EP3763845A1 - Magnesiumlegierung und verfahren zur herstellung derselben - Google Patents

Magnesiumlegierung und verfahren zur herstellung derselben Download PDF

Info

Publication number
EP3763845A1
EP3763845A1 EP19184999.1A EP19184999A EP3763845A1 EP 3763845 A1 EP3763845 A1 EP 3763845A1 EP 19184999 A EP19184999 A EP 19184999A EP 3763845 A1 EP3763845 A1 EP 3763845A1
Authority
EP
European Patent Office
Prior art keywords
magnesium alloy
magnesium
weight
heat treatment
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19184999.1A
Other languages
English (en)
French (fr)
Other versions
EP3763845B1 (de
Inventor
Stefan Gneiger
Clemens Simson
Simon FRAN
Alexander GROßALBER
Andreas Betz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
Original Assignee
LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LKR Leichtmetallkompetenzzentrum Ranshofen GmbH filed Critical LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
Priority to EP19184999.1A priority Critical patent/EP3763845B1/de
Priority to PCT/EP2020/058280 priority patent/WO2021004662A1/de
Priority to KR1020227000723A priority patent/KR20220030244A/ko
Priority to CN202080046287.5A priority patent/CN114026260B/zh
Priority to CA3137604A priority patent/CA3137604A1/en
Priority to JP2021567860A priority patent/JP2022540542A/ja
Priority to US17/625,359 priority patent/US20220259705A1/en
Priority to KR1020227000718A priority patent/KR20220030243A/ko
Priority to PCT/EP2020/069131 priority patent/WO2021005062A1/de
Priority to EP20735621.3A priority patent/EP3997251A1/de
Priority to US17/625,360 priority patent/US20220267881A1/en
Priority to JP2021568980A priority patent/JP2022540544A/ja
Priority to CN202080049996.9A priority patent/CN114096690A/zh
Priority to CA3138658A priority patent/CA3138658A1/en
Publication of EP3763845A1 publication Critical patent/EP3763845A1/de
Application granted granted Critical
Publication of EP3763845B1 publication Critical patent/EP3763845B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to a magnesium alloy.
  • the invention also relates to a method for producing a magnesium alloy.
  • magnesium alloys Due to their low density and good mechanical properties, magnesium alloys are frequently used construction alloys or
  • the object of the invention is to specify a magnesium alloy which has high strength, in particular high compressive strength, and good formability.
  • Another object of the invention is to provide a method for producing such a magnesium alloy.
  • the object is achieved according to the invention by a magnesium alloy having, in particular consisting of, (in at .-%) 15.0% to 70.0% lithium, more than 0.0% aluminum, Remainder magnesium and production-related impurities, wherein a ratio of aluminum to magnesium (in at .-%) is 1: 6 to 4: 6.
  • the basis of the invention is the knowledge that with an aforementioned alloy composition of a magnesium alloy with a corresponding proportion of lithium (Li) as well as a mandatory proportion of aluminum (Al) in a certain, aforementioned ratio range of aluminum to magnesium, a microscale microstructure or fine, in particular fine lamellar, microstructure forms in the magnesium alloy.
  • a microscale microstructure or fine, in particular fine lamellar, microstructure forms in the magnesium alloy.
  • a eutectic transformation of the magnesium alloy, which occurs with the aforementioned ratio of aluminum to magnesium is regarded as the theoretical foundation for this behavior.
  • the fine-scale microstructure is associated with high strength, in particular high compressive strength, with good formability of the magnesium alloy at the same time given the corresponding aforementioned proportions of lithium in the magnesium alloy.
  • Orientation composition or orientation line in the phase diagram is in particular a ratio of aluminum to magnesium (in atomic percent, abbreviated as atomic%) of approx. 3: 6, since with this ratio a particularly homogeneous fine-scale or homogeneous fine lamellar microstructure or Find morphology.
  • atomic% aluminum to magnesium
  • the fine, especially fine lamellar, microstructure or morphology continues to be found with varying degrees which is usually associated with different characteristics of a level of strength, in particular a level of compressive strength, as well as deformability or ductility of the magnesium alloy. Because of this special morphological behavior in the specified composition range, a magnesium alloy can thus be formed which has both high strength, in particular compressive strength, and good formability.
  • the magnesium alloy (in atom%) has 30.0% to 60.0%, in particular 40% to 50%, lithium.
  • pronounced strength and particularly pronounced formability can be achieved. This is likely to result in particular from a combination of finely structured morphology and a conversion to a body-centered cubic crystal system in the specified lithium range.
  • magnesium-based alloy denotes a magnesium alloy which, based on its alloy proportions in percent by weight (% by weight), contains magnesium as the main element or the largest alloy proportion.
  • a practicable structural alloy with very high strength properties and pronounced formability can be achieved, especially in combination with the proportions for lithium listed above.
  • the magnesium alloy (in at.%) Is 30.0% to 60.0% lithium and a ratio of aluminum to magnesium (in at.%) Of 2.5: 6 to 3.5 : 6, especially about 3: 6.
  • the magnesium alloy is more than 0.0 to 3.0 wt .-%, in particular more than 0.0 to 2.0 wt .-%, preferably more than 0.0 to 1.5 wt .-% %, Calcium (Ca).
  • the corrosion resistance is improved Magnesium alloy achievable.
  • a reduced tendency of the magnesium alloy to oxidize can thus be implemented, usually advantageously in that a stable oxidation layer is formed on a surface of the magnesium alloy.
  • a grain-refining effect in the magnesium alloy can be used or achieved through an aforementioned proportion of calcium, so that a high stability of the fine-scale structure can be achieved and the strength of the magnesium alloy can be further increased.
  • the magnesium alloy has 0.5% by weight to 1.0% by weight calcium.
  • the above-mentioned effects in the presence of calcium in the magnesium alloy are based in particular on the formation of CaO. Accordingly, it can specifically be provided that calcium, at least partially, in particular predominantly, preferably entirely, in the form of CaO, is added to the magnesium alloy as an alloy component or is contained in the magnesium alloy. This promotes a homogeneous distribution of calcium or CaO in the magnesium alloy. It is therefore particularly advantageous if the magnesium alloy contains CaO in the proportions specified above for calcium.
  • the magnesium alloy contains more than 0.0 to 3.0% by weight, preferably 1.0% by weight to 2.0% by weight, rare earth metals, in particular yttrium (Y) , having.
  • Y yttrium
  • the formation of Y 2 O 3 in the magnesium alloy is particularly relevant here. Accordingly, it can be specifically provided that yttrium, at least partially, in particular predominantly, preferably entirely, in the form of Y 2 O 3, is added to the magnesium alloy as an alloy component or is contained in the magnesium alloy. It is therefore advantageous if the magnesium alloy contains Y 2 O 3 with the aforementioned proportions for yttrium.
  • the magnesium alloy contains both calcium, in particular in the form of CaO, and rare earth metals, in particular yttrium, preferably in the form of Y 2 O 3 , in each case according to the aforementioned content ranges, with calcium in particular more than 0.0 to 1.5 wt .-% and yttrium with 1.0 wt .-% to 2.0 wt .-% has proven.
  • the magnesium alloy contains calcium and rare earth metals, in particular yttrium, with a total proportion of calcium and rare earth metals, in particular yttrium, being more than 0.0 to 3.0% by weight, preferably 1.0% by weight. -% to 2.5% by weight.
  • the compressive strength of the magnesium alloy is at least 300 MPa, in particular at least 350 MPa, preferably at least 380 MPa, particularly preferably at least 400 MPa.
  • This can be achieved with an alloy composition provided according to the invention for the magnesium alloy due to its finely structured microstructure, in particular after the magnesium alloy has been produced by casting.
  • the aforementioned values preferably apply to a maximum compressive strength, in particular to a compression limit or crush limit, of the magnesium alloy.
  • the compressive strength or maximum compressive strength or compressive limit or crush limit of the magnesium alloy can advantageously be at least 410 MPa, in particular at least 430 MPa. This can usually be achieved practically with a heat treatment, as is set out in particular below.
  • the magnesium alloy has a good aging capacity, with a strength, in particular compressive strength, and / or formability of the magnesium alloy being able to be further optimized or preferably increased by heat treatment of the magnesium alloy. It is therefore advantageously provided that a specific compressive strength, in particular a maximum specific compressive strength, of the magnesium alloy, in particular at room temperature, in an exposed state is at least 300 Nm / g, in particular at least 330 Nm / g, preferably at least 350 Nm / g.
  • the outsourced state denotes a state of the magnesium alloy after a heat treatment of the magnesium alloy has been carried out. Boundary conditions of the heat treatment that are favorable for this purpose are further explained in particular below in the context of a method for producing a magnesium alloy and can be used accordingly.
  • the specified material parameters for the magnesium alloy primarily values for compressive strength or specific compressive strength, relate in particular to a room temperature, which is usually between 20 ° C and 25 ° C, usually around 20 ° C.
  • the magnesium alloy is 18.0% by weight to 24.0% by weight, in particular 18.0% by weight to 22 Wt .-% lithium, and 15.0 wt .-% to 30.0 wt .-%, in particular 16.5 wt .-% to 28.0 wt .-% aluminum. It has also been shown here that the hardness of the magnesium alloy can be optimized or set in a targeted manner with an additional proportion of calcium, in particular in the context of a heat treatment that has been carried out.
  • the magnesium alloy also contains calcium with more than 0.0 to 2.5% by weight, in particular 0.1% by weight to 2.0% by weight, preferably 0.3% by weight to 1.5% by weight.
  • calcium can not only influence or improve corrosion resistance or oxidation tendency, but also influence the hardness of the magnesium alloy. This is particularly evident when the magnesium alloy has 18.0 wt.% To 22 wt.% Lithium and 16.5 wt.% To 28.0 wt.% Aluminum, particularly noticeable at 0.1 wt. -% to 2.0% by weight, in particular at 0.3% by weight to 1.5% by weight, calcium.
  • the hardness usually increases with increasing heat treatment time, so that a hardness of the magnesium alloy can be set depending on the duration of the heat treatment. It is favorable for high hardness if a heat treatment between 200 ° C. and 450 ° C. has a heat treatment duration of more than 1 hour, in particular more than 3 hours.
  • a composition or magnesium alloy that is easy to handle and process can be obtained if the magnesium alloy contains 20% by weight of lithium and 15.0% by weight to 30.0% by weight, in particular 16.5% by weight. to 28.0% by weight, particularly preferably 18.0% by weight to 26.0% by weight, of aluminum. This is especially true if calcium is also contained in the magnesium alloy, as stated above.
  • the mechanical properties of the magnesium alloy can be optimized for a specific application by adding further alloy elements.
  • a strength, in particular the compressive strength, of the magnesium alloy it is favorable if the magnesium alloy is 3.0% by weight to 10.0 Has wt .-% zinc.
  • An optimization of the compressive strength, in particular without particularly restricting formability, can be achieved if the magnesium alloy has 7.0% by weight to 10.0% by weight zinc.
  • a method for producing a magnesium alloy according to the invention is generally based on the fact that starting materials of the magnesium alloy are mixed and cooled starting from a liquid or partially liquid phase.
  • the magnesium alloy according to the invention or a starting material, semifinished product or component with or from the magnesium alloy can be produced in a simple manner by means of conventional casting processes, for example with die casting processes, die casting processes, continuous casting processes or permanent mold casting processes. It has proven to be particularly advantageous if the production of the magnesium alloy according to the invention includes a heat treatment in order to optimize a microstructure or morphology of the magnesium alloy with regard to strength, in particular compressive strength, or formability.
  • the further object of the invention is achieved by a method for producing a magnesium alloy according to the invention, wherein a heat treatment of the magnesium alloy is carried out in order to optimize or increase a strength, in particular compressive strength, and / or formability of the magnesium alloy. It has been shown that a heat treatment of the magnesium alloy can further optimize or increase a strength, in particular compressive strength, or deformability of the magnesium alloy, so that it can be adjusted in a targeted manner, preferably tailored to an intended use of the magnesium alloy.
  • the heat treatment is carried out at a temperature greater than 200 ° C., in particular between 200 ° C. and 450 ° C., for more than 20 minutes, in particular more than 1 hour.
  • a heat treatment at a temperature between 250 ° C. and 400 ° C., preferably between 270 ° C. and 350 ° C. has proven to be particularly suitable for a pronounced increase in strength, in particular compressive strength. It is advantageous here if the heat treatment is carried out for more than 1 hour (hour), preferably between 1 hour and 10 hours, particularly preferably between 1 hour and 6 hours, in order to adjust the strength efficiently.
  • a heat treatment between 300 ° C.
  • a starting material, semi-finished product or component is advantageously implemented with, in particular made of, a magnesium alloy according to the invention or obtainable by a method according to the invention for producing a magnesium alloy according to the invention.
  • a starting material, semi-finished product or component formed with a magnesium alloy also has an advantageously high strength, in particular compressive strength, and good formability.
  • Fig. 1 shows a schematic phase diagram representation (in at .-%) for magnesium-lithium-aluminum (Mg-Li-Al) according to a conventional ternary phase diagram configuration, with composition ranges or content ranges of alloy proportions of a magnesium alloy according to the invention being indicated.
  • the dash-dotted line A shows an orientation composition of a Mg-Li-Al alloy with a ratio of aluminum to magnesium (in at.%) Of approx.
  • a composition range (in at.%) Of 15.0% to 70.0% lithium and a ratio of aluminum to magnesium (in at.%) Of 1: 6 to 4: 6 is in Fig. 1 with a square shown with a solid line, identified by reference number 1, clearly shown.
  • a pronounced strength and particularly pronounced formability can be found in particular in a composition range (in at .-%) of 30.0% to 60.0% lithium and one Ratio of aluminum to magnesium (in at .-%) from 1: 6 to 4: 6.
  • This composition range is in Fig. 1 with a square shown with a dashed line, identified by reference number 2.
  • test series were carried out with different alloy compositions of magnesium alloys, in particular corresponding to alloy compositions defined according to the invention.
  • characteristic data of Mg-20% Li-15% Al-1% Ca-0.5% Y (in% by weight) and Mg-20% Li-24% Al-1% are representative of the aforementioned composition ranges Ca-0.5% Y (in% by weight) manufactured magnesium alloy samples are shown.
  • the magnesium alloy samples were produced by permanent mold casting, in particular magnesium alloy samples having a cylindrical shape, a diameter of 5 mm and a length of 10 mm were produced.
  • the magnesium alloy samples were subjected to compression tests at room temperature, approximately 20 ° C., and flow curves were determined as the result, which represent a yield stress, in MPa, as a function of a degree of deformation, in%.
  • Fig. 2 shows a flow stress diagram with flow curves as the result of compression tests with magnesium alloy samples made from Mg-20% Li-15% Al-1% Ca-0.5% Y (in% by weight) at room temperature. Shown are flow curves of magnesium alloy samples immediately after production of the magnesium alloy samples (as-cast), in Fig. 2 shown as solid lines, identified by reference numeral 3. In addition, flow curves of magnesium alloy samples after a heat treatment (aged) carried out of the magnesium alloy samples are shown, in Fig. 2 shown as dashed lines, identified by reference number 4. For this purpose, magnesium alloy samples were subjected to a heat treatment at 330 ° C. for 3 hours and then flow curves were determined by means of pressure tests. A clear influence of the heat treatment on the compressive strength and formability of the magnesium alloy samples can be seen, which gives the potential to optimize compressive strength and formability, especially for a later application, by means of heat treatment.
  • FIGS. 3 and 4 show scanning electron micrographs of the magnesium alloy samples made from Mg-20% Li-15% Al-1% Ca-0.5% Y (in% by weight) with different magnifications.
  • light grain boundary phases in whitish-gray
  • fine crystal structures or morphologies in an area surrounded by the grain boundary phases, in particular in a central section of this area or in the interior of the mixed crystal are evident visible in particular in Fig. 4 .
  • a very different fine structure can also be seen, especially in the vicinity of the grain boundary phases.
  • Fig. 5 shows a flow stress diagram with flow curves as the result of compression tests with magnesium alloy samples made from Mg-20% Li-15% Al-1% Ca-0.5% Y (in% by weight) at room temperature, with magnesium alloy samples after heat treatments have been carried out with different heat treatment temperatures were examined. Shown are flow curves of magnesium alloy samples which were subjected to a heat treatment at 270 ° C. for 4 hours, in Fig. 5 shown as dashed lines, denoted by reference numeral 5, and flow curves of magnesium alloy samples which were subjected to a heat treatment at 330 ° C. for 4 hours, in FIG Fig. 5 Shown as solid lines, marked with reference number 6.
  • Fig. 6 shows a flow stress diagram with flow curves as the result of compression tests with magnesium alloy samples made from Mg-20% Li-24% Al-1% Ca-0.5% Y (in% by weight) at room temperature, with magnesium alloy samples after heat treatments have been carried out at different heat treatment temperatures were examined. Shown are flow curves of magnesium alloy samples which were subjected to a heat treatment at 270 ° C. for 4 hours, in Fig. 6 shown as dashed lines, denoted by reference numeral 7, and flow curves of magnesium alloy samples comprising a Were subjected to heat treatment at 330 ° C for 4 hours, in Fig. 6 shown as solid lines, identified by reference numeral 8.
  • FIG Fig. 6 shows a flow stress diagram with flow curves as the result of compression tests with magnesium alloy samples made from Mg-20% Li-24% Al-1% Ca-0.5% Y (in% by weight) at room temperature, with magnesium alloy samples after heat treatments have been carried out at different heat treatment temperatures were examined. Shown are flow curves of magnesium alloy samples which were
  • Fig. 7 shows a hardness diagram as a result of hardness tests according to Vickers with magnesium alloy samples made of Mg-20% Li-15% Al-1% Ca-0.5% Y (in% by weight) at room temperature, about 20 ° C., with magnesium alloy samples after performed heat treatments with different heat treatment times were investigated. 330 ° C was used as the heat treatment temperature.
  • the hardness diagram shows mean values of hardnesses according to Vickers (HV 0.1) of several measurements depending on different heat treatment times t, from 0 minutes (min) to 300 minutes, of the magnesium alloy samples.
  • HV 0.1 Vickers
  • a gradual increase in hardness with a heat treatment time can be seen, with a high hardness being achievable in particular with a heat treatment time of more than 60 minutes.
  • This behavior can possibly be explained by a diffusion of calcium into the inner area of the mixed crystal.
  • a magnesium alloy according to the invention thus advantageously has both great strength and good formability, which can be optimized or preferably increased in particular by means of heat treatment.
  • the magnesium alloy according to the invention or a component with or made from the magnesium alloy according to the invention thus offers the potential to implement robust and resistant components, in particular structural components, in particular in the automotive industry, aircraft industry and / or space industry, preferably adapted to the purpose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

Die Erfindung betrifft eine Magnesiumlegierung. Um eine Magnesiumlegierung zu erreichen, welche sowohl eine hohe Festigkeit als auch eine hohe Umformbarkeit aufweist, ist erfindungsgemäß eine Magnesiumlegierung vorgesehen, aufweisend (in At.-%)15,0 % bis 70,0 % Lithium,mehr als 0,0 % Aluminium,Rest Magnesium und herstellungsbedingte Verunreinigungen,wobei ein Verhältnis von Aluminium zu Magnesium (in At.-%) 1:6 bis 4:6 beträgt.Weiter betrifft die Erfindung ein Verfahren zur Herstellung der Magnesiumlegierung.

Description

  • Die Erfindung betrifft eine Magnesiumlegierung.
  • Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung einer Magnesiumlegierung.
  • Magnesiumlegierungen stellen insbesondere aufgrund deren geringen Dichte und guten mechanischen Eigenschaften häufig eingesetzte Konstruktionslegierungen bzw.
  • Konstruktionswerkstoffe, besonders im Bereich der Automobilindustrie und Flugzeugindustrie, dar. Es ist bekannt, dass eine Duktilität von Magnesiumlegierungen durch Zusatz von Lithium (Li) verbessert werden kann, wobei üblicherweise mit zunehmendem Lithium-Anteil ein Übergang von einem hexagonalen Kristallsystem zu einem kubisch-raumzentrierten Kristallsystem in der Magnesiumlegierung stattfindet. Dies ist mit einer erhöhten Anzahl von Gleitebenen verbunden, wodurch eine auftretende deutlich verbesserte Duktilität mit zunehmendem Lithium-Anteil erklärbar ist. Allerdings kann diese Herangehensweise mit einer Verringerung von Festigkeit und Korrosionsbeständigkeit der Magnesiumlegierung verbunden sein, sodass häufig weitere Legierungselemente wie beispielsweise Aluminium oder Zink zugesetzt werden, um diese Nachteile zu dämpfen und in der Regel zumindest moderate Festigkeiten und Korrosionsbeständigkeiten zu erreichen.
  • Hier setzt die Erfindung an. Aufgabe der Erfindung ist es, eine Magnesiumlegierung anzugeben, welche eine hohe Festigkeit, insbesondere eine hohe Druckfestigkeit, und eine gute Umformbarkeit aufweist.
  • Weiter ist es ein Ziel der Erfindung, ein Verfahren zur Herstellung einer solchen Magnesiumlegierung anzugeben.
  • Die Aufgabe wird erfindungsgemäß gelöst durch eine Magnesiumlegierung, aufweisend, insbesondere bestehend aus, (in At.-%)
    15,0 % bis 70,0 % Lithium,
    mehr als 0,0 % Aluminium,
    Rest Magnesium und herstellungsbedingte Verunreinigungen,
    wobei ein Verhältnis von Aluminium zu Magnesium (in At.-%) 1:6 bis 4:6 beträgt.
  • Grundlage der Erfindung ist die Erkenntnis, dass sich bei einer vorgenannten Legierungszusammensetzung einer Magnesiumlegierung mit entsprechendem Anteil von Lithium (Li) sowie einem zwingend vorgesehenen Anteil von Aluminium (Al) in einem bestimmten, vorgenannten Verhältnisbereich von Aluminium zu Magnesium eine mikroskalige Gefügestruktur bzw. feine, insbesondere feine lamellare, Gefügestruktur in der Magnesiumlegierung ausbildet. Als theoretischer Unterbau dieses Verhaltens wird eine eutektische Umwandlung der Magnesiumlegierung angesehen, welche bei einem vorgenannten Verhältnis von Aluminium zu Magnesium auftritt. Die feinskalige Gefügestruktur ist mit einer hohen Festigkeit, insbesondere einer hohen Druckfestigkeit verbunden, wobei gleichzeitig eine gute Umformbarkeit der Magnesiumlegierung bei entsprechenden vorgenannten Anteilen von Lithium in der Magnesiumlegierung gegeben ist. Orientierungszusammensetzung bzw. Orientierungslinie im Phasendiagramm ist dabei im Besonderen ein Verhältnis von Aluminium zu Magnesium (in Atomprozent, abgekürzt mit At.-%) von ca. 3:6, da sich bei diesem Verhältnis eine besonders homogene feinskalige bzw. homogene feine lamellare Gefügestruktur bzw. Morphologie findet. In einem Bereich um dieses Verhältnis, vor allem bei einem Verhältnis von Aluminium zu Magnesium (in At.-%) von 1:6 bis 4:6, findet sich die feine, insbesondere feine lamellare, Gefügestruktur bzw. Morphologie weiterhin mit unterschiedlich starker Ausprägung, was in der Regel entsprechend mit unterschiedlichen Ausprägungen einer Höhe einer Festigkeit, insbesondere einer Höhe einer Druckfestigkeit, sowie Umformbarkeit bzw. Duktilität der Magnesiumlegierung verbunden ist. Aufgrund dieses besonderen morphologischen Verhaltens im angegebenen Zusammensetzungsbereich ist damit eine Bildung einer Magnesiumlegierung ermöglicht, welche sowohl eine hohe Festigkeit, insbesondere Druckfestigkeit, als auch eine gute Umformbarkeit aufweist.
  • Mit Vorteil ist vorgesehen, dass die Magnesiumlegierung (in At.-%) 30,0 % bis 60,0 %, insbesondere 40 % bis 50 %, Lithium aufweist. Dadurch sind eine ausgeprägte Festigkeit und eine besonders ausgeprägte Umformbarkeit erreichbar. Dies dürfte sich insbesondere aus einer Kombination von feinstrukturierter Morphologie und einer Umwandlung zu einem kubisch-raumzentrierten Kristallsystem im angegebenen Lithium-Bereich ergeben. Besonders nachdrücklich treten sowohl eine hohe Festigkeit als auch eine hohe Umformbarkeit in Erscheinung, wenn die Magnesiumlegierung (in At.-%) 45 % bis 50 %, insbesondere 45 % bis 48 %, Lithium aufweist.
  • Eine Konstruktionslegierung mit hoher Einsatzfähigkeit ist erreichbar, wenn die Magnesiumlegierung als Magnesiumbasislegierung ausgebildet ist. Magnesiumbasislegierung bezeichnet dabei entsprechend einer praxisüblichen Notation eine Magnesiumlegierung, welche unter Zugrundelegung deren Legierungsanteile in Gewichtsprozent (Gew.-%) als Hauptelement bzw. als größten Legierungsanteil Magnesium enthält. Vor allem in Kombination mit, insbesondere vorstehend, angeführten Anteilen für Lithium ist eine praktikable Konstruktionslegierung mit sehr hohen Festigkeitseigenschaften und ausgeprägter Umformbarkeit erreichbar.
  • Günstig für eine ausgeprägte Feinheit bzw. feine, insbesondere lamellare, Gefügestruktur ist es, wenn das Verhältnis von Aluminium zu Magnesium (in At.-%) 2:6 bis 3,5:6, bevorzugt 2,5:6 bis 3,5:6, beträgt. Dadurch ist eine besonders hohe Festigkeit, insbesondere Druckfestigkeit, erreichbar. Dies gilt besonders bei einem Verhältnis von Aluminium zu Magnesium (in At.-%) von etwa 3:6, bei welchem eine sehr homogene feine Morphologie bzw. Gefügestruktur erhältlich ist. Vorteilhaft ist es hierzu insbesondere, wenn die Magnesiumlegierung (in At.-%) 30,0 % bis 60,0 % Lithium und ein Verhältnis von Aluminium zu Magnesium (in At.-%) von 2,5:6 bis 3,5:6, insbesondere etwa 3:6, beträgt.
  • Es versteht sich, dass die angegebenen Verhältnisse von Aluminium zu Magnesium mit entsprechenden Unsicherheiten, wie diese bei einer Herstellung von Legierungen, insbesondere unter Verwendung von Gießverfahren, üblich sind, behaftet sind und entsprechend nicht als vollkommen exakte Werte zu interpretieren sind, sondern einem üblichen, praktisch sinnvollen Rundungsschema unterliegen, wie dies von einem verständigen Fachmann auf dem Gebiet einer Legierungsherstellung, insbesondere unter Verwendung von Gießverfahren, zweckmäßig angewendet wird, um eine entsprechende Magnesiumlegierung herzustellen.
  • Es hat sich bewährt, wenn die Magnesiumlegierung mehr als 0,0 bis 3,0 Gew.-%, insbesondere mehr als 0,0 bis 2,0 Gew.-%, bevorzugt mehr als 0,0 bis 1,5 Gew.-%, Calcium (Ca) aufweist. Auf diese Weise ist eine verbesserte Korrosionsbeständigkeit der Magnesiumlegierung erreichbar. Insbesondere ist damit eine verringerte Oxidationsneigung der Magnesiumlegierung umsetzbar, vorteilhaft üblicherweise dadurch, dass sich eine stabile Oxidationsschicht an einer Oberfläche der Magnesiumlegierung bildet. Weiter ist durch einen vorgenannten Anteil von Calcium ein Kornfeinungseffekt in der Magnesiumlegierung nutzbar bzw. erreichbar, sodass eine hohe Stabilität des feinskaligen Gefüges erreichbar und eine Festigkeit der Magnesiumlegierung weiter erhöhbar ist. Sowohl eine hohe Oxidationsbeständigkeit als auch eine erhöhte Festigkeit bzw. eine Stabilisierung der Festigkeitseigenschaften ist erreichbar, wenn die Magnesiumlegierung 0,5 Gew.-% bis 1,0 Gew.-% Calcium aufweist. Vorstehend angeführte Effekte bei einem Vorhandensein von Calcium in der Magnesiumlegierung beruhen insbesondere auf einer Bildung von CaO. Entsprechend kann im Speziellen vorgesehen sein, dass Calcium, zumindest teilweise, insbesondere überwiegend, bevorzugt gänzlich, in Form von CaO der Magnesiumlegierung als Legierungsanteil zugesetzt wird bzw. in der Magnesiumlegierung enthalten ist. Damit kann eine homogene Verteilung von Calcium bzw. CaO in der Magnesiumlegierung begünstigt werden. Vorteilhaft ist es somit insbesondere, wenn die Magnesiumlegierung CaO mit den vorstehend angegebenen Anteilen für Calcium aufweist.
  • Für eine Reduktion einer Oxidationsneigung ist es günstig, wenn die Magnesiumlegierung mehr als 0,0 bis 3,0 Gew.-%, bevorzugt 1,0 Gew.-% bis 2,0 Gew.-%, Seltenerdmetalle, insbesondere Yttrium (Y), aufweist. Von Relevanz ist hierbei besonders eine auftretende Bildung von Y2O3 in der Magnesiumlegierung. Entsprechend kann im Speziellen vorgesehen sein, dass Yttrium, zumindest teilweise, insbesondere überwiegend, bevorzugt gänzlich, in Form von Y2O3 der Magnesiumlegierung als Legierungsanteil zugesetzt wird bzw. in der Magnesiumlegierung enthalten ist. Vorteilhaft ist es somit, wenn die Magnesiumlegierung Y2O3 mit den vorgenannt angegebenen Anteilen für Yttrium aufweist.
  • Eine Oxidationsneigung ist insbesondere reduzierbar, wenn sowohl Calcium, insbesondere in Form von CaO, als auch Seltenerdmetalle, insbesondere Yttrium, bevorzugt in Form von Y2O3, jeweils entsprechend den vorgenannten Gehaltsbereichen, in der Magnesiumlegierung enthalten sind, wobei sich im Besonderen Calcium mit mehr als 0,0 bis 1,5 Gew.-% und Yttrium mit 1,0 Gew.-% bis 2,0 Gew.-% bewährt hat.
  • Eine besonders ausgeprägte Korrosionsbeständigkeit ist erreichbar, wenn die Magnesiumlegierung Calcium und Seltenerdmetalle, insbesondere Yttrium, enthält, wobei ein Gesamtanteil von Calcium und Seltenerdmetallen, insbesondere Yttrium, mehr als 0,0 bis 3,0 Gew.-%, bevorzugt 1,0 Gew.-% bis 2,5 Gew.-%, beträgt.
  • Vorteilhaft ist es, wenn eine Druckfestigkeit der Magnesiumlegierung, insbesondere bei Raumtemperatur, mindestens 300 MPa, insbesondere mindestens 350 MPa, bevorzugt mindestens 380 MPa, besonders bevorzugt mindestens 400 MPa, beträgt. Dies ist mit einer erfindungsgemäß vorgesehenen Legierungszusammensetzung für die Magnesiumlegierung aufgrund deren feinstrukturierten Gefügestruktur, insbesondere nach einer Herstellung der Magnesiumlegierung durch Gießen, erreichbar. Bevorzugt gelten vorgenannte Werte für eine maximale Druckfestigkeit, im Speziellen für eine Stauchgrenze oder Quetschgrenze, der Magnesiumlegierung. Mit Vorteil kann die Druckfestigkeit bzw. maximale Druckfestigkeit bzw. Stauchgrenze oder Quetschgrenze der Magnesiumlegierung mindestens 410 MPa, im Speziellen mindestens 430 MPa, betragen. Dies ist üblicherweise praktikabel mit einer Wärmebehandlung erreichbar, wie insbesondere nachstehend dargelegt ist.
  • Es hat sich gezeigt, dass die Magnesiumlegierung eine gute Auslagerungsfähigkeit aufweist, wobei eine Festigkeit, insbesondere Druckfestigkeit, und/oder Umformbarkeit der Magnesiumlegierung durch Wärmebehandlung der Magnesiumlegierung weiter optimiert bzw. bevorzugt erhöht werden können. Mit Vorteil ist daher vorgesehen, dass eine spezifische Druckfestigkeit, insbesondere eine maximale spezifische Druckfestigkeit, der Magnesiumlegierung, insbesondere bei Raumtemperatur, in einem ausgelagerten Zustand mindestens 300 Nm/g, insbesondere mindestens 330 Nm/g, bevorzugt mindestens 350 Nm/g, beträgt. Der ausgelagerte Zustand bezeichnet dabei einen Zustand der Magnesiumlegierung nach einer durchgeführten Wärmebehandlung der Magnesiumlegierung. Hierzu günstige Randbedingungen der Wärmebehandlung sind insbesondere nachstehend im Rahmen eines Verfahrens zur Herstellung einer Magnesiumlegierung weiter erläutert und entsprechend anwendbar.
  • Die angegebenen Materialkennwerte für die Magnesiumlegierung, vornehmlich Werte zu Druckfestigkeit bzw. spezifischer Druckfestigkeit, beziehen sich dabei insbesondere auf eine Raumtemperatur, welche üblicherweise zwischen 20 °C und 25 °C, in der Regel bei etwa 20 °C, liegt.
  • Es hat sich gezeigt, dass eine besonders große Festigkeit, insbesondere Druckfestigkeit, und vorteilhaft große Umformbarkeit erreichbar sind, wenn die Magnesiumlegierung 18,0 Gew.-% bis 24,0 Gew.-%, insbesondere 18,0 Gew.-% bis 22 Gew.-% Lithium, und 15,0 Gew.-% bis 30,0 Gew.-%, insbesondere 16,5 Gew.-% bis 28,0 Gew.-% Aluminium aufweist. Hierbei hat sich zudem gezeigt, dass mit einem zusätzlichen Anteil von Calcium eine Härte der Magnesiumlegierung, insbesondere im Rahmen einer durchgeführten Wärmebehandlung, optimiert bzw. gezielt eingestellt werden kann. Vorteilhaft ist es hierfür, wenn die Magnesiumlegierung außerdem Calcium mit mehr als 0,0 bis 2,5 Gew.-%, insbesondere 0,1 Gew.-% bis 2,0 Gew.-%, bevorzugt 0,3 Gew.-% bis 1,5 Gew.-%, aufweist. Somit kann im Speziellen in diesem Gehaltsbereich von Lithium und Aluminium durch Calcium nicht nur eine Korrosionsbeständigkeit bzw. Oxidationsneigung beeinflusst bzw. verbessert werden, sondern zudem Einfluss auf ein Härte der Magnesiumlegierung genommen werden. Dies zeigt sich im Besonderen, wenn die Magnesiumlegierung 18,0 Gew.-% bis 22 Gew.-% Lithium und 16,5 Gew.-% bis 28,0 Gew.-% Aluminium aufweist, besonders hervortretend bei 0,1 Gew.-% bis 2,0 Gew.-%, insbesondere bei 0,3 Gew.-% bis 1,5 Gew.-%, Calcium. Im Rahmen einer Wärmebehandlung nimmt üblicherweise die Härte mit zunehmender Wärmebehandlungsdauer zu, sodass abhängig von einer Dauer der Wärmbehandlung eine Härte der Magnesiumlegierung einstellbar ist. Günstig für eine hohe Härte ist es, wenn eine Wärmebehandlung zwischen 200 °C und 450 °C eine Wärmbehandlungsdauer von mehr als 1 Stunde, insbesondere mehr als 3 Stunden, aufweist. Im Speziellen ist eine einfach handzuhabende und zu bearbeitende Zusammensetzung bzw. Magnesiumlegierung zu erhalten, wenn die Magnesiumlegierung 20 Gew.-% Lithium und 15,0 Gew.-% bis 30,0 Gew.-%, insbesondere 16,5 Gew.-% bis 28,0 Gew.-%, besonders bevorzugt 18,0 Gew.-% bis 26,0 Gew.-%, Aluminium aufweist. Dies gilt besonders, wenn zudem wie vorstehend angeführt Calcium in der Magnesiumlegierung enthalten ist.
  • Die mechanischen Eigenschaften der Magnesiumlegierung können durch Zusätze weiterer Legierungselemente auf einen bestimmten Einsatzzweck hin optimiert werden. Für eine Feinabstimmung einer Festigkeit, insbesondere der Druckfestigkeit, der Magnesiumlegierung ist es günstig, wenn die Magnesiumlegierung 3,0 Gew.-% bis 10,0 Gew.-% Zink aufweist. Eine Optimierung der Druckfestigkeit, insbesondere ohne eine Umformbarkeit besonders einzuschränken, ist erreichbar, wenn die Magnesiumlegierung 7,0 Gew.-% bis 10,0 Gew.-% Zink aufweist. Alternativ oder kumulativ zu Zink ist es hierzu günstig, wenn die Magnesiumlegierung 2,0 Gew.-% bis 10,0 Gew.-%, bevorzugt 3,0 Gew.-% bis 7,0 Gew.-%, Silicium aufweist.
  • Ein Verfahren zur Herstellung einer erfindungsgemäßen Magnesiumlegierung beruht in der Regel darauf, dass Ausgangsstoffe der Magnesiumlegierung vermischt und ausgehend von einer flüssigen bzw. teilflüssigen Phase abgekühlt werden. Auf einfache Weise kann die erfindungsgemäße Magnesiumlegierung bzw. ein Vormaterial, Halbzeug oder Bauteil mit bzw. aus der Magnesiumlegierung mittels üblicher Gießverfahren, beispielsweise mit Formgieß-Verfahren, Druckguss-Verfahren, Strangguss-Verfahren oder Kokillenguss-Verfahren hergestellt werden. Als vorteilhaft hat es sich insbesondere erwiesen, wenn die Herstellung der erfindungsgemäßen Magnesiumlegierung eine Wärmebehandlung umfasst, um eine Mikrostruktur bzw. Morphologie der Magnesiumlegierung im Hinblick auf eine Festigkeit, insbesondere Druckfestigkeit, bzw. Umformbarkeit zu optimieren.
  • Das weitere Ziel der Erfindung wird durch ein Verfahren zur Herstellung einer erfindungsgemäßen Magnesiumlegierung erreicht, wobei eine Wärmebehandlung der Magnesiumlegierung durchgeführt wird, um eine Festigkeit, insbesondere Druckfestigkeit, und/oder Umformbarkeit der Magnesiumlegierung zu optimieren bzw. zu erhöhen. Es hat sich gezeigt, dass durch eine Wärmebehandlung der Magnesiumlegierung eine Festigkeit, insbesondere Druckfestigkeit, bzw. Umformbarkeit der Magnesiumlegierung weiter optimiert bzw. erhöht werden können, sodass diese insbesondere gezielt, bevorzugt auf einen Einsatzzweck der Magnesiumlegierung abgestimmt, eingestellt werden können.
  • Es versteht sich, dass das erfindungsgemäße Verfahren entsprechend bzw. analog den Merkmalen, Vorteilen, Umsetzungen und Wirkungen, welche im Rahmen einer erfindungsgemäßen Magnesiumlegierung, insbesondere vorstehend, beschrieben sind, ausgebildet sein kann. Analoges gilt auch für die erfindungsgemäße Magnesiumlegierung im Hinblick auf ein, insbesondere nachstehend, beschriebenes, erfindungsgemäßes Verfahren bzw. dessen einzelne Behandlungsschritte bzw. Herstellungsschritte.
  • Günstig für eine ausgeprägte Erhöhung der Festigkeit, insbesondere Druckfestigkeit, ist es, wenn die Wärmebehandlung mit einer Temperatur größer als 200 °C, insbesondere zwischen 200 °C und 450 °C, für mehr 20 Minuten, insbesondere mehr als 1 Stunde, durchgeführt wird. Als besonders geeignet für eine ausgeprägte Erhöhung der Festigkeit, insbesondere Druckfestigkeit, hat sich dabei eine Wärmebehandlung mit einer Temperatur zwischen 250 °C und 400°C, bevorzugt zwischen 270 °C und 350 °C, erwiesen. Vorteilhaft ist es hierbei, wenn die Wärmebehandlung für mehr als 1 Stunde (Std), bevorzugt zwischen 1 Stunde und 10 Stunden, insbesondere bevorzugt zwischen 1 Stunde und 6 Stunden, durchgeführt wird, um die Festigkeit effizient einzustellen. Als besonders effizient für eine nachhaltige Festigkeitserhöhung bei gleichzeitiger Optimierung einer Umformbarkeit der Magnesiumlegierung hat sich eine Wärmebehandlung zwischen 300 °C und 350 °C, bevorzugt zwischen 320 °C und 340 °C, für 2 Stunden bis 5 Stunden erwiesen. Es versteht sich, dass grundsätzlich auch eine längere Wärmebehandlungsdauer üblich sein kann, allerdings haben sich die vorstehend angegebenen Wärmebehandlungsdauern als besonders praktikabel hinsichtlich einer zeiteffizienten Optimierung der mechanischen Eigenschaften gezeigt.
  • Mit Vorteil ist ein Vormaterial, Halbzeug oder Bauteil mit, insbesondere aus, einer erfindungsgemäßen Magnesiumlegierung oder erhältlich nach einem erfindungsgemäßen Verfahren zur Herstellung einer erfindungsgemäßen Magnesiumlegierung umgesetzt. Entsprechend den vorstehenden Ausführungen, Merkmalen und Wirkungen der erfindungsgemäßen Magnesiumlegierung bzw. einer mit einem erfindungsgemäßen Verfahren hergestellten Magnesiumlegierung weist auch ein mit einer Magnesiumlegierung gebildetes Vormaterial, Halbzeug oder Bauteil eine vorteilhaft hohe Festigkeit, insbesondere Druckfestigkeit, und gute Umformbarkeit auf.
  • Weitere Merkmale, Vorteile und Wirkungen ergeben sich aus den nachfolgend dargestellten Ausführungsbeispielen. In den Zeichnungen, auf welche dabei Bezug genommen wird, zeigen:
    • Fig. 1 eine schematische Phasendiagramm-Darstellung für Mg-Li-Al, in welcher Zusammensetzungsbereiche der erfindungsgemäßen Magnesiumlegierung angegeben sind;
    • Fig. 2 ein Fließspannungsdiagramm mehrerer Magnesiumlegierungsproben aus einer erfindungsgemäßen Magnesiumlegierung;
    • Fig. 3 und Fig. 4 Rasterelektronenmikroskopaufnahmen einer Magnesiumlegierungsprobe aus einer erfindungsgemäßen Magnesiumlegierung mit unterschiedlichen Vergrößerungen;
    • Fig. 5 ein Fließspannungsdiagramm von Magnesiumlegierungsproben aus einer erfindungsgemäßen Magnesiumlegierung nach durchgeführten Wärmebehandlungen;
    • Fig. 6 eine Fließspannungsdiagramm von Magnesiumlegierungsproben aus einer weiteren erfindungsgemäßen Magnesiumlegierung nach durchgeführten Wärmebehandlungen;
    • Fig. 7 ein Härtediagramm von Magnesiumlegierungsproben aus einer erfindungsgemäßen Magnesiumlegierung.
  • Fig. 1 zeigt eine schematische Phasendiagramm-Darstellung (in At.-%) für Magnesium-Lithium-Aluminium (Mg-Li-Al) gemäß einer üblichen ternären Phasendiagramm-Ausgestaltung, wobei Zusammensetzungsbereiche bzw. Gehaltsbereiche von Legierungsanteilen einer erfindungsgemäßen Magnesiumlegierung angegeben sind. In der Phasendiagramm-Darstellung ist als strichpunktierte Linie A eine Orientierungszusammensetzung einer Mg-Li-Al-Legierung mit einem Verhältnis von Aluminium zu Magnesium (in At.-%) von ca. 3:6 dargestellt, da sich entsprechend einer der Erfindung zugrundeliegenden Erkenntnis in einem Gehaltsbereich von 15,0 At.-% bis 70,0 At.-% Lithium bei diesem Verhältnis von Aluminium zu Magnesium eine besonders homogene, feinskalige, insbesondere feine lamellare, Gefügestruktur bzw. Morphologie findet. In einem Bereich um dieses Verhältnis, angegeben mit einem Verhältnis von Aluminium zu Magnesium (in At.-%) von 1:6 bis 4:6, findet sich diese feinskalige bzw. feinstrukturierte Gefügestruktur weiterhin in unterschiedlich starker Ausprägung und erklärt eine vorteilhaft hohe Festigkeit, insbesondere Druckfestigkeit, sowie gute Umformbarkeit der Magnesiumlegierung in diesem Bereich. Ein Zusammensetzungsbereich (in At.-%) von 15,0 % bis 70,0 % Lithium und einem Verhältnis von Aluminium zu Magnesium (in At.-%) von 1:6 bis 4:6 ist in Fig. 1 mit einem mit einer durchgezogenen Linie dargestellten Viereck, gekennzeichnet mit Bezugszeichen 1, ersichtlich dargestellt. Eine ausgeprägte Festigkeit und besonders ausgeprägte Umformbarkeit findet sich insbesondere in einem Zusammensetzungsbereich (in At.-%) von 30,0 % bis 60,0 % Lithium und einem Verhältnis von Aluminium zu Magnesium (in At.-%) von 1:6 bis 4:6. Dieser Zusammensetzungsbereich ist in Fig. 1 mit einem mit einer gestrichelten Line dargestellten Viereck, gekennzeichnet mit Bezugszeichen 2, dargestellt.
  • Im Rahmen einer Entwicklung der erfindungsgemäßen Magnesiumlegierung wurden Versuchsreihen mit unterschiedlichen Legierungszusammensetzungen von Magnesiumlegierungen, insbesondere entsprechend von erfindungsgemäß definierten Legierungszusammensetzungen, durchgeführt. Im Folgenden werden repräsentativ für die vorgenannten Zusammensetzungsbereiche Kenndaten von aus Mg-20%Li-15%Al-1%Ca-0,5%Y (in Gew.-%) und Mg-20%Li-24%Al-1%Ca-0,5%Y (in Gew.-%) gefertigten Magnesiumlegierungsproben dargestellt. Die Magnesiumlegierungsproben wurden mittels Kokillenguss hergestellt, wobei insbesondere Magnesiumlegierungsproben mit zylindrischer Form, mit einem Durchmesser von 5 mm und einer Länge von 10 mm, gefertigt wurden. Die Magnesiumlegierungsproben wurden Druckversuchen bei Raumtemperatur, etwa 20 °C, unterzogen und als Ergebnis Fließkurven ermittelt, welche eine Fließspannung, in MPa, als Funktion eines Verformungsgrades, in %, darstellen.
  • Fig. 2 zeigt ein Fließspannungsdiagramm mit Fließkurven als Ergebnis von Druckversuchen mit aus Mg-20%Li-15%Al-1%Ca-0,5%Y (in Gew.-%) gefertigten Magnesiumlegierungsproben bei Raumtemperatur. Dargestellt sind Fließkurven von Magnesiumlegierungsproben unmittelbar nach einer Herstellung der Magnesiumlegierungsproben (as-cast), in Fig. 2 gezeigt als durchgezogenen Linien, gekennzeichnet mit Bezugszeichen 3. Darüber hinaus sind Fließkurven von Magnesiumlegierungsproben nach einer durchgeführten Wärmebehandlung (aged) der Magnesiumlegierungsproben dargestellt, in Fig. 2 gezeigt als gestrichelte Linien, gekennzeichnet mit Bezugszeichen 4. Hierzu wurden Magnesiumlegierungsproben einer Wärmebehandlung bei 330 °C für 3 Stunden unterzogen und anschließend Fließkurven mittels Druckversuchen ermittelt. Ersichtlich ist ein deutlicher Einfluss der Wärmebehandlung auf Druckfestigkeit und Umformbarkeit der Magnesiumlegierungsproben, wodurch das Potential gegeben ist, Druckfestigkeit und Umformbarkeit optimiert, insbesondere auf einen späteren Einsatzzweck hin, durch Wärmebehandlung einzustellen.
  • Fig. 3 und Fig. 4 zeigen Rasterelektronenmikroskopaufnahmen der aus Mg-20%Li-15%Al-1%Ca-0,5%Y (in Gew.-%) gefertigten Magnesiumlegierungsproben mit unterschiedlichen Vergrößerungen. Ersichtlich sind einerseits helle Korngrenzphasen (in weißlich-grau), welche als Al-Ca identifiziert wurden und andererseits ausgeprägte feine Kristallstrukturen bzw. Morphologien in einem von den Korngrenzphasen umschließenden Bereich, insbesondere in einem Zentrumsabschnitt dieses Bereiches, bzw. im Inneren des Mischkristalles, gut ersichtlich insbesondere in Fig. 4. Erkennbar ist außerdem eine stark unterschiedliche Feinstruktur, insbesondere in der Nähe der Korngrenzphasen.
  • Fig. 5 zeigt ein Fließspannungsdiagramm mit Fließkurven als Ergebnis von Druckversuchen mit aus Mg-20%Li-15%Al-1%Ca-0,5%Y (in Gew.-%) gefertigten Magnesiumlegierungsproben bei Raumtemperatur, wobei Magnesiumlegierungsproben nach durchgeführten Wärmebehandlungen mit unterschiedlichen Wärmebehandlungstemperaturen untersucht wurden. Dargestellt sind Fließkurven von Magnesiumlegierungsproben, welche einer Wärmebehandlung bei 270 °C für 4 Stunden unterzogen wurden, in Fig. 5 gezeigt als gestrichelte Linien, gekennzeichnet mit Bezugszeichen 5, und Fließkurven von Magnesiumlegierungsproben, welche einer Wärmebehandlung bei 330 °C für 4 Stunden unterzogen wurden, in Fig. 5 gezeigt als durchgezogenen Linien, gekennzeichnet mit Bezugszeichen 6. Ersichtlich ist ein ausgeprägter Einfluss von Wärmebehandlungstemperaturen auf die mechanischen Eigenschaften der Magnesiumlegierungsproben, wobei eine Wärmebehandlungstemperatur von 330 °C im Vergleich zu einer niedrigeren Wärmebehandlungstemperatur von 270 °C zu einer ausgeprägten Verbesserung der Druckfestigkeit führt, wobei gleichzeitig weiterhin eine sehr gute Umformbarkeit der Magnesiumlegierungsproben gegeben ist.
  • Fig. 6 zeigt ein Fließspannungsdiagramm mit Fließkurven als Ergebnis von Druckversuchen mit aus Mg-20%Li-24%Al-1%Ca-0,5%Y (in Gew.-%) gefertigten Magnesiumlegierungsproben bei Raumtemperatur, wobei Magnesiumlegierungsproben nach durchgeführten Wärmebehandlungen mit unterschiedlichen Wärmebehandlungstemperaturen untersucht wurden. Dargestellt sind Fließkurven von Magnesiumlegierungsproben, welche einer Wärmebehandlung bei 270 °C für 4 Stunden unterzogen wurden, in Fig. 6 gezeigt als gestrichelte Linien, gekennzeichnet mit Bezugszeichen 7, und Fließkurven von Magnesiumlegierungsproben, welche einer Wärmebehandlung bei 330 °C für 4 Stunden unterzogen wurden, in Fig. 6 gezeigt als durchgezogenen Linien, gekennzeichnet mit Bezugszeichen 8. Auch hier findet sich analog zu dem in Fig. 5 dargestellten Ergebnis ein ausgeprägter Einfluss von Wärmebehandlungstemperaturen auf die mechanischen Eigenschaften der Magnesiumlegierungsproben, wobei eine Wärmebehandlungstemperatur von 330 °C im Vergleich zu einer niedrigeren Wärmebehandlungstemperatur von 270 °C zu einer Verbesserung der Druckfestigkeit führt, wobei gleichzeitig weiterhin eine gute Umformbarkeit der Magnesiumlegierungsproben gegeben ist.
  • Fig. 7 zeigt ein Härtediagramm als Ergebnis von Härteprüfungen nach Vickers mit aus Mg-20%Li-15%Al-1%Ca-0,5%Y (in Gew.-%) gefertigten Magnesiumlegierungsproben bei Raumtemperatur, etwa 20 °C, wobei Magnesiumlegierungsproben nach durchgeführten Wärmebehandlungen mit unterschiedlichen Wärmebehandlungsdauern untersucht wurden. Als Wärmebehandlungstemperatur wurde 330 °C angewendet. Im Härtediagramm sind jeweils Mittelwerte von Härten nach Vickers (HV 0,1) von mehreren Messungen in Abhängigkeit von unterschiedlichen Wärmebehandlungsdauern t, von 0 Minuten (min) bis 300 Minuten, der Magnesiumlegierungsproben dargestellt. Ersichtlich ist eine sukzessive Zunahme der Härte mit einer Wärmebehandlungsdauer, wobei insbesondere bei einer Wärmbehandlungsdauer von mehr als 60 Minuten eine hohe Härte erreichbar ist. Mit Hinblick auf die in Fig. 3 und Fig. 4 gezeigten Bilddarstellungen ist dieses Verhalten möglicherweise erklärbar mit einer Diffusion von Calcium in den inneren Bereich des Mischkristalles.
  • Eine erfindungsgemäße Magnesiumlegierung weist somit vorteilhaft sowohl eine große Festigkeit als auch eine gute Umformbarkeit auf, welche insbesondere mittels Wärmebehandlung optimiert bzw. bevorzugt erhöht werden können. Im Speziellen ist außerdem die Möglichkeit gegeben, eine Härte der Magnesiumlegierung zu optimieren bzw. definiert einzustellen. Die erfindungsgemäße Magnesiumlegierung bzw. ein Bauteil mit bzw. aus der erfindungsgemäßen Magnesiumlegierung bietet damit ein Potenzial robuste und widerstandfähige Bauelemente, insbesondere Konstruktionsbauelemente, im Besonderen in der Automobilindustrie, Flugzeugindustrie und/oder Weltraumindustrie, bevorzugt zweckangepasst, umzusetzen.

Claims (11)

  1. Magnesiumlegierung, aufweisend (in At.-%)
    15,0 % bis 70,0 % Lithium,
    mehr als 0,0 % Aluminium,
    Rest Magnesium und herstellungsbedingte Verunreinigungen,
    wobei ein Verhältnis von Aluminium zu Magnesium (in At.-%) 1:6 bis 4:6 beträgt.
  2. Magnesiumlegierung nach Anspruch 1, dadurch gekennzeichnet, dass die Magnesiumlegierung (in At.-%) 30,0 % bis 60,0 %, insbesondere 40 % bis 50 %, Lithium aufweist.
  3. Magnesiumlegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis von Aluminium zu Magnesium (in At.-%) 2:6 bis 3,5:6 beträgt.
  4. Magnesiumlegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Magnesiumlegierung mehr als 0,0 bis 3,0 Gew.-% Calcium aufweist.
  5. Magnesiumlegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Magnesiumlegierung mehr als 0,0 bis 3,0 Gew.-% Seltenerdmetalle, insbesondere Yttrium, aufweist.
  6. Magnesiumlegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Magnesiumlegierung Calcium und Seltenerdmetalle, insbesondere Yttrium, enthält, wobei ein Gesamtanteil von Calcium und Seltenerdmetallen, insbesondere Yttrium, mehr als 0,0 bis 3,0 Gew.-% beträgt.
  7. Magnesiumlegierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Druckfestigkeit der Magnesiumlegierung mindestens 300 MPa, insbesondere mindestens 350 MPa, beträgt.
  8. Magnesiumlegierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine spezifische Druckfestigkeit der Magnesiumlegierung in einem ausgelagerten Zustand mindestens 300 Nm/g beträgt.
  9. Verfahren zur Herstellung einer Magnesiumlegierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Wärmebehandlung der Magnesiumlegierung durchgeführt wird, um eine Festigkeit und/oder Umformbarkeit der Magnesiumlegierung zu optimieren.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Wärmebehandlung mit einer Temperatur größer als 200 °C, insbesondere zwischen 200 °C und 400 °C, für mehr 20 Minuten, insbesondere mehr als 1 Stunde, durchgeführt wird.
  11. Vormaterial, Halbzeug oder Bauteil mit einer Magnesiumlegierung nach einem der Ansprüche 1 bis 8 oder erhältlich nach einem Verfahren nach einem der Ansprüche 9 oder 10.
EP19184999.1A 2019-07-08 2019-07-08 Magnesiumlegierung und verfahren zur herstellung derselben Active EP3763845B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP19184999.1A EP3763845B1 (de) 2019-07-08 2019-07-08 Magnesiumlegierung und verfahren zur herstellung derselben
KR1020227000723A KR20220030244A (ko) 2019-07-08 2020-03-25 마그네슘 합금 및 이의 제조 방법
CN202080046287.5A CN114026260B (zh) 2019-07-08 2020-03-25 镁合金及用于生产其的方法
CA3137604A CA3137604A1 (en) 2019-07-08 2020-03-25 Magnesium alloy and method for producing same
JP2021567860A JP2022540542A (ja) 2019-07-08 2020-03-25 マグネシウム合金およびその製造方法
US17/625,359 US20220259705A1 (en) 2019-07-08 2020-03-25 Magnesium alloy and method for producing same
PCT/EP2020/058280 WO2021004662A1 (de) 2019-07-08 2020-03-25 Magnesiumlegierung und verfahren zur herstellung derselben
PCT/EP2020/069131 WO2021005062A1 (de) 2019-07-08 2020-07-07 Legierung mit feinskaligem eutektischen, insbesondere nanoeutektischem, gefüge und herstellung derselben
KR1020227000718A KR20220030243A (ko) 2019-07-08 2020-07-07 미세-규모 공정, 특히, 나노공정, 조직을 갖는 합금 및 이러한 합금의 제조
EP20735621.3A EP3997251A1 (de) 2019-07-08 2020-07-07 Legierung mit feinskaligem eutektischen, insbesondere nanoeutektischem, gefüge und herstellung derselben
US17/625,360 US20220267881A1 (en) 2019-07-08 2020-07-07 Alloy having fine-scale eutectic, in particular nanoeutectic, structure and production of such an alloy
JP2021568980A JP2022540544A (ja) 2019-07-08 2020-07-07 微細スケールの共晶組織、具体的にはナノ共晶組織を有する合金、およびそのような合金の製造
CN202080049996.9A CN114096690A (zh) 2019-07-08 2020-07-07 具有精细尺度共晶结构,特别是纳米共晶结构的合金以及这种合金的生产
CA3138658A CA3138658A1 (en) 2019-07-08 2020-07-07 Alloy having fine-scale eutectic, in particular nanoeutectic, structure and production of such an alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19184999.1A EP3763845B1 (de) 2019-07-08 2019-07-08 Magnesiumlegierung und verfahren zur herstellung derselben

Publications (2)

Publication Number Publication Date
EP3763845A1 true EP3763845A1 (de) 2021-01-13
EP3763845B1 EP3763845B1 (de) 2021-08-18

Family

ID=67211617

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19184999.1A Active EP3763845B1 (de) 2019-07-08 2019-07-08 Magnesiumlegierung und verfahren zur herstellung derselben
EP20735621.3A Pending EP3997251A1 (de) 2019-07-08 2020-07-07 Legierung mit feinskaligem eutektischen, insbesondere nanoeutektischem, gefüge und herstellung derselben

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20735621.3A Pending EP3997251A1 (de) 2019-07-08 2020-07-07 Legierung mit feinskaligem eutektischen, insbesondere nanoeutektischem, gefüge und herstellung derselben

Country Status (7)

Country Link
US (2) US20220259705A1 (de)
EP (2) EP3763845B1 (de)
JP (2) JP2022540542A (de)
KR (2) KR20220030244A (de)
CN (2) CN114026260B (de)
CA (2) CA3137604A1 (de)
WO (2) WO2021004662A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276019A1 (de) * 2015-03-25 2018-01-31 Subaru Corporation Magnesium-lithium-legierung, gewalztes material aus magnesium-lithium-legierung und verarbeiteter artikel mit magnesium-lithium-legierung als ausgangsmaterial

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB683813A (en) * 1949-09-29 1952-12-03 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
DE1255928B (de) * 1966-01-13 1967-12-07 Metallgesellschaft Ag Verfahren zur Erzielung eines langanhaltenden Veredelungseffektes in Aluminium-Silicium-Legierungen
CN104060137A (zh) * 2014-06-29 2014-09-24 应丽红 一种耐磨硅铝合金
CN107250401A (zh) * 2015-01-27 2017-10-13 株式会社三德 镁锂合金、轧制材料以及成型制品
EP3376570B1 (de) * 2015-11-10 2020-03-11 Nissan Motor Co., Ltd. Negativelektroden-aktivmaterial für elektrische vorrichtung und elektrische vorrichtung, in der dieses material verwendet wird
WO2018021360A1 (ja) * 2016-07-26 2018-02-01 株式会社三徳 マグネシウム-リチウム合金及びマグネシウム空気電池
CN106148786B (zh) * 2016-08-22 2018-12-18 上海交通大学 高强度铸造镁锂合金及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276019A1 (de) * 2015-03-25 2018-01-31 Subaru Corporation Magnesium-lithium-legierung, gewalztes material aus magnesium-lithium-legierung und verarbeiteter artikel mit magnesium-lithium-legierung als ausgangsmaterial

Also Published As

Publication number Publication date
KR20220030244A (ko) 2022-03-10
CN114026260B (zh) 2023-06-20
JP2022540542A (ja) 2022-09-16
WO2021004662A1 (de) 2021-01-14
EP3763845B1 (de) 2021-08-18
CA3138658A1 (en) 2021-01-14
WO2021005062A1 (de) 2021-01-14
KR20220030243A (ko) 2022-03-10
JP2022540544A (ja) 2022-09-16
EP3997251A1 (de) 2022-05-18
US20220267881A1 (en) 2022-08-25
CN114026260A (zh) 2022-02-08
CA3137604A1 (en) 2021-01-14
US20220259705A1 (en) 2022-08-18
CN114096690A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
DE2223114C3 (de) Wärmebehandlungsverfahren für eine Legierung auf Nickel-Eisen-Basis
DE102016219711B4 (de) Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung
DE102014101317A1 (de) Al-Gusslegierung
EP2013371A2 (de) Kupfer-nickel-zinn-legierung und deren verwendung
EP3024958B1 (de) Hochwarmfeste aluminiumgusslegierung und gussteil für verbrennungsmotoren gegossen aus einer solchen legierung
DE102014209102A1 (de) Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminiumlegierung
EP2192202B1 (de) Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit
WO2017084731A1 (de) Kupfer-nickel-zink-legierung und deren verwendung
WO2007062702A1 (de) Leichtbaustahl
EP2455505A1 (de) Zylinderkopf für Verbrennungsmotoren aus einer Aluminiumlegierung
DE102013225187B4 (de) Verfahren zur Bearbeitung einer dispersionsgehärteten Platinzusammensetzung
DE2558519C2 (de) Verfahren zur Herstellung einer Magnesiumlegierung
EP3763845B1 (de) Magnesiumlegierung und verfahren zur herstellung derselben
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
EP3423606B1 (de) Al-gusslegierung
WO2020007437A1 (de) Aluminiumlegierung sowie überaltertes aluminiumlegierungsprodukt aus einer solchen legierung
EP3670691B1 (de) Magnesiumbasislegierung und verfahren zur herstellung derselben
EP1945827A1 (de) Kaltverformbare t -leg erung
EP3072984B1 (de) Al-cu-mg-li-legierung sowie daraus hergestelltes legierungsprodukt
AT509343B1 (de) Aluminiumlegierung
EP2392891B1 (de) Legierung für einen Penetrator sowie Verfahren zur Herstellung eines Penetrators aus einer solchen Legierung
DE102022206662A1 (de) Hochfeste, aushärtbare Magnesiumlegierung, umfassend Al, Ca, Mn und Y
AT512120A1 (de) Aluminiumlegierung mit tantal
DE1533372C (de) Eisenhaltige Kobaltlegierung mit guter Kaltverformbarkeit
DE102020128955A1 (de) Messinglegierung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20200409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210201

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SIMSON, CLEMENS

Inventor name: GROSSALBER, ALEXANDER

Inventor name: GNEIGER, STEFAN

Inventor name: FRANK, SIMON

Inventor name: BETZ, ANDREAS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BETZ, ANDREAS

Inventor name: GROSSALBER, ALEXANDER

Inventor name: FRANK, SIMON

Inventor name: SIMSON, CLEMENS

Inventor name: GNEIGER, STEFAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002069

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1421704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002069

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 5

Ref country code: GB

Payment date: 20230721

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 5

Ref country code: FR

Payment date: 20230726

Year of fee payment: 5

Ref country code: DE

Payment date: 20230719

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818