EP3766082B1 - Verpackung zum transport und/oder lagern von radioaktiven materialien, die eine einfachere herstellung und verbesserte wärmeleitfähigkeit ermöglicht - Google Patents
Verpackung zum transport und/oder lagern von radioaktiven materialien, die eine einfachere herstellung und verbesserte wärmeleitfähigkeit ermöglicht Download PDFInfo
- Publication number
- EP3766082B1 EP3766082B1 EP19734845.1A EP19734845A EP3766082B1 EP 3766082 B1 EP3766082 B1 EP 3766082B1 EP 19734845 A EP19734845 A EP 19734845A EP 3766082 B1 EP3766082 B1 EP 3766082B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- annular
- unitary
- wall
- package
- structures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000012857 radioactive material Substances 0.000 title claims description 16
- 238000003860 storage Methods 0.000 title claims description 12
- 238000004806 packaging method and process Methods 0.000 title description 40
- 230000004224 protection Effects 0.000 claims description 79
- 230000005855 radiation Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 208000031968 Cadaver Diseases 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002901 radioactive waste Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F3/00—Shielding characterised by its physical form, e.g. granules, or shape of the material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/06—Details of, or accessories to, the containers
- G21F5/10—Heat-removal systems, e.g. using circulating fluid or cooling fins
Definitions
- the present invention relates to the field of containers for the transport and/or storage of radioactive materials, for example nuclear fuel assemblies or radioactive waste.
- the present invention relates to a packaging comprising at its periphery an outer envelope for radiological protection.
- This envelope can be obtained by stacking unitary annular structures, as is for example known from the documents EP 1 524 673 Where EP 2 041 753 .
- the axially stacked structures together define an outer radial surface of the package, which turns out to be quite easily decontaminated, and able to meet current decontamination requirements.
- Each unitary annular structure of the stack is traversed axially by a multitude of orifices.
- the axial alignment of the orifices passing through the various structures makes it possible to form a plurality of axial cavities each extending over the entire length of the casing. These cavities are then filled by the radiological protection material, which then takes the form of a plurality of axial bands of radiological protection distributed circumferentially in the casing.
- This design certainly makes it possible to achieve the objective of easy decontamination of the outer radial surface of the packaging, but it requires a complicated assembly of the unitary annular structures. Indeed, these must be perfectly indexed angularly relative to each other, in order to properly reconstitute the axial cavities for housing the radiological protection strips.
- the subject of the invention is a packaging for the transport and/or storage of radioactive materials, comprising the characteristics of claim 1.
- the invention thus proves to be advantageous in that it allows the preservation of an easily decontaminable outer packaging envelope, produced by the multiplicity of the outer annular walls of the unitary structures, while improving the heat conduction function thanks to the radial walls. thermal conduction which may have a more direct radial path.
- the internal annular wall in contact with the lateral packaging body makes it possible to improve heat exchange between this lateral body and the unitary annular structure, thanks to a large contact surface.
- the fact of integrating the internal annular wall to the annular structure unit avoids having to attach fixedly, on the packaging side body, a heat transfer plate between this same side body and the unitary annular structure.
- This internal annular wall in addition to conferring protection against gamma radiation, facilitates the installation and maintenance of the radiological protection in the cavity, by participating in the delimitation of the latter.
- the proposed design greatly facilitates the assembly of the outer casing, since the formation of the cavities for housing the radiological protection elements no longer requires precise angular indexing of the structures with respect to each other. Also, the radiological protection elements can advantageously be put in place gradually, as the stacking of the unitary annular structures is carried out.
- the invention also has at least one of the following optional characteristics, taken individually or in combination.
- Each unitary annular structure is in one piece, which makes it possible to limit manufacturing costs, while retaining the desired functionalities for this unitary annular structure.
- n.E1/H ratio the higher the n.E1/H ratio, the lower the maximum temperature observed within the neutron protection elements. This ratio is thus greater than 0.02, while remaining less than 0.3 in order to maintain sufficient neutron protection.
- the interval adopted for the n.E1/H ratio makes it possible to very satisfactorily satisfy the thermal criterion, as well as the neutron protection criterion as a whole within the package.
- the packaging also corresponds to the following formula: not / H > 2 with "H" expressed in meters.
- the thickness E1 of the radial heat conduction walls is limited, so that the neutron leaks observed locally at the level of these walls are advantageously reduced.
- each unitary annular structure preferably corresponds to the following formula: I / E 1 ⁇ 10 with "L" corresponding to the radial spacing between the inner and outer annular walls.
- the thickness E1 of the radial heat conduction wall constitutes a determining factor for the neutron dose rate at 2 meters, more so than the spacing L for which an effect of threshold was also detected, beyond which the increase in this spacing L no longer really acts on the neutron dose rate at 2 meters.
- each unitary annular structure has a half cross-section in the general shape of a U, with the base of the U formed by the radial heat conduction wall, and the two branches of the U respectively formed by the outer and inner annular walls, the inside the U forms the annular cavity housing said at least one radiological protection element.
- the two free ends of the two outer and inner annular walls are located in the same transverse plane of the packaging.
- each unitary annular structure has, in half cross-section, the shape of a straight segment, preferably oriented orthogonally to the central longitudinal axis.
- the radial heat conduction wall of each unitary annular structure has, in half cross-section, at least one level axial break between a radially outer portion of the wall, and a radially inner portion of the wall.
- this provides better radiological protection, since no radial leakage occurs via the radial heat conduction walls.
- the radiological protection element(s) forms a protection ring extending over 360°.
- This ring extends continuously or discontinuously, and in the latter case obtained with several protective elements arranged end to end, circumferential overlap zones are preferably provided at the junction between these elements.
- each radiological protection element is an element cast in the cavity, or a prefabricated element arranged in this cavity.
- At least several of said unitary annular structures are identical, and preferably all of them. This allows for greater ease of manufacture. But on the contrary, for at least some of them, the annular structures can have different geometries to adapt the volume of the annular cavities and the radiological protections housed therein, to the local need for radiological protection.
- Each unitary annular structure has a half cross-section of constant shape, again for ease of manufacture.
- the radial heat conduction wall has the same thickness. This helps to impart uniform thermal performance in the radial direction.
- the number of unitary annular structures is between 10 and 50, and the height of the outer radiological protection envelope formed by the stacking of these structures is between 1 and 4 m.
- This implementation makes it very easy to assemble the components of the packaging, thanks in particular to the sequencing of steps as well as the possibility of manufacturing the means of radiological protection separately from the side body of the packaging, or even on a different manufacturing site. It also allows easy verification of the conformity of the radiological protection elements, before the installation of the associated annular structure around the side body of the packaging. In the event of failure of one of the radiological protection elements, it can be reworked or replaced, always before the installation of the associated annular structure around the side body of the packaging.
- a packaging 1 for the storage and/or transport of radioactive materials such as nuclear fuel assemblies or radioactive waste (not shown).
- This packaging 1 is shown in a vertical storage position, in which its central longitudinal axis 2 is oriented vertically. It rests on a packaging bottom 4, opposite a removable lid 6 in the direction of the height 8, parallel to the longitudinal axis 2. Between the bottom 4 and the lid 6, the packaging 1 comprises a side body 10 extending around the axis 2, and internally delimiting a housing 12 for the radioactive materials.
- This housing can constitute a containment enclosure 12 intended to receive the radioactive materials, for example arranged in a storage basket also located in the containment enclosure.
- the containment enclosure is fully defined by a case, also referred to as a “canister”, placed in the aforementioned housing 12. The latter is closed axially upwards by cover 6, and downwards by bottom 4.
- the side body 10 can be made in one piece, as shown in the figure 1 , or by several concentric ferrules.
- the packaging 1 includes an outer radiological protection casing 14, specific to the present invention.
- the casing 14 is made using the axial stack of a plurality of unitary annular structures 16, for example provided in a number n between 10 and 50, over a cumulative height "H" of the order of 1 to 4m.
- This height "H" of the outer casing 14 corresponds substantially to that of the housing 12 in the direction 8.
- all the structures 16 stacked along the axis 2 are identical, each secured to and in contact with an outer radial surface 18 of the lateral body 10. At one of the ends of the stack, corresponding to the low end on the figure 1 , the last structure 16 can nevertheless be covered with a closure plate 20.
- the structure 16 is preferably made in one piece.
- the annular structure 16 is in one piece, for example produced by forging then machining, or else by molding, preferably by casting in cast iron. These techniques make it possible to limit the production costs.
- the structure 16 has a half cross-section in the general shape of a U, with its base facing upwards. A reverse orientation with the base down would obviously be possible, without departing from the scope of the invention. This half-cross-section maintains a constant shape, regardless of the plane of section along the circumferential direction of this structure 16.
- the base of the U forms a radial heat conduction wall 22. It takes the form of a straight segment which is preferably orthogonal to the axis 2, for a more direct conduction path towards the outside of the package.
- This wall 22 has the same thickness "E1" in any cross-section half. This thickness “E1” is for example between 5 and 40 mm, and preferably between 15 and 25 mm. As will be described later, its thickness is correlated to the number of structures 16, in particular with the aim that all the radial walls joined together can evacuate a determined quantity of heat, given off by the radioactive materials.
- the inner end of the radial heat conduction wall 22 is intended to be in contact with and secured to the outer radial surface 18 of the side body 10.
- the radial wall 22 is integral with an outer annular wall 24.
- this wall 24 takes the form of a straight segment parallel to the axis 2, and which projects downwards from the outer end of the radial wall 22.
- the thickness "E2" of the wall 24 is essentially dependent on its capacity to absorb the gamma radiation generated by the neutrons, when the latter are absorbed within the radiological protection , in the case where the latter is a neutron shield as will be described below.
- the thickness "E2" can be between 5 and 40 mm, and preferably between 15 and 25 mm.
- the radial wall 22 is integral with an internal annular wall 26 forming a second branch of the U.
- the internal annular wall 26 is also in contact with and integral with the outer radial surface 18 of the side body 10.
- the contact is preferably a surface contact, over the entire internal surface of the annular wall 26.
- the joining is effected for example by hooping, as will be described below.
- the contact may simply be sliding between, on the one hand, the internal annular wall 26 and the inner end of the radial heat conduction wall 22 which extends it axially, and, on the other hand, the external radial surface 18 of the lateral body 10. .
- this wall 26 also takes the form of a straight line segment parallel to the axis 2, and which projects downwards from the inner end of the radial wall 22.
- the thickness “E3” of the wall 26 is notably dictated by its ability to limit gamma radiation. The greater its thickness, the more that of the side body 10 can be reduced. The manufacturing costs of the assembly formed by the side body 10 and the outer casing 14 can then be reduced, since the cost of the internal parts of the annular structures 16, which are preferably made of cast iron, is lower than that of the body. 10, preferably made of forged steel.
- each annular cavity 30 is delimited by two structures 16 directly consecutive in the stack.
- the cavity 30 is closed radially towards the outside by the external annular wall 24 of one of the two directly consecutive annular structures 16, and closed radially towards the interior by the internal annular wall 26 of this same annular structure 16.
- annular cavity 30 is closed axially upwards by the radial wall 22 of this same structure 16, and closed axially downwards by the radial wall 22 of the annular structure 16 directly consecutive in the stack, which closes off the opening between the two branches of the U of the first structure 16.
- the outer annular walls 24 are adjacent along the direction 8, and they together form an outer radial surface of the packaging which is substantially continuous, and easily decontaminated.
- the annular cavities 30 thus follow one another along the axis 2, each being filled entirely or almost entirely with a radiological protection material.
- a radiological protection material may be a material for protection against gamma radiation, and/or a neutron absorption material aimed at satisfying regulatory radiological criteria around the packaging when it is loaded with radioactive materials.
- it is a neutron-absorbing material, comprising on the one hand neutron-absorbing elements, and on the other hand hydrogenated elements.
- neutron absorber elements it is understood elements which have an effective section greater than 100 barns for thermal neutrons. By way of indicative examples, these are elements of the boron, gadolinium, hafnium, cadmium, indium, etc. type.
- each structure 16 corresponds to the following formula: 0.02 ⁇ not .
- this ratio makes it possible to maintain sufficient neutron shielding in the cavities 30. Moreover, by being greater than 0.02, this ratio surprisingly makes it possible to maintain the neutron shielding material at a reasonable maximum temperature. , limiting the risk of accelerated ageing. This ratio thus offers a very satisfactory compromise in terms of thermal conduction and neutron protection as a whole.
- the packaging is such that it corresponds to the following formula: n/H > 2, “H” here being expressed in meters.
- the thickness E1 of the radial walls 22 is limited, and the neutron leaks observed locally are thereby reduced.
- each structure 16 preferably responds to the following formula: I / E 1 ⁇ 10 with "L" corresponding to the radial spacing between the inner and outer annular walls 26, 24. It is further specified that this distance L also preferably corresponds substantially to the radial length of the neutron shield. More generally, it is indicated that the annular cavity is filled in whole or in large part by the neutron shielding, preferably over at least 90% of its total volume.
- This geometric condition makes it possible to limit the thickness E1 of the radial wall 22, which constitutes a determining factor for the neutron dose rate at 2 meters.
- a dimensioning of the annular structure 16 with such a higher ratio or equal to 10 would result in a high radial length of the casing 14 to satisfy the neutron dose rate criterion at 2 meters, and therefore a substantial overall mass of the package. This is explained at least in part by the fact that from a given radial length of the neutron shield, a threshold effect occurs and the increase in this length has little effect on the throughput of neutron dose at 2 meters.
- the radiological protection material is for example in the form of one or more cast elements, preferably a single continuous ring cast over 360° in the cavity 30. It can alternatively be in the form of one or more several prefabricated elements, arranged in the cavity 30.
- a neutron protection ring 34 is formed discontinuously using several protection elements 32 arranged end to end.
- these latter elements 32 preferably have circumferential overlap zones 36 at their circumferential ends ensuring the junction between these different elements.
- the figure 6 represents a first method of manufacturing the packaging 1, for the steps which relate to the assembly of the outer casing 14 of radiological protection around the side body 10.
- This method consists of the repetition of two successive steps.
- the first of these two steps consists in setting up one of the unitary annular structures 16 in the stack around the lateral body 10, even though its annular cavity 30 is not yet filled by the radiological protection element(s). .
- This step is schematized by the arrow 36 on the figure 6 .
- the structure 16 can be heated beforehand, for example to a temperature of the order of 200°C. It is brought into contact with the rest of the stack, so as to close the cavity 30 of the structure 16 previously placed in the stack, and which is filled with the radiological protection material.
- the structure has cooled, for example to a temperature below 160° C., it adheres by shrinking to the outer radial wall 18 of the side body, via the inner end of the radial wall 22 and via the inner annular wall 26 .
- the radiological protection material can then be placed in the annular cavity 30 of the cooled structure 16, without risk of thermal degradation of this material.
- these steps are carried out with the packaging 1 in the vertical position, but with its bottom facing upwards so that each cavity 30 to be filled is open upwards.
- the material is put in place by casting or by arranging prefabricated elements in the cavity 30, then the radiological protection thus obtained is inspected before repeating these same two first and second steps.
- the figure 7 represents a second method of manufacturing the packaging 1, for the steps which relate to the assembly of the outer casing 14 of radiological protection around the side body 10.
- This method consists of the repetition of two successive steps.
- the first of these two steps here consists in placing each radiological protection element in the annular cavity 30 defined in part by one of the unitary annular structures 16, not yet placed in the stack.
- This step can advantageously be carried out on a site different from that on which the stacking of the unitary annular structures 16 is carried out.
- the quality of the radiological protection elements can be inspected before the installation of the structure 16 around the body 10, this operation corresponding to the second step.
- This insertion of the structure 16, equipped with its radiological protection can also be carried out by heating, as has been described above.
- each unitary annular structure 16 has a half cross-section in the general shape of a U, with the base of the U formed by the radial wall 22, and the two branches of the U respectively formed by the external 24 and internal 26 annular walls.
- the two free ends of the two annular walls 24, 26 are located in the same transverse plane of the packaging. Nevertheless, the free ends of the two annular walls 24, 26 can be offset axially from each other, without departing from the scope of the invention. Maintaining the free ends of the two annular walls 24, 26 in the same transverse plane makes it easier to cast the neutron shield in the annular cavity 30.
- each cavity 30 is delimited radially outwards by a part of the external wall 24 (the external lateral branch of the H) of one of the structures 16, and by a part of the external wall 24 of the structure 16 directly consecutive in stacking.
- Each annular cavity 30 is also delimited radially towards the inside by a part of the internal wall 26 (the internal lateral branch of the H) of one of the structures 16, and by a part of the internal wall 26 of the structure 16 directly consecutive in the stack.
- the two side branches could be offset axially from one another, without departing from the scope of the invention.
- the figure 9 represents another alternative embodiment mentioned above, in which the unitary structure 16 of half cross-section in the shape of a general U no longer has a base 22 substantially orthogonal to the axis 2, but this base 22 is inclined with respect to this same axis 2 by an angle "A" different from 90°.
- This angle can preferably be between 20 and 70°.
- the base 22 forming the radial heat conduction wall may be an inclined straight segment, connecting the ends of the two annular walls 24, 26.
- a central part of this base 22 of can be a straight segment, or even a curved portion, and the two connecting ends 40 can be rounded.
- the figures 10 and 11 represent another alternative embodiment, on which the radial heat conduction wall 22 of each unitary annular structure 16 has a different shape. It is no longer straight and radial as in the previous embodiments, but it includes, in half-section transverse, at least one level axial rupture 22c between a radially outer wall portion 22a and a radially inner wall portion 22b.
- This embodiment like the previous one, makes it possible to improve radiological protection, since no radial leakage occurs via the radial heat conduction walls 22.
- the axial rupture at level 22c takes the form of a riser oriented parallel to the axis 2, and substantially centered between the two portions 22a, 22b.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Measurement Of Radiation (AREA)
- Buffer Packaging (AREA)
- Packages (AREA)
Claims (16)
- Verpackung (1) für den Transport und/oder die Zwischenlagerung von radioaktivem Material, wobei die Verpackung einen seitlichen Verpackungskörper (10) umfasst, der sich um eine zentrale Längsachse (2) erstreckt und teilweise eine Aufnahme (12) für das radioaktive Material begrenzt, wobei die Verpackung auch eine um den seitlichen Verpackungskörper angeordnete äußere Strahlenschutzhülle (14) umfasst, die aus einer Vielzahl von Einheits-Ringstrukturen (16) hergestellt ist, die entlang der zentralen Längsachse (2) übereinander gestapelt und um den seitlichen Verpackungskörper (10) herum angeordnet sind, wobei jede Einheits-Ringstruktur (16) umfasst:- eine äußere Ringwand (24);- eine innere Ringwand (26);- eine radiale Wärmeleitwand (22), die ein äußeres Ende aufweist, das mit der äußeren Ringwand (24) verbunden ist, sowie ein inneres Ende, das mit dem seitlichen Verpackungskörper (10) in Kontakt steht und mit der inneren Ringwand (26) verbunden ist, die ihrerseits mit dem seitlichen Verpackungskörper (10) in Kontakt steht;wobei zwei direkt aufeinanderfolgende Einheits-Ringstrukturen (16) in dem Stapel wenigstens teilweise einen ringförmigen Hohlraum (30) begrenzen, der wenigstens ein Strahlenschutzelement (32) aufnimmt, wobei der Hohlraum radial nach außen durch die äußere Ringwand (24) einer oder beider direkt aufeinanderfolgender Einheits-Ringstrukturen, radial nach innen durch die innere Ringwand (26) einer oder beider direkt aufeinanderfolgender Einheits-Ringstrukturen und axial auf beiden Seiten jeweils durch die radiale Wärmeleitwand (22) einer bzw. der anderen der beiden direkt aufeinanderfolgenden Einheits-Ringstrukturen (16) verschlossen ist.
- Verpackung nach Anspruch 1, dadurch gekennzeichnet, dass jede Einheits-Ringstruktur (16) einstückig ist.
- Verpackung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass das Strahlenschutzelement (32) ein Neutronenschutzelement ist, und dass jede Einheits-Ringstruktur (16) der folgenden Formel entspricht:- "n" entspricht der Gesamtzahl der gestapelten Einheits-Ringstrukturen (16);- "E1" entspricht der Dicke der radialen Wärmeleitwand (22); und- "H" entspricht der Höhe der Außenhülle (14).
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Einheits-Ringstruktur (16) einen halben Querschnitt in allgemeiner U-Form aufweist, wobei die Basis des U durch die radiale Wärmeleitwand (22) und die beiden Schenkel des U jeweils durch die äußere (24) und innere (26) Ringwand gebildet werden, und wobei das Innere des U den ringförmigen Hohlraum (30) bildet, in dem das wenigstens eine Strahlenschutzelement (32) aufgenommen ist.
- Verpackung nach Anspruch 6, dadurch gekennzeichnet, dass bei jeder Einheits-Ringstruktur (16) die beiden freien Enden der äußeren (24) und der inneren (26) Ringwand in einer gemeinsamen Querebene der Verpackung liegen.
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die radiale Wärmeleitwand (22) jeder Einheits-Ringstruktur (16) im halben Querschnitt die Form eines Geradensegments aufweist, das vorzugsweise orthogonal zur zentralen Längsachse (2) orientiert ist.
- Verpackung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die radiale Wärmeleitwand (22) jeder Einheits-Ringstruktur im halben Querschnitt wenigstens einen axialen Niveaubruch (22c) zwischen einem radial äußeren Wandabschnitt (22a) und einem radial inneren Wandabschnitt (22b) aufweist.
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in jedem ringförmigen Hohlraum (30) das/die Strahlenschutzelement(e) (32) einen sich über 360° erstreckenden Schutzring (34) bildet/bilden.
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in jedem ringförmigen Hohlraum (30) jedes Strahlenschutzelement (32) ein in den Hohlraum gegossenes Element oder ein vorgefertigtes Element ist, das in diesem Hohlraum angeordnet ist.
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens mehrere der Einheits-Ringstrukturen (16) identisch sind.
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Einheits-Ringstruktur (16) einen halben Querschnitt mit konstanter Form aufweist.
- Verpackung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl der Einheits-Ringstrukturen (16) zwischen 10 und 50 liegt und dass die Höhe (H) der äußeren Strahlenschutzhülle (14), die durch das Stapeln dieser Strukturen (16) gebildet wird, zwischen 1 und 4 m liegt.
- Verfahren zur Herstellung einer Verpackung (1) für den Transport und/oder die Zwischenlagerung von radioaktiven Stoffen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es die Wiederholung der folgenden aufeinanderfolgenden Schritte umfasst:- Anbringen einer der Einheits-Ringstrukturen (16) in dem Stapel um den seitlichen Körper (10) herum;- Anbringen jedes Strahlenschutzelements (32) in dem ringförmigen Hohlraum (30), der teilweise durch die im vorherigen Schritt angebrachte Einheits-Ringstruktur (22) definiert ist.
- Verfahren zur Herstellung einer Verpackung (1) für den Transport und/oder die Zwischenlagerung von radioaktiven Stoffen nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass es die Wiederholung der folgenden aufeinanderfolgenden Schritte umfasst:- Einsetzen jedes Strahlenschutzelements (32) in den ringförmigen Hohlraum (30), der teilweise durch eine der Einheits-Ringstrukturen (16) definiert ist;- Einsetzen der im vorhergehenden Schritt genannten Einheits-Ringstruktur (16), die mit jedem Strahlenschutzelement (32) ausgestattet ist, in den Stapel um den seitlichen Körper (10) herum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201930249T SI3766082T1 (sl) | 2018-04-27 | 2019-04-25 | Embalaža za prevoz in/ali shranjevanje radioaktivnih materialov, ki omogoča lažjo proizvodnjo in izboljšano toplotno prevodnost |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1853746A FR3080705B1 (fr) | 2018-04-27 | 2018-04-27 | Emballage de transport et/ou d'entreposage de matieres radioactives permettant une fabrication facilitee ainsi qu'une amelioration de la conduction thermique |
PCT/FR2019/050976 WO2019207255A1 (fr) | 2018-04-27 | 2019-04-25 | Emballage de transport et/ou d'entreposage de matieres radioactives permettant une fabrication facilitee ainsi qu'une amelioration de la conduction thermique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3766082A1 EP3766082A1 (de) | 2021-01-20 |
EP3766082B1 true EP3766082B1 (de) | 2022-03-23 |
Family
ID=63143250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19734845.1A Active EP3766082B1 (de) | 2018-04-27 | 2019-04-25 | Verpackung zum transport und/oder lagern von radioaktiven materialien, die eine einfachere herstellung und verbesserte wärmeleitfähigkeit ermöglicht |
Country Status (9)
Country | Link |
---|---|
US (1) | US11250961B2 (de) |
EP (1) | EP3766082B1 (de) |
JP (1) | JP7200263B2 (de) |
KR (1) | KR102638259B1 (de) |
CN (1) | CN112041941B (de) |
ES (1) | ES2914389T3 (de) |
FR (1) | FR3080705B1 (de) |
SI (1) | SI3766082T1 (de) |
WO (1) | WO2019207255A1 (de) |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2085189A1 (en) * | 1970-01-14 | 1971-12-24 | Transnucleaire | Storage and transport container for a - radioactive materials |
JPS59182396A (ja) * | 1983-03-31 | 1984-10-17 | 三井造船株式会社 | 使用済核燃料輸送容器の製造方法 |
JPS59210397A (ja) * | 1983-05-14 | 1984-11-29 | 株式会社日本製鋼所 | 使用済核燃料輸送容器 |
US4535250A (en) * | 1984-05-30 | 1985-08-13 | The United States Of America As Represented By The United States Department Of Energy | Container for radioactive materials |
JPH0298700A (ja) * | 1988-10-06 | 1990-04-11 | Mitsubishi Heavy Ind Ltd | 放射性物質輸送用容器 |
US5406600A (en) * | 1993-10-08 | 1995-04-11 | Pacific Nuclear Systems, Inc. | Transportation and storage cask for spent nuclear fuels |
FR2776118B1 (fr) * | 1998-03-13 | 2000-06-09 | Transnucleaire | Dispositif de protection contre les rayonnements pour conteneur de transport de matieres radioactives |
FR2786309B1 (fr) * | 1998-11-23 | 2001-01-26 | Transp S De L Ind Nucleaire Tr | Dispositif amortisseur de chocs pour conteneurs de matieres radioactives |
EP1103984B1 (de) * | 1999-06-19 | 2002-09-18 | GNB Gesellschaft für Nuklear-Behälter mbH | Transport- und/oder Lagerbehälter für radioaktive wärmeentwickelnde Elemente |
EP1122745A1 (de) * | 1999-12-15 | 2001-08-08 | GNB Gesellschaft für Nuklear-Behälter mbH | Transport- und/oder Lagerbehälter für radioaktive, wärmeentwickelte Elemente undVerfahren zu dessen Herstellung |
JP3416657B2 (ja) * | 2001-01-25 | 2003-06-16 | 三菱重工業株式会社 | キャスクおよびキャスクの製造方法 |
JP2003057386A (ja) * | 2001-08-13 | 2003-02-26 | Toshiba Corp | 使用済燃料貯蔵装置、その製造方法、及び使用済燃料の貯蔵方法 |
ES2284423T1 (es) * | 2002-07-23 | 2007-11-16 | Mitsubishi Heavy Industries, Ltd. | Recipiente blindado para almacenar materiales radiactivos y procedimiento de produccion del mismo. |
US7068748B2 (en) * | 2004-03-18 | 2006-06-27 | Holtec International, Inx. | Underground system and apparatus for storing spent nuclear fuel |
FR2872956B1 (fr) * | 2004-07-12 | 2006-11-17 | Cogema Logistics Sa | Dispositif externe d'evacuation de chaleur pour emballage destine au stockage et/ou au transport de matieres nucleaires |
CA2599049C (en) * | 2005-02-12 | 2009-09-01 | Kyung Yeon Jo | Apparatus for nuclear waste disposal, method for manufacturing and installing the same |
US20080084958A1 (en) | 2006-06-30 | 2008-04-10 | Krishna Singh | Neutron shielding ring, apparatus and method using the same for storing high level radioactive waste |
US7994380B2 (en) * | 2006-10-11 | 2011-08-09 | Holtec International, Inc. | Apparatus for transporting and/or storing radioactive materials having a jacket adapted to facilitate thermosiphon fluid flow |
AU2007332612B2 (en) * | 2006-12-11 | 2012-03-22 | Trelleborg Industrie Sas | Cryogenic transfer hose having a fibrous insulating layer and method of constructing such a transfer hose |
FR2914104B1 (fr) * | 2007-03-21 | 2012-05-04 | Tn Int | Emballage pour le transport et/ou stockage de matieres nucleaires comprenant une protection radiologique en plomb coule sur une armature metallique |
DE102007024903B4 (de) * | 2007-05-29 | 2009-05-07 | Pyreos Ltd. | Vorrichtung mit Sandwichstruktur zur Detektion von Wärmestrahlung, Verfahren zum Herstellen und Verwendung der Vorrichtung |
US8995604B2 (en) * | 2009-11-05 | 2015-03-31 | Holtec International, Inc. | System, method and apparatus for providing additional radiation shielding to high level radioactive materials |
FR2961005B1 (fr) * | 2010-06-02 | 2015-12-11 | Tn Int | Emballage pour le transport et/ou entreposage de matieres radioactives, comprenant des moyens de conduction thermique ameliores |
CN202093844U (zh) * | 2010-12-01 | 2011-12-28 | 中国核电工程有限公司 | 用于放射性物质运输容器的多功能散热结构 |
FR2974228B1 (fr) * | 2011-04-18 | 2013-06-07 | Tn Int | Element de conduction thermique permettant d'ameliorer la fabrication d'un emballage de transport et/ou d'entreposage de matieres radioactives |
FR2985365B1 (fr) * | 2011-12-29 | 2014-01-24 | Tn Int | Conducteur thermique pour corps lateral d'emballage de transport et/ou d'entreposage de matieres radioactives |
JP3174865U (ja) * | 2012-01-30 | 2012-04-12 | 秀一 富田 | 収納容器 |
US20140044227A1 (en) * | 2012-08-13 | 2014-02-13 | Transnuclear, Inc. | Composite basket assembly |
JP5514934B1 (ja) * | 2013-05-21 | 2014-06-04 | 朱雀プラスチック株式会社 | 放射能汚染物の収納容器 |
FR3006098B1 (fr) * | 2013-05-22 | 2015-06-26 | Tn Int | Emballage d'entreposage de combustible irradie comprenant des rails amortis de guidage d'etui |
US9793021B2 (en) * | 2014-01-22 | 2017-10-17 | Nac International Inc. | Transfer cask system having passive cooling |
WO2017165180A1 (en) * | 2016-03-22 | 2017-09-28 | Holtec International | Apparatus for storing and/or transporting radioactive materials |
FR3049756B1 (fr) * | 2016-04-01 | 2020-06-12 | Tn International | Emballage de transport et/ou d'entreposage de matieres radioactives equipe de dispositifs de dissipation de chaleur realises d'un seul tenant |
CN107481777A (zh) * | 2017-07-07 | 2017-12-15 | 中国核电工程有限公司 | 一种核燃料组件容器用带有散热功能的屏蔽结构 |
US11333414B2 (en) * | 2017-08-15 | 2022-05-17 | Jan Vetrovec | Magnetocaloric refrigerator |
-
2018
- 2018-04-27 FR FR1853746A patent/FR3080705B1/fr not_active Expired - Fee Related
-
2019
- 2019-04-25 CN CN201980028444.7A patent/CN112041941B/zh active Active
- 2019-04-25 ES ES19734845T patent/ES2914389T3/es active Active
- 2019-04-25 SI SI201930249T patent/SI3766082T1/sl unknown
- 2019-04-25 US US17/050,584 patent/US11250961B2/en active Active
- 2019-04-25 WO PCT/FR2019/050976 patent/WO2019207255A1/fr unknown
- 2019-04-25 JP JP2020557265A patent/JP7200263B2/ja active Active
- 2019-04-25 KR KR1020207030587A patent/KR102638259B1/ko active IP Right Grant
- 2019-04-25 EP EP19734845.1A patent/EP3766082B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
JP7200263B2 (ja) | 2023-01-06 |
US11250961B2 (en) | 2022-02-15 |
WO2019207255A1 (fr) | 2019-10-31 |
EP3766082A1 (de) | 2021-01-20 |
CN112041941A (zh) | 2020-12-04 |
FR3080705A1 (fr) | 2019-11-01 |
KR102638259B1 (ko) | 2024-02-19 |
SI3766082T1 (sl) | 2022-08-31 |
JP2021522472A (ja) | 2021-08-30 |
FR3080705B1 (fr) | 2020-10-30 |
US20210241932A1 (en) | 2021-08-05 |
ES2914389T3 (es) | 2022-06-10 |
KR20210003760A (ko) | 2021-01-12 |
CN112041941B (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2140459B1 (de) | Container zum transportieren und/oder lagern von kernmaterialien mit einer aus auf eine metallverstärkung gegossenem blei hergestellten radiologischen abschirmung | |
WO2000060609A1 (fr) | Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires | |
EP2577678B1 (de) | Kanister für den transport und/oder die aufbewahrung radioaktiver materialien mit verbesserten wärmeleitungsmitteln | |
EP2320429A1 (de) | Verpackung für den Transport und/oder zur Zwischenlagerung radioaktiver Stoffe, die radial geschichtete Strahlenschutzelemente umfasst | |
EP3982375A1 (de) | Verpackung für den transport und/oder die lagerung von radioaktivem material, die eine strahlenschutzvorrichtung umfasst, die die risiken eines strahlungsaustritts reduziert | |
EP3766082B1 (de) | Verpackung zum transport und/oder lagern von radioaktiven materialien, die eine einfachere herstellung und verbesserte wärmeleitfähigkeit ermöglicht | |
FR2521764A1 (fr) | Dispositif de protection neutronique pour produit radio-actif | |
EP2700077B1 (de) | Wärmeleitfähiges Element zur verbesserten Herstellung von Verpackungen zum Transport und/oder zur Lagerung von radioaktivem Material | |
EP3274998B1 (de) | Vorrichtung zur stützung einer verpackung zum transportieren/lagern von radioaktiven materialien mit einer ummantelung zur führung von luft zur kühlung der verpackung durch natürliche konvektion | |
FR3054922A1 (fr) | Panier de rangement pour matieres radioactives, presentant un encombrement optimise | |
EP3391379B1 (de) | Verbesserte wärmeableitstrukturen mittels natürlicher konvektion für transportbehälter und/oder lagerbehälter für radioaktive materialien | |
EP3928330B1 (de) | Anlage umfassend einen behälter zur lagerung von radioaktivem material und zugehöriges befestigungssystem | |
EP2320432B1 (de) | Verpackung für den Transport und/oder zur Zwischenlagerung radioaktiver Stoffe, die eine verstärkte Wärmeübertragung ermöglicht | |
WO2017064174A1 (fr) | Element de refroidissement avec embase pour evacuer de la chaleur d'un emballage | |
FR2973925A1 (fr) | Emballage pour le transport de matieres radioactives | |
EP3743928B1 (de) | Lagerkorb für radioaktive materialien mit optimiertem platzbedarf und mit gehäusen mit genauerer geometrie | |
FR2872956A1 (fr) | Dispositif externe d'evacuation de chaleur pour emballage destine au stockage et/ou au transport de matieres nucleaires | |
FR3101474A1 (fr) | Panier de rangement pour matières radioactives, à conception simplifiée conférant des propriétés améliorées de transfert thermique | |
FR3064809B1 (fr) | Emballage de transport et/ou d'entreposage de matieres radioactives a echanges convectifs ameliores | |
FR3143175A1 (fr) | Emballage pour le transport et/ou l’entreposage de matieres radioactives, comprenant un dispositif de protection radiologique simplifiee, reduisant les risques de fuites radiologiques | |
FR3081253A1 (fr) | Emballage pour le transport ou le stockage de matiere nucleaire | |
EP4315369A1 (de) | Anordnung zum transport von uranhexafluorid mit stossdämpferkappen | |
FR3121265A1 (fr) | Ensemble pour le transport d’hexafluorure d’uranium | |
WO2014111445A1 (fr) | Emballage pour le transport et/ou l'entreposage de matieres radioactives comprenant une protection anti-feu amelioree | |
FR2632440A1 (fr) | Reacteur nucleaire a neutrons rapides, refroidi par un metal liquide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201014 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ORANO NUCLEAR PACKAGES AND SERVICES |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211020 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019012848 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1478018 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2914389 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220610 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1478018 Country of ref document: AT Kind code of ref document: T Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220725 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220627 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220723 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019012848 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220425 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
26N | No opposition filed |
Effective date: 20230102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220425 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602019012848 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190425 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240429 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240429 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240515 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240328 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240429 Year of fee payment: 6 Ref country code: FR Payment date: 20240426 Year of fee payment: 6 Ref country code: FI Payment date: 20240426 Year of fee payment: 6 Ref country code: SI Payment date: 20240327 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240430 Year of fee payment: 6 Ref country code: BE Payment date: 20240429 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |