium into which a sound wave is to be emitted or from which a sound wave is to be received.
  • another acoustically effective structure for example another sound transducer element, can also be acoustically coupled on the other side, so that an impedance adaptation can take place between two sound transducer elements based on the impedance matching device 10.
  • the acoustic coupling between the sound transducer element 48 and the side 14 has a continuous transition of the acoustic impedance, that is, within the tolerance range of ⁇ 50%, ⁇ 25% or ⁇ 10%, the acoustic impedance of the acoustic transducer element 48 is in accordance with the acoustic impedance of the Impedance matching device on side 14.
  • the sound transducer element 48 may include a piezoelectric ceramic material and/or a composite material.
  • the sound transducer element 48 may comprise a piezoelectric thin film material, such as PVDF (polyvinylidene fluoride).
  • the sound transducer element 48 includes a micromachined ultrasonic transducer, for example a capacitive MUT (CMUT), a piezoelectric MUT (PMUT), or a magnetic MUT (MMUT).
  • CMUT capacitive MUT
  • PMUT piezoelectric MUT
  • MMUT magnetic MUT
  • impedance matching device 10 is arranged, alternatively or additionally a further and/or different impedance matching device can also be arranged, for example the impedance matching device 10, 20, 30, 40a, 40b, 40c, 40d and/or 50.
  • impedance matching devices can be arranged which have a combination of different layers, each with at least one impedance matching device or impedance matching body, whereby, for example, an impedance matching device 40a, 40b, 40c, 40d can provide a layer of the common body with, at least on a spatial average, constant acoustic characteristic impedance.
  • the adaptation structures described can be integrated in one embodiment onto single- and multi-channel, for example air-coupled, CMUT components and CMUT systems in order to increase the converter range, sensitivity and bandwidth.
  • Such systems can be optimized as miniaturized sensors for distance and movement detection as well as imaging and also enable, for example, gesture control in the vehicle interior (automotive) as well as the contactless control of household appliances (consumer), as well as sensor applications in medical technology and integration into mobile devices Applications in service and industrial robots (industry).
  • Fig. 7 shows a schematic block diagram of a system according to an exemplary embodiment, which includes, for example, the converter device 60 and a control unit 52.
  • the control unit 52 is designed to operate the sound transducer element 48, that is, to provide the sound transducer element 48 with a control signal 54 in order to stimulate the sound transducer element 48 to emit a sound transducer 56 1 and/or to send a sound transducer signal 54 2 from the sound transducer element 48 received that provides this based on an incoming sound wave 56 2 .
  • the control unit 52 can be designed to operate the sound transducer element 48 in an ultrasonic frequency range, that is, in a frequency range of at least 20 kilohertz.
  • the control unit can be designed to operate the sound transducer element 48 in a frequency range of at least 20 kilohertz and at most 200 megahertz, at least 20 kilohertz and at most 150 megahertz or at least 20 kilohertz and at most 100 megahertz.
  • Fig. 8 shows a schematic flow diagram of a method 800 according to an exemplary embodiment for producing an impedance matching device, for example the impedance matching device 10, 20, 30, 40a, 40b, 40c, 40d and/or 50.
  • the method 800 includes a step 810.
  • an impedance matching body with a first and an opposite second side is provided.
  • the impedance matching body is designed to adapt an acoustic impedance of a medium contacted on the first side to an acoustic impedance of a sound transducer contacted on the second side, so that the impedance matching body comprises microstructures which have a structural extent of at most 500 nanometers along at least one spatial direction.
  • the impedance matching body can be produced, for example, by being arranged directly on or on a sound transducer or by producing it as a separate component.
  • Manufacturing the impedance matching body may include providing a transfer material.
  • a positive form or a negative form of the microstructures can be formed in the transfer material.
  • the transfer material comprises a curable polymer material, in particular a polymer material that can be used in connection with multiple photon absorption lithography, for example SU-8 and/or Ormocere.
  • the positive form or the negative form can be created by applying at least two photons to the transfer material at one point, so that a local change in a structural composition of the transfer material is caused there, that is, a hardening or alternatively liquefaction of the polymer material.
  • Multiple photon absorption lithography can provide feature sizes of at most 500 nanometers, at most 300 or at most 100 nanometers.
  • the transfer material comprises a metal material in which the positive form or the negative form of the microstructures can be obtained, for example, by an ablation process through multiple photon absorption, in particular a laser ablation process.
  • the transfer material is not limited to a metal material but can also have a different material in a solid or liquid state for the (laser) ablation method by multiple photon absorption according to further exemplary embodiments and, for example, a fluid, for example a polymerizable fluid or a Fluid in a solid state, a semiconductor material, at least one organic compound and / or a ceramic material.
  • Microstructures with different materials can be combined with one another, so that both the use of a metal material and the use of a polymer material as well as the use of the fluid in a solid or liquid state and / or the ceramic material in a solid or liquid state can be combined with one another in any way, for example different layers of the impedance matching body.
  • the positive form or negative form obtained can be further processed.
  • the production can, for example, include a step of coating the positive mold or negative mold.
  • the positive form or negative form can be inverted. Inverting can be understood as a change in the material of the positive form or negative form.
  • the positive mold or negative mold can be coated, then the material of the positive mold or negative mold can be removed, for example using a solvent or an etching process, and then the resulting cavity can be refilled or filled with any material.
  • the small structure sizes obtained by the multiple photon lithography process and/or laser ablation through the multiple photon absorption can be retained, so that such small structure sizes can be produced even in materials that cannot be processed with such precision, for example, using subtractive processes can.
  • the post-processing can also include casting the positive mold or negative mold.
  • Casting can be understood as a transfer of the mold from the positive mold or negative mold into a corresponding other mold.
  • the positive mold or negative mold can be enclosed, in which, for example, the previously produced positive mold or negative mold is retained as a core.
  • the material 24 can be hardened by a lithography process and used as a positive mold, with filling with other materials being possible.
  • the impedance matching body 30 can be obtained by creating cavities into which the material 24 is later filled. This means that producing the impedance matching body can include creating microstructures in such a way that they are formed as tapered microstructures, which applies both to the areas with the material 24 and to the spaces between them.
  • producing the impedance matching body may include creating at least one cavity that is arranged in the impedance matching body and can cause a change in an effective density of the impedance matching body there.
  • the creation of a cavity can include both the hardening for the later retention of a material and the removal of a material and describes, for example, the creation of different materials and / or densities in the impedance matching body in a spatial means for changing the density of the impedance matching body in the spatial means.
  • producing the impedance matching body may include producing the microstructures as a lattice structure.
  • the grid structure may be formed from an impedance matching material of the impedance matching body and define cavities that extend along the direction perpendicular to the sound passage direction in the impedance matching body.
  • the cavities can, for example, have a polygonal cross section with three, four, five or six, seven or a higher number of corners and/or edges, whereby the structures can be combined with one another.
  • 4a, 4b, 4c and/or 4d can thus be formed from cured polymer material and/or the metal material, but can also include a material which has been introduced into a corresponding negative mold, wherein the transfer material can later be released or remain for defining these structures.
  • the manufacturing includes producing the microstructures such that the microstructures define an acoustic path between the sides of the impedance matching body, as is the case, for example, in the context of Fig. 5 is described.
  • a material of the microstructures can have a higher acoustic impedance than the impedance matching body in a region of the acoustic path.
  • the acoustic path may provide a travel time extension for sound transmitted through the acoustic path compared to a direct connection between the first side and the second side.
  • an approach of the present invention offers the advantage, particularly over known microstructures and methods for producing them, of enabling three-dimensional structures of almost any shape and, above all, generous undercuts.
  • the impedance matching body includes an undercut, that is, it includes a mold with a portion that would prevent removal from a mold or impression mold. According to the manufacturing methods described, this is possible in that any three-dimensional structures can be produced using the ablation methods and/or lithography methods.
  • An exemplary manufacturing process is given in EP 1 084 454 B1 described.
  • a polymerization process using multi-photon absorption can be used to produce microstructures with specific acoustic impedances or acoustic impedance curves.
  • Methods described herein allow the creation of feature sizes of at most 500 nanometers and less, for example at most 300 nanometers or at most 100 nanometers or less.
  • the processes offer a high level of flexibility in the design and production of the microstructures for acoustic impedance matching.
  • the properties mentioned offer the advantage of generating precise, exponential sound characteristics and thus ensuring an ideal coupling between the ultrasonic transducer and the load media.
  • the high resolution low structural size
  • the high resolution can be used to greatly reduce the characteristic sound impedance over a short distance and thus adapt it to a medium such as.
  • Another advantage of the high precision is the ability to create a very precise layer system height, which has a strong influence on the transmission behavior.
  • a further advantage is that intermediate and adhesion materials, which were necessary between individual impedance layers of different matching layers in previous solutions, can be dispensed with, although this does not preclude their arrangement.
  • aspects have been described in connection with a device, it is understood that these aspects also represent a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Analogously, aspects that have been described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf eine Impedanzanpassungsvorrichtung, auf eine Wandlervorrichtung mit einer derartigen Impedanzanpassungsvorrichtung, auf ein System mit einer erwähnten Wandlervorrichtung und auf ein Verfahren zum Herstellen einer Impedanzanpassungsvorrichtung.
  • Die vorliegende Erfindung bezieht sich ferner auf eine Schallkennimpedanzanpassung und insbesondere auf ein System zur Anpassung einer Schallkennimpedanz.
  • Die Schallkennimpedanz beschreibt den Widerstand eines Mediums entgegen dem akustischen Fluss, welcher durch einen applizierten akustischen Druck entsteht. An Grenzflächen von Materialien mit unterschiedlicher Schallkennimpedanz kommt es zu einer Reflektion eines Teils der akustischen Energie, dessen Anteil sich im Wesentlichen durch die Größe des akustischen Impedanzsprungs ergibt. Infolge verringert sich die zwischen den Schallwandlern und dem akustischen Lastmedium übertragbare Energie, die Effizienz des Systems ist reduziert. Typische Schallwandler mit entsprechenden Schallkennimpedanzen basieren auf Piezokeramiken (Schallkennimpedanz in etwa 33 MRayl = 33 · 106 Ns/m3 [1]) oder Piezokompositen (in etwa 7 MRayl = 7 · 106 Ns/m3 [2]). Weitere typische Schallwandler basieren auf Piezodünnschichtsystemen und Membranschwingern, etwa CMUT (capacitive micromachined ultrasonic transducer; kapazitive mikromechanische Ultraschallwandler), deren Schallkennimpedanzen von den Strukturdimensionen abhängen (in etwa 1 bis 5 MRayl = 1-5 · 106 Ns/m3 [3]). Typische Lastmedien sind Wasser (1,48 MRayl = 1,48 · 106 Ns/m3 [4]), menschliches Gewebe (in etwa 1,5 MRayl = 1,5 · 106 Ns/m3 [4]) und Luft (in etwa 427 Rayl = 427 Ns/m3 [1]). Für einen optimierten Energietransfer, insbesondere in Luft, sind akustische Anpassschichten essentiell.
  • Typischerweise werden Schichtsysteme zur Anpassung der Schallkennimpedanz aus konventionellen oder Kompositmaterialien mit möglichst passender Schallkennimpedanz hergestellt. Die Schallkennimpedanz Z ist abhängig von der Dichte ρ und der Schallgeschwindigkeit c des Materials: Z =
    Figure imgb0001
  • Fig. 9 zeigt drei verschiedene Methoden einer Anpassung der Schallkennimpedanz. Sogenannte Single Step Matching Systems (SMS; Ein-Schrittanpassungssysteme) legen einen Impedanz-Schritt zwischen die Ultraschallwandler-Seite (etwa CMUT) und die Medium-Seite (Load). Multiple Step Matching Systems (MMS; Mehrschrittanpassungssysteme) bestehen aus zwei oder mehr Impedanz-Schritten. Gradient Matching Systems (GMS; gradientenbasierte Anpassungssysteme) beschreiben einen exponentiellen Impedanzverlauf, welcher den besten Transmissionsgrad ermöglicht. Fig. 9 zeigt hierbei einen Graphen, bei dem an der Abszisse ein Verlauf der Dicke D der Anpassschicht zwischen einem CMUT (D = 0) und der Last-Seite oder Medium-Seite (D = max). An der Ordinate ist die Schallkennimpedanz Z angetragen, die in dem vorliegenden Diagramm zwischen dem CMUT und dem Medium reduziert wird.
  • An diesem Verlauf ist auch erkennbar, dass der Einfluss der Schallkennimpedanz auf den Transmissionsgrad steigt, je näher man sich innerhalb des Anpassschichtsystems der Medium-Seite nähert. Im oben genannten Beispiel muss das Anpassschichtsystem also möglichst niedrige Schallkennimpedanzen erreichen, was mit bekannten Konzepten nicht oder nur in Verbindung mit großen Nachteilen erreichbar ist. Aerogele [5] bieten einen Lösungsansatz. Diese erreichen eine sehr niedrige Schallkennimpedanz, wirken jedoch stark diffraktiv und lassen sich nur in einzelnen Schritten (MMS) mit zwischengelagerten Verbindungsmaterialien aufbringen, welche wiederum das Transmissionsverhalten stören. Ähnliche Nachteile haben Kompositmaterialien aus eingelassenen Partikeln in einer Matrix [6].
  • Es gibt eine Vielzahl mikrostrukturierter Materialien, welche mit Methoden aus der Halbleiterindustrie hergestellt werden. Zu diesen Methoden gehören Beschichtungsverfahren, Strukturierung mittels Lithographie und Ätzprozesse. Beispielsweise wurde mittels dieser drei Prozesse eine Schallkennimpedanzanpassung erzeugt, um auf einem Silizium-Wafer Siliziumoxid zu strukturieren. Anschließend wurde ein Polymer mittels Beschichtungsverfahren aufgetragen und an einen Ultraschallwandler fixiert [7]. In einem weiteren Beispiel wurden anisotrope Ätzprozesse angewandt, um Silizium in Pfosten mit hohem Aspektverhältnis zu trennen und die Zwischenräume anschließend mit Epoxidharz zu füllen (Komposit), um eine Schallkennimpedanzanpassung zu erzeugen [8]. Ein gradueller Verlauf wird mit genannten Methoden ermöglicht. In einem Beispiel wurden runde, sich konisch verjüngende Siliziumstäbe erzeugt und wiederum in Epoxid eingelassen [9]. Ein anderes Beispiel für graduelle Schallkennimpedanzanpassung arbeitet mit nicht weiter spezifiziertem Mikrobearbeitungsverfahren, um ein strukturiertes Schichtsystem aus Kupfer, PZT (Blei-Zirkonat-Titanat) und Parylene zu erzeugen [10].
  • EP 1 477 778 A1 beschreibt die Verwendung eines ersten und eines zweiten acoustic matching layer mit unterschiedlichen, diskontinuierlichen Materialdichten.
  • Die mit den bekannten Verfahren hergestellten Strukturen leiden jedoch an einer geringen Effizienz.
  • Wünschenswert wären demnach Schallkennimpedanzanpassungsvorrichtungen, die eine Anpassung der Schallkennimpedanz mit einer hohen Effizienz ermöglichen.
  • Eine Aufgabe der vorliegenden Erfindung besteht deshalb darin, eine Schallkennimpedanzanpassungsvorrichtung, eine Wandlervorrichtung, ein System mit einer derartigen Wandlervorrichtung und ein Verfahren zum Herstellen einer Schallkennimpedanzanpassungsvorrichtung zu schaffen, die eine effiziente Schallkennimpedanzanpassung ermöglichen.
  • Diese Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst.
  • Die Erfinder haben erkannt, dass durch Ausbilden von Mikrostrukturen mit geringen Abmessungen im Sub-Mikrometerbereich eine äußerst exakte und somit effiziente Schallkennimpedanzanpassung erfolgen kann.
  • Gemäß einem Ausführungsbeispiel umfasst eine Impedanzanpassungsvorrichtung zur Anpassung einer Schallkennimpedanz einen Impedanzanpassungskörper mit einer ersten Seite und einer gegenüberliegenden zweiten Seite. Die Impedanzanpassungsvorrichtung ist ausgebildet, um eine Schallkennimpedanz eines an der zweiten Seite kontaktierten Mediums an eine Schallkennimpedanz eines an der ersten Seite kontaktierten Schallwandlers anzupassen. Der Impedanzanpassungskörper umfasst Mikrokanäle, die entlang zumindest einer Raumrichtung eine Strukturausdehnung von höchstens 500 Nanometern aufweist. Die Mikrokanäle sind verzweigte Mikrokanäle, deren Anzahl zwischen der ersten und der zweiten Seite monoton veränderlich ist; und wobei die Mikrokanäle Kavitäten im Impedanzanpassungskörper bilden, wobei eine effektive Materialdichte eines Impedanzanpassungsmaterials des Impedanzanpassungskörpers zwischen der ersten Seite und der zweiten Seite durch eine monotone Zunahme oder monotone Abnahme eines Volumens der Kavitäten monoton veränderlich ist, und die Anpassung der Schallkennimpedanz bewirkt. Alternativ oder zusätzlich sind die Mikrokanäle als sich hin zur ersten oder hin zur zweiten Seite verjüngende Strukturen gebildet sind, und zumindest in einem Bereich minimaler Ausdehnung die Strukturausdehnung aufweisen.
  • Gemäß einem Ausführungsbeispiel umfasst ein Verfahren zum Herstellen einer Impedanzanpassungsvorrichtung einen Schritt mit einem Bereitstellen eines Impedanzanpassungskörpers mit einer ersten und einer gegenüberliegenden zweiten Seite, der ausgebildet ist, um eine Schallkennimpedanz eines an der ersten Seite kontaktierten Mediums, an eine Schallkennimpedanz eines an der zweiten Seite kontaktierten Schallwandlers anzupassen; so dass der Impedanzanpassungskörpers Mikrokanäle umfasst, die entlang zumindest einer Raumrichtung eine Strukturausdehnung von höchstens 500 nm aufweisen. Das Verfahren wird so ausgeführt, dass die Mikrokanäle verzweigte Mikrokanäle sind, deren Anzahl zwischen der ersten und der zweiten Seite monoton veränderlich ist; und so dass die Mikrokanäle Kavitäten im Impedanzanpassungskörper bilden, so dass eine effektive Materialdichte eines Impedanzanpassungsmaterials des Impedanzanpassungskörpers zwischen der ersten Seite und der zweiten Seite durch eine monotone Zunahme oder monotone Abnahme eines Volumens der Kavitäten monoton veränderlich ist, und die Anpassung der Schallkennimpedanz bewirkt; und/oder wird ausgeführt, so dass die Mikrokanäle als sich hin zur ersten oder hin zur zweiten Seite verjüngende Strukturen gebildet sind, und zumindest in einem Bereich minimaler Ausdehnung die Strukturausdehnung aufweisen.
  • Weitere vorteilhafte Ausführungsbeispiele sind der Gegenstand der abhängigen Patenansprüche.
  • Ausführungsbeispiele werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen erläutert. Es zeigen:
  • Fig. 1
    ein schematisches Blockschaltbild einer Impedanzanpassungsvorrichtung zur Anpassung einer Schallkennimpedanz gemäß einem Ausführungsbeispiel;
    Fig. 2
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung gemäß einem Ausführungsbeispiel, bei der eine Vielzahl von Mikrostrukturen angeordnet ist, die als verzweigte Kanalstrukturen angeordnet sind;
    Fig. 3
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung gemäß einem Ausführungsbeispiel, bei der die Mikrostrukturen als hin zu einer Seite eines Anpassungskörpers sich verjüngende Strukturen gebildet sind;
    Fig. 4a
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung welche nicht unter den Schutzumfang der Patentansprüche fällt, bei der der Impedanzanpassungskörper so gebildet ist, dass die Mikrostrukturen eine hexagonale Gitterstruktur bilden;
    Fig. 4b
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung welche nicht unter den Schutzumfang der Patentansprüche fällt, bei der die Mikrostrukturen ein hexagonales/Dreieck-Muster bilden;
    Fig. 4c
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung welche nicht unter den Schutzumfang der Patentansprüche fällt, bei der die Mikrostrukturen in einem DreieckGittermuster angeordnet sind, sodass Kavitäten eine dreieckige Form aufweisen;
    Fig. 4d
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung welche nicht unter den Schutzumfang der Patentansprüche fällt, bei der die Mikrostrukturen eine Gitterstruktur gemäß einem Diamant-Muster bilden;
    Fig. 5
    eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung welche nicht unter den Schutzumfang der Patentansprüche fällt, bei der die Mikrostrukturen einen akustischen Pfad definieren;
    Fig. 6
    ein schematisches Blockschaltbild einer Wandlervorrichtung gemäß einem Ausführungsbeispiel;
    Fig. 7
    ein schematisches Blockschaltbild eines Systems gemäß einem Ausführungsbeispiel;
    Fig. 8
    ein schematisches Ablaufdiagramm eines Verfahrens gemäß einem Ausführungsbeispiel zum Herstellen einer Impedanzanpassungsvorrichtung; und
    Fig. 9
    eine schematische Darstellung von drei bekannten Methoden einer Anpassung der Schallkennimpedanz.
  • Bevor nachfolgend Ausführungsbeispiele im Detail anhand der Zeichnungen näher erläutert werden, wird darauf hingewiesen, dass identische, funktionsgleiche oder gleichwirkende Elemente, Objekte und/oder Strukturen in den unterschiedlichen Figuren mit den gleichen Bezugszeichen versehen sind, sodass die in unterschiedlichen Ausführungsbeispielen dargestellte Beschreibung dieser Elemente untereinander austauschbar ist bzw. aufeinander angewendet werden kann.
  • Fig. 1 zeigt ein schematisches Blockschaltbild einer Impedanzanpassungsvorrichtung 10 zur Anpassung einer Schallkennimpedanz. Die Impedanzanpassungsvorrichtung umfasst einen Impedanzanpassungskörper 12 mit einer ersten Seite 14 und einer zweiten Seite 16. Die Seiten 14 und 16 sind einander gegenüberliegend angeordnet. Die Impedanzanpassungsvorrichtung kann ausgebildet sein, um von einem Schall, d. h. einer akustischen Welle, von der Seite 14 zu der Seite 16 entlang einer Schalldurchlaufrichtung 18a durchlaufen zu werden und/oder, um von einer Schallwelle von der Seite 16 zu der Seite 14 entlang einer entgegengesetzten Schalldurchlaufrichtung 18b durchlaufen zu werden. Beispielsweise kann die Schallwelle von einem Schallwandler erzeugbar sein, der mit der Seite 14 kontaktierbar ist. Die Seite 16 kann mit einem Medium, beispielsweise einem menschlichen Körper, einer Flüssigkeit oder Luft oder dergleichen kontaktierbar sein. Die Impedanzanpassungsvorrichtung 10 kann ausgebildet sein, um eine Schallkennimpedanz des Mediums an eine Schallkennimpedanz des Schallwandlers und/oder umgekehrt anzupassen. Hierfür kann der Impedanzanpassungskörper 12 in einem Bereich der Seite 14 beispielsweise eine Schallkennimpedanz aufweisen, die an den Schallwandler angepasst ist und ferner im Bereich der Seite 16 eine Schallkennimpedanz aufweisen, die an das Zielmedium angepasst ist.
  • Hieraus kann sich ergeben, dass der Impedanzanpassungskörper im Bereich der Seite 14 eine höhere Schallkennimpedanz aufweist als im Bereich der Seite 16, wobei dies nicht erforderlich ist.
  • Der Impedanzanpassungskörper 12 umfasst Mikrostrukturen, beispielsweise verästelte Mikrostrukturen 221 und 222 und/oder In-Plane-Mikrostrukturen 223. Die Mikrostrukturen 221, 222 und/oder 223 können als Kavitäten in einem Material des Impedanzanpassungskörpers 12 gebildet sein, wobei die Kavitäten gefüllt oder ungefüllt sein können. Eine Füllung der Kavitäten kann ganz oder teilweise ein anderes Material aufweisen als ein Basismaterial oder restliches Material 24 des Impedanzanpassungskörpers 12. Das bedeutet, die Mikrostrukturen 22, bis 223 können als Hohlraum, eine Kanalstruktur und/oder ein Einschluss in dem Material 24 verstanden werden.
  • Die Mikrostrukturen 221 bis 223 sind jede für sich einzeln oder gemeinsam so gebildet, dass sie entlang zumindest einer Raumrichtung eine Strukturausdehnung 261, 262 und/oder 263 aufweisen, die höchstens 500 Nanometer, bevorzugt höchstens 300 Nanometer und besonders bevorzugt höchstens 100 Nanometer beträgt. Die Strukturausdehnung 261, 262 und/oder 263 kann dabei als längster Abstand zweier beliebiger Punkte einer äußeren Fläche der Mikrostruktur verstanden werden, wobei die zwei beliebigen Punkte in einem Querschnitt der Mikrostruktur 221 bis 223 gegenüberliegend sind. Die Strukturausdehnungen können entlang einer beliebigen Raumrichtung x, y und/oder z angeordnet sein. Ist die Mikrostruktur beispielsweise eine röhrenartige Struktur, so können die Punkte in einem Längsschnitt oder Querschnitt angeordnet sein, wobei der Längsschnitt beispielsweise durch eine Ebene verläuft, die durch den Durchmesser der Röhrenstruktur gebildet wird, bestimmt ist. Vereinfacht ausgedrückt kann die Strukturausdehnung einer oder mehrerer Mikrostrukturen eine Abmessung derselben senkrecht zu einer axialen Erstreckungsrichtung der jeweiligen Mikrostruktur sein. Eine Idee der vorliegenden Ausführungsbeispiele liegt im Nutzes des Auflösungsvermögen eines hierin beschriebenen Verfahrens, das bspw. 100 nm betragen kann oder weniger, um Strukturen präzise, d.h. mit hoher Auflösung zu fertigen.
  • Vereinfacht ausgedrückt kann in einem derartigen Fall die Strukturausdehnung der Durchmesser einer runden Mikrostruktur 22 sein.
  • Die Mikrostruktur 222 kann mit der Mikrostruktur 221 fluidisch gekoppelt sein, sodass ein Durchschnittswert eines Volumens, das durch die Mikrostrukturen 221 und 222 belegt ist, von der Seite 14 ausgehend zu der Seite 16 hin zunimmt, alternativ aber auch abnehmen kann, das bedeutet, ein Durchschnittswert der Schallkennimpedanz kann hin zu der Seite 14 zunehmen oder abnehmen, alternativ auch konstant sein, wie es im Zusammenhang mit den Fig. 4a bis 4d beschrieben ist. Dies kann eine veränderliche Dichte ρ des Materials 24 und somit eine Veränderung der Schallkennimpedanz zwischen den Seiten 14 und 16 bewirken. Weist ein Material oder eine Füllung der Mikrostrukturen 221 und 222 eine größere Materialdichte auf als das Material 24, so kann die Schallkennimpedanz der Impedanzanpassungsvorrichtung 10 von der Seite 14 zur Seite 16 zunehmen. Ist die Dichte beispielsweise geringer, so kann eine abnehmende Schallkennimpedanz entlang der Schalldurchlaufrichtung 18a erhalten werden. Das bedeutet, dass die Mikrostrukturen ein erstes Impedanzanpassungsmaterial aufweisen können und dass in Zwischenbereichen zwischen den Mikrostrukturen ein zweites Impedanzanpassungsmaterial, beispielsweise das Material 24, angeordnet sein kann. Die Mikrostrukturen können beispielsweise aus einem ausgehärteten Polymermaterial oder einem Metallmaterial gebildet sein. Alternativ kann auch ein beliebiges anderes Material verwendet werden. Beschriebene Polymermaterialien und/oder Metallmaterialien können exakt prozessiert werden und so direkt als Mikrostrukturen einsetzbar sein, wie es im Zusammenhang mit hierin beschriebenen Herstellungsverfahren beschrieben ist. Alternativ können derartige Strukturen auch als Vorlage oder Negativform dienen, um die Abformung anderer Materialien zu ermöglichen.
  • Alternativ zu einer Anordnung parallel oder schräg zu einer Schalldurchlaufrichtung 18a oder 18b kann zumindest eine Mikrostruktur auch senkrecht hierzu angeordnet sein, beispielsweise parallel zu einer x-Richtung, die beispielsweise senkrecht zu einer Oberflächennormalen der ersten Seite 14 und/oder der zweiten Seite 16 angeordnet sein kann.
  • Durch die Ausbildung der Mikrostrukturen mit der definierten Strukturausdehnung von höchstens 500 Nanometer, bevorzugt höchstens 300 Nanometer oder bevorzugt höchstens 100 Nanometer, kann eine äußerst feine und somit exakte Einstellung der Schallkennimpedanz entlang der Schalldurchlaufrichtung 18a und/oder 18b eingestellt werden. Dies ermöglicht einen effizienten Betrieb der Impedanzanpassungsvorrichtung selbst bei geringen Abmessungen der Impedanzanpassungsvorrichtung 10.
  • Ausführungsbeispiele ermöglichen einen kontinuierlichen Übergang zwischen den jeweiligen Impedanzwerten, beispielsweise dem Medium und dem Schallwandler, was in bekannten Konzepten nicht oder nur schwer realisierbar ist. Ausführungsbeispiele schaffen Konzepte für eine akustische Impulsantwort sowie deren Herstellungsverfahren, beispielsweise oder gar vorrangig unter Verwendung des Multiple-Photonen-Absorptions-Lithographieverfahrens zur Erzeugung von Schichtsystemen, welche die akustische Schallkennimpedanz zwischen Schallwandlern und Medium anpassen. Ein Ziel ist eine ideale Kopplung der akustischen Energie vom Schallwandler in das Lastmedium (Sendefall) und/oder aus dem Lastmedium in den Schallwandler (Empfangsfall).
  • Fig. 2 zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 20 gemäß einem Ausführungsbeispiel, bei der eine Vielzahl von Mikrostrukturen 22i mit i = 1,..,6, angeordnet ist, die als verzweigte Kanalstrukturen zwischen den Seiten 14 und 16 angeordnet sind, wobei eine hohe Anzahl von mehr als 6 Mikrostrukturen angeordnet ist. So kann sich beispielsweise eine einzelne Kanalstruktur 221 im Bereich der Seite 14 in eine Vielzahl von Kanalstrukturen aufzweigen, etwa im Sinne eines Flussdeltas. Ein Material oder die Abwesenheit von Material kann als zumindest lokale Materialdichte ρ2 beschreiben werden, die von einer Materialdichte ρ1 des Materials 24 verschieden ist.
  • Der zunehmende Volumenanteil der Mikrostrukturen 22i ermöglicht eine entlang der Schalldurchlaufrichtung 18a zunehmend von den Mikrostrukturen 22 beeinflusste Gesamtdichte des Impedanzanpassungskörpers 10, die die Schallkennimpedanz beeinflussen oder bestimmen kann und beschreibt somit eine zunehmende Beeinflussung der Schallkennimpedanz durch ein derartiges Material.
  • Die Mikrostrukturen 22 können Kavitäten definieren. Eine effektive Materialdichte des Impedanzanpassungskörpers 12 kann zwischen den Seiten 14 und 16 durch die Kavitäten monoton veränderlich sein. Das Impedanzanpassungsmaterial 24 mit einer Dichte ρ1 kann zunehmend von dem Impedanzanpassungsmaterial ρ2 durchzogen sein, so dass in einem räumlichen Mittel eine veränderliche Effektive Dichte des Impedanzanpassungskörpers erhalten wird. Die monotone Zunahme bzw. Abnahme des Volumens der Mikrostrukturen kann so zu einer monotonen Veränderung der Dichte des Materials 24 führen, um die Anpassung der Schallkennimpedanz zu bewirken. Die Kavitäten können bspw. von den Mikrostrukturen gebildet oder umschlossen sein. Alternativ oder zusätzlich kann zumindest eine der Mikrostrukturen 22 einen Bereich außerhalb einer Kavität definieren, so dass die Kavität abseits der Mikrostrukturen 22 gebildet ist.
  • Wie es anhand der Fig. 2 beispielhaft dargestellt ist, können die Mikrostrukturen 22 verzweigte Mikrokanäle definieren, deren Anzahl zwischen den Seiten 14 und 16 monoton veränderlich ist, um die Veränderung der Dichte des Materials 24 zu bewirken.
  • In anderen Worten zeigt Fig. 2 Mikrokavitäten, die in einem Schichtsystem, das durch Hohlräume, Kanäle oder Einschlüsse in seiner effektiven Dichte und damit Schallkennimpedanz verändert wird. Der gewünschte Schallkennimpedanzverlauf kann durch verbundene Hohlräume 22 erzeugt werden. Die größte Menge der Kanäle und damit die niedrigste Schallkennimpedanz kann auf der Mediumseite des Schichtsystems, d. h. der Seite 16, angeordnet sein.
  • Alternativ oder zusätzlich zu der Anzahl der Mikrokanäle kann auch zumindest eine andere Eigenschaft wie die Form, die Position und/oder das Volumen der Mikrostrukturen veränderlich sein, um die im Zusammenhang mit Fig. 1 beschriebene veränderliche Dichte oder Materialdichte zu erhalten. Diese Veränderung der Dichte kann monoton sein, wie es bspw. durch die beschriebene monoton veränderliche Anzahl der Mikrokanäle erhalten werden kann. Die Veränderung sämtlicher Eigenschaften kann gleichmäßig sein, d. h., mit einer gleichen Veränderungsrate entlang der Schalldurchlaufrichtung. Alternativ hierzu kann eine veränderliche Veränderungsrate eingerichtet sein. Die Veränderungsrate einer, mehrerer oder aller Eigenschaften innerhalb des Impedanzanpassungskörpers kann determinierbar, d. h., vorherbestimmbar sein und durch entsprechende akustische Berechnungen und/oder Simulationen vorteilhaft gestaltet werden, was eine gute oder verbesserte Schallübertragung ermöglichen kann. Bei Beispielen kann eine Positionsvarianz der Mikrostrukturen durch das Abstandsverhältnis der Strukturen untereinander entstehen, oder durch das Verhältnis der Position der Strukturen gegenüber einer von äußeren Wänden des Impedanzanpassungkörpers. So kann eine gezielte Positionierung der Strukturen in einer, sich konzentrisch verändernden Art und Weise, die Erzeugung einer fokussierenden Schicht ermöglichen, welche keine Krümmung der äußeren Wände aufweist. Bei Beispielen kann der Impedanzanpssungskörper einen vom Zentrum abnehmenden Abstand in Abstrahlungsrichtung zwischen den einzelnen Strukturen aufweisen.
  • Alternativ oder zusätzlich zu der Ausformung der Mikrostrukturen als Mikrokanäle gleichen oder veränderlichen Querschnitts können die Mikrokanäle auch andere Formen aufweisen, etwa Formen wie Spiralen, runder oder nichtrunder Tropfen, Kuben oder dergleichen. Die Mikrostrukturen können alle gleichförmig aber auch absichtlich unterschiedlich bzgl. der Form und/oder Größe gebildet sein. Dabei kann eine derartige Form die Mikrostruktur als Ganzes bezeichnen, es sind aber auch Kombinationen möglich, etwa ein Mikrokanal, der stellenweise oder bereichsweise einen Tropfen, eine runde oder nicht runde Kavität oder einen Kubus, d. h., polygone Oberflächen aufweisend bildet oder umfasst und/oder einen Mikrokanal der in einer Spiralform verläuft. Ein Tropfen kann als nichtlineare und/oder kontinuierliche Änderung des Querschnitts verstanden werden, wobei eine Kugel eine der mögliche Formen ist, die aber auch longitudinal gestreckt sein kann. Die Form kann alternativ oder zusätzlich entlang des bspw. spiralförmigen Verlaufs eine veränderliche Ausformung/Querschnitt implementiert aufweisen und/oder die beispielhafte Spirale kann an zumindest einem Ende oder entlang eines Verlaufs mit weiteren Mikrostrukturen verbunden ist. Dies ist lediglich beispielhaft zu verstehen, es können eine oder mehrere beliebige Formen mit einander kombiniert werden.
  • Fig. 3 zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 30 gemäß einem Ausführungsbeispiel, bei der die Mikrostrukturen als hin zur Seite 14 sich verjüngende Strukturen gebildet sind. Die sich verjüngenden Strukturen können Bereiche 28i in minimaler Ausdehnung aufweisen, wobei die Bereiche 28i minimale Ausdehnung auf die Strukturausdehnung bezogen sind. Beispielsweise können sich die Mikrostrukturen 22i konisch verjüngen, sodass die Bereiche 28 die Enden oder Spitzen der konischen Strukturen darstellen können. Gemäß anderen Ausführungsbeispielen sind die Mikrostrukturen einzeln oder in Kombination beispielsweise pyramidenförmig, kegelförmig oder anders verjüngend gebildet.
  • In anderen Worten veranschaulicht Fig. 3 ein Ausführungsbeispiel mit Verjüngungsstrukturen, bei dem sich das Hauptmaterial 24 in sich ebenfalls konisch verjüngende Strukturen unterteilt, wobei die Verjüngung des Materials 24 hin zur Seite 16 erfolgen kann. Die Verjüngung kann unmittelbar an den Seiten 14 bzw. 16 einsetzen, kann alternativ aber auch hiervon beabstandet sein. Der gewünschte Schallkennimpedanzverlauf wird beispielsweise durch mehrere, sich konisch verjüngende Volumen der Mikrostrukturen 22i erzeugt. Das kann bewirken, dass sich die niedrigste Schallkennimpedanz des Impedanzanpassungskörpers an der Seite 16 befindet.
  • Während die Ausführungsbeispiele gemäß der Fig. 2 und/oder der Fig. 3 als GMS-Anpassungsstrukturen eingesetzt werden können, können die Mikrostrukturen 22 gemäß anderer Ausführungsbeispiele auch als SMS und/oder MMS eingesetzt werden.
  • Fig. 4a zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 40a, bei der der Impedanzanpassungskörper so gebildet ist, dass die Mikrostrukturen 22 eine Gitterstruktur bilden, die sich entlang einer Richtung senkrecht zu den Schalldurchlaufrichtungen 18a und/oder 18b erstreckt. Beispielsweise erfolgt innerhalb des Impedanzanpassungskörpers 12 von der Seite 14 hin zu der Seite 16 und umgekehrt keine Änderung der mittleren Dichte und/oder der Schallkennimpedanz. Das bedeutet, der Impedanzanpassungskörper 12 kann eine im Mittel unveränderte oder konstante Schallkennimpedanz aufweisen, die beispielsweise geringer ist als die höhere der an den Seiten 14 und 16 angeordnete Schallkennimpedanz und/oder höher ist als die geringere dieser Schallkennimpedanzen. Beispielsweise können die Mikrostrukturen 22 im dargestellten Seitenschnitt ein hexagonales Gitter bzw. eine Wabenstruktur bilden.
  • Die Impedanzanpassungsvorrichtung 40a ermöglicht eine SMS.
  • Fig. 4b zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 40b, bei der die Mikrostrukturen ein hexagonales/Dreikanten-Muster bilden, beispielsweise durch Ausbildung mehrerer In-Plane Mikrostrukturen, wie die Mikrostruktur 22, senkrecht zu den Schalldurchlaufrichtungen 18a und/oder 18b und mehrere in unterschiedlichen Richtungen senkrecht hierzu angeordneten Mikrostrukturen, die die In-Plane Mikrostruktur diagonal schneiden, entweder die Mikrostruktur 222 und/oder 223, die sich in einer schrägen Anordnung zwischen den Seiten 14 und 16 erstrecken.
  • Fig. 4c zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 40c, bei der die Mikrostrukturen in einem Dreikant-Gittermuster angeordnet sind, sodass Kavitäten 32 in der dargestellten Seitenschnittansicht eine dreieckige Form aufweisen. Die Mikrostrukturen 22 können beispielsweise aus dem Material 24 gebildet sein, wobei die Kavitäten 32 gefüllte oder ungefüllte Hohlräume darstellen können.
  • Fig. 4d zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 40d, bei der die Mikrostrukturen 22, bis 223 ebenfalls eine Gitterstruktur bilden, wobei die Gitterstruktur gemäß einem Diamant-Muster gebildet ist.
  • Die Impedanzanpassungsvorrichtungen 40a, 40b, 40c und/oder 40d können eine im Wesentlichen homogene oder konstante Schallkennimpedanz zwischen den Seiten 14 und 16 aufweisen. Eine Impedanzanpassungsvorrichtung kann einen Impedanzanpassungskörper aufweisen, der mehrschichtig gebildet ist und zumindest eine erste Schicht und eine zweite Schicht aufweist, die aneinander angeordnet sind. Die erste Schicht kann eine erste Schichtkennimpedanz und die zweite Schicht kann eine zweite Schichtkennimpedanz aufweisen, wobei die beiden Schichtkennimpedanzen gleich, bevorzugt jedoch voneinander verschieden sind. Hierfür können gleiche Muster gemäß den Fig. 4a bis 4d genutzt werden, beispielsweise basierend auf unterschiedlichen Öffnungsquerschnitten der Kavitäten 32 und/oder es können unterschiedliche Muster genutzt werden, beispielsweise durch Anordnen unterschiedlicher Impedanzanpassungskörper 12.
  • Gemäß den Fig. 4a bis 4d können die Mikrostrukturen 22 eine Gitterstruktur ausbilden, entlang einer Richtung senkrecht zu den Schalldurchlaufrichtungen angeordnet ist und sich entlang dieser Richtung erstreckt, beispielsweise entlang der x-Richtung. Die Kavitäten 32 können sich entlang derselben oder einer anderen Richtung senkrecht zu den Schalldurchlaufrichtungen 18a und 18b in dem Impedanzanpassungskörper erstrecken, beispielsweise entlang der y-Richtung. Die Kavitäten können basierend auf einer Anordnung der Mikrostrukturen 22 einen polygonalen Querschnitt aufweisen, alternativ kann der Querschnitt auch gemäß einer Freiformfläche gebildet sein, elliptisch gebildet sein oder gar rund gebildet sein.
  • In anderen Worten zeigen die Fig. 4a bis 4c die Implementierung eines Mikrogitters. Das Anpassschichtsystem umfasst hierbei ein gerüstartiges Gitter mit variablen Gerüstelementen. Die genannten Mikrogitter sind in den Fig. 4a bis 4d als Schnittbilder verschiedener Gitterstrukturen gezeigt, wobei Fig. 4a ein hexagonales Gitter, Fig. 4b ein hexagonales/Dreikanten-Gitter, Fig. 4c ein Dreikanten-Gitter und Fig. 4d ein Diamant-Gitter zeigen. Die Gitter können in Gitterebenen angeordnet sein, wobei die Gitterebenen bspw. parallel zu den Seiten 14 und/oder 16 verlaufen können, wobei eine Impedanzanpassungsvorrichtung eine oder mehrere Gitterebenen aufweisen kann. Der gewünschte Schallkennimpedanzverlauf kann durch verschieden ausgerichtete und verbundene Verbindungsstücke erzeugt werden. Durch Änderung der Abstände und/oder Gitterstrukturen und/oder Verbindungsstückdicken kann die Schallkennimpedanz weiter verändert werden. Die Gitterstrukturen können zweidimensionale oder dreidimensionale Gitterstrukturen gebildet sein. Dreidimensionale Gitterstrukturen können sich durch Veränderung der Gitterkonstante und/oder der Dicke und Form der Verbindungen auszeichnen. Dies ermöglicht eine hohe Steifigkeit gegenüber konisch zulaufenden Strukturen und/oder eine leichte Verarbeitung mit dem Verfahren, da die Struktur einfach mit einer Entwicklerlösung zu durchsetzbar ist.
  • Fig. 5 zeigt eine schematische Seitenschnittansicht einer Impedanzanpassungsvorrichtung 50, bei der die Mikrostrukturen 22, bis 223 einen akustischen Pfad 34 zwischen den Seiten 14 und 16 definieren. Beispielsweise kann der akustische Pfad 34 durch die Kavität 32 verlaufen, die durch die Mikrostrukturen 22, bis 223 definiert wird. In der Kavität 32 kann ein Vakuum, ein Fluid, beispielsweise ein Gas, und/oder ein Festkörper angeordnet sein, wobei bevorzugt ein Material der Mikrostrukturen 221 bis 223 eine höhere Schallkennimpedanz aufweist als der Impedanzanpassungskörper 12 in einem Bereich des akustischen Pfades, beispielsweise der Kavität 32. Verglichen mit einer direkten oder kürzesten Wegstrecke 36 zwischen den Seiten 14 und 16 kann der akustische Pfad 34 eine Laufzeitverlängerung für durch den akustischen Pfad 34 gesendeten Schall bereitstellen. Die Laufzeitverlängerung kann basierend auf einer Wegverlängerung verglichen mit der direkten Verbindung 36 bereitgestellt werden, das bedeutet, durch die längere Wegstrecke bzw. die Wegverlängerung des akustischen Pfades 34 kann die Laufzeitverlängerung und mithin eine Phasenverschiebung erhalten werden. Der akustische Pfad 34 kann eine Mehrzahl oder Vielzahl von Pfadabschnitten 381 bis 384 aufweisen. Obwohl die Impedanzanpassungsvorrichtung 50 so dargestellt ist, dass vier Pfadabschnitte 381 bis 384 seriell hintereinander angeordnet sind, kann eine andere Anzahl von zumindest einem Pfadabschnitt, zumindest zwei Pfadabschnitten, zumindest drei Pfadabschnitten, zumindest fünf Pfadabschnitten, beispielsweise sechs, acht oder zehn Pfadabschnitten oder mehr implementiert sein. Bezüglich einem oder mehr Pfadabschnitten können auch parallele Pfadabschnitte angeordnet sein.
  • Die Pfadabschnitte 381 bis 384 können einzeln, gruppenweise oder insgesamt senkrecht zu den Schalldurchlaufrichtungen 18a und/oder 18b angeordnet sein, sodass der akustische Pfad 34 im Bereich der Pfadabschnitte 381 bis 384 senkrecht zu den Schalldurchlaufrichtungen 18a und/oder 18b verläuft oder zumindest eine Richtungskomponente senkrecht zu den Schalldurchlaufrichtungen 18a und/oder 18b aufweist. Die Pfadabschnitte können sich in unterschiedlichen Ebenen des Impedanzanpassungskörpers 12 zwischen den Seiten 14 und 16 erstrecken, beispielsweise wenn die Ebenen als parallel zu den Seiten 14 und/oder 16 betrachtet werden.
  • Die Pfadabschnitte 381, 382, 383 und 384 können jeweils einen akustisch wirksamen Querschnitt 421, 422, 423 bzw. 424 aufweisen, der durch die Größe oder Ausdehnung der Kavität 32 in dem Bereich des jeweiligen Pfadabschnitts 381 bis 384 beeinflusst sein kann. Beispielsweise kann der akustisch wirksame Querschnitt 42i eines Pfadabschnitts 38i von einem Abstand benachbarter Mikrostrukturen 221 und 222, 222 und 223 und/oder einer Mikrostruktur 221 bzw. 223 zu seiner Seite 14 bzw. 16 bestimmt oder beeinflusst sein. Die akustisch wirksamen Querschnitte 421 bis 424 können gleich oder voneinander verschieden sein, wobei beispielsweise ein entlang einer Schalldurchlaufrichtung 18a oder 18b abnehmender akustischer Querschnitt eine Zunahme einer akustischen Schallkennimpedanz bewirken kann.
  • Zwischen zwei möglicherweise aufeinander folgende Pfadabschnitte 381 und 382, 382 und 383 und/oder 383 und 384 kann eine Verjüngung 441, 442 und/oder 443 des akustischen Pfades 34 bzw. des akustisch wirksamen Querschnitts angeordnet sein. Eine derartige Verjüngung kann beispielsweise durch einen Abstand zwischen den Mikrostrukturen und Begrenzungsstrukturen 461 und/oder 462 erhalten werden, beispielsweise Seitenwandstrukturen. Alternativ ist es ebenfalls möglich, eine Verjüngung 44 zwischen zwei benachbarten Mikrostrukturen 22 vorzusehen, beispielsweise zwischen den Mikrostrukturen 221 und 222 zum Erhalt einer Verjüngung 444. Hierfür können Mikrostrukturen 224 und/oder 225 vorgesehen sein, wobei auch andere Materialien und/oder Abmessungen und/oder Geometrien verwendet werden können, solange diese Strukturen eine höhere Schallkennimpedanz aufweisen als die Kavität 32 im Bereich des entsprechenden Pfadabschnittes. Obwohl die zusätzliche Anordnung der Mikrostrukturen 224 und 225 einen entsprechenden Fertigungsaufwand mit sich bringt, ermöglicht dies eine präzise Einstellung der Schallkennimpedanz der Impedanzanpassungsvorrichtung 50. Dem gegenüber können die Verjüngungen 441 bis 443 einfach hergestellt werden, da sie sich beispielsweise aus einem Abstand zwischen den Mikrostrukturen 221 bis 223 zu den Begrenzungsstrukturen 461 und/oder 462 ergeben können.
  • Ein akustisch wirksamer Querschnitt 42i zumindest eines Pfadabschnitts 38i kann über dessen axiale Erstreckung, beispielsweise entlang der x-Richtung veränderlich sein. Dies kann beispielsweise durch eine veränderliche Abmessung zumindest einer der Mikrostrukturen 221, 222 und/oder 223 entlang der Schalldurchlaufrichtung 18a und/oder 18b erhalten werden, alternativ oder zusätzlich können auch zusätzliche Strukturen im Verlauf des Pfadabschnitts 38i vorgesehen sein. Die akustisch wirksamen Querschnitte 42i können einzeln, gruppenweise oder insgesamt gleich eingestellt werden. Das bedeutet, dass ein akustisch wirksamer Querschnitt zweier aneinander grenzender Pfadabschnitte voneinander verschieden sein kann.
  • In anderen Worten zeigt Fig. 5 eine aufgewickelte Struktur, bei der das Anpassungsschichtsystem aus aufgespulten oder aufgewickelten Strukturen besteht, welche die Laufzeit der Schallwelle erhöhen. In Fig. 5 sind die aufgewickelten Strukturen als Schnitt durch eine Elementarzelle eines auf einem Schallwandler aufgetragenen Schichtsystems dargestellt. Der gewünschte Schallkennimpedanzverlauf kann durch mehrere, ineinander verwundene Kanäle erzeugt werden. Damit kann die Schallkennimpedanz über die Schallgeschwindigkeit durch die Wellenlaufzeit beeinflusst werden, bis die Welle auf der Mediumseite des Schichtsystems ankommt.
  • Vorangehend erläuterte Ausführungsbeispiele beschreiben unterschiedliche Ausgestaltungen der Mikrostrukturen in dem Impedanzanpassungskörper. Wie es dargelegt ist, kann jedes dieser Ausführungsbeispiele einen einstufigen, mehrstufigen oder gradientenähnlichen Verlauf der Schallkennimpedanzanpassung bereitstellen. Die unterschiedlichen Ausführungsbeispiele sind beliebig miteinander kombinierbar, sodass in unterschiedlichen Ebenen senkrecht zur Schalldurchlaufrichtung und/oder parallel hierzu unterschiedlich gebildete Mikrostrukturen und/oder Gitterstrukturen angeordnet sein können. Dies kann beispielsweise einstückig erfolgen, etwa indem die Mikrostrukturen in unterschiedlichen Bereichen des Impedanzanpassungskörpers unterschiedlich gebildet werden. Alternativ kann auch eine mehrstückige Anordnung erfolgen, etwa indem Impedanzanpassungskörper gemäß verschiedenen Ausführungsbeispielen mechanisch und/oder akustisch miteinander gekoppelt werden und jeweils eine Schicht eines mehrschichtigen Impedanzanpassungskörpers bilden.
  • Durch unterschiedliche Ausgestaltungen wird es ermöglicht, dass ein Verlauf der Schallkennimpedanz zwischen der ersten Seite 14 und der zweiten Seite 16 des insgesamt erhaltenen Impedanzanpassungskörpers kontinuierlich oder diskontinuierlich ist. Ein Beispiel für einen kontinuierlichen Verlauf kann eine lineare und/oder exponentielle Ausbildung des Verlaufs der Schallkennimpedanz entlang der Schalldurchlaufrichtung 18a und/oder 18b sein.
  • Ausführungsbeispiele sehen vor, dass die Impedanzanpassungsvorrichtung so ausgestaltet ist, dass der Impedanzanpassungskörper an den unterschiedlichen Seiten unterschiedliche Schallkennimpedanzen aufweist. Eine der Seiten kann beispielsweise an eine Schallkennimpedanz eines MUT-Schallwandlers angepasst sein, sodass die Schallkennimpedanz des Impedanzanpassungskörpers mit der Schallkennimpedanz des MUT-Schallwandlers innerhalb eines Toleranzbereichs von ±50 %, ±25 % oder ±10 % übereinstimmt, das bedeutet, die Werte der Schallkennimpedanz, die Schallkennimpedanzwerte stimmen überein. Ein beispielhafter Wert hierfür ist 1-35 MRayl = 1-35 · 106 Ns/m3. Ein Bereich von 1-5 MRayl = 1-5 · 106 Ns/m3 kann gut für Membranschwinger zutreffen, zu denen die MUT-Wandler zählen. Der Bereich von 1-35 MRayl = 1-35 · 106 Ns/m3 umfasst auch die Keramiken, und Komposit-Wandler, bspw. PZT-basierte Wandlerklassen. Die Schallkennimpedanz an der anderen Seite kann mit der Schallkennimpedanz eines Zielmediums nach Möglichkeit übereinstimmen oder dieser zumindest angenähert sein, beispielsweise ein Fluid, etwa Luft.
  • Fig. 6 zeigt ein schematisches Blockschaltbild einer Wandlervorrichtung 60 gemäß einem Ausführungsbeispiel. Die Wandlervorrichtung 60 umfasst beispielsweise die Impedanzanpassungsvorrichtung 10. Die Wandlervorrichtung 60 umfasst ferner ein Schallwandlerelement 48, das sowohl konfiguriert sein kann, um basierend auf einem Ansteuersignal eine Schallwelle zu erzeugen als auch alternativ oder zusätzlich konfiguriert sein kann, um basierend auf einer eintreffenden Schallwelle ein elektrisches Signal bereitzustellen. Das bedeutet, das Wandlerelement 48 kann als Schallaktuator und/oder Schallsensor implementiert sein oder diesen umfassen.
  • Die Impedanzanpassungsvorrichtung 10 ist beispielsweise an der Seite 14 mit dem Schallwandlerelement 48 gekoppelt, beispielsweise indem der Impedanzanpassungskörper mechanisch fest mit dem Schallwandlerelement 48 gekoppelt ist. Beispielsweise kann die Impedanzanpassungsvorrichtung 10 auf dem Schallwandlerelement 48 abgeschieden sein oder umgekehrt. Obwohl die Wandlervorrichtung 60 so beschrieben ist, dass das Schallwandlerelement 48 mit der Seite 14 akustisch gekoppelt ist, kann das Schallwandlerelement 48 alternativ auch mit der Seite 16 akustisch gekoppelt sein. Die jeweils andere Seite 16 bzw. 14 kann konfiguriert sein, um mit einem Medium kontaktiert zu werden, in das eine Schallwelle auszusenden ist oder aus dem eine Schallwelle empfangen werden soll. Alternativ kann auch eine andere akustisch wirksame Struktur, beispielsweise ein weiteres Schallwandlerelement, an der anderen Seite akustisch gekoppelt sein, sodass basierend auf der Impedanzanpassungsvorrichtung 10 eine Impedanzanpassung zwischen zwei Schallwandlerelementen erfolgen kann.
  • Bevorzugt weist die akustische Kopplung zwischen dem Schallwandlerelement 48 und der Seite 14 einen stetigen Übergang der Schallkennimpedanz auf, das bedeutet, innerhalb des Toleranzbereichs von ±50 %, ±25 % oder ±10 % ist die Schallkennimpedanz des Schallwandlerelements 48 in Übereinstimmung mit der Schallkennimpedanz der Impedanzanpassungsvorrichtung an der Seite 14.
  • Das Schallwandlerelement 48 kann ein piezoelektrisches Keramikmaterial und/oder ein Kompositmaterial umfassen. Insbesondere kann das Schallwandlerelement 48 ein piezoelektrisches Dünnschichtmaterial, etwa PVDF (Polyvinylidenfluorid) umfassen. Gemäß einem Ausführungsbeispiel umfasst das Schallwandlerelement 48 einen mikrotechnisch hergestellten Ultraschallwandler (micromachined ultrasonic transducer), beispielsweise einen kapazitiven MUT (CMUT) einem piezoelektrischen MUT (PMUT) oder einem magnetischen MUT (MMUT).
  • Obwohl die Wandlervorrichtung 60 so beschreiben ist, dass die Impedanzanpassungsvorrichtung 10 angeordnet ist, kann alternativ oder zusätzlich auch eine weitere und/oder andere Impedanzanpassungsvorrichtung angeordnet sein kann, beispielsweise die Impedanzanpassungsvorrichtung 10, 20, 30, 40a, 40b, 40c, 40d und/oder 50. Beispielsweise können Impedanzanpassungsvorrichtung angeordnet sein, die eine Kombination unterschiedlicher Schichten mit je zumindest einer Impedanzanpassungsvorrichtung oder Impedanzanpassungskörper aufweisen, wobei bspw. eine Impedanzanpassungsvorrichtung 40a, 40b, 40c, 40d eine Schicht des gemeinsamen Körpers mit, zumindest im räumlichen Mittel konstante Schallkennimpedanz bereitstellen kann.
  • In anderen Worten können die beschriebenen Anpassungsstrukturen in einem Ausführungsbeispiel auf ein- und mehrkanalige beispielsweise luftgekoppelte CMUT-Bauteile und CMUT-Systeme integriert werden, um die Wandlerreichweite, Sensitivität und Bandbreite zu erhöhen. Derartige Systeme können als miniaturisierte Sensoren für Abstands- und Bewegungsdetektion sowie Bildgebung optimiert werden und ermöglichen im Weiteren beispielsweise die Gestensteuerung im Fahrzeuginnenraum (automotive) sowie die kontaktlose Steuerung von Haushaltsgeräten (consumer; Konsumenten), sowie die Sensoranwendungen in der Medizintechnik und die Integration in mobilen Anwendungen in Service- und Industrierobotern (Industrie).
  • Fig. 7 zeigt ein schematisches Blockschaltbild eines Systems gemäß einem Ausführungsbeispiel, das beispielsweise die Wandlervorrichtung 60 und eine Steuereinheit 52 umfasst. Die Steuereinheit 52 ist ausgebildet, um das Schallwandlerelement 48 zu betreiben, das bedeutet, dem Schallwandlerelement 48 ein Ansteuersignal 54, bereitzustellen, um das Schallwandlerelement 48 zum Aussenden einer Schallwandler 561 anzuregen und/oder, um ein Schallwandlersignal 542 von dem Schallwandlerelement 48 zu empfangen das dieses basierend auf einer eintreffenden Schallwelle 562 bereitstellt.
  • Die Steuereinheit 52 kann ausgebildet sein, um das Schallwandlerelement 48 in einem Ultraschall-Frequenzbereich zu betreiben, das bedeutet, in einem Frequenzbereich von zumindest 20 Kilohertz. Beispielsweise kann die Steuereinheit ausgebildet sein, um das Schallwandlerelement 48 in einem Frequenzbereich von zumindest 20 Kilohertz und höchstens 200 Megahertz, zumindest 20 Kilohertz und höchstens 150 Megahertz oder von zumindest 20 Kilohertz und höchstens 100 Megahertz zu betreiben.
  • Fig. 8 zeigt ein schematisches Ablaufdiagramm eines Verfahrens 800 gemäß einem Ausführungsbeispiel zum Herstellen einer Impedanzanpassungsvorrichtung, beispielsweise der Impedanzanpassungsvorrichtung 10, 20, 30, 40a, 40b, 40c, 40d und/oder 50.
  • Das Verfahren 800 umfasst einen Schritt 810. In dem Schritt 810 erfolgt ein Bereitstellen eines Impedanzanpassungskörpers mit einer ersten und einer gegenüberliegenden zweiten Seite. Der Impedanzanpassungskörper ist ausgebildet, um eine Schallkennimpedanz eines an der ersten Seite kontaktierten Mediums an eine Schallkennimpedanz eines an der zweiten Seite kontaktierten Schallwandlers anzupassen, sodass der Impedanzanpassungskörper Mikrostrukturen umfasst, die entlang zumindest einer Raumrichtung eine Strukturausdehnung von höchstens 500 Nanometern aufweisen.
  • Für das Verfahren 800 kann der Impedanzanpassungskörper hergestellt werden, beispielsweise, indem er direkt an oder auf einem Schallwandler angeordnet wird oder als eigenes Bauelement hergestellt wird.
  • Die Herstellung des Impedanzanpassungskörpers kann ein Bereitstellen eines Transfermaterials umfassen. In dem Transfermaterial kann eine Positivform oder eine Negativform der Mikrostrukturen herausgebildet werden. Gemäß einem Ausführungsbeispiel umfasst das Transfermaterial ein aushärtbares Polymermaterial, insbesondere ein Polymermaterial, das im Zusammenhang mit einer Multiplen-Photonen-Absorptions-Lithographie verwendbar ist, beispielsweise SU-8 und/oder Ormocere. Das Erzeugen der Positivform oder der Negativform kann durch Beaufschlagen des Transfermaterials mit zumindest zwei Photonen an einer Stelle erfolgen, sodass dort eine lokale Änderung einer strukturellen Zusammensetzung des Transfermaterials bewirkt wird, das bedeutet, eine Aushärtung oder alternativ Verflüssigung des Polymermaterials. Die Multiplen-Photonen-Absorptions-Lithographie kann die Strukturgrößen von höchstens 500 Nanometer, höchstens 300 oder höchstens 100 Nanometer bereitstellen.
  • Gemäß einem Ausführungsbeispiel umfasst das Transfermaterial ein Metallmaterial, bei dem beispielsweise durch ein Ablationsverfahren durch multiple-Photonen-Absorption, insbesondere ein Laserablationsverfahren, die Positivform oder die Negativform der Mikrostrukturen erhalten werden kann. Das Transfermaterial ist jedoch nicht auf ein Metallmaterial beschränkt sondern kann auch für das (Laser-)Ablationsverfahren durch multiple-Photonen-Absorption gemäß weiteren Ausführungsbeispielen ein anderes Material in einem festen oder flüssigen Zustand aufweisen und bspw. ein Fluid, beispielsweise ein polymerisierbares Fluid oder ein Fluid in festem Zustand, ein Halbleitermaterial, zumindest eine organische Verbindung und/oder ein Keramikmaterial umfassen.
  • Mikrostrukturen mit unterschiedlichen Materialien können hierbei miteinander kombiniert werden, sodass sowohl die Verwendung eines Metallmaterials als auch die Verwendung eines Polymermaterials als auch die Verwendung des Fluids in festem oder flüssigem Zustand und/oder des Keramikmaterials in festem oder flüssigem Zustand beliebig miteinander kombinierbar ist, etwa in unterschiedlichen Schichten des Impedanzanpassungskörpers.
  • Die erhaltene Positivform oder Negativform kann weiter verarbeitet werden. Hierfür kann das Herstellen beispielsweise einen Schritt des Beschichtens der Positivform oder Negativform umfassen. Alternativ oder zusätzlich kann ein Invertieren der Positivform oder Negativform ausgeführt werden. Unter Invertieren kann eine Materialänderung der Positivform oder Negativform verstanden werden. Beispielsweise kann die Positivform oder Negativform beschichtet werden, dann das Material der Positivform bzw. Negativform herausgelöst werden, etwa durch ein Lösungsmittel oder ein Ätzverfahren und anschließend die erhaltene Kavität mit einem beliebigen Material nachgefüllt oder aufgefüllt werden. Die durch das Multiple-Photonen-Lithographieverfahren und/oder die Laserablation durch das Multiple-Photonen-Absorption erhaltenen geringen Strukturgrößen können dabei erhalten bleiben, sodass auch in Materialien, die beispielsweise durch subtraktive Verfahren nicht derart exakt bearbeitet werden können, solch geringe Strukturgrößen hergestellt werden können. Die Nachbearbeitung kann ferner ein Abgießen der Positivform oder Negativform umfassen. Unter Abgießen kann eine Formübertragung aus der Positivform oder Negativform in eine entsprechende andere Form verstanden werden. Alternativ oder zusätzlich kann ein Einschließen der Positivform oder Negativform erfolgen, in welcher beispielsweise die zuvor hergestellte Positivform oder Negativform als Kern erhalten bleibt. Unter beispielhafter Bezugnahme auf Fig. 3 kann beispielsweise das Material 24 durch ein Lithographieverfahren ausgehärtet werden und als Positivform verwendet werden, wobei ein Auffüllen mit anderen Materialien möglich ist. Alternativ oder zusätzlich kann beispielsweise der Impedanzanpassungskörper 30 durch Erzeugen von Kavitäten erhalten werden, in welche später das Material 24 hineingefüllt wird. Das bedeutet, das Herstellen des Impedanzanpassungskörpers kann ein Erzeugen von Mikrostrukturen umfassen und zwar derart, dass diese als sich verjüngende Mikrostrukturen gebildet sind, was sowohl für die Bereiche mit dem Material 24 zutreffend ist als auch für die Zwischenräume dazwischen.
  • Gemäß einem Ausführungsbeispiel kann das Herstellen des Impedanzanpassungskörpers ein Erzeugen zumindest einer Kavität umfassen, die in dem Impedanzanpassungskörper angeordnet ist und dort ein Ändern einer effektiven Dichte des Impedanzanpassungskörpers bewirken kann. Das Erzeugen einer Kavität kann dabei sowohl das Aushärten zum späteren Verbleib eines Materials als auch das Herauslösen eines Materials umfassen und beschreibt beispielsweise das Erzeugen unterschiedlicher Materialien und/oder Dichten in dem Impedanzanpassungskörper in einem räumlichen Mittel zum Verändern der Dichte des Impedanzanpassungskörpers in dem räumlichen Mittel.
  • Wie es im Zusammenhang mit den Fig. 4a, 4b, 4c und 4d beschrieben ist, kann ein Herstellen des Impedanzanpassungskörpers ein Erzeugen der Mikrostrukturen als eine Gitterstruktur umfassen. Die Gitterstruktur kann aus einem Impedanzanpassungsmaterial des Impedanzanpassungskörpers gebildet sein und Kavitäten definieren, die sich entlang der Richtung senkrecht zu der Schalldurchlaufrichtung in dem Impedanzanpassungskörper erstrecken. Die Kavitäten können beispielsweise einen polygonalen Querschnitt mit drei, vier, fünf oder sechs, sieben oder einer höheren Anzahl von Ecken und/oder Kanten aufweisen, wobei die Strukturen mit einander kombinierbar sind. Die Mikrostrukturen in den Fig. 4a, 4b, 4c und/oder 4d können somit aus ausgehärtetem Polymermaterial und/oder dem Metallmaterial gebildet sein, können jedoch auch ein Material umfassen, welches in eine entsprechende Negativform eingegeben wurde, wobei das Transfermaterial zum Definieren dieser Strukturen später herausgelöst sein kann oder verbleiben kann.
  • Gemäß einem Ausführungsbeispiel welches nicht unter den Schutzumfang der Patentansprüche fällt umfasst das Herstellen ein Erzeugen der Mikrostrukturen derart, dass die Mikrostrukturen einen akustischen Pfad zwischen den Seiten des Impedanzanpassungskörpers definieren, wie es beispielsweise im Zusammenhang der Fig. 5 beschrieben ist. Ein Material der Mikrostrukturen kann eine höhere Schallkennimpedanz aufweisen als der Impedanzanpassungskörper in einem Bereich des akustischen Pfades. Der akustische Pfad kann verglichen mit einer direkten Verbindung zwischen der ersten Seite und der zweiten Seite eine Laufzeitverlängerung für durch den akustischen Pfad gesendeten Schall bereitstellen.
  • In anderen Worten bietet ein Ansatz der vorliegenden Erfindung besonders gegenüber bekannten Mikrostrukturen und Verfahren zur Herstellung derselben den Vorteil, dreidimensionale Strukturen nahezu beliebiger Form und vor allem großzügige Hinterschnitte zu ermöglichen. Gemäß einem Ausführungsbeispiel umfasst der Impedanzanpassungskörper einen Hinterschnitt bzw. eine Hinterschneidung, das bedeutet, er umfasst eine Form mit einem Abschnitt, die eine Entfernung von einer Gussform oder einer Abdrucksform verhindern würde. Dies ist gemäß den beschriebenen Herstellungsverfahren dadurch möglich, dass durch die Ablationsverfahren und/oder Lithographieverfahren beliebige dreidimensionale Strukturen herstellbar sind.
  • Ein beispielhaftes Herstellungsverfahren wird in EP 1 084 454 B1 beschrieben. Ein Polymerisationsverfahren mittels Multi-Photonen-Absorption kann gemäß einem Ausführungsbeispiel für den beschriebenen Lösungsansatz genutzt werden, um Mikrostrukturen mit bestimmten Schallkennimpedanzen bzw. Schallkennimpedanzverläufen zu erzeugen. Hierin beschriebene Verfahren erlauben die Erzeugung von Strukturgrößen von höchstens 500 Nanometer und weniger, beispielsweise höchstens 300 Nanometer oder höchstens 100 Nanometer oder weniger. Die Verfahren bieten eine hohe Flexibilität im Design und der Fertigung der Mikrostrukturen zur akustischen Impedanzanpassung.
  • Die genannten Eigenschaften bieten den Vorteil, präzise, exponentielle Schallkennverläufe zu erzeugen und so eine ideale Kopplung zwischen Ultraschallwandler und Lastmedien zu gewährleisten. Außerdem kann die hohe Auflösung (geringe Strukturausdehnung) genutzt werden, um die Schallkennimpedanz auf kurzer Distanz stark zu verringern und damit an ein Medium wie z. B. Luft anzupassen. Diffraktionseffekte und andere Dämpfungseffekte, wie sie normalerweise durch Mikrostrukturen eingebracht werden, können durch gezieltes Design der Mikrostrukturen verringert oder sogar verhindert werden. Ein weiterer Vorteil der hohen Präzision ist die Möglichkeit, eine sehr genaue Schichtsystemhöhe zu erzeugen, welche starken Einfluss auf das Transmissionsverhalten ausübt. Ein weiterer Vorteil ist, dass auf Zwischen- und Adhäsionsmaterialien, welche zwischen einzelnen Impedanzschichten verschiedener Anpassungsschichten in bisherigen Lösungen nötig waren, verzichtet werden kann, wobei dies eine Anordnung derselben nicht ausschließt. Dadurch können jedoch deren negative und ungewollte Einflüsse auf die Schallübertragung entfallen und komplexe sowie arbeitsintensive Depositionsschritte entfallen. Die beschriebenen Verfahren sind prinzipiell auf jede Art von Schallwandlern anwendbar. Vorteile liegen in der Präzision, die insbesondere bei miniaturisierten Schallwandlerelementen und Wandlersystemen erhalten werden können und somit insbesondere auf MEMS-basierten Schallwandlern, Schallsensoren und Schallaktuatoren zu einem Mehrwert beitragen.
  • Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar.
  • Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.
    1. [1] V. T. Rathod, "A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers." Sensors (Basel, Switzerland) vol. 20,14 4051. 21 Jul. 2020.
    2. [2] T. R. GURURAJA, WALTER A. SCHULZE, LESLIE E. CROSS, and AND ROBERT E. NEWNHAM, "Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part ii: Evaluation of Ultrasonic Medical Applications"
    3. [3] Ergun et a/., "Capacitive Micromachined Ultrasonic Transducers: Theory and Technology," J. Aerosp. Eng, vol. 16, no. 2, 2003.
    4. [4] R. Lerch, G. M. Sessler, and D. Wolf, Technische Akustik: Grundlagen und Anwendungen. Berlin: Springer, 2009.
    5. [5] O. Krauß, R. Gerlach, and J. Fricke, "Experimental and theoretical investigations of SiOZ-aerogel matched piezo-transducers," Ultrasonics, vol. 32, no. 3, pp. 217-222, 1994.
    6. [6] T. Yano, M. Tone, and A. Fukumoto, "Range Finding and Surface Characterization Using High-Frequency Air Transducers," IEEE Trans. Ultrason., Ferroe/ect., Freq. Contr., vol. 34, no. 2, pp. 232-236, 1987.
    7. [7] T. Manh, A.-T. T. Nguyen, T. F. Johansen, and L. Hoff, "Microfabrication of Stacks of acoustic matching layers for 15 MHz Ultrasonic transducers," (eng), U/trasonics, vol. 54, no. 2, pp. 614-620, 2014.
    8. [8] M. I. Haller and B. T. Khuri-Yakub, "Micromachined Ultrasonic Materials, " Ultrasonics Symposium, 1991.
    9. [9] Z. Li et a/., "Broadband gradient impedance matching using an acoustic metamaterial for Ultrasonic transducers," (eng), Scientific reports, vol. 7, p. 42863, 2017.
    10. [10] G.-H. Feng and W.-F. Liu, "A spherically-shaped PZT thin film Ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate," Sensors (Basel, Switzerland), vol. 13, no. 10, pp. 13543-13559, 2013.

Claims (9)

  1. Impedanzanpassungsvorrichtung zur Anpassung einer Schallkennimpedanz mit:
    einem Impedanzanpassungskörper (12) mit einer ersten Seite (14) und einer gegenüberliegenden zweiten Seite (16),
    wobei die Impedanzanpassungsvorrichtung ausgebildet ist, um eine Schallkennimpedanz eines an der zweiten Seite (16) kontaktierten Mediums an eine Schallkennimpedanz eines an der ersten Seite (14) kontaktierten Schallwandlers (48) anzupassen; dadurch gekennzeichnet, dass
    der Impedanzanpassungskörper (12) Mikrokanäle (22) umfasst, die entlang zumindest einer Raumrichtung eine Strukturausdehnung (26) von höchstens 500 nm aufweisen;
    wobei die Mikrokanäle (22) verzweigte Mikrokanäle sind, deren Anzahl zwischen der ersten und der zweiten Seite (16) monoton veränderlich ist; und wobei die Mikrokanäle (22) Kavitäten im Impedanzanpassungskörper bilden, wobei eine effektive Materialdichte eines Impedanzanpassungsmaterials des Impedanzanpassungskörpers (12) zwischen der ersten Seite (14) und der zweiten Seite (16) durch eine monotone Zunahme oder monotone Abnahme eines Volumens der Kavitäten monoton veränderlich ist, und die Anpassung der Schallkennimpedanz bewirkt; oder
    wobei die Mikrokanäle (22) als sich hin zur ersten (14) oder hin zur zweiten Seite (16) verjüngende Strukturen gebildet sind, und zumindest in einem Bereich minimaler Ausdehnung (28) die Strukturausdehnung (26) aufweisen.
  2. Impedanzanpassungsvorrichtung gemäß Anspruch 1, bei der die Mikrokanäle (22) die erste Seite (14) und die zweite Seite (16) mit einander verbinden.
  3. Impedanzanpassungsvorrichtung gemäß Anspruch 1 oder 2, bei der die Mikrokanäle (22) umfassend ein Impedanzanpassungsmaterial umfassend ein Metallmaterial, ein Halbleitermaterial, eine organische Verbindung, ein Keramikmaterial oder umfassend ein Polymermaterial gebildet sind.
  4. Impedanzanpassungsvorrichtung gemäß einem der vorangehenden Ansprüche, bei der die Mikrokanäle (22) umfassend ein erstes Impedanzanpassungsmaterial gebildet sind, wobei in Zwischenbereichen zwischen den Mikrokanälen (22) ein zweites Impedanzanpassungsmaterial (24) angeordnet ist;
    wobei die Strukturausdehnung (26) zumindest eines Mikrokanals (22) senkrecht zu einer axialen Erstreckungsrichtung der Mikrokanäle (22) ist.
  5. Impedanzanpassungsvorrichtung gemäß einem der vorangehenden Ansprüche, bei der der Impedanzanpassungskörper (12) eine Hinterschneidung aufweist.
  6. Wandlervorrichtung mit:
    einer Impedanzanpassungsvorrichtung gemäß einem der vorangehenden Ansprüche; und
    einem Schallwandlerelement (48), das entweder mit der ersten Seite (14) oder der zweiten Seite (16) des Impedanzanpassungskörpers (12) durch eine akustische Kopplung akustisch gekoppelt ist.
  7. Wandlervorrichtung gemäß Anspruch 6, bei der die akustische Kopplung einen stetigen Übergang der Schallkennimpedanz aufweist.
  8. System mit:
    einer Wandlervorrichtung gemäß Anspruch 6 oder 7; und
    einer Steuereinheit (52), die ausgebildet ist, um das Schallwandlerelement (48) zu betreiben.
  9. Verfahren (800) zum Herstellen einer Impedanzanpassungsvorrichtung mit folgendem Schritt:
    Bereitstellen (810) eines Impedanzanpassungskörpers (12) mit einer ersten und einer gegenüberliegenden zweiten Seite (16), der ausgebildet ist, um eine Schallkennimpedanz eines an der zweiten Seite (16) kontaktierten Mediums, an eine Schallkennimpedanz eines an der ersten Seite (14) kontaktierten Schallwandlers (48) anzupassen; gekennzeichnet dadurch, dass
    der Impedanzanpassungskörper (12) Mikrokanäle (22) umfasst, die entlang zumindest einer Raumrichtung eine Strukturausdehnung (26) von höchstens 500 nm aufweisen;
    so dass die Mikrokanäle (22) verzweigte Mikrokanäle sind, deren Anzahl zwischen der ersten und der zweiten Seite (16) monoton veränderlich ist; und so dass die Mikrokanäle (22) Kavitäten im Impedanzanpassungskörper bilden, so dass eine effektive Materialdichte eines Impedanzanpassungsmaterials des Impedanzanpassungskörpers (12) zwischen der ersten Seite (14) und der zweiten Seite (16) durch eine monotone Zunahme oder monotone Abnahme eines Volumens der Kavitäten monoton veränderlich ist, und die Anpassung der Schallkennimpedanz bewirkt; oder
    so dass die Mikrokanäle (22) als sich hin zur ersten (14) oder hin zur zweiten Seite (16) verjüngende Strukturen gebildet sind, und zumindest in einem Bereich minimaler Ausdehnung (28) die Strukturausdehnung (26) aufweisen.
EP19722580.8A 2018-05-04 2019-05-03 Impedanzanpassungsvorrichtung, akustische wandlervorrichtung und verfahren zum herstellen einer impedanzanpassungsvorrichtung Active EP3788618B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018206937.9A DE102018206937A1 (de) 2018-05-04 2018-05-04 Impedanzanpassungsvorrichtung, Wandlervorrichtung und Verfahren zum Herstellen einer Impedanzanpassungsvorrichtiung
PCT/EP2019/061400 WO2019211447A1 (de) 2018-05-04 2019-05-03 Impedanzanpassungsvorrichtung, akustische wandlervorrichtung und verfahren zum herstellen einer impedanzanpassungsvorrichtung

Publications (2)

Publication Number Publication Date
EP3788618A1 EP3788618A1 (de) 2021-03-10
EP3788618B1 true EP3788618B1 (de) 2024-02-28

Family

ID=66440038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19722580.8A Active EP3788618B1 (de) 2018-05-04 2019-05-03 Impedanzanpassungsvorrichtung, akustische wandlervorrichtung und verfahren zum herstellen einer impedanzanpassungsvorrichtung

Country Status (4)

Country Link
US (1) US11812238B2 (de)
EP (1) EP3788618B1 (de)
DE (1) DE102018206937A1 (de)
WO (1) WO2019211447A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230007954A1 (en) * 2021-07-07 2023-01-12 Baker Hughes Oilfield Operations Llc Acoustic impedance matching devices and related methods

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3501808A1 (de) * 1985-01-21 1986-07-24 Siemens AG, 1000 Berlin und 8000 München Ultraschallwandler
CH683718A5 (de) 1992-05-15 1994-04-29 Kk Holding Ag Kombinierter Kraft-, Dehnungs- und Schallemissionsaufnehmer.
US5553035A (en) * 1993-06-15 1996-09-03 Hewlett-Packard Company Method of forming integral transducer and impedance matching layers
US5511296A (en) * 1994-04-08 1996-04-30 Hewlett Packard Company Method for making integrated matching layer for ultrasonic transducers
JP3964508B2 (ja) * 1997-09-19 2007-08-22 株式会社日立メディコ 超音波探触子及び超音波診断装置
US6316153B1 (en) 1998-04-21 2001-11-13 The University Of Connecticut Free-form fabricaton using multi-photon excitation
US6307302B1 (en) * 1999-07-23 2001-10-23 Measurement Specialities, Inc. Ultrasonic transducer having impedance matching layer
JP2001045596A (ja) * 1999-08-03 2001-02-16 Olympus Optical Co Ltd 超音波振動子
DE10026584A1 (de) * 2000-05-30 2001-12-06 Wiegel Thomas Akustik - Element
US6936009B2 (en) * 2001-02-27 2005-08-30 General Electric Company Matching layer having gradient in impedance for ultrasound transducers
JP3611796B2 (ja) * 2001-02-28 2005-01-19 松下電器産業株式会社 超音波送受波器、超音波送受波器の製造方法及び超音波流量計
JP3655860B2 (ja) * 2001-09-27 2005-06-02 アロカ株式会社 超音波探触子
WO2003064981A1 (fr) * 2002-01-28 2003-08-07 Matsushita Electric Industrial Co., Ltd. Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, et debitmetre ultrasonore
WO2003064979A1 (fr) * 2002-01-28 2003-08-07 Matsushita Electric Industrial Co., Ltd. Emetteur-recepteur ultrasonore et debitmetre ultrasonore
US6788620B2 (en) * 2002-05-15 2004-09-07 Matsushita Electric Ind Co Ltd Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same
US7545079B2 (en) * 2004-04-01 2009-06-09 Siemens Medical Solutions Usa, Inc. Photoetched ultrasound transducer components
DE102008014120A1 (de) * 2008-03-13 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschallwandler mit akustischer Anpassungsschicht für hohe Ultraschallfrequenzen sowie Verfahren zur Herstellung der Anpassungsschicht
JP5643667B2 (ja) * 2011-01-28 2014-12-17 株式会社東芝 超音波トランスデューサ、超音波プローブおよび超音波トランスデューサの製造方法
JPWO2012144226A1 (ja) * 2011-04-21 2014-07-28 コニカミノルタ株式会社 超音波プローブおよびその製造方法
WO2013154077A1 (ja) * 2012-04-09 2013-10-17 旭硝子株式会社 微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法
GB2528338B (en) * 2014-11-28 2016-07-13 168 Ultrasound Pte Ltd Ultrasound apparatus and method
US9794694B2 (en) * 2015-03-11 2017-10-17 Turtle Beach Corporation Parametric in-ear impedance matching device

Also Published As

Publication number Publication date
EP3788618A1 (de) 2021-03-10
WO2019211447A1 (de) 2019-11-07
DE102018206937A1 (de) 2019-11-07
US11812238B2 (en) 2023-11-07
US20210051403A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
DE102012108796B4 (de) Wandlerstruktur für eine Wandlersonde und ein Verfahren zur Herstellung derselben
EP0857088B1 (de) Gerät zur einkopplung von ultraschall in ein flüssiges oder pastöses medium
EP1377364A1 (de) Mischvorrichtung und mischverfahren für die durchmischung kleiner flüssigkeitsmengen
DE10148916A1 (de) Ultraschallvorrichtung
DE102008022504A1 (de) Schaltbarer Vortexgenerator und damit gebildetes Array sowie Verwendungen derselben
WO1996030644A1 (de) Lochscheibe, inbesondere für einspritzventile und verfahren zur herstellung einer lochscheibe
DE102012008371A1 (de) Verfahren zum Herstellen eines einen Überhang aufweisenden Bauteils durch schichtweisen Aufbau
EP3788618B1 (de) Impedanzanpassungsvorrichtung, akustische wandlervorrichtung und verfahren zum herstellen einer impedanzanpassungsvorrichtung
DE102005056823A1 (de) Verfahren zur Herstellung einer magnetischen Einrichtung einer elektrischen Maschine und elektrische Maschine
DE102013107154A1 (de) Antriebsvorrichtung
DE2346649A1 (de) Ultraschallgeber
WO2006061329A2 (de) Verfahren zur herstellung eines ultraschallwandlers
EP2815638B1 (de) Kühlvorrichtung
WO2001048181A2 (de) Vorrichtung zum transfer von molekülen in zellen
EP1984125A1 (de) Ultraschallaktor zur reinigung von objekten
EP3017876A1 (de) Vorrichtung zur flüssigkeitszerstäubung und verfahren zu ihrer herstellung
DE10114672A1 (de) Ultraschallschwinger
DE102004006156A1 (de) Prägeverfahren zum Herstellen eines mikrokapazitiven Wandlers
EP2509736A1 (de) Verfahren und vorrichtung zum bearbeiten eines werkstücks
DE10321245A1 (de) Schwingungsvorrichtung aus mehrschichtigem Material
DE10053826A1 (de) Vorrichtung zum Auftragen von zerstäubten Fluiden
EP1235284B1 (de) Piezokeramische Platte und Verfahren zum Herstellen derselben
DE102005029977A1 (de) Vorrichtung mit einem adaptiven Biegewandler zur Abgabe eines Signaltons
DE102008052100A1 (de) Flexibel verformbares Halteelement für Substrate
EP4277938A1 (de) Verfahren zur herstellung von material- und/oder funktionalstrukturierten bauteilen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

17Q First examination report despatched

Effective date: 20220323

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010676

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN