WO2000060609A1 - Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires - Google Patents

Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires Download PDF

Info

Publication number
WO2000060609A1
WO2000060609A1 PCT/FR2000/000735 FR0000735W WO0060609A1 WO 2000060609 A1 WO2000060609 A1 WO 2000060609A1 FR 0000735 W FR0000735 W FR 0000735W WO 0060609 A1 WO0060609 A1 WO 0060609A1
Authority
WO
WIPO (PCT)
Prior art keywords
jacket
installation according
container
cavity
heat
Prior art date
Application number
PCT/FR2000/000735
Other languages
English (en)
Inventor
Michel Badie
Daniel Iracane
Alain Le Duigou
Jacques Peulve
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2000610016A priority Critical patent/JP4324329B2/ja
Priority to DE60020223T priority patent/DE60020223T2/de
Priority to AT00914242T priority patent/ATE295991T1/de
Priority to CA002364950A priority patent/CA2364950A1/fr
Priority to US09/937,494 priority patent/US6802671B1/en
Priority to EP00914242A priority patent/EP1166279B1/fr
Publication of WO2000060609A1 publication Critical patent/WO2000060609A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Definitions

  • the invention relates to an installation intended for ensuring very long-term storage of heat products, capable of emitting
  • storage designates a reversible storage of packaged products, accompanied by an evacuation of the heat emitted by these products.
  • very long duration means at least fifty years and, preferably, several fifty years.
  • a preferred application of the installation according to the invention relates to the storage of very high level and long-lived nuclear waste, such as spent fuel in nuclear reactors.
  • the products are packaged in containers and the latter are placed in cavities formed in the ground, said cavities being delimited by concrete walls.
  • An air-filled space is provided between each container and the walls of the cavity.
  • the heat is evacuated by the only circulation of air, in natural convection.
  • a notable disadvantage of such a storage installation is that the cooling is carried out by a primary circuit, in direct contact with the walls of the containers. Such an arrangement is dispersive in the event of an incident, and therefore dangerous for the environment. On the other hand it only allows the evacuation of a very limited heat flux.
  • the general arrangement is comparable to the previous one, but the cooling is provided by secondary cooling circuits traversed by a fluid, in particular water, or air in natural convection. These circuits are completely embedded in the concrete walls which delimit the cavities in which the containers are received.
  • Such installations have a number of drawbacks. Firstly, since the cooling only takes place inside the concrete walls, the surfaces of these walls delimiting the cavities are heated directly by the stored products. This has the effect of weakening the concrete, at least on the surface. In addition, the temperature of the containers remains very high, which results in rapid aging of their welds. Finally, such a storage installation does not allow the external and therefore internal temperature of the containers to be controlled, which can lead, for example, to the destruction of the spent fuel cladding.
  • a third known storage technique differs essentially from the previous one in that the secondary cooling circuits pass through the walls delimiting the cavities and are located partly in the space surrounding the containers.
  • Document DD-A-223 562 also discloses an irradiated nuclear fuel storage installation, in which cylindrical containers containing the products are placed one above the other in wells delimited by concrete walls.
  • the wall of each well is coated internally with a metal tube which extends above the well to a heat sink, with fins or the like, capable of transmitting the heat which it receives to the surrounding atmosphere.
  • a stopper is placed at the top of the well, inside the metal tube, above the containers. The effectiveness of such a device is relatively limited and does not prevent significant heating of the containers and the wall of the well.
  • document US-A-4,040,480 proposes a storage facility for radioactive products, in which the products are packaged in cylindrical containers and placed in an annular cavity delimited between the concrete wall of a section well.
  • the vertical tube At its upper part, located above a plug closing the well, the vertical tube carries cooling fins in contact with the air.
  • the heat diffused by the stored products propagates as well towards the wall of the well as towards the tube forming heat pipe. Relatively rapid damage to the concrete surface is therefore to be expected. In addition, nothing is provided in the event of a heat pipe failure.
  • the installations known to date are designed for a maximum service life of about fifty years, while there is a need, in the nuclear industry, for storage of several fifty years , typically up to 300 years.
  • the subject of the invention is precisely an installation for storing heat products, such as nuclear waste, which does not have the drawbacks of the installations of the prior art.
  • the subject of the invention is a passive storage installation making it possible to evacuate a large amount of heat for a very long time. period, while having a very high reliability and robustness, in particular by subjecting the materials only to stresses compatible with a very long service life.
  • this result is obtained by means of a very long-term storage installation for heat products, comprising at least one closed cavity, at least one container for confining said products, capable of being received in the cavity.
  • thermosyphon means able to dissipate above the cavity the heat emitted by said products, characterized in that the thermosyphon means are integrated, in part, into a jacket in direct contact with the container it surrounds .
  • thermosyphon means integrated into a jacket tightly surrounding the container, ensures efficient evacuation of the heat released by the products received in the container, without risking dispersion of the contamination in the event of an accident.
  • the jacket forms a heat shield between the container and the wall of the cavity.
  • This generally made of concrete when the products stored are nuclear waste, is thus effectively and homogeneously cooled, in the same way as the container itself. This prevents accelerated aging of the concrete, the welds in the container and the products contained.
  • the shirt is removable.
  • the cavity is advantageously closed by a removable plug, above the container. This arrangement allows, if necessary, to ensure the replacement of the jacket incorporating the thermosyphon or the removal of the container, in case of problems.
  • the shirt is advantageously open and made of a flexible and elastic material such as a metal, so as to be able to occupy a natural state in which it is separated from the container.
  • This natural state allows easy assembly and disassembly of the shirt.
  • Releasable clamping means are then provided to apply the jacket tightly against the container during storage.
  • the jacket then has the shape of an open cylinder along a generator and the releasable clamping means are interposed between the edges facing this generator.
  • a space generally filled air is advantageously provided, inside of it, around the container fitted with its jacket, the air possibly or not circulating in natural convection.
  • the jacket comprises a plurality of outer tubes filled with heat transfer fluid and the lower and upper ends of which emerge respectively in a lower annular collector and in an upper annular collector.
  • cooling fins are preferably formed on at least some of the outer tubes, so as to increase the heat exchange with the air contained in the cavity.
  • the outer tubes can be welded to the jacket.
  • the jacket may also include a plurality of segments, fixed edge to edge by assembly means such as welds or rivets. Each of the outer tubes is then made in one piece with one of these segments.
  • thermosyphon means (generally water) contained in the thermosyphon means, the latter further comprise heat exchange means placed above the cavity and forming a cold source.
  • the heat exchange means are connected to the latter by disconnectable connection means.
  • the heat exchange means are adapted to variations in the heat flow to be dissipated.
  • thermosyphon constitute a heat pipe.
  • the installation according to the invention is applied to the storage of nuclear waste.
  • the cavity is then delimited by concrete walls.
  • FIG. 1 is a vertical sectional view which very schematically shows a storage facility for heat products according to the invention
  • Figure 2 is a perspective view, partially cut away and in section, which represents the upper part of the jacket which closely surrounds each container in the installation of Figure 1;
  • Figure 3 is a sectional view along a horizontal plane, showing the shirt in solid lines in its natural open state and in phantom when it is tightly tightened on the container;
  • FIG. 4 is a sectional view along a horizontal plane illustrating / on a larger scale another embodiment of the shirt; and - Figures 5 and 6 are sectional views comparable to Figure 4, illustrating alternative embodiments of the invention.
  • FIG. 1 very schematically represents part of an installation for the very long-term storage of heat products, such as nuclear waste, produced in accordance with the invention.
  • the installation comprises at least one closed cavity 10, such as a buried trench, delimited laterally and downwards by concrete walls 12.
  • the cavity 10 is in the form of a trench rectilinear buried. This trench is capable of receiving several containers 14 in which the products to be stored are conditioned.
  • the shape of the cavity 10 can be different without departing from the scope of the invention.
  • each of the containers 14 can be placed in a separate individual cavity.
  • the containers 14 used for confining the products to be stored are metal containers, the shape and dimensions of which can be variable, without departing from the scope of the invention.
  • the containers 14 are of cylindrical shape and they are placed side by side and on one level in the trench constituting the cavity 10, with their axes oriented substantially vertically. More precisely, each of the containers 14 is in contact neither with the neighboring containers nor with the walls of the cavity 10. In other words, a space 16 filled with air is provided, inside the cavity 10 , around each of the containers 14. The circulation of air in this space 16, by natural convection, contributes to the cooling of the containers 14.
  • each of the containers 14 rest on the bottom of the cavity 10 by means of a pedestal 18. Furthermore, positioning or spacing means (not shown) are advantageously provided between the cavity 10 and each of the containers 14, in order to ensure the positioning and the centering of the latter in the cavity.
  • the cavity 10 is closed upwards by a concrete slab 20.
  • the concrete slab 20 Above each of the containers 14, the concrete slab 20 has a generally circular opening, closed by a removable plug 22 This removable plug 22 is also made of concrete. Its removal makes it possible to set up each of the containers 14 individually in the cavity 10, and optionally to extract them from this cavity.
  • handling means (not shown) are provided above the concrete slab 20. This arrangement provides biological protection, when the products stored are nuclear waste, as well as mechanical protection against falls of plane and malicious acts.
  • the invention further comprises means 24 forming a thermosyphon ( Figure 2).
  • thermosyphon part of these means 24 forming a thermosyphon is integrated into a jacket 26 which surrounds each of the containers 14 so that its smooth inner cylindrical surface 27 is normally in close contact with the smooth outer cylindrical surface 15 of the container.
  • the jacket 26 is made of a thermally conductive material, for example a metal such as stainless steel or copper.
  • the heat emitted by the products packaged in the containers 14 is transmitted to the means 24 forming a thermosyphon efficiently and homogeneously, over the entire periphery of these containers.
  • the thermal connection between the container and the jacket is ensured by the direct contact of the two walls.
  • the thermal resistance is reduced, because the effective thickness of the residual air film between the walls is limited to a fraction of a millimeter.
  • the part of the means 24 forming a thermosyphon integrated into the jacket 26 is in the form of a closed cooling circuit surrounding the container 14.
  • This circuit comprises a plurality of external tubes 28, fixed on the outer surface of the jacket 26 according to the generatrices thereof, and a lower annular collector 30 and an upper annular collector 32, into which the lower and upper ends of the tubes 28 open respectively.
  • the tubes 28 are numerous and regularly distributed over the entire circumference of the jacket 26.
  • a heat transfer fluid such as water at 100 C, is placed inside the circuit. In operation, the water is in the liquid state in the lower annular collector 30 and in the vapor state in the upper annular collector 32.
  • the means 24 forming a thermosyphon thus constitute a heat pipe which tightly surrounds the container while homogenizing the temperature, which avoids the creation of hot spots.
  • thermosyphon use the principle of the evaporation / condensation cycle of a heat transfer fluid, for the transfer of heat from a hot source, constituted by the container 14, to a cold source, placed at the above the slab 20. They are waterproof and passive, since they act only by change of phase of the fluid.
  • the cold source of the means 24 forming a thermosyphon comprises means 34 of heat exchange, such as an air condenser, installed outside and above the cavity 10, c 'ie above the concrete slab 20.
  • These heat exchange means 34 are connected by two pipes 36 to the collectors 30 and 32 of the cooling circuit associated with the jacket 26. More precisely, in the mode described for example, the same heat exchange means 34 is connected to each of the cooling circuits carried by the liners 26 surrounding all the containers 14 placed in the same cavity 10.
  • the heat exchange means 34 can take any form, adapted to their function, without departing from the scope of the invention. It should be noted that they can be installed at a certain height above the concrete slab 20 and at a certain distance from the containers, without appreciable degradation of the performance of the installation.
  • the pipes 36 which connect the heat exchange means 34 to the lower 30 and upper 32 annular collectors of one or more of the cooling circuits associated with the jackets 26 pass through passages provided for this purpose in the removable plugs 22.
  • the sleeves 26 are mounted on the containers 14 so as to be removable independently of the latter. It is thus possible, after removal of any of the removable plugs 22, to replace the jacket 26 of the corresponding container 14 without it being necessary to remove the container from the cavity 10.
  • the dimensions of the opening formed in the slab 20 above each of the containers 14 are adapted to allow this replacement.
  • This arrangement greatly facilitates the very long-term management of the storage facility. It makes it possible to easily intervene on any element failure of this installation, using remote handling means, placed above the slab 20, ensuring the very long-term evacuation of the heat dissipated by the products stored in the containers.
  • the removable nature of the shirts 26 is obtained by making each of them in the form of an open cylinder along a generator.
  • the sleeves 26 are formed from a flexible and elastic material having a very low overall stiffness such as a sheet of thin thickness (for example, 3 to 4 mm).
  • each of the edges facing the open generator of the jacket 26 comprises a clamping plate 38 oriented radially outwards, so that the two plates 38 are substantially parallel to each other.
  • the plates 38 of the same jacket 26 are crossed at regular intervals by holes in which can be mounted with bolts 40 constituting releasable clamping means, capable of applying the jacket 26 tightly against the container 14.
  • the bolts 40 constituting here the releasable tightening means can be replaced by any other means making it possible to bring the plates 38 together, in order to apply the smooth cylindrical interior surface 27 of the jacket 26 against the cylindrical exterior surface smooth 15 of the container 14 by deforming the jacket. This result can be obtained without excessive effort, due to the low stiffness of the material in which the jacket 26 is formed.
  • the releasable clamping means are preferably chosen so as to be able to be easily installed and actuated by remote handling means, from the space located above the slab 20, after removal of the plug 22 or a shutter provided therein.
  • the heat exchange means 34 are advantageously arranged so as to be able to be adapted to a development over time of the heat flow released by the products stored in the containers.
  • an intervention on the shirts 26 must be able to be made while these heat exchange means 34 are in place. Consequently, the installation of these heat exchange means 34 above the concrete slab 20 is made so as to allow the replacement of the liners 26, as well as the possible installation and removal of the containers 14.
  • connection means 42 which can be disconnected on each of the pipes 36.
  • These disconnectable connection means 42 are advantageously located under the slab 20. They are accessible, as are the releasable clamping means, by accesses arranged in the removable plugs 22.
  • the disconnectable connection means 42 can take any form without departing from the scope of the invention.
  • the jacket 26 is formed from a relatively thin and flexible metal sheet and the tubes 28 are directly welded to the external surface of this sheet.
  • the jacket 26 is formed of a plurality of segments 26a, arranged circumferentially end to end one after the other. Each of these segments 26a is fixed to the adjacent segment by assembly means constituted in this case by welds 44.
  • each of the outer tubes 28 is made in one piece with a corresponding segment 26a of the jacket 26.
  • FIG. 5 illustrates a variant of the embodiment of FIG. 4, which essentially differs by the assembly means connecting edge to edge the different segments 26a forming the jacket 26.
  • the segments 26a instead of being connected by welds 44, the segments 26a have superimposed adjacent edges, which pass through fastening members such as rivets shown diagrammatically by phantom lines 44 'in FIG. 5.
  • FIG. 6 illustrates another alternative embodiment of the jacket 26. It should be noted that this variant applies equally to the embodiments which have just been described with reference successively to FIGS. 2, 4 and 5, although FIG. 6 represents only the case of FIG. 5.
  • each of the outer tubes 28 is provided in this case with at least one cooling fin 46.
  • This fin 46 located in the space 16 formed in the cavity 10 around the jacket 26, improves "fin effect" provided by the tubes 28 proper.
  • This "fin effect” allows the heat emitted by the products stored in the containers to be removed, in combination with the natural circulation of air in the space 16 surrounding the containers, when this type of cooling becomes sufficient, by case of reduction in time of the heat flux emitted by the stored products.
  • the "fin effect” facilitates emergency cooling of the container in the event of failure of the means 24 forming a thermosyphon.
  • the storage installation which has just been described makes it possible to ensure the storage, containment and removal of the heat dissipated by calorific products for a very long period.
  • the means 24 forming a thermosyphon allow a large amount of heat to be removed, as is necessary at the start of the storage of nuclear waste.
  • the proposed arrangement thus makes it possible to maintain the welds of the container 14 and the heat products at a sufficiently low temperature to avoid their accelerated aging. It also makes it possible to subject the surface of the concrete cavity to a homogeneous temperature and sufficiently low to avoid its embrittlement over time.
  • thermosyphon constitute a secondary circuit, separated from the products packaged in the container both by the wall of the latter and by the walls of the tubes 28 carried by the jacket 26.
  • Environmental protection is thus insured, in the event of a container leak.
  • jacket 26 is removable, it is possible to intervene quickly and without danger on the means forming a thermosyphon, directly ensuring the replacement of the defective shirt.
  • the invention is not limited to the embodiments which have just been described by way of example, but covers all the variants thereof. So if the storage time is not too long long, the shirts can be tightened and fixed once and for all on the containers. Otherwise, the interchangeable nature of the liners can be obtained by making them in the form of half-shells assembled together in a removable manner, or in the form of half-shells hinged together, or in any other suitable form, ensuring close contact between the liners and the containers, capable of ensuring optimal heat exchange.
  • the cooling circuit associated with the jacket can be produced differently, for example in the form of tubes in the form of helices or of passages integrated into regions of greater thickness of the jacket.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Drying Of Solid Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Une installation d'entreposage de très longue durée de produits calorifiques, tels que des déchets nucléaires, comprend au moins une cavité fermée (10), dans laquelle est reçu au moins un conteneur (14) de confinement des produits. Pour évacuer la chaleur émise par les produits entreposés, on place autour de chaque conteneur (14) une chemise (26) à laquelle est associé un thermosiphon (24) dont la source froide est constituée par un aérocondenseur agencé au-dessus d'une dalle (20) obturant la cavité vers le haut. La chemise (26), de préférence interchangeable, enserre étroitement le conteneur (14).

Description

INSTALLATION D'ENTREPOSAGE DE TRES LONGUE DUREE DE PRODUITS DEGAGEANT DE LA CHALEUR TELS QUE DES DECHETS NUCLEAIRES
DESCRIPTION 5
Domaine technique
L'invention concerne une installation destinée à assurer un entreposage de très longue durée de produits calorifiques, susceptibles d'émettre de
10 grandes quantités de chaleur, pouvant diminuer dans le temps .
Le terme "entreposage" désigne un stockage réversible de produits emballés, accompagné d'une évacuation de la chaleur émise par ces produits .
15 L'adjectif "réversible" signifie que les produits stockés sont susceptibles d'être repris.
L'expression "très longue durée" signifie au moins cinquante ans et, de préférence, plusieurs cinquantaines d'années.
20 Une application privilégiée de l'installation selon 1 ' invention concerne 1 ' entreposage de déchets nucléaires de très haute activité et de longue période, tels que les combustibles irradiés dans les réacteurs nucléaires.
25
Etat de la technique
L'entreposage des produits calorifiques dangereux, tels que les déchets nucléaires, constitue un problème important pour lequel un certain nombre de
30 solutions ont déjà été proposées. Parmi ces solutions, seules celles qui assurent un refroidissement passif des produits, sans apport d'énergie extérieure, sont évoquées. En effet, le caractère passif semble indispensable à l'obtention de la fiabilité requise pendant la très longue période d'entreposage envisagée.
Selon une première technique connue d'entreposage, les produits sont conditionnés dans des conteneurs et ces derniers sont placés dans des cavités formées dans le sol, lesdites cavités étant délimitées par des parois de béton. Un espace rempli d'air est ménagé entre chaque conteneur et les parois de la cavité. L'évacuation de la chaleur est obtenue par la seule circulation de l'air, en convection naturelle. Une telle installation d'entreposage a pour inconvénient notable que le refroidissement est réalisé par un circuit primaire, en contact direct avec les parois des conteneurs. Un tel agencement est dispersif en cas d'incident, et donc dangereux pour l'environnement. D'autre part il ne permet que l'évacuation d'un flux thermique très limité.
Selon une autre technique connue d'entreposage, l'agencement général est comparable au précédent, mais le refroidissement est assuré par des circuits secondaires de refroidissement parcourus par un fluide, notamment de l'eau, ou de l'air en convection naturelle. Ces circuits sont noyés en totalité dans les parois de béton qui délimitent les cavités dans lesquelles sont reçus les conteneurs. De telles installatiohs présentent un certain nombre d ' inconvénients . En premier lieu, du fait que le refroidissement n'intervient qu'à l'intérieur même des parois de béton, les surfaces de ces parois délimitant les cavités sont chauffées directement par les produits entreposés. Cela a pour conséquence de fragiliser le béton, au moins en surface. De plus, la température des conteneurs reste très élevée, ce qui se traduit par un vieillissement rapide de leurs soudures. Enfin, une telle installation d'entreposage ne permet pas de contrôler la température externe et donc interne aux conteneurs, ce qui peut entraîner, par exemple, la destruction des gaines de combustibles irradiés.
Une troisième technique connue d'entreposage se distingue essentiellement de la précédente par le fait que les circuits secondaires de refroidissement traversent les parois délimitant les cavités et se situent en partie dans l'espace entourant les conteneurs .
On retrouve dans ce cas pratiquement les mêmes inconvénients que dans la technique d'entreposage connue décrite précédemment. De plus, du fait que le circuit de refroidissement traverse localement les surfaces des parois de béton délimitant les cavités, ces surfaces sont soumises à des contraintes thermiques non homogènes qui se traduisent par un vieillissement accéléré du béton.
Dans une quatrième technique connue d'entreposage, l'espace ménagé entre chaque conteneur et la cavité qui le contient est rempli d'eau et le circuit de refroidissement est logé intégralement dans cet espace. Cette solution connue se caractérise par des problèmes de corrosion dus au fait que les conteneurs sont noyés dans l'eau. De plus, toute fuite du circuit de refroidissement entraîne un risque de contamination dans le cas où les produits entreposés sont des déchets nucléaires. En outre, la maintenance d'un tel dispositif d'entreposage est particulièrement lourde.
On connaît aussi du document DD-A-223 562 une installation d'entreposage de combustible nucléaire irradié, dans laquelle des conteneurs cylindriques contenant les produits sont placés les uns au-dessus des autres dans des puits délimités par des parois de béton. La paroi de chaque puits est revêtue intérieurement d'un tube métallique qui se prolonge au-dessus du puits jusqu'à un dissipateur thermique, à ailettes ou similaire, apte à transmettre la chaleur qu'il reçoit à l'atmosphère environnante. Un bouchon est placé -dans le haut du puits, à l'intérieur du tube métallique, au-dessus des conteneurs. L'efficacité d'un tel dispositif est relativement limitée et ne permet pas d ' empêcher un échauffe ent important des conteneurs et de la paroi du puits. De plus, il existe un gradient de température important entre les conteneurs placés en fond de puits et les conteneurs les plus proches de la surface. Par conséquent, une fragilisation superficielle du béton et un vieillissement accéléré des soudures des conteneurs ainsi que du tube dissipateur (alors que ce dernier n'est pas interchangeable) sont pratiquement inévitables. Par ailleurs, le document US-A-4 040 480 propose une installation d'entreposage de produits radioactifs, dans laquelle les produits sont conditionnés dans des conteneurs cylindriques et placés dans une cavité annulaire délimitée entre la paroi de béton d'un puits de section circulaire et un tube vertical fermé, formant caloduc, disposé dans l'axe du puits. A sa partie supérieure, située au-dessus d'un bouchon fermant le puits, le tube vertical porte des ailettes de refroidissement en contact avec l'air.
La chaleur diffusée par les produits entreposés se propage aussi bien vers la paroi du puits que vers le tube formant caloduc. Un endommagement relativement rapide de la surface du béton est donc prévisible. De plus, rien n'est prévu en cas de défaillance du caloduc.
De façon générale, les installations connues à ce jour sont conçues pour une durée de vie maximale d'environ une cinquantaine d'années, alors qu'il existe un besoin, dans l'industrie nucléaire, pour un entreposage de plusieurs cinquantaines d'années, typiquement jusqu'à 300 ans.
Exposé de 1 ' invention L'invention a précisément pour objet une installation d'entreposage de produits calorifiques, tels que des déchets nucléaires, ne présentant pas les inconvénients des installations de l'art antérieur. En d'autres termes, l'invention a pour objet une installation d'entreposage passive permettant d'évacuer une grande quantité de chaleur pendant une très longue période, tout en présentant une fiabilité et une robustesse très élevées, notamment en ne soumettant les matériaux qu'à des sollicitations compatibles avec une très longue durée de vie. Conformément à l'invention, ce résultat est obtenu au moyen d'une installation d'entreposage de très longue durée de produits calorifiques, comprenant au moins une cavité fermée, au moins un conteneur de confinement desdits produits, apte à être reçu dans la cavité, et des moyens formant thermosiphon, aptes à dissiper au-dessus de la cavité la chaleur émise par lesdits produits, caractérisée en ce que les moyens formant thermosiphon sont intégrés, en partie, à une chemise en contact direct avec le conteneur qu'elle entoure.
L'utilisation de moyens formant thermosiphon, intégrés à une chemise entourant étroitement le conteneur, permet d'assurer une évacuation efficace de la chaleur dégagée par les produits reçus dans le conteneur, sans risquer pour autant une dispersion de la contamination en cas d'accident. De plus, la chemise forme un écran thermique entre le conteneur et la paroi de la cavité. Celle-ci, généralement réalisée en béton lorsque les produits entreposés sont des déchets nucléaires, est ainsi refroidie efficacement et de façon homogène, de la même manière que le conteneur proprement dit. On évite par conséquent un vieillissement accéléré du béton, des soudures du conteneur ainsi que des produits contenus. En outre, il est possible de connaître et de régler efficacement la température superficielle du conteneur ainsi que la température de la paroi du puits ou de la tranchée. Cela permet aussi de piloter les conditions d'entreposage en conformité avec les hypothèses habituelles (généralement non respectées dans les installations existante), selon lesquelles la température de surface du béton est connue et fixe. Une telle installation a aussi pour avantage de permettre une adaptation de la source froide, située au-dessus de la cavité, en fonction d'une évolution temporelle de la quantité de chaleur émise par les produits entreposés.
Dans un mode de réalisation préféré de l'invention, la chemise est démontable. De plus, la cavité est avantageusement fermée par un bouchon amovible, au-dessus du conteneur. Cet agencement permet, le cas échéant, d'assurer le remplacement de la chemise intégrant le thermosiphon ou l'enlèvement du conteneur, en cas de problèmes.
Dans ce cas, la chemise est avantageusement ouverte et réalisée en un matériau souple et élastique tel qu'un métal, de façon à pouvoir occuper un état naturel dans lequel elle est écartée du conteneur. Cet état naturel autorise un montage et un démontage aisés de la chemise. Des moyens de serrage libérables sont alors prévus pour appliquer étroitement la chemise contre le conteneur lors de l'entreposage.
De préférence, la chemise a alors la forme d'un cylindre ouvert suivant une génératrice et les moyens de serrage libérables sont interposés entre les bords en vis-à-vis de cette génératrice. Afin d'éviter un échauffement excessif des parois de la cavité, un espace généralement rempli d'air est avantageusement ménagé, à l'intérieur de celle-ci, autour du conteneur équipé de sa chemise, l'air pouvant ou non circuler en convection naturelle.
Dans le mode de réalisation préféré de l'invention, la chemise comprend une pluralité de tubes extérieurs remplis de fluide caloporteur et dont les extrémités basses et hautes débouchent respectivement dans un collecteur annulaire inférieur et dans un collecteur annulaire supérieur. Dans ce cas, des ailettes de refroidissement sont formées de préférence sur au moins certains des tubes extérieurs, de façon à accroître l'échange thermique avec l'air contenu dans la cavité.
Dans ce mode de réalisation préféré de l'invention, les tubes extérieurs peuvent être soudés sur la chemise.
En variante, la chemise peut aussi comprendre une pluralité de segments, fixés bord à bord par des moyens d'assemblage tels que des soudures ou des rivets. Chacun des tubes extérieurs est alors réalisé d'un seul tenant avec l'un de ces segments.
Afin d'assurer le refroidissement du fluide
(généralement de l'eau) contenu dans les moyens formant thermosiphon, ces derniers comprennent de plus des moyens d'échange thermique placés au-dessus de la cavité et formant une source froide.
Lorsque la chemise est démontable, les moyens d'échange thermique sont reliés à celle-ci par des moyens de raccordement déconnectables . Avantageusement, les moyens d'échange thermique sont adaptés aux variations du flux de chaleur à dissiper.
Dans le mode de réalisation préféré de l'invention, les moyens formant thermosiphon constituent un caloduc.
Avantageusement, l'installation selon l'invention est appliquée à l'entreposage de déchets nucléaires. La cavité est alors délimitée par des murs en béton.
Brève description des dessins
On décrira à présent, à titre d'exemples non limitatifs, différents modes de réalisation de l'invention, en se référant aux dessins annexés, dans lesquels :
- la figure 1 est une vue en coupe verticale qui représente très schematiquement une installation d'entreposage de produits calorifiques conforme à l'invention ;
- la figure 2 est une vue en perspective, avec arrachement et coupe partiels, qui représente la partie haute de la chemise qui entoure étroitement chaque conteneur dans 1 ' installation de la figure 1 ; La figure 3 est une vue en coupe selon un plan horizontal, représentant la chemise en trait plein dans son état naturel ouvert et en trait mixte lorsqu'elle est serrée étroitement sur le conteneur ;
- la figure 4 est une vue en coupe selon un plan horizontal illustrant à/ plus grande échelle un autre mode de réalisation de la chemise ; et - les figures 5 et 6 sont des vues en coupe comparables à la figure 4, illustrant des variantes de réalisation de l'invention.
Description détaillée de plusieurs modes de réalisation de 1 ' invention
La figure 1 représente très schematiquement une partie d'une installation d'entreposage de très longue durée de produits calorifiques, tels que des déchets nucléaires, réalisée conformément à l'invention.
L'installation comprend au moins une cavité fermée 10, telle qu'une tranchée enterrée, délimitée latéralement et vers le bas par des parois de béton 12. Dans le mode de réalisation décrit, la cavité 10 se présente sous la forme d'une tranchée rectiligne enterrée. Cette tranchée est apte à recevoir plusieurs conteneurs 14 dans lesquels sont conditionnés les produits à entreposer. Toutefois, la forme de la cavité 10 peut être différente sans sortir du cadre de l'invention. Ainsi, chacun des conteneurs 14 peut être placé dans une cavité individuelle distincte.
De façon comparable, les conteneurs 14 servant au confinement des produits à entreposer sont des conteneurs métalliques dont la forme et les dimensions peuvent être variables, sans sortir du cadre de l'invention. Dans le mode de réalisation illustré à titre d'exemple, les conteneurs 14 sont de forme cylindrique et ils sont placés côte à côte et sur un seul niveau dans la tranchée constituant la cavité 10, avec leurs axes orientés sensiblement verticalement. Plus précisément, chacun des conteneurs 14 n'est en contact ni avec les conteneurs voisins ni avec les parois de la cavité 10. En d'autres termes, un espace 16 rempli d'air est ménagé, à l'intérieur de la cavité 10, autour de chacun des conteneurs 14. La circulation de l'air dans cet espace 16, par convection naturelle, contribue au refroidissement des conteneurs 14.
Pour préserver cet espace en dessous de chacun des conteneurs 14, ces derniers reposent sur le fond de la cavité 10 par l'intermédiaire d'un piédestal 18. Par ailleurs, des moyens de positionnement ou d'espacement (non représentés) sont avantageusement prévus entre la cavité 10 et chacun des conteneurs 14, afin d'assurer le positionnement et le centrage de ces derniers dans la cavité.
Comme l'illustre également la figure 1, la cavité 10 est fermée vers le haut par une dalle de béton 20. Au-dessus de chacun des conteneurs 14, la dalle de béton 20 présente une ouverture généralement circulaire, fermée par un bouchon amovible 22. Ce bouchon amovible 22 est également réalisé en béton. Son enlèvement permet de mettre en place individuellement chacun des conteneurs 14 dans la cavité 10, et éventuellement de les extraire de cette cavité. A cet effet, des moyens de manutention (non représentés) sont prévus au-dessus de la dalle de béton 20. Cet agencement assure la protection biologique, lorsque les produits entreposés sont des déchets nucléaires, ainsi que la protection mécanique cOntre les chutes d'avion et les actes de malveillance. Pour permettre d'évacuer dans l'air atmosphérique situé au-dessus de la dalle de béton 20 la chaleur émise par les produits entreposés à l'intérieur d'un conteneur (qui peut représenter une énergie de 80 k ) , l'installation conforme à l'invention comprend de plus des moyens 24 formant thermosiphon (figure 2). Plus précisément, une partie de ces moyens 24 formant thermosiphon est intégrée à une chemise 26 qui entoure chacun des conteneurs 14 de telle sorte que sa surface cylindrique intérieure lisse 27 soit normalement en contact étroit avec la surface cylindrique extérieure lisse 15 du conteneur. En outre, la chemise 26 est réalisée en un matériau thermiquement conducteur, par exemple un métal tel que de l'acier inoxydable ou du cuivre.
Grâce à cet agencement, la chaleur émise par les produits conditionnés dans les conteneurs 14 est transmise aux moyens 24 formant thermosiphon de manière efficace et homogène, sur toute la périphérie de ces conteneurs. La liaison thermique entre le conteneur et la chemise est assurée par le contact direct des deux parois. La résistance thermique est réduite, du fait que l'épaisseur effective du film d'air résiduel entre les parois est limitée à une fraction de millimètre. Dans le mode de réalisation illustré sur les figures, la partie des moyens 24 formant thermosiphon intégrée à la chemise 26 se présente sous la forme d'un circuit de refroidissement fermé entourant le conteneur 14. Ce circuit comprend une pluralité de tubes extérieurs 28, fixés sur la surface extérieure de la chemise 26 selon les génératrices de celle-ci, et un collecteur annulaire inférieur 30 et un collecteur annulaire supérieur 32, dans lesquels débouchent respectivement les extrémités basse et haute des tubes 28. Les tubes 28 sont nombreux et régulièrement répartis sur toute la circonférence de la chemise 26. Un fluide caloporteur, tel que de l'eau à 100 C, est placé à l'intérieur du circuit. En fonctionnement, l'eau est à l'état liquide dans le collecteur annulaire inférieur 30 et à l'état vapeur dans le collecteur annulaire supérieur 32. Les moyens 24 formant thermosiphon constituent ainsi un caloduc qui entoure étroitement le conteneur en homogénéisant la température, ce qui évite la création de points chauds.
En d'autres termes, les moyens 24 formant thermosiphon utilisent le principe du cycle évaporation/condensation d'un fluide caloporteur, pour le transfert de chaleur d'une source chaude, constituée par le conteneur 14, vers une source froide, placée au-dessus de la dalle 20. Il sont étanches et passifs, puisqu'ils n'agissent que par changement de phase du fluide.
Comme on l'a représenté schematiquement sur la figure 1, la source froide des moyens 24 formant thermosiphon comprend des moyens 34 d'échange thermique, tels qu'un aérocondenseur, installés à l'extérieur et au-dessus de la cavité 10, c'est-à-dire au-dessus de la dalle de béton 20. Ces moyens 34 d'échange thermique sont reliés par deux canalisations 36 aux collecteurs 30 et 32 du circuit de refroidissement associé à la chemise 26. Plus précisément, dans le mode de réalisation décrit à titre d'exemple, un même moyen 34 d'échange thermique est relié à chacun des circuits de refroidissement portés par les chemises 26 entourant tous les conteneurs 14 placés dans une même cavité 10. Les moyens 34 d'échange thermique peuvent prendre une forme quelconque, adaptée à leur fonction, sans sortir du cadre de l'invention. Il est à noter qu ' ils peuvent être implantés à une certaine hauteur au-dessus de la dalle de béton 20 et à une certaine distance des conteneurs, sans dégradation notable des performances de l'installation.
Les canalisations 36 qui relient les moyens 34 d'échange thermique aux collecteurs annulaires inférieur 30 et supérieur 32 d'un ou plusieurs des circuits de refroidissement associés aux chemises 26 traversent des passages prévus à cet effet dans les bouchons amovibles 22.
Dans les modes de réalisation préférés de l'invention illustrés sur les figures, les chemises 26 sont montées sur les conteneurs 14 de façon à être démontables indépendamment de ces derniers. Il est ainsi possible, après enlèvement de l'un quelconque des bouchons amovibles 22, de remplacer la chemise 26 du conteneur 14 correspondant sans qu'il soit nécessaire de sortir le conteneur de la cavité 10. Les dimensions de l'ouverture formée dans la dalle 20 au-dessus de chacun des conteneurs 14 sont adaptées pour permettre ce remplacement.
Cet agencement facilite grandement la gestion à très long terme de l'installation d'entreposage. Il permet en effet d'intervenir aisément sur tout élément défaillant de cette installation, à l'aide de moyens de manutention à distance, placés au-dessus de la dalle 20, en garantissant l'évacuation à très long terme de la chaleur dissipée par les produits entreposés dans les conteneurs.
Dans la pratique, et comme l'illustrent en particulier les figures 2 et 3, le caractère démontable des chemises 26 est obtenu en réalisant chacune d'entre elles sous la forme d'un cylindre ouvert suivant une génératrice. De plus, les chemises 26 sont formées dans un matériau souple et élastique présentant une très faible raideur globale tel qu'une tôle de faible épaisseur (par exemple, 3 à 4 mm).
Dans son état naturel de repos, et comme on l'a représenté en trait plein sur la figure 3, le diamètre de la surface cylindrique intérieure lisse 27 de la chemise 26 est largement supérieur au diamètre de la surface cylindrique extérieure lisse 15 du conteneur 14. par conséquent, la chemise 26 est écartée du conteneur 14 lorsqu'elle est dans son état naturel de repos. Elle peut alors être aisément démontée ou mise en place autour d'un conteneur 14 placé dans la cavité 10, par un déplacement effectué parallèlement à l'axe vertical du conteneur. Comme l'illustre notamment la figure 2, chacun des bords en vis-à-vis de la génératrice ouverte de la chemise 26 comprend une plaque de serrage 38 orientée radialement vers l'extérieur, de telle sorte que les deux plaques 38 sont sensiblement parallèles l'une à l'autre. Les plaques 38 d'une même chemise 26 sont traversées à intervalles réguliers par des trous dans lesquels peuvent être montés des boulons 40 constituant des moyens de serrage libérables, aptes à appliquer étroitement la chemise 26 contre le conteneur 14.
Les boulons 40 constituant ici les moyens de serrage libérables peuvent être remplacés par tout autre moyen permettant de rapprocher 1 ' une de 1 ' autre les plaques 38, afin d'appliquer la surface intérieure cylindrique lisse 27 de la chemise 26 contre la surface extérieure cylindrique lisse 15 du conteneur 14 en déformant la chemise. Ce résultat peut être obtenu sans effort excessif, du fait de la faible raideur du matériau dans lequel est formée la chemise 26.
Il est à noter que les moyens de serrage libérables sont choisis de préférence afin de pouvoir être aisément mis en place et actionnés par des moyens de manutention à distance, depuis l'espace situé au-dessus de la dalle 20, après enlèvement du bouchon 22 ou d'un obturateur prévu dans celui-ci.
Les moyens 34 d'échange thermique sont avantageusement agencés de façon à pouvoir être adaptés à une évolution dans le temps du flux de chaleur dégagé par les produits entreposés dans les conteneurs. Toutefois, une intervention sur les chemises 26 doit pouvoir être faite alors que ces moyens 34 d'échange thermique sont en place. Par conséquent, l'implantation de ces moyens 34 d'échange thermique au-dessus de la dalle de béton 20 est faite de façon à permettre le remplacement des chemises 26, ainsi que la mise en place et l'enlèvement éventuels des conteneurs 14. Comme l'illustre également la figure 1, l'agencement qui vient d'être décrit conduit à prévoir des moyens 42 de raccordement déconnectables sur chacune des canalisations 36. Ces moyens 42 de raccordement déconnectables sont avantageusement implantés sous la dalle 20. Ils sont accessibles, de même que les moyens de serrage libérables, par des accès aménagés dans les bouchons amovibles 22. Les moyens 42 de raccordement déconnectables peuvent prendre une forme quelconque, sans sortir du cadre de 1' invention. Selon un premier mode de réalisation de l'invention, illustré sur les figures 2 et 3, la chemise 26 est formée dans une tôle métallique relativement mince et souple et les tubes 28 sont directement soudés sur la surface extérieure de cette tôle.
Dans un autre mode de réalisation de l'invention, illustré schematiquement sur la figure 4, la chemise 26 est formée d'une pluralité de segments 26a, disposés circonférentiellement bout à bout les uns à la suite des autres. Chacun de ces segments 26a est fixé au segment adjacent par des moyens d'assemblage constitués dans ce cas par des soudures 44.
Dans ce mode de réalisation de la figure 4, chacun des tubes extérieurs 28 est réalisé d'un seul tenant avec un segment 26a correspondant de la chemise 26.
La figure 5 illustre une variante du mode de réalisation de la figure 4, qui diffère essentiellement par les moyens d'assemblage reliant bord à bord les différents segments 26a formant la chemise 26. Dans ce cas, au lieu d'être reliés par des soudures 44, les segments 26a présentent des bords adjacents superposés, que traversent des organes de fixation tels que des rivets schématisés par des traits mixtes 44' sur la figure 5. La figure 6 illustre une autre variante de réalisation de la chemise 26. Il est à noter que cette variante s ' applique indifféremment aux modes de réalisation qui viennent d'être décrits en se référant successivement aux figures 2, 4 et 5, bien que la figure 6 représente uniquement le cas de la figure 5.
Comme l'illustre la figure 6, chacun des tubes extérieurs 28 est muni dans ce cas d'au moins une ailette de refroidissement 46. Cette ailette 46, située dans l'espace 16 ménagé dans la cavité 10 autour de la chemise 26, améliore "l'effet d'ailette" assuré par les tubes 28 proprement dit. Cet "effet d'ailette" permet d'évacuer la chaleur émise par les produits entreposés dans les conteneurs, en combinaison avec la circulation naturelle de l'air dans l'espace 16 entourant les conteneurs, lorsque ce type de refroidissement devient suffisant, en cas de diminution dans le temps du flux thermique émis par les produits entreposés. De plus, "l'effet d'ailette" facilite le refroidissement de secours du conteneur en cas de défaillance des moyens 24 formant thermosiphon.
L'installation d'entreposage qui vient d'être décrite permet d'assurer le stockage, le confinement et l'évacuation de la chaleur dissipée par des produits calorifiques pendant une très longue période. En effet, les moyens 24 formant thermosiphon permettent d'évacuer une grande quantité de chaleur, comme cela est nécessaire au début de l'entreposage de déchets nucléaires. L'agencement proposé permet ainsi de maintenir les soudures du conteneur 14 et les produits calorifiques à une température suffisamment basse pour éviter leur vieillissement accéléré. Il permet également de soumettre la surface de la cavité de béton à une température homogène et suffisamment basse pour éviter sa fragilisation dans le temps.
En outre, les moyens 24 formant thermosiphon constituent un circuit secondaire, séparé des produits conditionnés dans le conteneur à la fois par la paroi de celui-ci et par les parois des tubes 28 portés par la chemise 26. La protection de l'environnement est ainsi assurée, en cas de fuite d'un conteneur. Par ailleurs, dans les modes de réalisation préférés de l'invention selon lesquels la chemise 26 est démontable, il est possible d'intervenir rapidement, et sans danger sur les moyens formant thermosiphon, en assurant directement le remplacement de la chemise défectueuse.
Il est à noter que l'installation peut être complétée par des agencements complémentaires (non représentés), permettent notamment de collecter des effluents liquides ou gazeux éventuels et d'en effectuer le contrôle avant rejet, pour protéger l'environnement. De tels agencements sont classiques et n'appellent donc pas de description particulière.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits à titre d'exemple, mais en couvre toutes les variantes. Ainsi, si la durée de l'entreposage n'est pas trop longue, les chemises peuvent être serrées et fixées une fois pour toute sur les conteneurs . Dans le cas contraire, le caractère interchangeable des chemises peut être obtenu en réalisant celles-ci sous la forme de demi-coquilles assemblées entre elles de façon démontable, ou sous la forme de demi-coquilles articulées l'une à l'autre, ou sous toute autre forme appropriée, permettant d'assurer un contact étroit entre les chemises et les conteneurs, apte à assurer un échange thermique optimal. En outre, le circuit de refroidissement associé à la chemise peut être réalisé différemment, par exemple sous la forme de tubes en forme d'hélices ou de passages intégrés dans des régions de plus forte épaisseur de la chemise.

Claims

REVENDICATIONS
1. Installation d'entreposage de très longue durée de produits calorifiques, comprenant au moins une cavité fermée (10), au moins un conteneur (14) de confinement desdits produits, apte à être reçu dans la cavité (10), et des moyens (24) formant thermosiphon, aptes à dissiper au-dessus de la cavité (10) la chaleur émise par lesdits produits, caractérisée en ce que les moyens (24) formant thermosiphon sont intégrés, en partie, à une chemise (26) en contact direct avec le conteneur (14) qu'elle entoure.
2. Installation selon la revendication 1, dans laquelle ladite chemise (26) est démontable.
3. Installation selon l'une quelconque des revendications 1 et 2 , caractérisée en ce que la cavité (10) est fermée par un bouchon amovible (22), au-dessus du conteneur.
4. Installation selon la revendication 2, dans laquelle ladite chemise (26) est ouverte et réalisée en un matériau souple et élastique, de façon à pouvoir occuper un état naturel dans lequel elle est écartée du conteneur (14), des moyens (40) de serrage libérables étant prévus pour appliquer étroitement la chemise (26) contre le conteneur (14).
5. Installation selon la revendication 4, dans laquelle ladite chemise (26) a la forme d'un cylindre ouvert suivant une génératrice et les moyens (40) de serrage libérables sont interposés entre les bords en vis-à-vis de cette génératrice^
6. Installation selon l'une quelconque des revendications précédentes, dans laquelle un espace (16) est ménagé, à l'intérieur de la cavité (10), autour du conteneur (14) équipé de sa chemise (26).
7. Installation selon l'une quelconque des revendications précédentes, dans laquelle la chemise (26) comprend une pluralité de tubes extérieurs (28) remplis de fluide caloporteur et débouchant respectivement dans un collecteur annulaire inférieur (30) et dans un collecteur annulaire supérieur (32).
8. Installation selon la revendication 7, dans laquelle des ailettes de refroidissement sont formées sur au moins certains des tubes extérieurs (28).
9. Installation selon l'une quelconque des revendications 7 et 8, dans laquelle les tubes extérieurs (28) sont soudés sur la chemise (26).
10. Installation selon l'une quelconque des revendications 7 et 8, dans laquelle la chemise (26) comprend une pluralité de segments (26a), fixés bord à bord par des moyens d'assemblage (44,44'), chacun des tubes extérieurs (28) étant réalisé d'un seul tenant avec l'un desdits segments.
11. Installation selon l'une quelconque des revendications précédentes, dans laquelle les moyens (24) formant thermosiphon comprennent, de plus, des moyens (34) d'échange thermique placés au-dessus de la cavité ( 10) .
12. Installation selon les revendications 2 et 11 combinées, dans laquelle les moyens (34) d'échange thermique sont reliés à la chemise (26) par des moyens (42) de raccordement déconnectables.
13. Installation selon l'une quelconque des revendications 11 et 12, dans laquelle les moyens (34) d'échange thermique sont adaptés à des variations du flux de chaleur à dissiper.
14. Installation selon l'une quelconque des revendications précédentes, dans laquelle les moyens (24) formant thermosiphon constituent un caloduc.
15. Installation selon l'une quelconque des revendications précédentes, appliquée à l'entreposage des déchets nucléaires, dans laquelle la cavité (10) est délimitée par des murs en béton.
PCT/FR2000/000735 1999-03-30 2000-03-23 Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires WO2000060609A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000610016A JP4324329B2 (ja) 1999-03-30 2000-03-23 核廃棄物のような発熱性物質の長期保存のための装置
DE60020223T DE60020223T2 (de) 1999-03-30 2000-03-23 Anlage zur langzeitlagerung von wärmeentwickelnden materialien wie zum beispiel nukleare abfallstoffe
AT00914242T ATE295991T1 (de) 1999-03-30 2000-03-23 Anlage zur langzeitlagerung von wärmeentwickelnden materialien wie zum beispiel nukleare abfallstoffe
CA002364950A CA2364950A1 (fr) 1999-03-30 2000-03-23 Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires
US09/937,494 US6802671B1 (en) 1999-03-30 2000-03-23 Installation for very long term storage of heat-generating products such as nuclear waste
EP00914242A EP1166279B1 (fr) 1999-03-30 2000-03-23 Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/03950 1999-03-30
FR9903950A FR2791805B1 (fr) 1999-03-30 1999-03-30 Installation d'entreposage de tres longue duree de produits calorifiques tels que des dechets nucleaires

Publications (1)

Publication Number Publication Date
WO2000060609A1 true WO2000060609A1 (fr) 2000-10-12

Family

ID=9543797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000735 WO2000060609A1 (fr) 1999-03-30 2000-03-23 Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires

Country Status (11)

Country Link
US (1) US6802671B1 (fr)
EP (1) EP1166279B1 (fr)
JP (1) JP4324329B2 (fr)
KR (1) KR100735052B1 (fr)
CN (1) CN1168100C (fr)
AT (1) ATE295991T1 (fr)
CA (1) CA2364950A1 (fr)
DE (1) DE60020223T2 (fr)
ES (1) ES2241589T3 (fr)
FR (1) FR2791805B1 (fr)
WO (1) WO2000060609A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414135A2 (fr) * 2002-10-24 2004-04-28 Fanuc Ltd Chemise de refroidissement pour moteur électrique
CN1305076C (zh) * 2002-01-23 2007-03-14 法国原子能委员会 长期存放发射高热流的制品的装置
US10826347B2 (en) 2018-06-22 2020-11-03 Chicony Power Technology Co., Ltd. Motor sleeve and motor device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60335802D1 (de) * 2002-07-23 2011-03-03 Mitsubishi Heavy Ind Ltd Fass und verfahren zu seiner herstellung
US7836706B2 (en) * 2002-09-27 2010-11-23 Parker Intangibles Llc Thermal management system for evaporative spray cooling
US7068748B2 (en) * 2004-03-18 2006-06-27 Holtec International, Inx. Underground system and apparatus for storing spent nuclear fuel
US7330526B2 (en) 2005-03-25 2008-02-12 Holtec International, Inc. System and method of storing high level waste
US9443625B2 (en) 2005-03-25 2016-09-13 Holtec International, Inc. Method of storing high level radioactive waste
FR2905031B1 (fr) * 2006-08-21 2008-11-07 Areva Np Sas Conteneur de transport pour des assemblages de combustible nucleaire et utilisation de ce conteneur.
JP4966214B2 (ja) * 2008-01-21 2012-07-04 東京電力株式会社 使用済燃料の熱回収システム
US11569001B2 (en) 2008-04-29 2023-01-31 Holtec International Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials
US9001958B2 (en) 2010-04-21 2015-04-07 Holtec International, Inc. System and method for reclaiming energy from heat emanating from spent nuclear fuel
US8798224B2 (en) 2009-05-06 2014-08-05 Holtec International, Inc. Apparatus for storing and/or transporting high level radioactive waste, and method for manufacturing the same
US11373774B2 (en) 2010-08-12 2022-06-28 Holtec International Ventilated transfer cask
US9514853B2 (en) 2010-08-12 2016-12-06 Holtec International System for storing high level radioactive waste
WO2013158914A1 (fr) 2012-04-18 2013-10-24 Holtec International, Inc. Stockage et/ou transfert de déchets hautement radioactifs
US11887744B2 (en) 2011-08-12 2024-01-30 Holtec International Container for radioactive waste
US10811154B2 (en) 2010-08-12 2020-10-20 Holtec International Container for radioactive waste
US8905259B2 (en) 2010-08-12 2014-12-09 Holtec International, Inc. Ventilated system for storing high level radioactive waste
FR2974228B1 (fr) * 2011-04-18 2013-06-07 Tn Int Element de conduction thermique permettant d'ameliorer la fabrication d'un emballage de transport et/ou d'entreposage de matieres radioactives
KR20120137799A (ko) 2011-06-13 2012-12-24 아주대학교산학협력단 방사성 폐기물 보관용 구조체
US9105365B2 (en) 2011-10-28 2015-08-11 Holtec International, Inc. Method for controlling temperature of a portion of a radioactive waste storage system and for implementing the same
US8822963B2 (en) * 2011-12-29 2014-09-02 Ge-Hitachi Nuclear Energy Americas Llc Vapor forming apparatus, system and method for producing vapor from radioactive decay material
CN103377732A (zh) * 2012-04-27 2013-10-30 上海核工程研究设计院 一种基于热管的乏燃料池非能动余热导出系统
US10210961B2 (en) 2012-05-11 2019-02-19 Ge-Hitachi Nuclear Energy Americas, Llc System and method for a commercial spent nuclear fuel repository turning heat and gamma radiation into value
CN102982854B (zh) * 2012-11-09 2015-10-21 中国核电工程有限公司 一种乏燃料贮存模块
RU2550092C2 (ru) 2013-07-31 2015-05-10 Открытое Акционерное Общество "Акмэ-Инжиниринг" Способ длительного хранения отработавшего ядерного топлива
US11532405B2 (en) * 2015-08-13 2022-12-20 P&T Global Solutions, Llc Passively cooled ion exchange column
CN106205757A (zh) * 2016-08-31 2016-12-07 上海交通大学 乏燃料储运容器
CN108305697B (zh) * 2018-01-29 2020-06-05 中广核工程有限公司 核电厂乏燃料贮罐
US10578369B1 (en) * 2018-02-23 2020-03-03 United States Of America As Represented By The Secretary Of The Air Force Thermal management using endothermic heat sink
RU2697656C1 (ru) 2018-12-28 2019-08-16 Акционерное общество "Федеральный центр ядерной и радиационной безопасности" (АО ФЦЯРБ) Способ длительного сухого хранения отработавшего ядерного топлива и контейнер для его реализации
CN109859873B (zh) * 2019-01-14 2020-12-01 国核工程有限公司 一种乏燃料干式贮存模块的冷却装置
WO2021119557A2 (fr) 2019-12-11 2021-06-17 Ge-Hitachi Nuclear Energy Americas Llc Fûts à élimination de chaleur passive et procédés d'utilisation de ceux-ci
EP4073824A4 (fr) * 2019-12-11 2023-11-01 GE-Hitachi Nuclear Energy Americas LLC Fûts à élimination de chaleur passive et procédés d'utilisation de ceux-ci
US11894152B2 (en) * 2021-05-05 2024-02-06 Westinghouse Electric Company Llc Modular thermal and radiation shielding with passive heat removal

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2160329A1 (fr) * 1971-11-15 1973-06-29 Lemer & Cie
US4040480A (en) * 1976-04-15 1977-08-09 Atlantic Richfield Company Storage of radioactive material
JPS59134184A (ja) * 1983-01-21 1984-08-01 株式会社日立製作所 高温容器用スカ−ト構造
JPS6033097A (ja) * 1983-08-03 1985-02-20 三井建設株式会社 放射性廃棄物の処分設備
EP0143398A2 (fr) * 1983-11-29 1985-06-05 Alkem Gmbh Récipient en particulier pour substances radioactives
DD223562A1 (de) * 1984-04-30 1985-06-12 Adw Ddr Einrichtung zur trockenlagerung abgebrannter kernbrennstoffe
JPH05273393A (ja) * 1992-03-26 1993-10-22 Sumitomo Metal Mining Co Ltd 使用済核燃料貯蔵庫
JPH0843591A (ja) * 1994-07-26 1996-02-16 Nuclear Fuel Ind Ltd コンクリート製キャスク
EP0702374A1 (fr) * 1994-09-16 1996-03-20 Robatel Dispositif pour le refroidissement d'enceintes de confinement, notamment de silos de stockage de combustibles nucléaires irradiés
JPH08189995A (ja) * 1995-01-09 1996-07-23 Ishikawajima Harima Heavy Ind Co Ltd 使用済燃料集合体収納容器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE223562C (fr)
US3319202A (en) * 1965-07-30 1967-05-09 Westinghouse Electric Corp Cooling means for electrical inductive apparatus
US3335789A (en) * 1965-10-21 1967-08-15 Raskin Walter Resilient heat exchange device
US3910347A (en) * 1966-06-13 1975-10-07 Stone & Webster Eng Corp Cooling apparatus and process
US3404722A (en) * 1966-07-19 1968-10-08 Army Usa Disposable radioactive liquid waste concentrator
US3472314A (en) * 1967-07-26 1969-10-14 Thermo Dynamics Inc Temperature control tube
US4147938A (en) * 1978-02-07 1979-04-03 The United States Of America As Represented By The United States Department Of Energy Fire resistant nuclear fuel cask
US4213498A (en) * 1978-11-15 1980-07-22 American Hcp Low-cost flexible plastic heat exchanger
DE3222764A1 (de) * 1982-06-18 1983-12-22 GNS Gesellschaft für Nuklear-Service mbH, 4300 Essen Abschirmbehaelter fuer die aufnahme von radioaktiven abfaellen
US5078958A (en) * 1990-04-04 1992-01-07 University Of Nevada System Underground cooling enhancement for nuclear waste repository
SE509491C2 (sv) * 1995-01-10 1999-02-01 Hydro Betong Ab Sätt och anordning för lagring av riskavfall

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2160329A1 (fr) * 1971-11-15 1973-06-29 Lemer & Cie
US4040480A (en) * 1976-04-15 1977-08-09 Atlantic Richfield Company Storage of radioactive material
JPS59134184A (ja) * 1983-01-21 1984-08-01 株式会社日立製作所 高温容器用スカ−ト構造
JPS6033097A (ja) * 1983-08-03 1985-02-20 三井建設株式会社 放射性廃棄物の処分設備
EP0143398A2 (fr) * 1983-11-29 1985-06-05 Alkem Gmbh Récipient en particulier pour substances radioactives
DD223562A1 (de) * 1984-04-30 1985-06-12 Adw Ddr Einrichtung zur trockenlagerung abgebrannter kernbrennstoffe
JPH05273393A (ja) * 1992-03-26 1993-10-22 Sumitomo Metal Mining Co Ltd 使用済核燃料貯蔵庫
JPH0843591A (ja) * 1994-07-26 1996-02-16 Nuclear Fuel Ind Ltd コンクリート製キャスク
EP0702374A1 (fr) * 1994-09-16 1996-03-20 Robatel Dispositif pour le refroidissement d'enceintes de confinement, notamment de silos de stockage de combustibles nucléaires irradiés
JPH08189995A (ja) * 1995-01-09 1996-07-23 Ishikawajima Harima Heavy Ind Co Ltd 使用済燃料集合体収納容器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198437, Derwent World Patents Index; Class J04, AN 1984-227705, XP002118314 *
DATABASE WPI Section Ch Week 198514, Derwent World Patents Index; Class K05, AN 1985-083353, XP002118315 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 048 (P - 1682) 25 January 1994 (1994-01-25) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 06 28 June 1996 (1996-06-28) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 11 29 November 1996 (1996-11-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305076C (zh) * 2002-01-23 2007-03-14 法国原子能委员会 长期存放发射高热流的制品的装置
EP1414135A2 (fr) * 2002-10-24 2004-04-28 Fanuc Ltd Chemise de refroidissement pour moteur électrique
EP1414135A3 (fr) * 2002-10-24 2005-03-23 Fanuc Ltd Chemise de refroidissement pour moteur électrique
US7105959B2 (en) 2002-10-24 2006-09-12 Fanuc Ltd. Cooling jacket and motor unit with cooling jacket
US10826347B2 (en) 2018-06-22 2020-11-03 Chicony Power Technology Co., Ltd. Motor sleeve and motor device

Also Published As

Publication number Publication date
EP1166279A1 (fr) 2002-01-02
FR2791805B1 (fr) 2001-08-03
ATE295991T1 (de) 2005-06-15
EP1166279B1 (fr) 2005-05-18
CN1345452A (zh) 2002-04-17
CA2364950A1 (fr) 2000-10-12
DE60020223T2 (de) 2006-01-12
US6802671B1 (en) 2004-10-12
ES2241589T3 (es) 2005-11-01
DE60020223D1 (de) 2005-06-23
JP2002541463A (ja) 2002-12-03
CN1168100C (zh) 2004-09-22
KR100735052B1 (ko) 2007-07-03
KR20010110462A (ko) 2001-12-13
FR2791805A1 (fr) 2000-10-06
JP4324329B2 (ja) 2009-09-02

Similar Documents

Publication Publication Date Title
EP1166279B1 (fr) Installation d'entreposage de tres longue duree de produits degageant de la chaleur tels que des dechets nucleaires
EP0942435B1 (fr) Dispositif de protection contre les rayonnements pour conteneur de transport de matières radioactives et procédé de mise en place d'un tel dispositif de protection
EP2140459B1 (fr) Emballage pour le transport et/ou stockage de matieres nucleaires comprenant une protection radiologique en plomb coule sur une armature metallique
EP2577678B1 (fr) Emballage pour le transport et/ou entreposage de matieres radioactives, comprenant des moyens de conduction thermique ameliores
EP0514243A1 (fr) Dispositif de récupération et de refroidissement du coeur d'un réacteur nucléaire en fusion, à la suite d'un accident
FR2784785A1 (fr) Reacteur nucleaire a eau equipe d'un receptacle contenant des structures internes deformables
EP0087350B1 (fr) Dispositif de protection neutronique pour produit radio-actif
EP2320429A1 (fr) Emballage pour le transport et/ou entreposage de matières radioactives comprenant des éléments de protection radiologique empiles radialement
EP2286415B1 (fr) Interne d'etui et etui pour l'entreposage a sec d'elements combustibles irradies; procède d'entreposage
EP2406790B1 (fr) Étui de stockage de combustible nucléaire usagé à fermeture facilitée
EP2700077B1 (fr) Elément de conduction thermique permettant d'améliorer la fabrication d'un emballage de transport et/ou d'entreposage de matières radioactives
EP2320432B1 (fr) Emballage pour le transport et/ou entreposage de matières radioactives conferant un transfert thermique renforce
EP0083545A1 (fr) Dispositif d'évacuation de secours de la chaleur dissipée par un réacteur nucléaire à neutrons rapides à l'arrêt
FR3049756A1 (fr) Emballage de transport et/ou d'entreposage de matieres radioactives equipe de dispositifs de dissipation de chaleur realises d'un seul tenant
WO2006016082A1 (fr) Dispositif externe d'evacuation de chaleur pour emballage destine au stockage et/ou au transport de matieres nucleaires
EP0509926B1 (fr) Installation pour le blindage biologique d'élément de circuit de fluide radioactif
FR3064809B1 (fr) Emballage de transport et/ou d'entreposage de matieres radioactives a echanges convectifs ameliores
WO2014111445A1 (fr) Emballage pour le transport et/ou l'entreposage de matieres radioactives comprenant une protection anti-feu amelioree
EP3766082B1 (fr) Emballage de transport et/ou d'entreposage de matieres radioactives permettant une fabrication facilitee ainsi qu'une amelioration de la conduction thermique
FR2527827A1 (fr) Dispositif de refroidissement par gaz de la dalle de fermeture de la cuve d'un reacteur nucleaire
FR2830668A1 (fr) Installation et dispositif d'entreposage de matieres nucleaires
FR2771157A1 (fr) Citerne a gaz destinee a etre enterree
EP0181813A1 (fr) Réacteur nucléaire à neutrons rapides refroidi par un métal liquide et dont les structures internes sont équipées d'un dispositif de protection thermique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00805837.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000914242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2364950

Country of ref document: CA

Ref document number: 2364950

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09937494

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017012411

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 610016

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020017012411

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000914242

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000914242

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017012411

Country of ref document: KR