EP3779201B1 - Abstreifelement für laufradeintrittskanten von abwasserpumpen - Google Patents

Abstreifelement für laufradeintrittskanten von abwasserpumpen Download PDF

Info

Publication number
EP3779201B1
EP3779201B1 EP19191970.3A EP19191970A EP3779201B1 EP 3779201 B1 EP3779201 B1 EP 3779201B1 EP 19191970 A EP19191970 A EP 19191970A EP 3779201 B1 EP3779201 B1 EP 3779201B1
Authority
EP
European Patent Office
Prior art keywords
finger
rotation
angle
axis
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19191970.3A
Other languages
English (en)
French (fr)
Other versions
EP3779201C0 (de
EP3779201A1 (de
Inventor
Christoph Jäger
Mateusz Kaminski
Enrico MÜLLER
Nicolas Petit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP19191970.3A priority Critical patent/EP3779201B1/de
Application filed by KSB SE and Co KGaA filed Critical KSB SE and Co KGaA
Priority to HUE19191970A priority patent/HUE062508T2/hu
Priority to PCT/EP2020/071792 priority patent/WO2021028246A1/de
Priority to BR112022002294A priority patent/BR112022002294A2/pt
Priority to CA3149426A priority patent/CA3149426A1/en
Priority to CN202080057382.5A priority patent/CN114245849B/zh
Priority to AU2020327570A priority patent/AU2020327570A1/en
Priority to US17/635,236 priority patent/US12044252B2/en
Publication of EP3779201A1 publication Critical patent/EP3779201A1/de
Priority to SA522431683A priority patent/SA522431683B1/ar
Application granted granted Critical
Publication of EP3779201C0 publication Critical patent/EP3779201C0/de
Publication of EP3779201B1 publication Critical patent/EP3779201B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • F04D7/045Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous with means for comminuting, mixing stirring or otherwise treating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2288Rotors specially for centrifugal pumps with special measures for comminuting, mixing or separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/708Suction grids; Strainers; Dust separation; Cleaning specially for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous

Definitions

  • the invention relates to a sewage pump with a volute housing with an inlet opening and an impeller with at least one blade, the leading edge associated with the respective blade running outwards from the impeller hub and curved backwards.
  • Wastewater can contain different types of solids such as fibrous matter, the amount and structure of which can depend on the wastewater source as well as the time of year. For example, plastics, hygiene items, textiles, etc. are common in cities, while wear and tear particles may be present in industrial areas.
  • fibrous materials such as rags, cloths and the like, which can get stuck on the leading edges of the blades and wrap around the impeller hub. Such incidents result in frequent service intervals and reduced pump efficiency.
  • the U.S. 2009/123270 A1 discloses a sewage pump for pumping solids-laden sewage with a finger for scraping dirt.
  • the aim of the present invention is to improve existing solutions.
  • the starting point for the invention is a sewage pump for pumping sewage containing solids.
  • the sewage pump consists of an impeller with at least one backward-curved impeller blade.
  • the impeller is non-rotatably connected to a rotating shaft and sits in a volute-shaped pump casing with an inlet port.
  • the inlet port may be axially aligned and/or cylindrical.
  • the leading edge of the at least one impeller blade extends radially outwards from the impeller hub with the aforementioned backward-curved blade shape.
  • a finger is firmly connected to the pump housing on the inner wall of the inlet opening. In the area of the transition from the finger to the inner wall of the inlet opening, there is a groove which is formed in the suction-side side wall of the pump housing and runs outwards in the radial and tangential direction in the pump housing wall.
  • the finger extends radially inward from the inlet inner wall toward the axis of rotation of the impeller.
  • An upper finger surface facing the leading edge runs at a defined distance from the leading edge and essentially parallel to the leading edge, so that the upper finger surface facing the leading edge or the lateral contact surface of the finger results in the desired wiping effect.
  • the interaction of the backward curved leading edge and fingers favors the removal of solids stuck on the impeller leading edge.
  • the deposited solids are fed into the groove and conveyed by the rotational movement of the impeller, so that they reach the area of the casing pressure nozzle directly via the groove.
  • the impeller and the finger are specially matched to each other for this task.
  • the impeller leading edge is set at an angle ⁇ of 5° to 75° to the vertical projection surface of the axis of rotation of the impeller is.
  • an axial component also has an effect on the solids when scraping off the solids. This optimizes the removal of the scraped solids through the groove.
  • the angle ⁇ can preferably lie in a value range between 10° and 45°.
  • the upper finger surface of the finger can also be inclined by the angle ⁇ with respect to the vertical projection surface to almost the same extent.
  • the upper finger surface and the leading edge do not necessarily have to run exactly parallel, so that deviating angles ⁇ to the projection surface are also conceivable here.
  • the upper finger surface is not planar but curved instead, so that a varying angle a for the finger surface and consequently also a varying distance between the leading edge and the upper finger surface can result.
  • the upper finger surface can preferably provide a curvature both in the radial and in the tangential direction. Ideally, the upper finger surface has a cone-like curvature in the radial and tangential direction.
  • the sewage pump can be operated both dry and submerged in the pumping medium in any orientation.
  • the volute casing of the pump has a spur and a pressure port.
  • the pump housing can have a separate housing insert, such as a suction cover or a wear wall, into which the aforementioned groove can be introduced or the finger can be attached to it.
  • the leading edge of the at least one blade moves past the upper finger surface at an angle ⁇ to the lateral contact surface of the finger.
  • this angle ⁇ should be around 90° in order to achieve an optimal scraping effect.
  • the angle ⁇ should increase outwards in the radial direction. This means that as the radius increases (starting from the impeller hub), the angle ⁇ should also increase.
  • the radius r suction corresponds to the radius of the cylindrical inlet opening of the housing.
  • the angle between the aforementioned support points can vary essentially uniformly, ideally the angle between the support points should increase steadily.
  • the upper finger surface of the finger is at a distance of 0.05 to 3 mm from the leading edge of the blade, at least in some areas. This ensures optimal scraping of the solids from the impeller inlet edge. If the distance is too large, there is a risk that small solids and fibers will not be caught by the scraper finger.
  • the lateral contact surface of the finger or a tangent to the contact surface to have a (tangential) angle ⁇ in relation to the tangential course of the groove with a value between 120° and 180°, preferably between 140° and 180° and particularly preferably a value between 160 ° and 180°.
  • the rule here is that as the angle ⁇ increases, the discharge of the scraped-off solids into the groove is made easier. An angle ⁇ of 180° would be ideal.
  • the finger In order to influence the flow in the impeller inlet as little as possible, the finger should have a streamlined shape. Good properties are achieved when the finger is designed as a three-sided pyramid with curved side surfaces. To ensure a sufficient scraping function and, if necessary, to achieve an optional cutting effect, it is advantageous if the front surface, ie the contact surface of the finger, is set at an angle ⁇ of 0° to 30° relative to a parallel to the axis of rotation of the impeller.
  • the posterior surface of the finger is less critical and may also be more inclined to the parallel where appropriate.
  • an angle ⁇ of the back surface of the finger to the parallel of the axis of rotation of the impeller between 0° and 50° is recommended.
  • the rear surface is double-curved, in particular double-curved in different directions. This also reduces the flow-influencing area of the finger.
  • the orientation and specific placement of the finger within the inlet is critical to the effectiveness of the wiping action.
  • the relative position of the finger to the spur of the volute casing and consequently to the discharge nozzle is relevant. It is advantageous if the finger is arranged in the vicinity of the spur, preferably after the spur in the direction of rotation. Such an arrangement has a further advantage, particularly in the case of horizontal pumps. Solid objects, such as stones, may collect in the lower part of the pump casing or impeller. By arranging the finger 30 in the vicinity of the spur, it is positioned outside of this danger point.
  • the exact position of the finger can be determined, for example, by the angle ⁇ .
  • the angle ⁇ corresponds to the angle of wrap, which is defined by the angle of intersection between the perpendicular and a tangent of the contact surface of the finger that intersects the axis of rotation of the impeller, with the tangent preferably running through the point on the contact surface that is furthest away from the axis of rotation in the radial direction.
  • Possible angular values of the angle ⁇ are 0° to 45°, preferably between 15° and 35° and ideally between 20° and 30°.
  • the selected finger length corresponds to at least 30% of the total radius r suck of the cylindrical inlet opening, preferably at least 50% and ideally between 70% and 80%.
  • the finger provides at least one section designed as a cutting edge, in particular on the side of the front contact surface of the finger, but the cutting edge extends perpendicularly to the stripping edge, ie parallel to the axis of rotation.
  • the cutting edge is preferably provided in the transition area of the finger to the fastening element of the finger.
  • FIG 1 shows an exploded view of the sewage pump 1 according to the invention.
  • the impeller 20, in detail figure 4 can be seen, comprises two backward-curved blades 21a, 21b, through which the pumped medium is sucked in through the cylindrical inlet opening 15 of the wear wall 12 and conveyed through the pumping chamber 16 of the volute casing 10 to the discharge port 13 and discharged through this.
  • the waste water to be pumped can contain a large number of different solids, for example fibrous materials, which can become lodged on certain parts of the pump during pump operation.
  • the stripper finger 30 according to the invention is provided, which is attached to the cylindrical inner wall of the inlet 15 and extends in the direction of the axis of rotation R.
  • the embodiment shown in the figures has a separate wear wall 12, the wear wall 12 could just as easily be dispensed with for the implementation of the invention and the finger 30 could be attached directly to the housing wall in the area of the suction mouth.
  • the design and mode of operation of the finger 30 will be discussed in more detail later, first the construction of the impeller 20 will be described.
  • Characteristic of the impeller 20 is the course of the in 4 shown leading edges 23 of the blades 21a, 21b. These begin directly at the impeller hub 22, in particular at the height of the upper, free end of the hub, and extend radially outwards, curved backwards.
  • the front faces of the blades 21a, 21b which are directed towards the suction cover and which extend through the inlet 15 are referred to as the leading edges 23.
  • leading edges 23 are also aligned at a defined angle ⁇ to the vertical projection surface of the axis of rotation R.
  • is drawn in here the leading edge 23 of the impeller 20 with respect to the horizontal, which corresponds to a perpendicular projection to the axis of rotation R in the selected form of representation.
  • the selected inclination makes it possible to apply an additional axial force component to the conveyed medium in addition to the radial force, which optimizes the release of solids contained therein, which were grasped and scraped off by the finger 30 .
  • the angle ⁇ should be in the range between 5° and 75° or 10° to 45°. In the embodiment shown here, an angle of inclination ⁇ of about 25° is assumed (see Fig. Figure 7a, 7b ).
  • the scraper finger 30 is mounted on the inner wall of the inlet 15 of the wear plate and extends in the direction of the axis of rotation R.
  • the length of the scraper finger 30 should be at least 30%, preferably at least 50% or at best about 70% to 80% of the radius of the cylindrical Be inlet 15, which is hereinafter referred to as r suction .
  • the finger 30 is shaped like a pyramid with a total of three side surfaces 33, 35a, 35b and the base surface lying against the inner wall of the inlet 15.
  • the upper finger surface 33 facing the leading edges 23 of the impeller 20 is not planar but has a continuous curvature, both in the longitudinal direction of the finger (radial direction KR see Figure 5b ) as well as in the transverse direction (tangential direction KT see figure 8 ). In total, a kind of conical surface 33 results here.
  • the other side surfaces ie the side contact surface 35a and the rear side surface 35b, also have corresponding curvatures, with the rear side surface 35b even providing a double curvature in different directions. Compare this in particular Figure 5c .
  • the front contact surface 35a of the Fingers 30 inclined at an angle ⁇ of 0 ° to 30 ° to the axis of rotation R. In the 8 the angle ⁇ to a parallel P1 of the axis of rotation R is drawn.
  • the rear surface 35b of the finger 30 is less critical and can be inclined at an angle ⁇ relative to the axis of rotation R or the parallel P2 to the axis of rotation R of 0° from 50°.
  • the surface 35c can be rounded tangentially to the adjacent surfaces 35a, 35b. It is very difficult for solids to settle on the finger 30 when this angle definition is taken into account.
  • the leading edges 23 of the impeller 20 run towards the lateral contact surface 35a and then move past the opposite finger surface 33.
  • the transition edge between the lateral contact surface 35a and the upper surface 33 forms the so-called scraping edge, through which solids deposited on the inlet edges are scraped off and, due to the radial and axial speed of the pumped medium, are discharged into the spiral groove 11, via which they ultimately pass the impeller 20 be ejected through the pumping chamber 16 to the pressure port 13.
  • the distance between the leading edge 23 and the surface 33 or the scraping edge of the scraper finger 30 should be in a range between 0.05 and 3 mm, whereby this distance can vary in the radial direction, but should remain within the aforementioned value interval if possible. If the distance is too large, there is a risk that small solids cannot be caught by the scraper finger 30, whereas if the distance is too small, the risk of the scraper finger 30 and the leading edge 23 rubbing against each other increases.
  • the finger 30 or the upper surface 33 or at least the scraper edge should also have a corresponding inclination by the angle ⁇ . This can also be seen in Figure 7b .
  • the angles of inclination of the leading edge 23 and surface 33 do not necessarily have to be exactly identical but can also show minor differences. Despite these angle differences, however, the previously defined distance value should be within the desired value range.
  • the relative position of the scraper finger 30 to the spur 17 of the volute 10 also influences the delivery of the scraped solids to the pressure port 13.
  • the scraper finger 30 as in the sectional view of the 2 shown in the direction of rotation 2, ie in the representation of 2 clockwise, immediately behind the spur 17.
  • Solid objects, such as stones, may collect in the lower part of the pump casing or impeller.
  • the relative position of the stripper finger 30 to the spur 17 can be determined by the in 2 define the drawn angle ⁇ .
  • the angle ⁇ corresponds to the angle of wrap, which is defined by the angle of intersection between the perpendicular and the straight line G1.
  • the straight line G1 is perpendicular to the axis of rotation R and runs through the point on the lateral contact surface 35a of the stripper finger 30 that is furthest from the axis of rotation R in the radial direction.
  • Recommended values for the angle ⁇ are in the range between 0° and 45°, with an angle of 20° to 30° has turned out to be particularly advantageous.
  • the leading edge 23 of the vanes 21a, 21b moves past the top surface 33 during pump operation.
  • the tangent at the deepest point of the upper surface 33 (point of the smallest distance to the leading edge 23) forms the angle ⁇ with the tangent of the leading edge.
  • the angle ⁇ should be approximately 90°.
  • the angle ⁇ can also increase with an increasing radius r starting from the impeller hub 22. This means that as the radius r increases, the angle ⁇ also increases.
  • the normalized radius (r - r suction ) where r suction represents the radius of the inlet 15, which is shown in FIG figure 9 shown course can be accepted.
  • the angle ⁇ can be between 50° and 120° near the center of the impeller 20 and between 85° and 160° at the outer edge.
  • the course of the angle can be freely selected within this range, but optimally a continuously increasing angle ⁇ should be selected.
  • the lateral contact surface 35a of the finger 30 should also assume an angle ⁇ of between 180° and 120° in relation to the tangential course of the groove 11 .
  • This angle ⁇ is in figure 3 and has a value of about 165° there.
  • the finger 30 can be designed with a cutting edge 32 that extends perpendicularly to the surface 33 of the finger in the area of the transition to the fastening element 31 .
  • the cutting edge runs almost parallel to the axis of rotation R.
  • the stripper finger 30 can be detachably connected to the wear wall 12 or the housing 10 by means of the fastening element 31, whereby care must be taken here that the fastening element 31 does not protrude into the inlet 15 in order to to avoid any influence on the flow properties within the pump.
  • the 9 shows the angle ⁇ between the running leading edge 23 of the running wheel 20 and the finger 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Abwasserpumpe mit einem Spiralgehäuse mit einer Einlassöffnung und einem Laufrad mit wenigstens einer Schaufel, wobei die der jeweiligen Schaufel zugeordnete Eintrittskante von der Laufradnabe rückwärtsgekrümmt nach außen verläuft.
  • Abwasser kann verschiedene Arten von Feststoffen wie Faserstoffen enthalten, deren Menge und Struktur von der Abwasserquelle als auch von der Jahreszeit abhängen kann. Bspw. sind in Städten Kunststoffe, Hygieneartikel, Textilien usw. üblich, während in Industriegebieten Verschleißpartikel enthalten sein können. Erfahrungsgemäß entstehen die größten Probleme bei Abwasserpumpen durch Faserstoffe wie Lappen, Tücher und dergleichen, die sich an den Eintrittskanten der Schaufeln festsetzen und sich um die Laufradnabe wickeln können. Solche Vorfälle führen zu häufigen Serviceintervallen und einem verminderten Wirkungsgrad der Pumpe.
  • Es existieren bereits diverse Lösungsansätze, die sich Schneidwerkzeugen oder auch Abstreifwerkzeugen bedienen, um die an den Eintrittskanten festgesetzten Schadstoffe im Pumpenbetrieb entfernen zu können.
  • Die US 2009/123270 A1 offenbart eine Abwasserpumpe zur Förderung von feststoffbeladenem Abwasser mit einem Finger zum Abstreifen von Verschmutzungen.
  • Die vorliegende Erfindung setzt sich zum Ziel bestehende Lösungen zu verbessern.
  • Gelöst wird diese Aufgabe durch eine Abwasserpumpe gemäß den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungen der Abwasserpumpe sind Gegenstand der abhängigen Ansprüche.
  • Ausgangsbasis für die Erfindung ist eine Abwasserpumpe zur Förderung von feststoffbeladenem Abwasser. Die Abwasserpumpe besteht aus einem Laufrad mit wenigstens einer rückwärtsgekrümmten Laufradschaufel. Das Laufrad ist mit einer rotierenden Welle drehfest verbunden und sitzt in einem spiralförmigen Pumpengehäuse mit einer Einlassöffnung. Die Einlassöffnung kann axial ausgerichtet und/oder zylindrisch sein. Die Eintrittskante der wenigstens einen Laufradschaufel erstreckt sich von der Laufradnabe mit der angesprochenen rückwärtsgekrümmten Schaufelform radial nach außen. An der Innenwand der Einlassöffnung ist ein Finger fest mit dem Pumpengehäuse verbunden. Im Bereich des Übergangs des Fingers zur Innenwand der Einlassöffnung schließt sich eine Nut an, die in der saugseitigen Seitenwand des Pumpengehäuses ausgebildet ist und in radialer und tangentialer Richtung in der Pumpengehäusewand nach außen verläuft.
  • Der Finger erstreckt sich von der Einlassinnenwand radial nach innen in Richtung der Drehachse des Laufrades. Eine der Eintrittskante zugewandte obere Fingerfläche verläuft mit definiertem Abstand zur Eintrittskante und im Wesentlichen parallel zur Eintrittskante, so dass sich durch die der Eintrittskante zugewandte obere Fingerfläche bzw. die seitliche Angriffsfläche des Fingers die gewünschte Abstreifwirkung ergibt. Das Zusammenspiel von rückwärts gekrümmter Eintrittskante und Finger begünstigt das Entfernen von auf der Laufradeintrittskante festgesetzten Feststoffen. Mit Hilfe des Fingers werden die abgelagerten Feststoffe der Nut zugeführt und durch die Rotationsbewegung des Laufrades mitgefördert, so dass diese über die Nut direkt in den Bereich des Gehäusedruckstutzen gelangen. Das Laufrad und der Finger sind für diese Aufgabe speziell aufeinander abgestimmt.
  • Erfindungsgemäß ist vorgesehen, dass die Laufradeintrittskante zur senkrechten Projektionsfläche der Drehachse des Laufrades in einem Winkel α von 5° bis 75° angestellt ist. Dies bewirkt, dass zum Abstreifen der Feststoffe neben der Rotationsbewegung und resultierenden Radialkraft zusätzlich eine axiale Komponente auf die Feststoffe zum Tragen kommt. Dadurch wird das Abfördern der abgestreiften Feststoffe durch die Nut optimiert. Bevorzugt kann der Winkel α in einem Wertebereich zwischen 10° bis 45° liegen.
  • In nahezu gleichem Maße kann auch die obere Fingerfläche des Fingers gegenüber der senkrechten Projektionsfläche um den Winkel α geneigt sein. Die obere Fingerfläche und die Eintrittskante müssen jedoch nicht zwingend exakt parallel verlaufen, so dass hier auch abweichende Winkel α zur Projektionsfläche vorstellbar sind. Insbesondere kann vorgesehen sein, dass die obere Fingerfläche nicht planar ausgeführt ist, sondern stattdessen gekrümmt ist, so dass sich hier ein variierender Winkel a für die Fingerfläche und demzufolge auch ein variierender Abstand zwischen Eintrittskante und oberer Fingerfläche ergeben kann. Bevorzugt kann die obere Fingerfläche sowohl in Radialals auch in Tangentialrichtung eine Krümmung vorsehen. Idealerweise weist die obere Fingerfläche eine kegelartige Krümmung in Radial- und Tangentialrichtung auf.
  • Die Abwasserpumpe kann sowohl trocken als auch im Fördermedium untergetaucht in beliebiger Ausrichtung betrieben werden. Das Spiralgehäuse der Pumpe weist einen Sporn sowie einen Druckstutzen auf. Ferner kann das Pumpengehäuse im Bereich der Einlassöffnung einen separaten Gehäuseeinsatz, wie bspw. einen Saugdeckel oder eine Schleißwand aufweisen, in den die vorgenannte Nut eingebracht bzw. an diesem der Finger angebracht sein kann.
  • Während des Pumpenbetriebs bewegt sich die Eintrittskante der wenigstens einen Schaufel im Winkel β zur seitlichen Angriffsfläche des Fingers an der oberen Fingerfläche vorbei. Idealerweise sollte dieser Winkel β bei etwa 90° liegen, um eine optimale Abstreifwirkung zu erzielen. Um die Gefahren des Festklemmens von Feststoffen zwischen Laufradeintrittskante und Finger zu reduzieren, sollte sich der Winkel β in Radialrichtung nach außen vergrößern. Dies bedeutet, dass bei größer werdendem Radius (ausgehend von der Laufradnabe) auch der Winkel β zunehmen sollte. Erfindungsgemäß sind hier Winkelwerte in Radialrichtung bei r/rsaug=0,2, d.h. im Bereich nahe der Laufradnabe, zwischen 50° bis 120° und bei r/rsaug=1 zwischen 85° bis 160° vorgesehen. Der Radius rsaug entspricht dem Radius der zylindrischen Einlassöffnung des Gehäuses. Zwischen den vorgenannten Stützpunkten kann der Winkel im Wesentlichen gleichmäßig variieren, idealerweise sollte der Winkel zwischen den Stützpunkten stetig ansteigen.
  • Besonders vorteilhaft ist es, wenn die obere Fingerfläche des Fingers zur Eintrittskante der Schaufel zumindest bereichsweise einen Abstand von 0.05 bis 3mm aufweist. Hierdurch wird ein optimales Abstreifen der Feststoffe von der Laufradeintrittskante gewährleistet. Ein zu groß gewählter Abstand birgt die Gefahr, dass kleine Feststoffe und Fasern nicht vom Abstreiffinger erfasst werden.
  • Sinnvollerweise sollte die seitliche Angriffsfläche des Fingers bzw. eine Tangente zur Angriffsfläche im Verhältnis zum tangentialen Verlauf der Nut einen (tangentialen) Winkel δ mit einem Wert zwischen 120° und 180°, bevorzugt zwischen 140° und 180° und besonders bevorzugt einen Wert zwischen 160° und 180° aufweisen. Dabei gilt, dass mit zunehmenden Winkel δ das Abführen der abgestreiften Feststoffe in die Nut erleichtert wird. Ideal wäre ein Winkel ö von 180°.
  • Um die Strömung im Einlass des Laufrades möglichst wenig zu beeinflussen, sollte der Finger eine strömungsgünstige Form aufweisen. Gute Eigenschaften stellen sich ein, wenn der Finger als dreiflächige Pyramide mit gekrümmten Seitenflächen ausgebildet ist. Zur Sicherstellung einer ausreichenden Abstreiffunktion und gegebenenfalls zur Erzielung einer optionalen Schneidwirkung ist es vorteilhaft, wenn die vordere Fläche, d.h. die Angriffsfläche des Fingers in einen Winkel γ von 0° bis 30° gegenüber einer Parallelen der Drehachse des Laufrades angestellt ist. Die hintere Fläche des Fingers ist weniger kritisch und kann gegebenenfalls auch stärker zur Parallelen geneigt sein. Hier empfiehlt sich ein Winkel ε der hinteren Fläche des Fingers zur Parallelen der Drehachse des Laufrades zwischen 0° bis 50°.
  • Aufgrund der gekrümmten Seitenflächen des Fingers in Verbindung mit den vorgenannten definierten Winkelbereichen können sich Feststoffe nur sehr schwer auf der Fingeroberfläche festsetzen. Idealerweise ist die hintere Fläche doppelt gekrümmt ausgestaltet, insbesondere doppelt in unterschiedliche Richtungen gekrümmt ausgebildet. Dies reduziert zusätzlich die strömungsbeeinflussende Fläche des Fingers.
  • Die Ausrichtung und die konkrete Anordnung des Fingers innerhalb des Einlasses sind entscheidend für die Effizienz der Abstreifwirkung. Relevant ist in diesem Zusammenhang die Relativlage des Fingers zum Sporn des Spiralgehäuses und demzufolge zum Druckstutzen. Von Vorteil ist es, wenn der Finger in der Nähe des Sporns angeordnet ist, vorzugsweise in Drehrichtung nach dem Sporn liegt. Ein solche Anordnung hat insbesondere bei horizontal stehenden Pumpen einen weiteren Vorteil. Festkörper, wie Steine, können sich gegebenenfalls im unteren Teil des Pumpengehäuses bzw. Laufrades ansammeln. Durch Anordnung des Fingers 30 in der Umgebung des Sporns wird dieser außerhalb dieser Gefahrenstelle positioniert.
  • Die exakte Position des Fingers lässt sich beispielsweise durch den Winkel ϕ festlegen. Der Winkel ϕ entspricht dem Umschlingungswinkel, der sich durch den Schnittwinkel zwischen der Senkrechten und einer die Drehachse des Laufrades schneidenden Tangente der Angriffsfläche des Fingers definiert, wobei die Tangente vorzugsweise durch den in Radialrichtung von der Drehachse am weitesten weg gelegenen Punkt der Angriffsfläche verläuft. Mögliche Winkelwerte des Winkels ϕ liegen 0° bis 45°, bevorzugt zwischen 15° bis 35° und idealerweise zwischen 20° und 30°.
  • In einer weiteren vorteilhaften Ausführung der Abwasserpumpe entspricht die gewählte Fingerlänge mindestens 30% des Gesamtradius rsaug der zylindrischen Einlassöffnung, bevorzugt mindestens 50% und idealerweise zwischen 70% bis 80%.
  • Optional kann weiterhin vorgesehen sein, dass der Finger wenigstens eine als Schneidkante ausgeführten Abschnitt vorsieht, insbesondere auf der Seite der vorderen Angriffsfläche des Fingers, wobei sich die Schneidkante jedoch senkrecht zur Abstreifkante, d.h. parallel zur Drehachse erstreckt. Bevorzugt ist die Schneidkante im Übergangsbereich des Fingers zum Befestigungselement des Fingers vorgesehen.
  • Weitere Vorteile und Eigenschaften der Erfindung ergeben sich aus dem in den Figuren dargestellten Ausführungsbeispiel. Es zeigen:
  • Figur 1:
    eine perspektivische Ansicht der erfindungsgemäßen Abwasserpumpe mit geöffnetem Pumpengehäuse,
    Figur 2:
    ein Vertikalschnitt durch die erfindungsgemäße Abwasserpumpe,
    Figur 3a,3b:
    eine Detailansicht des Gehäuseeinsatzes mit Abstreiffinger für die erfindungsgemäße Abwasserpumpe
    Figur 4:
    eine Detailansicht des Laufrades der erfindungsgemäßen Abwasserpumpe,
    Figur 5a bis 5d:
    Detailansichten des Abtreiffingers der erfindungsgemäßen Abwasserpumpe
    Figur 6:
    eine saugseitige Ansicht auf den Gehäuseeinsatz der erfindungsgemäßen Abwasserpumpe mit eingesetztem Laufrad
    Figur 7a, 7b:
    Schnittansichten entlang der Drehachse R durch den Gehäuseeinsatz samt Laufrad gemäß Figur 6
    Figur 8:
    eine Detailansicht des Abstreiffingers nebst Nut gemäß der Figur 6 und
    Figur 9:
    eine Diagrammdarstellung des normalisierten Radius (r-rsaug) gegenüber dem Winkel β.
  • Figur 1 zeigt eine Explosionsdarstellung der erfindungsgemäßen Abwasserpumpe 1. Diese besteht aus einem Spiralgehäuse 10, einem saugseitigen Gehäuseeinsatz in Form einer Schleißwand 12 und dem um die Drehachse R rotierenden Laufrad 20. Die Laufrichtung ist mit dem Bezugszeichen 2 gekennzeichnet. Das Laufrad 20, in Detailaufnahme der Figur 4 zu entnehmen, umfasst zwei rückwärts gekrümmte Schaufeln 21a, 21b, durch die das Fördermedium über die zylindrische Einlassöffnung 15 der Schleißwand 12 angesaugt und über den Förderraum 16 des Spiralgehäuses 10 zum Druckstutzen 13 gefördert und über diesen abgegeben wird.
  • Das zu fördernde Abwasser kann mit einer Vielzahl unterschiedlicher Feststoffe versetzt sein, beispielsweise Faserstoffe, die sich während des Pumpenbetriebs an gewissen Teilen der Pumpe festsetzen können. Aus diesem Grund ist der erfindungsgemäße Abstreiffinger 30 vorgesehen, der an der zylindrischen Innenwandung des Einlasses 15 befestigt ist und sich in Richtung der Drehachse R erstreckt. Das in den Figuren gezeigte Ausführungsbeispiel besitzt zwar eine separate Schleißwand 12, für die Umsetzung der Erfindung könnte jedoch genauso gut auf die Schleißwand 12 verzichtet werden und der Finger 30 unmittelbar an der Gehäusewandung im Bereich des Saugmundes angebracht werden. Auf die Ausgestaltung und Funktionsweise des Fingers 30 soll später noch näher eingegangen werden, zunächst soll die Konstruktion des Laufrades 20 beschrieben werden.
  • Charakteristisch für das Laufrad 20 ist der Verlauf der in Fig. 4 gezeigten Eintrittskanten 23 der Schaufeln 21a, 21b. Diese beginnen unmittelbar an der Laufradnabe 22, insbesondere auf Höhe des oberen, freien Nabenendes und erstrecken sich rückwärts gekrümmt radial nach aussen. Als Eintrittskanten 23 werden die zum Saudeckel gerichteten Stirnflächen der Schaufeln 21a, 21b bezeichnet, die sich durch den Einlass 15 erstrecken.
  • Diese Eintrittskanten 23 sind ferner in einem definierten Winkel α zur senkrechten Projektionsfläche der Drehachse R ausgerichtet. Zur Verdeutlichung des gewählten Winkels sei auf die Figuren 7a, 7b verwiesen, die eine Schnittdarstellung durch das Laufrad 20 und die entsprechende Schleißwand 12 zeigen. Eingezeichnet ist hier der Winkel α der Eintrittskante 23 des Laufrades 20 gegenüber der Horizontalen, die in der gewählten Darstellungsform einer senkrechten Projektionsfläche zur Drehachse R entspricht. Die gewählte Neigung ermöglicht es, neben der Radialkraft ergänzend eine axiale Kraftkomponente auf das Fördermedium aufzubringen, was die Abgabe darin enthaltener Feststoffe, die durch den Finger 30 erfasst und abgestreift wurden, optimiert. Deren Abgabe erfolgt über eine speziell dafür vorgesehene spiralförmige Nut 11 innerhalb der saugseitigen Schleißwand 12. Idealerweise sollte der Winkel α im Bereich zwischen 5° und 75° bzw. 10° bis 45° liegen. Im hier gezeigten Ausführungsbeispiel wird von einem Neigungswinkel α von etwa 25° ausgegangen (s. Figur 7a, 7b).
  • Um die Abstreifwirkung des Fingers 30 zu optimieren, muss dessen Form und Lage innerhalb des Einlasses 15 an die konkrete Laufrad- und Gehäusekonstruktion angepasst werden. Der Abstreiffinger 30 wird an der Innenwandung des Einlasses 15 der Schleißwand montiert und erstreckt sich in Richtung der Drehachse R. Die Länge des Abstreiffingers 30 sollte mindestens 30%, bevorzugt mindestens 50% bzw. bestenfalls ca. 70% bis 80% des Radius des zylindrischen Einlasses 15 betragen, der nachfolgend als rsaug bezeichnet wird.
  • Um die Strömung im Einlass 15 zum Laufrad 20 möglichst wenig durch den Abstreiffinger 30 zu beeinflussen, ist der Finger 30 pyramidenartig geformt mit insgesamt drei Seitenflächen 33, 35a, 35b und der an der Innenwand des Einlass 15 anliegenden Grundfläche. Die obere, den Eintrittskanten 23 des Laufrades 20 zugewandte Fingerfläche 33 ist hierbei nicht planar, sondern mit einer durchgehenden Krümmung versehen, dies sowohl in Fingerlängsrichtung (Radialrichtung KR siehe Fig. 5b) als auch in Querrichtung (Tangentialrichtung KT siehe Figur 8). In Summe ergibt sich hier eine Art Kegelfläche 33.
  • Auch die übrigen Seitenflächen, d.h. die seitliche Angriffsfläche 35a als auch die hintere Seitenfläche 35b weisen entsprechende Krümmungen auf, wobei die hintere Seitenfläche 35b sogar eine doppelte Krümmung in unterschiedliche Richtungen vorsieht. Vergleiche hierzu insbesondere Fig. 5c. Zur Erfüllung der Funktion des Abstreifens von Feststoffen und des Zerschneidens von Fasern ist die vordere Angriffsfläche 35a des Fingers 30 in einem Winkel γ von 0° bis 30° zur Drehachse R geneigt. In der Fig. 8 ist der Winkel γ zu einer Parallelen P1 der Drehachse R eingezeichnet. Die hintere Fläche 35b des Fingers 30 ist weniger kritisch und kann mit einem Winkel ε gegenüber der Drehachse R bzw. der Parallelen P2 zur Drehachse R von 0° von 50° geneigt sein. Des Weiteren kann die Fläche 35c tangential zu den angrenzenden Flächen 35a, 35b verrundet sein. Bei Berücksichtigung dieser Winkeldefinition können sich nur sehr schwer Feststoffe auf dem Finger 30 festsetzen.
  • Bei der Rotation des Laufrades 20 um die Drehachse R in Richtung 2 laufen die Eintrittskanten 23 des Laufrades 20 auf die seitliche Angriffsfläche 35a zu und bewegen sich dann an der gegenüberliegenden Fingerfläche 33 vorbei. Die Übergangskante zwischen seitlicher Angriffsfläche 35a und oberen Fläche 33 bildet die sogenannte Abstreifkante, durch diese auf den Eintrittskanten abgesetzte Feststoffe abgestreift werden und aufgrund der Radial- und Axialgeschwindigkeit des Fördermediums in die spiralförmige Nut 11 abgegeben werden, über diese sie letztendlich am Laufrad 20 vorbei durch den Förderraum 16 zum Druckstutzen 13 ausgestoßen werden.
  • Der Abstand zwischen der Eintrittskante 23 und der Fläche 33 bzw. der Abstreifkante des Abstreiffingers 30 sollte in einem Bereich zwischen 0,05 bis 3mm liegen, wobei dieser Abstand in Radialrichtung variieren kann, jedoch möglichst innerhalb des vorgenannten Werteintervalls bleiben sollte. Ein zu groß gewählter Abstand birgt die Gefahr, dass kleine Feststoffe nicht vom Abstreiffinger 30 erfasst werden können, wohingegen ein zu klein gewählter Abstand das Risiko eines Anlaufens von Abstreiffinger 30 und Eintrittskante 23 erhöht.
  • Da wie eingangs erläutert die Eintrittskante 23 des Laufrades 20 in einem Winkel α geneigt zur senkrechten Projektionsfläche der Drehachse R liegt, sollte auch der Finger 30 bzw. die obere Fläche 33 oder zumindest die Abstreifkante eine entsprechende Neigung um den Winkel α aufweisen. Erkennbar ist dies auch in Figur 7b. Die Neigungswinkel von Eintrittskante 23 und Fläche 33 müssen jedoch nicht zwingend exakt identisch sein, sondern können auch geringfügige Differenzen zeigen. Trotz dieser Winkeldifferenzen sollte jedoch der zuvor definierte Abstandswert innerhalb des gewünschten Wertebereichs liegen.
  • Die relative Position des Abstreiffingers 30 zum Sporn 17 des Spiralgehäuses 10 beeinflusst zudem die Abgabe der abgestreiften Feststoffe an den Druckstutzen 13. Insbesondere bei einer horizontal aufgestellten Pumpe ist es von Vorteil, wenn der Abstreiffinger 30, wie in der Schnittdarstellung der Fig. 2 gezeigt, in Drehrichtung 2, d.h. in der Darstellung der Fig. 2 im Uhrzeigersinn, unmittelbar hinter dem Sporn 17 liegt. Festkörper, wie Steine, können sich gegebenenfalls im unteren Teil des Pumpengehäuses bzw. Laufrades ansammeln. Durch Anordnung des Abstreiffingers 30 in der Umgebung des Sporns wird dieser ausserhalb dieser Gefahrenstelle positioniert.
  • Die Relativposition des Abtreiffingers 30 zum Sporn 17 lässt sich durch den in Fig. 2 eingezeichneten Winkel ϕ definieren. Der Winkel ϕ entspricht dem Umschlingungswinkel, der sich durch den Schnittwinkel zwischen der Senkrechten und der Geraden G1 definiert. Die Gerade G1 steht senkrecht auf der Drehachse R und verläuft durch den in Radialrichtung von der Drehachse R entferntesten Punkt der seitlichen Angriffsfläche 35a des Abstreiffingers 30. Empfohlene Werte für den Winkel ϕ liegen im Bereich zwischen 0° bis 45°, wobei sich ein Winkel von 20°bis 30° als besonders vorteilhaft herausgestellt hat.
  • Während des Pumpenbetriebs bewegt sich die Eintrittskante 23 der Schaufeln 21a, 21b an der oberen Fläche 33 vorbei. Die Tangente am tiefsten Punkt der oberen Fläche 33 (Punkt des geringersten Abstands zur Eintrittskante 23) bildet mit der Tangente der Eintrittskante den Winkel β. Zur optimalen Arbeitsweise des Fingers 30 sollte der Winkel β etwa 90° betragen. Um jedoch ein Festklemmen der Faserstoffe zwischen Laufradeintrittskante 23 und Finger 30 zu reduzieren, kann sich der Winkel β bei zunehmendem Radius r ausgehend von der Laufradnabe 22 auch vergrößern. Dies bedeutet, dass bei größer werdendem Radius r sich auch der Winkel β vergrößert. Zur einfacheren Darstellung kann über den normalisierten Radius (r - rsaug), wobei rsaug den Radius des Einlasses 15 darstellt, der in der Figur 9 abgebildete Verlauf angenommen werden.
  • In dieser Figur ist zu sehen, dass der Winkel β nahe des Zentrums des Laufrades 20 zwischen 50° und 120° liegen kann und an der äußeren Kante zwischen 85° und 160° liegt. Innerhalb dieses Bereichs ist der Winkelverlauf frei wählbar, jedoch sollte optimalerweise ein sich stetig anwachsender Winkel β gewählt werden.
  • Um die Abstreifwirkung weiter zu optimieren, sollte zudem die seitliche Angriffsfläche 35a des Fingers 30 im Verhältnis zum tangentialen Verlauf der Nut 11 einen Winkel δ zwischen 180° bis 120° annehmen. Dieser Winkel δ ist in Figur 3 verdeutlicht und hat dort etwa den Wert 165°.
  • Optional kann der Finger 30 mit einer Schneidkante 32 ausgestaltet sein, die sich senkrecht zur Fläche 33 des Fingers im Bereich des Übergangs zum Befestigungselement 31 erstreckt. Demzufolge verläuft die Schneidkante nahezu parallel zur Drehachse R. Mittels des Befestigungselementes 31 kann der Abstreiffinger 30 lösbar mit der Schleißwand 12 bzw. dem Gehäuse 10 verbunden werden, wobei hier darauf zu achten ist, dass das Befestigungselement 31 nicht in den Einlass 15 hineinragt, um so jeden Einfluss auf die Strömungseigenschaften innerhalb der Pumpe zu vermeiden.
  • Die Fig. 9 zeigt den Winkelverlauf β zwischen der Laufeintrittskante 23 des Laufrades 20 und dem Finger 30.

Claims (10)

  1. Abwasserpumpe (1) zur Förderung von feststoffbeladenem Abwasser mit einem Spiralgehäuse (10) mit einer Einlassöffnung (15), einem Laufrad (20) mit wenigstens einer Schaufel (21a, 21b), wobei die der jeweiligen Schaufel (21a, 21b) zugeordnete Eintrittskante (23) von der Laufradnabe (22) rückwärtsgekrümmt nach außen verläuft, und wenigstens einem Finger (30) zum Abstreifen von Verschmutzungen von der Eintrittskante (23), wobei der Finger (30) an der Einlassinnenwand angeordnet ist und sich in Richtung der Drehachse R des Laufrades (20) erstreckt, und wobei wenigstens eine, in einer saugseitigen Innenwand des Gehäuses (10, 12) eingebrachte Nut (11) vorgesehen ist, und die Eintrittskante (23) des Laufrades (20) und die der Eintrittskante (23) zugewandte obere Fingerfläche (33) einen Winkel α zur senkrechten Projektionsfläche der Drehachse R von 5° bis 75° aufweisen,
    dadurch gekennzeichnet,
    dass die Eintrittskante (23) des Laufrades (20) in Bezug auf eine seitliche Angriffsfläche (35a) des Fingers (30) einen Winkel β bildet, dessen Wert in Radialrichtung bei r/rsaug=0,2 zwischen 50° bis 120° und bei r/rsaug=1 zwischen 85° bis 160 ° liegt, und vorzugsweise zwischen diesen Radialpunkten im Wesentlichen gleichmäßig variiert, wobei der Radius rsaug dem Radius der zylindrischen Einlassöffnung des Gehäuses entspricht.
  2. Abwasserpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass die obere Fingerfläche (33) des Fingers (30) zur Eintrittskante (23) der Schaufel (20) zumindest bereichsweise einen Abstand von 0.05 bis 3mm aufweist.
  3. Abwasserpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der tangentiale Winkel δ zwischen der in Drehrichtung angeströmten Fläche der Nut (11) und der seitlichen Angriffsfläche (35a) des Fingers im Bereich zwischen 120° und 180°, bevorzugt zwischen 140° und 180° und besonders bevorzugt zwischen 160° und 180° liegt.
  4. Abwasserpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Finger (30) die Form einer dreiflächigen Pyramide mit gekrümmten Seitenflächen (33, 35a, 35b) aufweist, wobei die vordere Fläche (35a) einen Winkel γ von 0° bis 30° gegenüber der Drehachse R bzw. einer Parallelen P1 der Drehachse R und die hintere Fläche (35b) einen Winkel ε von 0° bis 50° gegenüber der Drehachse R bzw. einer Parallelen P2 der Drehachse R aufweist.
  5. Abwasserpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die hintere Fläche (35b) des Fingers (30) in Radialrichtung in wenigstens zwei verschiedene Richtungen doppelt gekrümmt ist.
  6. Abwasserpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Finger (30) in der Nähe eines Sporns (17) des Spiralgehäuses (10) angeordnet ist, vorzugsweise in Drehrichtung (2) unmittelbar oder kurz nach dem Sporn (17) liegt.
  7. Abwasserpumpe (1) nach Anspruch 6, dadurch gekennzeichnet, dass der Finger (30) mit einem Umschlingungswinkel ϕ im Wertebereich von 0° bis 45°, besonders bevorzugt 15° bis 35° und idealerweise 20° und 30° positioniert ist, wobei der Umschlingungswinkel ϕ durch den Schnittwinkel der Vertikalen mit einer die Drehachse R schneidenden Tangente (G1) der Angriffsfläche (35a) des Fingers (30) definiert ist, wobei die Tangente (G1) vorzugsweise durch den in Radialrichtung am weitest weg liegenden Punkt der Angriffsfläche (35a) zur Drehachse R verläuft.
  8. Abwasserpumpe (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Fingerlänge wenigstens 30% des Radius r der Einlassöffnung beträgt, bevorzugt mindestens 50% und idealerweise 70% bis 80%.
  9. Abwasserpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Finger (30) lösbar mit dem Gehäuse (10) bzw. einem saugseitigen Gehäuseeinsatz (12) verbunden ist, insbesondere mittels eines endseitig am Finger ausgebildeten Befestigungselementes (31), das mit dem Gehäuse (10) bzw. dem Gehäuseeinsatz (12) verschraubbar ist, wobei das Befestigungselement (31) und dessen Anordnung am Gehäuse (10) bzw. dem Gehäuseeinsatz (12) derart ausgeführt ist, so dass dieser nicht in die Einlassöffnung (15) des Gehäuses (10) hineinragt.
  10. Abwasserpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Finger (30) wenigstens einen kleinen, als Schneidkante (32) ausgeführten Abschnitt vorsieht, insbesondere im Übergangsbereich des Fingers (30) zum Befestigungselement (31) des Fingers (30), wobei sich die Schneidkante (32) besonders bevorzugt parallel zur Drehachse R erstreckt.
EP19191970.3A 2019-08-15 2019-08-15 Abstreifelement für laufradeintrittskanten von abwasserpumpen Active EP3779201B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
HUE19191970A HUE062508T2 (hu) 2019-08-15 2019-08-15 Lehúzóelem szennyvízszivattyúk járókerekeinek belépõéleihez
EP19191970.3A EP3779201B1 (de) 2019-08-15 2019-08-15 Abstreifelement für laufradeintrittskanten von abwasserpumpen
BR112022002294A BR112022002294A2 (pt) 2019-08-15 2020-08-03 Bomba de águas residuais para transportar águas residuais carregadas de sólidos
CA3149426A CA3149426A1 (en) 2019-08-15 2020-08-03 Wiping element for impeller leading edges of wastewater pumps
CN202080057382.5A CN114245849B (zh) 2019-08-15 2020-08-03 用于污水泵的叶轮进口边缘的刮除元件
AU2020327570A AU2020327570A1 (en) 2019-08-15 2020-08-03 Wiping element for impeller leading edges of wastewater pumps
PCT/EP2020/071792 WO2021028246A1 (de) 2019-08-15 2020-08-03 Abstreifelement für laufradeintrittskanten von abwasserpumpen
US17/635,236 US12044252B2 (en) 2019-08-15 2020-08-03 Wiping element for impeller leading edges of wastewater pumps
SA522431683A SA522431683B1 (ar) 2019-08-15 2022-02-15 عنصر مسح للحواف الأمامية للدفاعة بمضخات ماء الصرف

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19191970.3A EP3779201B1 (de) 2019-08-15 2019-08-15 Abstreifelement für laufradeintrittskanten von abwasserpumpen

Publications (3)

Publication Number Publication Date
EP3779201A1 EP3779201A1 (de) 2021-02-17
EP3779201C0 EP3779201C0 (de) 2023-06-07
EP3779201B1 true EP3779201B1 (de) 2023-06-07

Family

ID=67659004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19191970.3A Active EP3779201B1 (de) 2019-08-15 2019-08-15 Abstreifelement für laufradeintrittskanten von abwasserpumpen

Country Status (9)

Country Link
US (1) US12044252B2 (de)
EP (1) EP3779201B1 (de)
CN (1) CN114245849B (de)
AU (1) AU2020327570A1 (de)
BR (1) BR112022002294A2 (de)
CA (1) CA3149426A1 (de)
HU (1) HUE062508T2 (de)
SA (1) SA522431683B1 (de)
WO (1) WO2021028246A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988793B1 (de) * 2020-10-26 2024-08-07 Xylem Europe GmbH Pumpe umfassend einen laufradsitz mit einem führungszapfen
EP4102080A1 (de) * 2021-06-08 2022-12-14 Xylem Europe GmbH Pumpe und hydraulikeinheit einer pumpe
DE102022124356A1 (de) 2021-10-04 2023-05-25 KSB SE & Co. KGaA Kreiselpumpe mit verschleißbeständiger Schleißwand mit Abstreifelementrschleißbeständiger Schleißwand mit Abstreifelement
CA3237788A1 (en) 2021-10-04 2023-04-13 KSB SE & Co. KGaA Centrifugal pump having wear-resistant wear plate with scraper element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096718A (en) * 1961-12-12 1963-07-09 Conard Kenner Trash cutter for a pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT255912B (de) * 1964-07-01 1967-07-25 Schlesiger & Co Kg Feluwa Schmutzwasser-Kreiselpumpe
US4604035A (en) * 1985-01-02 1986-08-05 A. O. Smith Harvestore Products, Inc. Submersible pump having frangible drive connection
JP4326616B2 (ja) * 1999-01-11 2009-09-09 株式会社鶴見製作所 繊維状、紐状異物を含む汚水汚物中で使用されるボルテックス型遠心ポンプにおける羽根車入口部の閉塞防止装置
US6190121B1 (en) * 1999-02-12 2001-02-20 Hayward Gordon Limited Centrifugal pump with solids cutting action
SE524048C2 (sv) * 2002-04-26 2004-06-22 Itt Mfg Enterprises Inc Anordning vid pump
DE102004058458B3 (de) * 2004-12-03 2006-05-18 Brinkmann Pumpen K.H. Brinkmann Gmbh & Co. Kg Pumpe mit Schneidlaufrad
SE0501382L (sv) * 2005-06-17 2006-06-13 Itt Mfg Enterprises Inc Pump för pumpning av förorenad vätska
SE0501542L (sv) * 2005-07-01 2006-07-25 Itt Mfg Enterprises Inc Pump för att pumpa förorenad vätska inkluderande fast material
SE530785C2 (sv) * 2006-01-23 2008-09-09 Itt Mfg Enterprises Inc Pump för pumpning av förorenad vätska innefattande fast material
WO2014029790A1 (de) * 2012-08-23 2014-02-27 Sulzer Pumpen Ag Pumpe zum fördern von abwasser sowie laufrad und bodenplatte für eine solche
SE539558C2 (sv) * 2013-08-15 2017-10-10 Xylem Ip Man S À R L Pump för pumpning av vätska samt pumphjulssammansättning
JP6415116B2 (ja) * 2014-05-30 2018-10-31 株式会社荏原製作所 汚水ポンプ用のケーシングライナ及びこれを備えた汚水ポンプ
MY188154A (en) * 2015-03-27 2021-11-24 Ebara Corp Volute pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096718A (en) * 1961-12-12 1963-07-09 Conard Kenner Trash cutter for a pump

Also Published As

Publication number Publication date
EP3779201C0 (de) 2023-06-07
WO2021028246A1 (de) 2021-02-18
HUE062508T2 (hu) 2023-11-28
CA3149426A1 (en) 2021-02-18
CN114245849A (zh) 2022-03-25
BR112022002294A2 (pt) 2022-04-26
SA522431683B1 (ar) 2024-06-06
US12044252B2 (en) 2024-07-23
AU2020327570A1 (en) 2022-02-17
EP3779201A1 (de) 2021-02-17
US20220290695A1 (en) 2022-09-15
CN114245849B (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
EP3779201B1 (de) Abstreifelement für laufradeintrittskanten von abwasserpumpen
EP2188532B1 (de) Pumpenlaufrad und pumpe umfassend ein derartiges pumpenlaufrad
EP1797327B1 (de) Drehkolbenpumpe mit einem pumpengehäuse und zwei zweiflügeligen drehkolben
EP2888484B1 (de) Pumpe zum fördern von abwasser sowie laufrad und bodenplatte für eine solche
DE69801478T2 (de) Pumpe
DE3332132T1 (de) Kreiselpumpe für Feststoffe enthaltende Flüssigkeiten
EP2226505B1 (de) Freistromrad mit Schneidkanten
EP2643596B1 (de) Selbstreinigende Schraubenzentrifugalradpumpe mit spülender Nebenströmung hinter dem Laufrad
EP3317544B1 (de) Freistrompumpe
DE69922198T2 (de) Zentrifugalpumpe
EP2348220B1 (de) Tauchpumpe
EP1213517B1 (de) Gleitringdichtung für Strömungsmaschinen
EP2497956A1 (de) Freistrompumpe
EP1344944B1 (de) Kreiselpumpe mit Zerkleinerungseinrichtung
EP3922855A1 (de) Laufrad für eine kreiselpumpe
EP2138723B1 (de) Kreiselpumpe mit Freistromlaufrad
EP4206470A1 (de) Pumpenlaufrad, gehäuseelement und pumpe hiermit
LU102840B1 (de) Schneidring für mit Feststoff belastete Flüssigkeit einer Pumpe
DE102016110224B4 (de) Kreiselpumpe und Laufrad für eine Kreiselpumpe
DE10103575A1 (de) Maschine,vorzugsweise Strömungsmaschine, z.B. Pumpe, Rührwerk oder dergleichen
DE10030957C1 (de) Kreiskolbenpumpe
DE10305726A1 (de) Kreiselpumpe mit Zerkleinerungseinrichtung
DE60211797T2 (de) Pumpenlaufrad
DE102008021767A1 (de) Kreiselpumpe mit Zerkleinerungseinrichtung
WO2014086473A1 (de) Kreiselpumpe insbesondere für abwasser oder schmutzwasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210714

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/70 20060101ALI20221007BHEP

Ipc: F04D 29/22 20060101ALI20221007BHEP

Ipc: F04D 7/04 20060101AFI20221007BHEP

INTG Intention to grant announced

Effective date: 20221027

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETIT, NICOLAS

Inventor name: MUELLER, ENRICO

Inventor name: KAMINSKI, MATEUSZ

Inventor name: JAEGER, CHRISTOPH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1575848

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007907

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230616

U02 Date of filing of the request for unitary effect changed

Effective date: 20230706

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230713

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20230802

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E062508

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230803

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007907

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

26N No opposition filed

Effective date: 20240308

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230815

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230907

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240820