EP3776633A1 - Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux - Google Patents

Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux

Info

Publication number
EP3776633A1
EP3776633A1 EP19718440.1A EP19718440A EP3776633A1 EP 3776633 A1 EP3776633 A1 EP 3776633A1 EP 19718440 A EP19718440 A EP 19718440A EP 3776633 A1 EP3776633 A1 EP 3776633A1
Authority
EP
European Patent Office
Prior art keywords
layer
luminous flux
sacrificial layer
substrate
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19718440.1A
Other languages
German (de)
English (en)
Inventor
Jean-Marc Bethoux
Guillaume BESNARD
Yann Sinquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Original Assignee
Soitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec SA filed Critical Soitec SA
Publication of EP3776633A1 publication Critical patent/EP3776633A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • the present invention relates to a dismountable composite structure by applying a luminous flux, and a method of separating such a structure.
  • the substrate is a growth substrate for the epitaxial formation of the useful layer, and it is then desired to separate the useful layer from the substrate in order to use it alone or transfer it to a final support.
  • a sacrificial layer which is intended to be at least partially decomposed during the separation treatment.
  • LLO Laser Lift-Off
  • a luminous flux is used to decompose the sacrificial layer.
  • This technique makes use of differences in optical absorption properties and temperature resistance of the materials constituting the structure.
  • the substrate is substantially transparent to said luminous flux, while the sacrificial layer strongly absorbs said flux. Consequently, when the composite structure is irradiated by applying the light flux through the substrate, the sacrificial layer heats up strongly and then dissociates when the temperature exceeds a given temperature, known as the dissociation temperature.
  • the useful layer is obtained and on the other hand the substrate which can be reused, for example to form a new composite structure.
  • a disadvantage of this method is that due to the proximity between the layer to be separated and the sacrificial layer, the layer to be separated can also be brought to a high temperature by thermal conduction from the sacrificial layer. Such heating of the layer to be separated may result in degradation of some of its properties, particularly in the case where the substrate and the layer to be separated have substantially different coefficients of thermal expansion.
  • the document WO 2015/019018 describes a dismountable composite structure in which a thermal barrier layer is interposed between the sacrificial layer and the layer to be separated.
  • Said thermal barrier layer is substantially transparent to light flux so as not to heat up and has a thickness sufficient to maintain the layer to be separated at a temperature below a threshold determined during the duration of exposure to the luminous flux.
  • thermal barrier layer may not be sufficient.
  • the layer to be separated comprises a stack of ferromagnetic materials such as CoFeB / MgO
  • an inter-diffusion of the atoms occurs at a temperature of the order of 400 to 600 ° C.
  • the layer to be separated is graphene
  • degradation of the electrical properties occurs from a temperature of 600 ° C.
  • MoS 2 molybdenite
  • a modification of the hybridization and a reaction with other materials can occur from a temperature of the order of 450 to 600 ° C.
  • a phase change alloy such as GeSbTe
  • a melting and an amorphous phase transition occurs from about 600 ° C.
  • the composition of the final support on which the layer to be separated is to be transferred may be affected by the thermal budget applied to dissociate the sacrificial layer.
  • the final support comprises electronic circuits containing copper
  • extrusion of the copper lines can occur from 400 ° C.
  • the final support is made of a polymeric material (for example a plastic material), it can decompose from 200 ° C.
  • one possible technique is a removal of the substrate by etching by the back side of the layer to be separated, so that said substrate can not be recycled for another use.
  • An object of the invention is to overcome the aforementioned drawbacks and in particular to design a removable composite structure comprising a sacrificial layer capable of dissociating by application of a limited thermal budget (typically corresponding to a temperature below 500 ° C) generated by the absorption of a luminous flux.
  • a limited thermal budget typically corresponding to a temperature below 500 ° C
  • the invention proposes a dismountable composite structure by means of a luminous flux, comprising successively: a substrate,
  • a sacrificial layer adapted to dissociate under the application of a temperature greater than a dissociation temperature, in a material different from that of the optically absorbing layer
  • composite is meant that the structure is formed of a stack of different materials, having in particular different properties in terms of optical absorption and temperature resistance.
  • mountable is meant the fact that the composite structure is able to separate in a plane parallel to its main surfaces, in two parts that each preserve their integrity, with the exception of a sacrificial layer located at the interface between the two parts and dissociates to allow said separation.
  • substantially transparent material is meant a material that passes at least 90% of the luminous flux that it receives. In other words, the product of the thickness of said material and of the absorption coefficient of the luminous flux by said material is less than 0.1.
  • optical absorbing material is meant a material that absorbs at least 90% of the light beam that it receives.
  • the product of the thickness of said material and of the absorption coefficient of the luminous flux by said material is greater than 2.3.
  • the optical absorption coefficient, at the wavelength of the luminous flux is preferably greater than 10 5 cm 1 .
  • the composite structure according to the invention has several advantages. Indeed, the thickness of the sacrificial layer can be minimized. As a result, the amount of heat present after dissociation of said layer on the side of the layer to be separated will be decreased. In addition, the sacrificial layer itself contributes to moving the optically absorbing layer away from the layer to be separated. As a result, the composite structure can be separated by means of a reduced thermal budget, which allows the use of a layer to separate and / or a final support sensitive to temperature as mentioned above. According to other advantageous but optional features of said structure, considered alone or in combination when appropriate:
  • the sacrificial layer is in contact with the optically absorbing layer
  • the sacrificial layer is made of a material that is substantially transparent to said luminous flux
  • the structure further comprises a first thermal barrier layer substantially transparent to said luminous flux, between the substrate and the optically absorbing layer;
  • the structure further comprises a second thermal barrier layer between the sacrificial layer and the layer to be separated;
  • the first and / or the second thermal barrier layer has a linear thermal conductivity coefficient of less than 10 W m 1 K 1 ;
  • the first and / or second thermal barrier layer comprises at least one of the following materials: silica (SiO 2 ), alumina (Al 2 O 3 );
  • the structure further comprises a first film adapted to reflect or absorb the luminous flux, between the sacrificial layer and the layer to be separated;
  • said first film comprises at least one of the following materials: silicon, silica (SiO 2), silicon carbide (SiC), molybdenum, silicon nitride (Si 3 N 4 );
  • the structure further comprises, between the sacrificial layer and the layer to be separated, a second film adapted to distribute the heat over the extent of the surface of the structure;
  • said second film comprises at least one of the following materials: alumina (Al 2 O 3 ), silica (SiO 2 ), polycrystalline aluminum nitride (AIN), polycrystalline silicon;
  • the substrate comprises at least one of the following materials: sapphire, quartz;
  • the optically absorbing layer comprises at least one of the following materials: silicon nitride (Si3N4), polycrystalline silicon, polycrystalline silicon carbide (SiC);
  • the sacrificial layer comprises at least one of the following materials: silicon nitride (Si 3 N 4 ), polycrystalline aluminum nitride (AIN), polycrystalline gallium nitride (GaN), indium tin oxide (ITO);
  • the layer to be separated comprises at least one of the following materials: a metal, such as copper; a Group IV material having a hexagonal crystalline structure, such as graphene; a piezoelectric, ferromagnetic or ferroelectric material; a phase change alloy, such as GeSbTe.
  • a metal such as copper
  • a Group IV material having a hexagonal crystalline structure such as graphene
  • a piezoelectric, ferromagnetic or ferroelectric material such as GeSbTe.
  • Another object of the invention relates to a method of separating a removable composite structure as described above.
  • Said method comprises:
  • the product of the thickness of the substrate and of the absorption coefficient of the luminous flux by the substrate is less than 0.1;
  • the product of the thickness of the optically absorbing layer and of the absorption coefficient of the luminous flux by said layer is greater than 2.3;
  • the luminous flux is applied in a pulsed manner
  • the wavelength of the luminous flux is between 100 and 12000 nm
  • the method comprises a step of bonding the composite structure to a support, the dissociation of the sacrificial layer leading to the transfer of the layer to be separated on the support;
  • the support comprises at least one of the following materials: a semiconductor material, such as silicon; a metal, such as copper; a polymer.
  • Another object of the invention relates to a method of manufacturing a dismountable composite structure as described above.
  • the method comprises the following steps:
  • an optically absorbing layer of a material adapted to at least partially absorb a luminous flux the substrate being substantially transparent to said luminous flux
  • said method being characterized in that it comprises forming the sacrificial layer between the optically absorbing layer and the layer to be separated, said sacrificial layer being made of a material different from that of the optically absorbing layer.
  • the formation of the layer to be separated is carried out at a temperature below the dissociation temperature of the sacrificial layer.
  • the formation of the layer to be separated may comprise the deposition or bonding of said layer on a seed layer.
  • Said seed layer may comprise at least one of the following materials: platinum, nickel, copper.
  • FIGS. 1A and 1B schematically illustrate a dismountable composite structure according to two embodiments of the invention
  • FIG. 2 schematically illustrates the bonding of the structure of FIG. 1A on a support
  • FIG. 3 schematically illustrates the application of a luminous flux to the removable composite structure bonded to said support
  • FIG. 4 schematically illustrates the separation of the composite structure following the dissociation of the sacrificial layer
  • FIG. 5 schematically illustrates the structure obtained after said separation, comprising the layer to be separated transferred onto the support
  • FIGS. 6A to 6C show thermal simulation results respectively showing heating within the demountable composite structure during a pulse of the luminous flux and homogenization of the temperature within said composite structure after dissociation of the sacrificial layer , for different durations after the laser pulse and the dissociation of the sacrificial layer, and the evolution of the temperature at the level of the seed layer over time, during and after a pulse of the luminous flux, for a first type of structure composite,
  • FIGS. 7A and 7B respectively illustrate the maximum temperature at the level of the seed layer and the heat necessary for the separation per unit area as a function of the pulse duration of the luminous flux, for a known structure (in which the optically absorbing layer and the sacrificial layer are combined and thus form a single layer of Si 3 N 4 ), and for a structure according to the invention (in which the optically absorbing layer is made of SiC and the sacrificial layer is of Si 3 N 4 ),
  • FIG. 7C shows the maximum temperature at the seed layer as a function of the pulse duration of the luminous flux, for different compositions of the first type of composite structure
  • FIGS. 8A and 8B respectively show the maximum temperature at the interface between the layer to be transferred and the support, and the power to be transmitted through the substrate to dissociate the sacrificial layer, as a function of the pulse duration, for different compositions of a second type of composite structure,
  • FIGS. 9A to 9C show thermal simulation results respectively showing heating within the demountable composite structure during a pulse of the luminous flux and homogenization of the temperature within said composite structure after dissociation of the sacrificial layer , for different pulse durations, and the evolution of the temperature at the interface between the germ layer and the layer to be separated over time, during and after a pulse of the luminous flux.
  • the invention is placed in the context of the separation of a composite structure by dissociation of a layer of said structure under the effect of heating caused by the application of a luminous flux through at least one part of the structure.
  • the invention proposes to decouple the portion of the structure which is heated by optical absorption of the portion of the structure which dissociates under the effect of said heating by forming, in said structure, an optically absorbing layer distinct from the sacrificial layer.
  • the sacrificial layer is made of a material that is substantially transparent to the luminous flux and capable of dissociating under the application of a temperature greater than a dissociation temperature, said temperature being attained by the heating of the optically absorbing layer by absorbing the luminous flux.
  • the composite structure 100 successively comprises at least one substrate 1 substantially transparent to the luminous flux, the optically absorbing layer 2, the sacrificial layer 3 and a layer 4 (or a stack of layers ) to separate from the rest of the structure.
  • Irradiation by the luminous flux is performed through the face of the substrate opposite to the layer to be separated.
  • the layer to be separated is not necessarily transparent vis-à-vis the luminous flux; on the other hand, a heating caused by at least partial absorption of said luminous flux could damage said layer to be separated.
  • the sacrificial layer is interposed between the optically absorbing layer and the layer to be separated. Thus, it contributes to forming a thermal barrier between the optically absorbing layer which heats up strongly by absorption of the luminous flux, and the layer to be separated.
  • the sacrificial layer is in contact with the absorbent layer, so as to maximize the heat transfer of the absorbent layer to the sacrificial layer.
  • the substrate 1 is chosen from a material that is substantially transparent to the luminous flux to be applied to dissociate the sacrificial layer.
  • the substrate may be solid or constituted by a stack of layers of different materials, since each of said materials is substantially transparent to the luminous flux.
  • the substrate comprises at least one of the following materials: sapphire, quartz.
  • the material of the optically absorbing layer 2 is chosen to be highly absorbent at the wavelength of the luminous flux.
  • the layer 2 comprises at least one of the following materials: silicon nitride (Si 3 N 4 ), polycrystalline silicon, polycrystalline silicon carbide (SiC), molybdenum (Mo).
  • the sacrificial layer 3 is a layer distinct from the layer 2, advantageously a material substantially transparent to the luminous flux.
  • the material of the sacrificial layer is chosen to dissociate from a so-called dissociation temperature. From this dissociation temperature, a decohesion of the chemical bonds of the material of the sacrificial layer is observed, leading to a separation of the composite structure at the level of said sacrificial layer.
  • the material of the optically absorbing layer is stable at a temperature above the dissociation temperature.
  • the sacrificial layer comprises at least one of the following materials: silicon nitride (Si 3 N 4 ), polycrystalline aluminum nitride (AIN), polycrystalline gallium nitride (GaN), indium tin oxide (ITO) ).
  • the dissociation temperature of these different materials is generally between 1000 and 2500 ° C.
  • the sacrificial layer does not substantially heat up by absorption of the light flux, but by thermal conduction from the optically absorbing layer. Insofar as the sacrificial layer begins to dissociate as soon as the temperature to which it is exposed reaches the dissociation temperature of said layer, the thermal budget applied to the layer to be separated is less than the thermal budget that would be applied to said layer if it was in contact with the optically absorbing layer.
  • the fact of using two distinct layers for optical absorption and dissociation makes it possible to be content with a relatively thin sacrificial layer (thinner than the sacrificial layer of the state of the art). Indeed, while in the case where the sacrificial layer is merged with the optical absorption layer, said layer must be sufficiently thick (typically of the order of a few hundred nanometers) to store the heat necessary for its own dissociation , the sacrificial layer only has the function of decomposing from a certain temperature and can therefore be very thin (of the order of a few tens of nanometers). Insofar as the invention makes it possible to reduce the thermal budget of the layer to be separated, said layer can be formed of a great diversity of materials.
  • the layer to be separated advantageously comprises at least one of the following materials: a metal, such as copper; a Group IV material having a hexagonal crystalline structure, such as graphene; a piezoelectric, ferromagnetic or ferroelectric material; a phase change alloy, such as GeSbTe for example.
  • a metal such as copper
  • a Group IV material having a hexagonal crystalline structure such as graphene
  • a piezoelectric, ferromagnetic or ferroelectric material such as GeSbTe for example.
  • Said composite structure can be obtained by successively growing the constituent layers on the substrate 1. Some manufacturing steps of the composite structure can also include gluing or layer transfer steps.
  • the dissociation temperature of the sacrificial layer must be greater than the temperature at which the layer to be separated is deposited or bonded, in order to avoid any untimely dissociation of the sacrificial layer during the manufacture of the composite structure.
  • the composite structure may advantageously comprise one or more additional layers, used alone or in combination, which produce the additional effects described below with reference to FIG.
  • FIG. 1B illustrates an embodiment combining all of these additional functional layers, but, as indicated previously, the composite structure could comprise only a part of these layers, since it comprises at least the layers described with reference in Figure 1A.
  • the layer 5 is made of a material that is substantially transparent to the light flux and has a low thermal conduction.
  • low thermal conductivity is meant in the present text a coefficient of linear thermal conductivity less than 10 Wm 1 .K 1 .
  • a second thermal barrier layer 5 is arranged on the sacrificial layer 3. Since the layer 5 is made of a material of low thermal conduction, it makes it possible to improve the thermal insulation of the layer 4 to be separated.
  • each of the layers 5 comprises at least one of the following materials: silica (SiO 2 ), alumina (Al 2 O 3 ).
  • the layers 5 make it possible to confine the heat in the portion of the composite structure that they delimit, namely the optically absorbing layer and the sacrificial layer.
  • the dissociation temperature of the sacrificial layer is reached more rapidly than in the absence of the thermal barrier layers.
  • a film 6 (or a stack of films) adapted to reflect the luminous flux, or to absorb the portion of said flux transmitted through the optically absorbing layer, is arranged on the second layer 5 of thermal barrier.
  • Said film 6 advantageously comprises at least one of the following materials: silicon, silica (Si0 2 ), silicon carbide (SiC), molybdenum, silicon nitride (Si 3 N 4 ).
  • the film 6 may advantageously comprise a stack of Bragg mirror type. Said stack may optionally fulfill the thermal barrier function and thus replace the second layer 5.
  • Said film 6 makes it possible to prevent a part of the luminous flux from being transmitted to the layer to be separated, which has the effect of reducing the thermal budget applied to said layer and of preventing energy losses.
  • a film 7 (or a stack of films) having a certain thermal inertia and adapted to distribute the heat over the extent of the surface of the structure is arranged on the film 6.
  • Said film 7 is characterized by a product thickness x density x thermal mass capacity.
  • Said film 7 comprises at least one of the following materials: alumina (Al 2 O 3 ), silica (SiO 2 ), polycrystalline aluminum nitride (AlN), polycrystalline silicon.
  • a seed layer 8 is arranged on the film 7, in direct contact with the layer 4 to be transferred.
  • the seed layer is chosen to facilitate the bonding or deposition of the layer 4 to be separated, according to the mode of formation of said layer.
  • the seed layer 8 may comprise at least one of the following materials: platinum, nickel, copper.
  • the composite structure is assembled to said support via the layer to be separated.
  • the reduction of the separation thermal budget described above is also beneficial to the support, especially if it is temperature sensitive.
  • the invention therefore also makes it possible to use a greater diversity of supports, in particular of polymer material or of metal.
  • the support may comprise at least one of the following materials: a semiconductor material, such as silicon; a metal, such as copper; a polymer.
  • FIG. 2 illustrates the bonding of the composite structure of FIG. 1A on a support
  • Bonding may be preceded by any suitable surface preparation step to enhance the bonding energy.
  • the support can be deposited on the layer to be separated, provided that the thermal budget implemented for this deposit is low enough not to cause dissociation of the sacrificial layer.
  • Figure 3 schematically illustrates the irradiation of the composite structure bonded to the support by a laser beam (represented by the arrow).
  • Said beam passes through the substrate 1 (and, where appropriate, the first thermal barrier layer) and is absorbed by the optically absorbing layer, which heats up.
  • the luminous flux is applied in a pulsed manner.
  • the duration of each pulse is of the order of a few tens of nanoseconds. This duration is chosen according to the power of the laser and the temperature to be reached in the optically absorbing layer in order to be able to dissociate the sacrificial layer.
  • the wavelength of the laser is chosen in relation to the materials of the layers constituting the composite structure.
  • the substrate and the thermal barrier layer or layers, as well as the sacrificial layer are substantially transparent at the wavelength of the laser, unlike the optically absorbing layer.
  • the wavelength of the laser may be between 100 and 120.
  • the wavelength of the laser is advantageously of the order of 150 to 700 nm.
  • the wavelength of the laser is advantageously of the order of 1000 to 12000 nm.
  • the sacrificial layer 3 dissociates under the effect of the heat generated in the electrically absorbing layer 2.
  • the composite structure therefore separates into two parts: a first part which comprises the substrate 1 and the optically-active layer absorbent 2, on the one hand, and a second part which comprises the layer 4 to be separated, on the other hand.
  • Residues of the sacrificial layer 3 may be on one and / or the other of the two parts.
  • a finishing treatment may optionally be used to eliminate these residues.
  • FIG. 5 illustrates the layer 4 transferred on the support 200.
  • This first example relates to a composite structure for the growth of a graphene layer to be transferred onto a support.
  • the composite structure comprises successively, with reference to FIG. 1B (it will be noted that all the layers represented in FIG. 1B are not present in said structure):
  • a sacrificial layer 3 made of silicon nitride (Si 3 N 4 ) 20 nm thick;
  • the temperature within the structure increases during the duration of each pulse.
  • the heat generated is mainly located in layer 2 optically absorbing.
  • the temperature is homogenized in the structure.
  • the temperature at the upper interface of the seed layer 8 i.e. the interface between the seed layer and the graphene layer.
  • FIG. 6A shows the distribution of the temperature within the composite structure as a function of the depth z (in ⁇ m) for different durations less than or equal to the laser pulse duration, which is 20 ns in this case.
  • FIG. 6B shows the homogenization of the temperature within the structure as a function of the depth z (in ⁇ m) for different durations after the end of the laser pulse.
  • FIG. 6C shows the evolution of the temperature T (in ° C.) at the level of the seed layer as a function of time t (in ms). It is observed that said temperature does not exceed 275 ° C., which is a temperature well below the temperature from which a deterioration of the electrical properties of graphene is observed.
  • SiC has an optical absorption coefficient more than three times higher than that of silicon nitride, while being stable above the dissociation temperature of silicon nitride.
  • FIG. 7A thus shows the maximum temperature T at the upper interface of the seed layer 8 (in ° C), for the combination of an absorbent optical layer of 30 nm of SiC and a sacrificial layer of 20 nm of Si 3 N 4 according to the invention and for a single sacrificial sacrificial layer of Si 3 N 4 100 nm thick, not according to the invention, depending on the laser pulse duration (in ns). It is observed that the maximum temperature is reduced by more than 100 ° C. with the structure according to the invention.
  • FIG. 7B illustrates the heat C required for detachment per unit area (in J. cm 2 ) as a function of the laser pulse duration (in ns), for the combination of an absorbing optical layer of 30 nm SiC and a sacrificial layer of 20 nm of Si 3 N 4 according to the invention and for a single sacrificial sacrificial layer of Si 3 N 4 100 nm thick, not in accordance with the invention. It is observed that the necessary heat is reduced by nearly 0.02 J. cm -1 with the invention, a reduction of about FIG. 7C also illustrates numerical simulation results for various composite structures.
  • the structures S1, S2 and S3 are in accordance with the invention. They all successively comprise the sapphire substrate 1, the first SiO 2 thermal barrier layer 5, the SiC optically absorbing layer 2, the Si 3 N 4 sacrificial layer 3, the second thermal barrier layer 5 and a nickel layer , constituting a seed layer for the graphene layer to be separated (unless otherwise indicated, the thickness of each of said layers is that mentioned above).
  • the structures S1 and S2 further comprise a polycrystalline silicon thermal inertia layer 7 between the second thermal barrier layer and the seed layer 8; in the case of structure S1, the thickness of layer 7 is 1000 nm; in the case of the structure S2, the thickness of the layer 7 is 500 nm.
  • Structure S4 does not conform to the invention: it comprises a single sacrificial sacrificial Si 3 N 4 sacrificial layer of 100 nm thick between first and second thermal barrier layers identical to those of structures S1 to S3.
  • the maximum temperature is even lower than the thermal inertia layer 7 is thick.
  • the maximum temperature is less than 200 ° C for a pulse of 20 ns.
  • the thermal inertia movie provides 43% of surface heat capacity (JK 1 .m 1) supplementary with respect to the set of layers 3, 5 and 8.
  • This second example relates to a composite structure for depositing a layer of PZT (lead titano-zirconate) on a silicon substrate and then transferring said layer on a flexible support.
  • PZT lead titano-zirconate
  • Such a layer has ferroelectric, piezoelectric and / or pyroelectric properties.
  • the composite structure comprises, successively, with reference to FIG. 1B (all the layers represented in FIG. 1B not being necessarily present in said structure):
  • an optically absorbent molybdenum layer 2 having a thickness of 100 nm;
  • a sacrificial layer 3 made of titanium-indium oxide (ITO) 20 nm thick;
  • said layer 4 In order to obtain satisfactory properties, said layer 4 must be heated to 600 ° C. After this step, a flexible support in the form of a polyimide film is adhered to the PZT layer to transfer said layer there.
  • the maximum temperature that can withstand the polyimide film is between 200 and 400 ° C depending on the duration of application of the temperature.
  • a C0 2 laser emitting infrared for example having a wavelength of 10.6 pm is used.
  • FIG. 8A illustrates the maximum temperature (in ° C) at the bonding interface as a function of the laser pulse duration (in ns), for different composite structures S5-S8.
  • the temperature limit of 200 ° C is exceeded if the pulse duration is greater than
  • the power of the laser source is not sufficient, it is possible to provide a transfer with a longer pulse (100 nm for example) by increasing the thickness of the thermal barrier layers and / or by inserting a film 7 of heat distribution to increase the thermal capacity of the layers between the sacrificial layer 3 and the bonding interface between the layer 4 of PZT and the support.
  • Structures S5, S6, S7 and S8 are in accordance with the invention. They all comprise, successively, the silicon substrate 1, the first SiO 2 thermal barrier layer 5, the molybdenum optically absorbing layer 2, the ITO sacrificial layer 3, the second thermal barrier layer 5 and the PZT layer 4. 1 ⁇ m, constituting the layer to be separated (unless otherwise indicated, the thickness of said layers is that mentioned above).
  • the structures S5 and S6 further comprise a layer 7 of polycrystalline silicon thermal inertia between the second thermal barrier layer and the seed layer 8; in the case of structure S5, the thickness of layer 7 is 1000 nm; in the case of structure S6, the thickness of layer 7 is 500 nm.
  • the second thermal barrier layer of structure S7 is thicker (1000 nm instead of 500 nm).
  • FIG. 8B illustrates the power density D of the laser (in Wm 2 ) to be transmitted through the silicon substrate to dissociate the sacrificial layer, as a function of the laser pulse duration (in ns), for the structures S5-S8 previously mentioned. The points are substantially confused for all of said structures.
  • FIG. 9A shows the distribution of the temperature within the composite structure S5 as a function of the depth z (in ⁇ m) for different durations less than or equal to the laser pulse duration, which is 100 ns in this case.
  • FIG. 9B shows the homogenization of the temperature within the structure S5 as a function of the depth z (in ⁇ m) for different durations after the end of the laser pulse.
  • FIG. 9C shows the evolution of the temperature T (in ° C) at the upper interface of the PZT layer of structure S5 as a function of time t (in ps). It is observed that said temperature does not exceed 180 ° C., so that the polyimide support bonded to the PZT layer is not likely to be damaged during the separation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux, ledit procédé comprenant : la fourniture de la structure composite (100) démontable comprenant successivement : • un substrat (1), • une couche (2) optiquement absorbante en un matériau adapté pour absorber au moins partiellement un flux lumineux, le substrat étant sensiblement transparent audit flux lumineux, • une couche sacrificielle (3) adaptée pour se dissocier sous l'application d'une température supérieure à une température de dissociation, en un matériau différent de celui de la couche optiquement absorbante (2), • au moins une couche (4) à séparer, l'application d'un flux lumineux au travers du substrat (1), ledit flux lumineux étant absorbé au moins en partie par la couche (2) optiquement absorbante, de sorte à échauffer ladite couche optiquement absorbante, le chauffage de la couche sacrificielle (3) par conduction thermique à partir de la couche (2) optiquement absorbante, jusqu'à une température supérieure ou égale à la température de dissociation, la dissociation de la couche sacrificielle (3) sous l'effet dudit chauffage.

Description

PROCEDE DE SEPARATION D’UNE STRUCTURE COMPOSITE DEMONTABLE AU MOYEN D’UN FLUX LUMINEUX
DOMAINE DE L'INVENTION
La présente invention concerne une structure composite démontable par application d’un flux lumineux, et un procédé de séparation d’une telle structure.
ARRIERE PLAN DE L'INVENTION
Il est connu, dans le domaine de la microélectronique, de l’optique et de l’opto- électronique, de fabriquer une structure composite démontable comprenant une couche utile et un substrat, ladite structure étant destinée à être ultérieurement traitée afin de séparer la couche utile du substrat.
Tel est le cas par exemple lorsque le substrat est un substrat de croissance pour la formation par épitaxie de la couche utile, et que l’on souhaite ensuite séparer la couche utile du substrat pour l’utiliser seule ou la transférer sur un support final.
A cet effet, on dispose au sein de la structure, entre la couche utile et le substrat, une couche sacrificielle qui est destinée à être au moins en partie décomposée lors du traitement de séparation.
Une technique particulière de séparation est connue sous le terme de « Laser Lift- Off » (LLO), dans laquelle un flux lumineux est utilisé pour décomposer la couche sacrificielle. Cette technique met à profit des différences de propriétés d’absorption optique et de tenue en température des matériaux constituant la structure. Ainsi, le substrat est sensiblement transparent audit flux lumineux, tandis que la couche sacrificielle absorbe fortement ledit flux. Par conséquent, lorsque l’on irradie la structure composite en appliquant le flux lumineux au travers du substrat, la couche sacrificielle s’échauffe fortement puis se dissocie lorsque la température dépasse une température donnée, dite température de dissociation. On obtient donc d’une part la couche utile et d’autre part le substrat qui peut être réutilisé, par exemple pour former une nouvelle structure composite.
Un inconvénient de ce procédé est qu’en raison de la proximité entre la couche à séparer et la couche sacrificielle, la couche à séparer peut être également portée à une température élevée par conduction thermique à partir de la couche sacrificielle. Un tel échauffement de la couche à séparer peut se traduire par une dégradation de certaines de ses propriétés, notamment dans le cas où le substrat et la couche à séparer présentent des coefficients de dilatation thermique sensiblement différents.
Le document WO 2015/019018 décrit une structure composite démontable dans laquelle une couche de barrière thermique est intercalée entre la couche sacrificielle et la couche à séparer. Ladite couche de barrière thermique est sensiblement transparente au flux lumineux de manière à ne pas s’échauffer et présente une épaisseur suffisante pour maintenir la couche à séparer à une température inférieure à un seuil déterminé pendant la durée de l’exposition au flux lumineux.
Cependant, pour certains matériaux de la couche à séparer et/ou du support final le cas échéant, une telle couche de barrière thermique peut ne pas être suffisante.
Ainsi, par exemple, dans le cas où la couche à séparer comprend un empilement de matériaux ferromagnétiques tels que CoFeB/MgO, il se produit une inter-diffusion des atomes à partir d’une température de l’ordre de 400 à 600°C. Dans le cas où la couche à séparer est en graphène, une dégradation des propriétés électriques se produit à partir d’une température de 600°C. Dans le cas d’une couche à séparer en molybdénite (MoS2), une modification de l’hybridation et une réaction avec d’autres matériaux peut se produire à partir d’une température de l’ordre de 450 à 600°C. Dans le cas où la couche à séparer est en un alliage à changement de phase, tel que GeSbTe, il se produit une fusion et un passage en phase amorphe à partir de 600°C environ.
De même, selon la composition du support final sur lequel la couche à séparer doit être transférée, ledit support peut être affecté par le budget thermique appliqué pour dissocier la couche sacrificielle. Ainsi, par exemple, si le support final comprend des circuits électroniques contenant du cuivre, une extrusion des lignes de cuivre peut se produire à partir de 400°C. Dans le cas où le support final est en un matériau polymère (par exemple une matière plastique), il peut se décomposer dès 200°C.
Dans de tels cas, pour effectuer la séparation à basse température, une technique possible est un retrait du substrat par gravure par la face arrière de la couche à séparer, de sorte que ledit substrat ne peut être recyclé pour une autre utilisation.
Un autre procédé envisageable basé sur la technique LLO, lorsque le support final est sensible à la température, est de transférer la couche à séparer sur un substrat temporaire non susceptible d’être affecté par le budget thermique de dissociation de la couche sacrificielle, puis de transférer la couche à séparer sur le support final. Cependant, ce procédé est plus long et plus onéreux que le procédé LLO puisqu’il nécessite un double transfert de la couche d’intérêt.
BREVE DESCRIPTION DE L’INVENTION
Un but de l’invention est de remédier aux inconvénients précités et notamment de concevoir une structure composite démontable comprenant une couche sacrificielle capable de se dissocier par application d’un budget thermique limité (correspondant typiquement à une température inférieure à 500°C) généré par l’absorption d’un flux lumineux.
A cet effet, l’invention propose une structure composite démontable au moyen d’un flux lumineux, comprenant successivement : un substrat,
une couche optiquement absorbante en un matériau adapté pour absorber au moins partiellement un flux lumineux, le substrat étant sensiblement transparent audit flux lumineux,
- une couche sacrificielle adaptée pour se dissocier sous l’application d’une température supérieure à une température de dissociation, en un matériau différent de celui de la couche optiquement absorbante,
au moins une couche à séparer.
Par « composite » on entend le fait que la structure est formée d’un empilement de différents matériaux, présentant notamment des propriétés différentes en termes d’absorption optique et de tenue en température.
Par « démontable » on entend le fait que la structure composite est apte à se séparer selon un plan parallèle à ses surfaces principales, en deux parties qui conservent chacune leur intégrité, à l’exception d’une couche sacrificielle située à l’interface entre les deux parties et qui se dissocie pour permettre ladite séparation.
Par « matériau sensiblement transparent », on entend un matériau qui laisse passer au moins 90% du flux lumineux qu’il reçoit. En d’autres termes, le produit de l’épaisseur dudit matériau et du coefficient d’absorption du flux lumineux par ledit matériau est inférieur à 0,1.
Par « matériau optiquement absorbant » on entend un matériau qui absorbe au moins 90% du faisceau lumineux qu’il reçoit. En d’autres termes, le produit de l’épaisseur dudit matériau et du coefficient d’absorption du flux lumineux par ledit matériau est supérieur à 2,3. Le coefficient d’absorption optique, à la longueur d’onde du flux lumineux, est de préférence supérieur à 105 cm 1.
Les termes « sur » et « entre » se rapportant à la position relative de deux couches n’impliquent pas nécessairement de contact direct entre lesdites couches, à moins qu’un tel contact ne soit spécifié.
En procurant une couche sacrificielle distincte de la couche optiquement absorbante, par rapport au procédé connu dans lequel la couche sacrificielle est confondue avec la couche optiquement absorbante, la structure composite selon l’invention présente plusieurs avantages. En effet, l’épaisseur de la couche sacrificielle peut être minimisée. De ce fait, la quantité de chaleur présente après dissociation de ladite couche du côté de la couche à séparer sera diminuée. En outre, la couche sacrificielle contribue elle-même à éloigner la couche optiquement absorbante de la couche à séparer. Il en résulte que la structure composite peut être séparée au moyen d’un budget thermique réduit, ce qui autorise l’utilisation d’une couche à séparer et/ou d’un support final sensibles à la température tels que mentionnés plus haut. Selon d’autres caractéristiques avantageuses mais optionnelles de ladite structure, considérées seules ou en combinaison lorsque cela est approprié :
- la couche sacrificielle est en contact avec la couche optiquement absorbante ;
- la couche sacrificielle est en un matériau sensiblement transparent audit flux lumineux ;
- la structure comprend en outre une première couche de barrière thermique sensiblement transparente audit flux lumineux, entre le substrat et la couche optiquement absorbante ;
- la structure comprend en outre une deuxième couche de barrière thermique entre la couche sacrificielle et la couche à séparer ;
- la première et/ou la deuxième couche de barrière thermique présente un coefficient de conductivité thermique linéaire inférieur à 10 W m 1 K 1 ;
- la première et/ou la deuxième couche de barrière thermique comprend au moins un des matériaux suivants : silice (Si02), alumine (Al203) ;
- la structure comprend en outre un premier film adapté pour réfléchir ou absorber le flux lumineux, entre la couche sacrificielle et la couche à séparer ;
- ledit premier film comprend au moins un des matériaux suivants : silicium, silice (Si02), carbure de silicium (SiC), molybdène, nitrure de silicium (Si3N4) ;
- la structure comprend en outre, entre la couche sacrificielle et la couche à séparer, un second film adapté pour répartir la chaleur sur l’étendue de la surface de la structure ;
- ledit second film comprend au moins un des matériaux suivants : alumine (Al203), silice (Si02), nitrure d’aluminium (AIN) polycristallin, silicium polycristallin ;
- le substrat comprend au moins un des matériaux suivants : saphir, quartz ;
- la couche optiquement absorbante comprend au moins un des matériaux suivants : nitrure de silicium (Si3N4), silicium polycristallin, carbure de silicium (SiC) polycristallin ;
- la couche sacrificielle comprend au moins un des matériaux suivants : nitrure de silicium (Si3N4), nitrure d’aluminium (AIN) polycristallin, nitrure de gallium (GaN) polycristallin, oxyde d’indium-étain (ITO) ;
- la couche à séparer comprend au moins un des matériaux suivants : un métal, tel que du cuivre ; un matériau du groupe IV présentant une structure cristalline hexagonale, tel que du graphène ; un matériau piézoélectrique, ferromagnétique ou ferroélectrique ; un alliage à changement de phase, tel que GeSbTe.
Un autre objet de l’invention concerne un procédé de séparation d’une structure composite démontable telle que décrite plus haut.
Ledit procédé comprend :
l’application d’un flux lumineux au travers du substrat, ledit flux lumineux étant absorbé au moins en partie par la couche optiquement absorbante, de sorte à échauffer ladite couche optiquement absorbante, le chauffage de la couche sacrificielle par conduction thermique à partir de la couche optiquement absorbante, jusqu’à une température supérieure ou égale à la température de dissociation,
la dissociation de la couche sacrificielle sous l’effet dudit chauffage. Selon d’autres caractéristiques avantageuses mais optionnelles dudit procédé, considérées seules ou en combinaison lorsque cela est approprié :
- le produit de l’épaisseur du substrat et du coefficient d’absorption du flux lumineux par le substrat est inférieur à 0,1 ;
- le produit de l’épaisseur de la couche optiquement absorbante et du coefficient d’absorption du flux lumineux par ladite couche est supérieur à 2,3 ;
- le flux lumineux est appliqué de manière impulsionnelle ;
- la longueur d’onde du flux lumineux est comprise entre 100 et 12000 nm ;
- avant l’application dudit flux lumineux, le procédé comprend une étape de collage de la structure composite sur un support, la dissociation de la couche sacrificielle conduisant au transfert de la couche à séparer sur le support ;
- le support comprend au moins un des matériaux suivants : un matériau semi- conducteur, tel que du silicium ; un métal, tel que du cuivre ; un polymère.
Un autre objet de l’invention concerne un procédé de fabrication d’une structure composite démontable telle que décrite ci-dessus. Ledit procédé comprend les étapes suivantes :
fourniture du substrat,
formation, sur le substrat, d’une couche optiquement absorbante en un matériau adapté pour absorber au moins partiellement un flux lumineux, le substrat étant sensiblement transparent audit flux lumineux,
- formation de la couche à séparer sur la couche optiquement absorbante, ledit procédé étant caractérisé en ce qu’il comprend la formation de la couche sacrificielle entre la couche optiquement absorbante et la couche à séparer, ladite couche sacrificielle étant en un matériau différent de celui de la couche optiquement absorbante.
De manière avantageuse, la formation de la couche à séparer est mise en oeuvre à une température inférieure à la température de dissociation de la couche sacrificielle.
La formation de la couche à séparer peut comprendre le dépôt ou le collage de ladite couche sur une couche germe. Ladite couche germe peut comprendre au moins un des matériaux suivants : platine, nickel, cuivre. BREVE DESCRIPTION DES DESSINS
D’autres caractéristiques et avantages de l’invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels : les figures 1A et 1 B illustrent schématiquement une structure composite démontable selon deux modes de réalisation de l’invention,
la figure 2 illustre schématiquement le collage de la structure de la figure 1A sur un support,
- la figure 3 illustre schématiquement l’application d’un flux lumineux à la structure composite démontable collée audit support,
la figure 4 illustre schématiquement la séparation de la structure composite suite à la dissociation de la couche sacrificielle,
la figure 5 illustre schématiquement la structure obtenue à l’issue de ladite séparation, comprenant la couche à séparer transférée sur le support,
les figures 6A à 6C représentent des résultats de simulation thermique montrant respectivement réchauffement au sein de la structure composite démontable au cours d’une impulsion du flux lumineux et l’homogénéisation de la température au sein de ladite structure composite après la dissociation de la couche sacrificielle, pour différentes durées après l’impulsion laser et la dissociation de la couche sacrificielle, et l’évolution de la température au niveau de la couche germe au cours du temps, pendant et après une impulsion du flux lumineux, pour un premier type de structure composite,
les figures 7A et 7B illustrent respectivement la température maximale au niveau de la couche germe et la chaleur nécessaire à la séparation par unité de surface en fonction de la durée d’impulsion du flux lumineux, pour une structure connue (dans laquelle la couche optiquement absorbante et la couche sacrificielle sont confondues et forment donc une unique couche de Si3N4), et pour une structure selon l’invention (dans laquelle la couche optiquement absorbante est réalisée en SiC et la couche sacrificielle est en Si3N4),
- la figure 7C présente la température maximale au niveau de la couche germe en fonction de la durée d’impulsion du flux lumineux, pour différentes compositions du premier type de structure composite,
les figures 8A et 8B présentent respectivement la température maximale au niveau de l’interface entre la couche à transférer et le support, et la puissance à transmettre au travers du substrat pour dissocier la couche sacrificielle, en fonction de la durée d’impulsion, pour différentes compositions d’un deuxième type de structure composite,
les figures 9A à 9C représentent des résultats de simulation thermique montrant respectivement réchauffement au sein de la structure composite démontable au cours d’une impulsion du flux lumineux et l’homogénéisation de la température au sein de ladite structure composite après la dissociation de la couche sacrificielle, pour différentes durées d’impulsion, et l’évolution de la température au niveau de l’interface entre la couche germe et la couche à séparer au cours du temps, pendant et après une impulsion du flux lumineux.
Pour des raisons de lisibilité des figures, les éléments illustrés ne sont pas nécessairement représentés à l’échelle. Par ailleurs, les éléments désignés par les mêmes signes de référence sur différentes figures sont identiques.
DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L’INVENTION
L’invention se place dans le contexte de la séparation d’une structure composite par dissociation d’une couche de ladite structure sous l’effet d’un chauffage provoqué par l’application d’un flux lumineux au travers d’au moins une partie de la structure.
Par rapport à la structure décrite dans le document WO 2015/019018 précité, l’invention propose de découpler la portion de la structure qui est chauffée par absorption optique de la portion de la structure qui se dissocie sous l’effet dudit chauffage en formant, dans ladite structure, une couche optiquement absorbante distincte de la couche sacrificielle. En particulier, contrairement à la couche optiquement absorbante, la couche sacrificielle est en un matériau sensiblement transparent au flux lumineux et apte à se dissocier sous l’application d’une température supérieure à une température de dissociation, ladite température étant atteinte par le chauffage de la couche optiquement absorbante par absorption du flux lumineux.
D’une manière générale, comme illustré sur la figure 1A, la structure composite 100 comprend successivement au moins un substrat 1 sensiblement transparent au flux lumineux, la couche 2 optiquement absorbante, la couche sacrificielle 3 et une couche 4 (ou un empilement de couches) à séparer du reste de la structure.
L’irradiation par le flux lumineux est effectuée au travers de la face du substrat opposée à la couche à séparer. En effet, la couche à séparer n’est pas nécessairement transparente vis-à-vis du flux lumineux ; d’autre part, un échauffement provoqué par une absorption au moins partielle dudit flux lumineux pourrait endommager ladite couche à séparer. La couche sacrificielle est intercalée entre la couche optiquement absorbante et la couche à séparer. Ainsi, elle contribue à former une barrière thermique entre la couche optiquement absorbante qui s’échauffe fortement par absorption du flux lumineux, et la couche à séparer.
De préférence, la couche sacrificielle est en contact avec la couche absorbante, de manière à maximiser le transfert thermique de la couche absorbante vers la couche sacrificielle.
Le substrat 1 est choisi en un matériau sensiblement transparent au flux lumineux à appliquer pour dissocier la couche sacrificielle. De manière avantageuse, le substrat peut être massif ou constitué d’un empilement de couches de différents matériaux, dès lors que chacun desdits matériaux est sensiblement transparent au flux lumineux.
Selon un mode de réalisation préféré, le substrat comprend au moins un des matériaux suivants : saphir, quartz.
Le matériau de la couche 2 optiquement absorbante est choisi pour être fortement absorbant à la longueur d’onde du flux lumineux.
De manière avantageuse, la couche 2 comprend au moins un des matériaux suivants : nitrure de silicium (Si3N4), silicium polycristallin, carbure de silicium (SiC) polycristallin, molybdène (Mo).
La couche sacrificielle 3 est une couche distincte de la couche 2, avantageusement en un matériau sensiblement transparent au flux lumineux. Le matériau de la couche sacrificielle est choisi pour se dissocier à partir d’une température dite de dissociation. A partir de cette température de dissociation, on observe une décohésion des liaisons chimiques du matériau de la couche sacrificielle, conduisant à une séparation de la structure composite au niveau de ladite couche sacrificielle. Le matériau de la couche optiquement absorbante est en revanche stable à une température supérieure à la température de dissociation.
De manière avantageuse, la couche sacrificielle comprend au moins un des matériaux suivants : nitrure de silicium (Si3N4), nitrure d’aluminium (AIN) polycristallin, nitrure de gallium (GaN) polycristallin, oxyde d’indium-étain (ITO). La température de dissociation de ces différents matériaux est généralement comprise entre 1000 et 2500°C.
La couche sacrificielle ne s’échauffe sensiblement pas par absorption du flux lumineux, mais par conduction thermique à partir de la couche optiquement absorbante. Dans la mesure où la couche sacrificielle commence à se dissocier dès que la température à laquelle elle est exposée atteint la température de dissociation de ladite couche, le budget thermique appliqué à la couche à séparer est inférieur au budget thermique qui serait appliqué à ladite couche si elle était en contact avec la couche optiquement absorbante.
Par ailleurs, le fait d’utiliser deux couches distinctes pour l’absorption optique et la dissociation permet de se contenter d’une couche sacrificielle relativement fine (plus fine que la couche sacrificielle de l’état de la technique). En effet, alors que dans le cas où la couche sacrificielle est confondue avec la couche d’absorption optique, ladite couche doit être suffisamment épaisse (typiquement, de l’ordre de quelques centaines de nanomètres) pour emmagasiner la chaleur nécessaire à sa propre dissociation, la couche sacrificielle n’a pour fonction que de se décomposer à partir d’une certaine température et peut donc être très fine (de l’ordre de quelques dizaines de nanomètres). Dans la mesure où l’invention permet de réduire le budget thermique de la couche à séparer, ladite couche peut être formée d’une grande diversité de matériaux.
Par exemple, la couche à séparer comprend avantageusement au moins un des matériaux suivants : un métal, tel que du cuivre ; un matériau du groupe IV présentant une structure cristalline hexagonale, tel que du graphène ; un matériau piézoélectrique, ferromagnétique ou ferroélectrique ; un alliage à changement de phase, tel que GeSbTe par exemple.
Ladite structure composite peut être obtenue en faisant croître successivement les couches constitutives sur le substrat 1. Certaines étapes de fabrication de la structure composite peuvent également inclure des étapes de collage ou de transfert de couche.
En tout état de cause, la température de dissociation de la couche sacrificielle doit être supérieure à la température à laquelle la couche à séparer est déposée ou collée, afin d’éviter toute dissociation intempestive de la couche sacrificielle pendant la fabrication de la structure composite.
La structure composite peut avantageusement comprendre une ou plusieurs couches additionnelles, utilisées seules ou en combinaison, qui produisent les effets supplémentaires décrits ci-après en référence à la figure 1 B.
La figure 1 B illustre un mode de réalisation combinant l’ensemble de ces couches fonctionnelles additionnelles, mais, comme indiqué précédemment, la structure composite pourrait comprendre seulement une partie de ces couches, dès lors qu’elle comprend au moins les couches décrites en référence à la figure 1A.
Entre le substrat 1 et la couche optiquement absorbante 2 est agencée une première couche 5 formant barrière thermique. La couche 5 est en un matériau sensiblement transparent au flux lumineux et présentant une faible conduction thermique. Par « faible conduction thermique », on entend dans le présent texte un coefficient de conductivité thermique linéaire inférieur à 10 W.m 1.K 1.
Une deuxième couche 5 de barrière thermique est agencée sur la couche sacrificielle 3. La couche 5 étant en un matériau de faible conduction thermique, elle permet d’améliorer l’isolation thermique de la couche 4 à séparer.
De manière avantageuse, chacune des couches 5 comprend au moins un des matériaux suivants : silice (Si02), alumine (Al203).
Les couches 5 permettent de confiner la chaleur dans la portion de la structure composite qu’elles délimitent, à savoir la couche optiquement absorbante et la couche sacrificielle. Ainsi, la température de dissociation de la couche sacrificielle est atteinte plus rapidement qu’en l’absence des couches de barrière thermique.
Un film 6 (ou un empilement de films) adapté pour réfléchir le flux lumineux, ou pour absorber la partie dudit flux transmise au travers de la couche optiquement absorbante, est agencé sur la deuxième couche 5 de barrière thermique. Ledit film 6 comprend avantageusement au moins un des matériaux suivants : silicium, silice (Si02), carbure de silicium (SiC), molybdène, nitrure de silicium (Si3N4). Le film 6 peut avantageusement comprendre un empilement de type miroir de Bragg. Ledit empilement peut éventuellement remplir la fonction de barrière thermique et ainsi remplacer la seconde couche 5.
Ledit film 6 permet d’éviter qu’une partie du flux lumineux ne soit transmis à la couche à séparer, ce qui a pour effet de réduire le budget thermique appliqué à ladite couche et d’éviter des pertes d’énergie.
Par ailleurs, un film 7 (ou un empilement de films) présentant une certaine inertie thermique et adapté pour répartir la chaleur sur l’étendue de la surface de la structure est agencé sur le film 6.
Ledit film 7 se caractérise par un produit épaisseur x densité x capacité thermique massique.
Ledit film 7 comprend au moins un des matériaux suivants : alumine (Al203), silice (Si02), nitrure d’aluminium (AIN) polycristallin, silicium polycristallin.
Enfin, une couche germe 8 est agencée sur le film 7, en contact direct avec la couche 4 à transférer. La couche germe est choisie pour faciliter le collage ou le dépôt de la couche 4 à séparer, selon le mode de formation de ladite couche.
La couche germe 8 peut comprendre au moins un des matériaux suivants : platine, nickel, cuivre.
Dans le cas où la couche à séparer doit être transférée sur un support en vue d’une utilisation ultérieure, la structure composite est assemblée audit support par l’intermédiaire de la couche à séparer. La réduction du budget thermique de séparation décrite plus haut est également bénéfique au support, en particulier si celui-ci est sensible à la température. L’invention permet donc également d’utiliser une plus grande diversité de supports, notamment en matériau polymère ou en métal.
D’une manière générale, le support peut comprendre au moins un des matériaux suivants : un matériau semi-conducteur, tel que du silicium ; un métal, tel que du cuivre ; un polymère.
La figure 2 illustre le collage de la structure composite de la figure 1 A sur un support
200. Le collage peut être précédé de toute étape de préparation de surface adaptée en vue de renforcer l’énergie de collage. De manière alternative, le support peut être déposé sur la couche à séparer, pourvu que le budget thermique mis en oeuvre pour ce dépôt soit suffisamment faible pour ne pas provoquer une dissociation de la couche sacrificielle.
La figure 3 illustre de manière schématique l’irradiation de la structure composite collée au support par un faisceau laser (représenté par la flèche). Ledit faisceau traverse le substrat 1 (et, le cas échéant, la première couche de barrière thermique) et est absorbé par la couche optiquement absorbante, qui s’échauffe. De manière avantageuse, le flux lumineux est appliqué de manière impulsionnelle. La durée de chaque impulsion est de l’ordre de quelques dizaines de nanosecondes. Cette durée est choisie en fonction de la puissance du laser et de la température à atteindre dans la couche optiquement absorbante pour pouvoir dissocier la couche sacrificielle.
La longueur d’onde du laser est choisie en rapport avec les matériaux des couches constituant la structure composite. Notamment, le substrat et la ou les couches de barrière thermique, ainsi que la couche sacrificielle, sont sensiblement transparents à la longueur d’onde du laser, contrairement à la couche optiquement absorbante.
D’une manière générale, la longueur d’onde du laser peut être comprise entre 100 et
12000 nm. Pour un substrat de quartz, la longueur d’onde du laser est avantageusement de l’ordre de 150 à 700 nm. Pour un substrat de silicium, la longueur d’onde du laser est avantageusement de l’ordre de 1000 à 12000 nm.
En référence à la figure 4, la couche sacrificielle 3 se dissocie sous l’effet de la chaleur générée dans la couche électriquement absorbante 2. La structure composite se sépare donc en deux parties : une première partie qui comprend le substrat 1 et la couche optiquement absorbante 2, d’une part, et une seconde partie qui comprend la couche 4 à séparer, d’autre part. Des résidus de la couche sacrificielle 3 peuvent se trouver sur l’une et/ou l’autre des deux parties. Un traitement de finition peut éventuellement être mis en oeuvre pour éliminer ces résidus.
La figure 5 illustre la couche 4 transférée sur le support 200.
Exemple n°1
Ce premier exemple concerne une structure composite pour la croissance d’une couche de graphène à transférer sur un support.
La structure composite comprend successivement, en référence à la figure 1 B (on notera que toutes les couches représentées sur la figure 1 B ne sont pas présentes dans ladite structure) :
- un substrat 1 de saphir de 500 pm d’épaisseur ;
- une première couche 5 de barrière thermique en Si02 de 500 nm d’épaisseur ; - une couche 2 optiquement absorbante en carbure de silicium (SiC) de 30 nm d’épaisseur ;
- une couche sacrificielle 3 en nitrure de silicium (Si3N4) de 20 nm d’épaisseur ;
- une seconde couche 5 de barrière thermique en Si02 de 1000 nm d’épaisseur ;
- une couche germe 8 de nickel de 50 nm d’épaisseur.
Lorsque l’on soumet ladite structure à un faisceau d’un laser pulsé émettant à
193 nm, avec une durée d’impulsion de 20 ns et une fluence d’environ 0,1 J. cm 2, au travers du substrat 1 , la température au sein de la structure augmente pendant la durée de chaque impulsion. La chaleur générée est essentiellement localisée dans la couche 2 optiquement absorbante. Lorsque la température atteint la température de dissociation du nitrure de silicium (soit environ 1900°C), une partie de la couche sacrificielle, la seconde couche de barrière thermique 5 et la couche germe 8 se désolidarisent du substrat 1 et de la première couche de barrière thermique 5.
Après une impulsion laser, la température s’homogénéise dans la structure. On s’intéresse en particulier à la température au niveau de l’interface supérieure de la couche germe 8, c’est-à-dire l’interface entre la couche germe et la couche de graphène.
La figure 6A montre la répartition de la température au sein de la structure composite en fonction de la profondeur z (en pm) pour différentes durées inférieures ou égale à la durée d’impulsion laser, qui est de 20 ns dans ce cas.
La figure 6B montre l’homogénéisation de la température au sein de la structure en fonction de la profondeur z (en pm) pour différentes durées après la fin de l’impulsion laser.
La figure 6C montre l’évolution de la température T (en °C) au niveau de la couche germe en fonction du temps t (en ms). On observe que ladite température n’excède pas 275°C, qui est une température bien inférieure à la température à partir de laquelle on observe une dégradation des propriétés électriques du graphène.
A la longueur d’onde de 193 nm, le SiC présente un coefficient d’absorption optique plus de trois fois supérieur à celui du nitrure de silicium, tout en étant stable au-dessus de la température de dissociation du nitrure de silicium.
La combinaison d’une couche optiquement absorbante de SiC de 30 nm d’épaisseur et d’une couche sacrificielle de Si3N4 de 20 nm d’épaisseur remplace avantageusement une unique couche sacrificielle optiquement absorbante de Si3N4 de 100 nm d’épaisseur utilisée dans l’état de la technique.
La figure 7A présente ainsi la température maximale T à l’interface supérieure de la couche germe 8 (en °C), pour la combinaison d’une couche optique absorbante de 30 nm de SiC et d’une couche sacrificielle de 20 nm de Si3N4 selon l’invention et pour une unique couche sacrificielle optiquement absorbante de Si3N4 de 100 nm d’épaisseur, non conforme à l’invention, en fonction de la durée d d’impulsion du laser (en ns). On observe que la température maximale est réduite de plus de 100°C avec la structure selon l’invention.
La figure 7B illustre la chaleur C nécessaire au détachement par unité de surface (en J. cm 2) en fonction de la durée d d’impulsion du laser (en ns), pour la combinaison d’une couche optique absorbante de 30 nm de SiC et d’une couche sacrificielle de 20 nm de Si3N4 selon l’invention et pour une unique couche sacrificielle optiquement absorbante de Si3N4 de 100 nm d’épaisseur, non conforme à l’invention. On observe que la chaleur nécessaire est réduite de près de 0,02 J. cm 1 avec l’invention, soit une réduction d’environ La figure 7C illustre par ailleurs des résultats de simulations numériques pour différentes structures composites.
Les structures S1 , S2 et S3 sont conformes à l’invention. Elles comprennent toutes successivement le substrat 1 de saphir, la première couche 5 de barrière thermique en Si02, la couche 2 optiquement absorbante en SiC, la couche sacrificielle 3 en Si3N4, la seconde couche 5 de barrière thermique et une couche de nickel, constituant une couche germe pour la couche de graphène à séparer (sauf indication contraire, l’épaisseur de chacune desdites couches est celle mentionnée plus haut). Les structures S1 et S2 comprennent en outre une couche 7 d’inertie thermique en silicium polycristallin entre la seconde couche de barrière thermique et la couche germe 8 ; dans le cas de la structure S1 , l’épaisseur de la couche 7 est de 1000 nm ; dans le cas de la structure S2, l’épaisseur de la couche 7 est de 500 nm.
La structure S4 n’est pas conforme à l’invention : elle comporte une unique couche sacrificielle optiquement absorbante de Si3N4 de 100 nm d’épaisseur entre des première et seconde couches de barrière thermique identiques à celles des structures S1 à S3.
On observe que la température maximale est d’autant plus basse que la couche d’inertie thermique 7 est épaisse. Ainsi, pour la structure S2, comprenant une couche d’inertie thermique 7 de 500 nm d’épaisseur, la température maximale est inférieure à 200°C pour une impulsion de 20 ns. Dans ce cas, le film d’inertie thermique procure 43% de capacité thermique surfacique (en J.K 1.m 1) supplémentaire par rapport à l’ensemble des couches 3, 5 et 8.
Exemple n°2
Ce second exemple concerne une structure composite permettant le dépôt d’une couche de PZT (titano-zirconate de plomb) sur un substrat de silicium puis le transfert de ladite couche sur un support flexible. Une telle couche présente des propriétés ferroélectriques, piézoélectriques et/ou pyroélectriques.
La structure composite comprend successivement, en référence à la figure 1 B (toutes les couches représentées sur la figure 1 B n’étant pas nécessairement présentes dans ladite structure) :
- un substrat 1 de silicium de 500 pm d’épaisseur ;
- une première couche 5 de barrière thermique en Si02 de 500 nm d’épaisseur ;
- une couche 2 optiquement absorbante en molybdène de 100 nm d’épaisseur ;
- une couche sacrificielle 3 en oxyde de titane et d’indium (ITO) de 20 nm d’épaisseur ;
- une seconde couche 5 de barrière thermique en Si02 de 500 nm d’épaisseur ;
- une couche 4 de PZT de 1 pm d’épaisseur.
Afin d’obtenir des propriétés satisfaisantes, ladite couche 4 doit être chauffée à 600°C. Après cette étape, un support flexible sous la forme d’un film de polyimide est collé sur la couche de PZT en vue d’y transférer ladite couche. La température maximale que peut supporter le film de polyimide est comprise entre 200 et 400°C en fonction de la durée d’application de la température.
Pour séparer ladite structure composite, on utilise un laser C02 émettant de l’infrarouge, par exemple présentant une longueur d’onde de 10,6 pm.
La figure 8A illustre la température maximale (en °C) à l’interface de collage en fonction de la durée d’impulsion laser (en ns), pour différentes structures composites S5- S8.
La température limite de 200°C est dépassée si la durée d’impulsion est supérieure à
50 ns.
Si la puissance de la source laser n’est pas suffisante, il est possible de procurer un transfert avec une impulsion plus longue (100 nm par exemple) en augmentant l’épaisseur des couches 5 de barrière thermique et/ou en insérant un film 7 de répartition de la chaleur afin d’augmenter la capacité thermique des couches comprises entre la couche sacrificielle 3 et l’interface de collage entre la couche 4 de PZT et le support.
Les structures S5, S6, S7 et S8 sont conformes à l’invention. Elles comprennent toutes successivement le substrat 1 de silicium, la première couche 5 de barrière thermique en Si02, la couche 2 optiquement absorbante en molybdène, la couche sacrificielle 3 en ITO, la seconde couche 5 de barrière thermique et une couche 4 de PZT de 1 pm, constituant la couche à séparer (sauf indication contraire, l’épaisseur desdites couches est celle mentionnée plus haut). Les structures S5 et S6 comprennent en outre une couche 7 d’inertie thermique en silicium polycristallin entre la seconde couche de barrière thermique et la couche germe 8 ; dans le cas de la structure S5, l’épaisseur de la couche 7 est de 1000 nm ; dans le cas de la structure S6, l’épaisseur de la couche 7 est de 500 nm. Par rapport à la structure S8, la seconde couche de barrière thermique de la structure S7 est plus épaisse (1000 nm au lieu de 500 nm).
La figure 8B illustre la densité D de puissance du laser (en W.m 2) à transmettre au travers du substrat de silicium pour dissocier la couche sacrificielle, en fonction de la durée d’impulsion laser (en ns), pour les structures S5-S8 mentionnées précédemment. Les points sont sensiblement confondus pour l’ensemble desdites structures.
La figure 9A montre la répartition de la température au sein de la structure composite S5 en fonction de la profondeur z (en pm) pour différentes durées inférieures ou égale à la durée d’impulsion laser, qui est de 100 ns dans ce cas.
La figure 9B montre l’homogénéisation de la température au sein de la structure S5 en fonction de la profondeur z (en pm) pour différentes durées après la fin de l’impulsion laser. La figure 9C montre l’évolution de la température T (en °C) à l’interface supérieure de la couche de PZT de la structure S5 en fonction du temps t (en ps). On observe que ladite température n’excède pas 180°C, de sorte que le support en polyimide collé à la couche de PZT ne risque pas d’être endommagé lors du procédé de séparation.
Naturellement, les exemples développés ci-dessus ne sont fournis qu’à titre illustratif et non limitatif.
REFERENCES
WO 2015/019018

Claims

REVENDICATIONS
1. Procédé de séparation d’une structure composite démontable au moyen d’un flux lumineux, ledit procédé comprenant :
la fourniture de la structure composite (100) démontable comprenant successivement :
• un substrat (1 ),
• une couche (2) optiquement absorbante en un matériau adapté pour absorber au moins partiellement un flux lumineux, le substrat étant sensiblement transparent audit flux lumineux,
• une couche sacrificielle (3) adaptée pour se dissocier sous l’application d’une température supérieure à une température de dissociation, en un matériau différent de celui de la couche optiquement absorbante (2),
• au moins une couche (4) à séparer,
l’application d’un flux lumineux au travers du substrat (1 ), ledit flux lumineux étant absorbé au moins en partie par la couche (2) optiquement absorbante, de sorte à échauffer ladite couche optiquement absorbante,
le chauffage de la couche sacrificielle (3) par conduction thermique à partir de la couche (2) optiquement absorbante, jusqu’à une température supérieure ou égale à la température de dissociation,
la dissociation de la couche sacrificielle (3) sous l’effet dudit chauffage.
2. Procédé selon la revendication 1 , dans lequel le produit de l’épaisseur du substrat (1 ) et du coefficient d’absorption du flux lumineux par le substrat est inférieur à 0,1 .
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel le produit de l’épaisseur de la couche (2) optiquement absorbante et du coefficient d’absorption du flux lumineux par ladite couche est supérieur à 2,3.
4. Procédé selon l’une des revendications 1 à 3, dans lequel le flux lumineux est appliqué de manière impulsionnelle.
5. Procédé selon l’une des revendications 1 à 4, dans lequel la longueur d’onde du flux lumineux est comprise entre 100 et 12000 nm.
6. Procédé selon l’une des revendications 1 à 5, comprenant, avant l’application dudit flux lumineux, une étape de collage de la structure composite (100) sur un support (200), la dissociation de la couche sacrificielle (3) conduisant au transfert de la couche (4) à séparer sur le support (200).
7. Procédé selon la revendication 6 dans lequel le support (200) comprend au moins un des matériaux suivants : un matériau semi-conducteur, tel que du silicium ; un métal, tel que du cuivre ; un polymère.
8. Procédé selon l’une des revendications précédentes, dans lequel la couche sacrificielle (3) est en contact avec la couche optiquement absorbante (2).
9. Procédé selon l’une des revendications précédentes, dans lequel la couche sacrificielle (3) est en un matériau sensiblement transparent audit flux lumineux.
10. Procédé selon l’une des revendications précédentes, dans lequel la structure comprend en outre une première couche (5) de barrière thermique sensiblement transparente audit flux lumineux, entre le substrat (1 ) et la couche (2) optiquement absorbante.
1 1. Procédé selon l’une des revendications précédentes, dans lequel la structure comprend en outre une deuxième couche (5) de barrière thermique entre la couche sacrificielle et la couche à séparer.
12. Procédé selon l’une des revendications 10 ou 1 1 , dans lequel la première et/ou la deuxième couche (5) de barrière thermique présente un coefficient de conductivité thermique linéaire inférieur à 10 W m 1 K 1.
13. Procédé selon l’une des revendications 10 à 12, dans lequel la première et/ou la deuxième couche (5) de barrière thermique comprend au moins un des matériaux suivants : silice (Si02), alumine (Al203).
14. Procédé selon l’une des revendications précédentes, dans lequel la structure comprend en outre un premier film (6) adapté pour réfléchir ou absorber le flux lumineux, entre la couche sacrificielle (3) et la couche (4) à séparer.
15. Procédé selon la revendication 14, dans lequel ledit premier film (6) comprend au moins un des matériaux suivants : silicium, silice (Si02), carbure de silicium (SiC), molybdène, nitrure de silicium (Si3N4).
16. Procédé selon l’une des revendications précédentes, dans lequel la structure comprend en outre, entre la couche sacrificielle (3) et la couche (4) à séparer, un second film (7) adapté pour répartir la chaleur sur l’étendue de la surface de la structure (100).
17. Procédé selon la revendication 16, dans lequel ledit second film (7) comprend au moins un des matériaux suivants : alumine (Al203), silice (Si02), nitrure d’aluminium
(AIN) polycristallin, silicium polycristallin.
18. Procédé selon l’une des revendications précédentes, dans lequel le substrat
(1 ) comprend au moins un des matériaux suivants : saphir, quartz.
19. Procédé selon l’une des revendications précédentes, dans lequel la couche
(2) optiquement absorbante comprend au moins un des matériaux suivants : nitrure de silicium (Si3N4), silicium polycristallin, carbure de silicium (SiC) polycristallin.
20. Procédé selon l’une des revendications précédentes, dans lequel la couche sacrificielle (3) comprend au moins un des matériaux suivants : nitrure de silicium (Si3N4), nitrure d’aluminium (AIN) polycristallin, nitrure de gallium (GaN) polycristallin, oxyde d’indium-étain (ITO).
21. Procédé selon l’une des revendications précédentes, dans lequel la couche
(4) à séparer comprend au moins un des matériaux suivants : un métal, tel que du cuivre ; un matériau du groupe IV présentant une structure cristalline hexagonale, tel que du graphène ; un matériau piézoélectrique, ferromagnétique ou ferroélectrique ; un alliage à changement de phase, tel que GeSbTe.
EP19718440.1A 2018-03-29 2019-03-22 Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux Pending EP3776633A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852715A FR3079657B1 (fr) 2018-03-29 2018-03-29 Structure composite demontable par application d'un flux lumineux, et procede de separation d'une telle structure
PCT/FR2019/050654 WO2019186036A1 (fr) 2018-03-29 2019-03-22 Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux

Publications (1)

Publication Number Publication Date
EP3776633A1 true EP3776633A1 (fr) 2021-02-17

Family

ID=62751066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19718440.1A Pending EP3776633A1 (fr) 2018-03-29 2019-03-22 Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux

Country Status (8)

Country Link
US (1) US11469367B2 (fr)
EP (1) EP3776633A1 (fr)
JP (1) JP7311528B2 (fr)
KR (1) KR102682067B1 (fr)
CN (1) CN112204711B (fr)
FR (1) FR3079657B1 (fr)
SG (1) SG11202009469XA (fr)
WO (1) WO2019186036A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104809B1 (fr) 2019-12-11 2021-12-17 Commissariat Energie Atomique Procede de realisation d’une couche de materiau structuree

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619461B2 (ja) * 1996-08-27 2011-01-26 セイコーエプソン株式会社 薄膜デバイスの転写方法、及びデバイスの製造方法
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
DE19839574A1 (de) * 1998-08-31 2000-03-02 Richard Sizmann Verfahren und Schichtkombination zur Erzeugung von Wärme in Bekleidung bzw. Decken
JP3962282B2 (ja) 2002-05-23 2007-08-22 松下電器産業株式会社 半導体装置の製造方法
JP4934942B2 (ja) * 2003-07-23 2012-05-23 ソニー株式会社 剥離方法
FR2870988B1 (fr) * 2004-06-01 2006-08-11 Michel Bruel Procede de realisation d'une structure multi-couches comportant, en profondeur, une couche de separation
EP1888808A2 (fr) 2005-06-07 2008-02-20 Fujifilm Corporation Film fonctionnel comprenant une structure et procede de fabrication d'un film fonctionnel
KR20100008123A (ko) * 2008-07-15 2010-01-25 고려대학교 산학협력단 이중 히트 씽크층으로 구성된 지지대를 갖춘 고성능수직구조의 반도체 발광소자
KR101102662B1 (ko) * 2010-04-02 2012-01-04 경희대학교 산학협력단 Ga-O-N 계열의 희생층을 이용한 플렉서블 반도체 소자의 제조 방법
FR2961719B1 (fr) * 2010-06-24 2013-09-27 Soitec Silicon On Insulator Procede de traitement d'une piece en un materiau compose
JP5735774B2 (ja) 2010-09-30 2015-06-17 芝浦メカトロニクス株式会社 保護体、基板積層体、貼り合わせ装置、剥離装置、および基板の製造方法
RU2469433C1 (ru) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Способ лазерного отделения эпитаксиальной пленки или слоя эпитаксиальной пленки от ростовой подложки эпитаксиальной полупроводниковой структуры (варианты)
JP5685567B2 (ja) 2012-09-28 2015-03-18 株式会社東芝 表示装置の製造方法
FR3009644B1 (fr) * 2013-08-08 2016-12-23 Soitec Silicon On Insulator Procede, empilement et ensemble de separation d'une structure d'un substrat par irradiations electromagnetiques
EP3075005A1 (fr) * 2013-11-25 2016-10-05 The Board of Trustees of The Leland Stanford Junior University Ecaillage au laser de structures de film mince épitaxiales
US10304739B2 (en) * 2015-01-16 2019-05-28 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing combined semiconductor substrate, combined semiconductor substrate, and semiconductor-joined substrate
EP3250728A1 (fr) * 2015-01-28 2017-12-06 Siltectra GmbH Protection d'écran transparente et très stable
JP6588186B1 (ja) * 2018-02-27 2019-10-09 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法及び支持基板

Also Published As

Publication number Publication date
JP2021520065A (ja) 2021-08-12
US11469367B2 (en) 2022-10-11
KR20200136955A (ko) 2020-12-08
US20210028348A1 (en) 2021-01-28
SG11202009469XA (en) 2020-10-29
CN112204711A (zh) 2021-01-08
JP7311528B2 (ja) 2023-07-19
CN112204711B (zh) 2024-06-25
FR3079657A1 (fr) 2019-10-04
FR3079657B1 (fr) 2024-03-15
KR102682067B1 (ko) 2024-07-08
WO2019186036A1 (fr) 2019-10-03

Similar Documents

Publication Publication Date Title
EP1114446B1 (fr) Procede de realisation d'une membrane mince
EP2102904B1 (fr) Procede de fabrication de couches minces de gan par implantation et recyclage d'un substrat de depart
EP1559138B1 (fr) Procede de formation d'une zone fragile dans un substrat par co-implantation
FR2978604A1 (fr) Procede de guerison de defauts dans une couche semi-conductrice
EP2342744B1 (fr) Procede de formation d'une couche monocristalline dans le domaine micro-electronique
FR2855909A1 (fr) Procede d'obtention concomitante d'au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat
FR2809867A1 (fr) Substrat fragilise et procede de fabrication d'un tel substrat
FR2830983A1 (fr) Procede de fabrication de couches minces contenant des microcomposants
FR2967813A1 (fr) Procédé de réalisation d'une structure a couche métallique enterrée
FR2926674A1 (fr) Procede de fabrication d'une structure composite avec couche d'oxyde de collage stable
FR2888402A1 (fr) Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure et structure ainsi assemblee
FR3007892A1 (fr) Procede de transfert d'une couche mince avec apport d'energie thermique a une zone fragilisee via une couche inductive
WO2019186036A1 (fr) Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux
EP3577257A1 (fr) Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale
WO2014013173A1 (fr) Procédé de fabrication d'une couche monocristalline
FR2921749A1 (fr) Procede de fabrication d'une structure comprenant un substrat et une couche deposee sur l'une de ses faces.
FR3003692A1 (fr) Procede de fabrication d’une structure a multijonctions pour cellule photovoltaique
EP3295480B1 (fr) Procédé de collage direct
FR3082996A1 (fr) Procede de realisation d'un dispositif au moins partiellement transparent integrant une structure de type condensateur
WO2006100301A1 (fr) Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur
EP1878694A2 (fr) Procédé de nanostructuration de la surface d'un substrat
FR3084203A1 (fr) Procede industriel d'ablation laser de couches minces en une etape pour la realisation de modules photovoltaïques semi-transparents
EP2962325B1 (fr) Procédé d'obtention d'une surface de collage pour collage direct et structure correspondante
FR2965396A1 (fr) Substrat démontable, procédés de fabrication et de démontage d'un tel substrat
FR3131077A1 (fr) Procédé de transfert d’une couche utile en diamant cristallin sur un substrat support

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211104