EP3728975A1 - Luftgekühlte kondensatoranlage - Google Patents

Luftgekühlte kondensatoranlage

Info

Publication number
EP3728975A1
EP3728975A1 EP18821991.9A EP18821991A EP3728975A1 EP 3728975 A1 EP3728975 A1 EP 3728975A1 EP 18821991 A EP18821991 A EP 18821991A EP 3728975 A1 EP3728975 A1 EP 3728975A1
Authority
EP
European Patent Office
Prior art keywords
wet
dry cooler
cooling
dry
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18821991.9A
Other languages
English (en)
French (fr)
Other versions
EP3728975B1 (de
Inventor
Albert ZAPKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enexio Germany GmbH
Original Assignee
Enexio Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enexio Germany GmbH filed Critical Enexio Germany GmbH
Publication of EP3728975A1 publication Critical patent/EP3728975A1/de
Application granted granted Critical
Publication of EP3728975B1 publication Critical patent/EP3728975B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • F28B2001/065Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium with secondary condenser, e.g. reflux condenser or dephlegmator

Definitions

  • the invention relates to an air-cooled condenser system having the features in the preamble of patent claim 1.
  • Air-cooled condensers are used as so-called dry coolers for the condensation of process vapors, in particular of turbine steam.
  • Parallel finned tubes form tube bundles, which serve as surface capacitors.
  • the finned tube elements are internally under vacuum. Non-condensable gases are sucked off.
  • the recovered condensate is returned to the feedwater circuit.
  • DC capacitors and countercurrent capacitors (dephlegmators) are combined.
  • the cooling air flow is generally generated by fans, more rarely by natural draft, with dry coolers in roof construction (A-arrangement) are widely used.
  • the tube bundles form the legs of a triangle, at the base of which the fans are arranged. If the dry coolers are arranged in V-shape, the fan is located above the tube bundles.
  • the steam flows from an overhead distribution line down into the flow condenser.
  • the also flowing down condensate is collected in a condensate collecting line.
  • exhaust steam is introduced from below into the cooling tubes and thus guided against the outflowing condensate.
  • flow condensers and counterflow condensers are combined. The so-called condensation end of the steam is then in the countercurrent condenser.
  • WO 2013/011414 A1 It belongs to the state of the art by WO 2013/011414 A1 to form a dephlegmator in a two-stage design as a wet / dry cooler.
  • a countercurrent condenser is used as a dry cooler, followed by a second stage with a horizontal tube bundle with smooth or ribbed tubes.
  • This second stage can be operated wet or dry.
  • wet operation nozzles arranged above the tube bundle are opened, which wet the tube bundle on the outside in order to increase the condensation performance. The unevaporated water is collected below the tube bundle. Within the tube bundle, the condensing vapor stream is deflected several times.
  • GB 900 949 discloses to combine A-type heat exchangers with upstream adiabatic cooling.
  • non-evaporated water droplets on the structure can lead to corrosion and deposits, which is not desirable from an economic point of view.
  • the present invention seeks to further develop an air-cooled condenser system with a dry cooler with several tube bundles arranged in an A-shape so that the shortest possible steam distribution lines with low space requirements and high cooling capacity of the system can be realized with a small cross-section.
  • the air-cooled condenser system comprises a dry cooler which has a plurality of tube bundles.
  • the tube bundles are flowed through on the inside by a vapor to be condensed and cooled on the outside by cooling air.
  • the steam is supplied via at least one steam distribution line.
  • the steam distribution line runs in the region of the upper ends of the tube bundles.
  • the tube bundles are arranged A- or V-shaped.
  • the dry coolers at least one wet / dry cooler is assigned, which is operated depending on the weather (cool, windless) only as a dry cooler or at higher outside temperatures and / or strong wind is additionally wetted with cooling water and in this case serves as a wet cooler.
  • the wet / dry cooler is connected to the same steam distribution line as the dry cooler. Coming from the steam distribution line, the steam can be introduced into the wet / dry cooler.
  • the invention provides that the wet / dry cooler connected to the same, at the upper ends of the tube bundle extending steam distribution line as the A- or V-shaped tube bundles.
  • the steam distribution line runs essentially horizontally.
  • the wet / dry cooler is therefore in arranged in the immediate vicinity of the A- or V-shaped arranged tube bundle.
  • the immediate proximity has the advantage that no further steam distribution line for supplying the steam to a remote wet / dry cooler is required.
  • tube bundles arranged in an A-shape are flowed from below with cooling air, which is pressed via a fan into the flow space between the tube bundles arranged in an A-shape.
  • a fan can also be arranged below the wet / dry cooler.
  • the wet / dry cooler according to the invention is therefore easy to integrate into the grid of the fans of the condenser.
  • a fan is arranged in a V-shaped arrangement of the tube bundles above the tube bundles. The fan sucks air into the space between the tube bundles (InAir).
  • the wet / dry cooler is connected upstream of the dry coolers in the flow direction of the steam distribution line.
  • the steam distribution line for the following dry coolers can be smaller.
  • the wet / dry cooler is connected in parallel to the dephlegmator. Calculations have shown that this arrangement of the wet / dry cooler has a positive effect on the improvement of the power plant efficiency.
  • the power plant efficiency is mentioned here only as representative of other plant efficiencies, because in particular in steam power plants large amounts of steam must be condensed. In the same way, there are positive effects on the efficiency even with process vapors of other steam-generating processes.
  • the dry coolers and the at least one wet / dry cooler are preferably arranged in the A-shape in a row below the steam distribution lines and at the same time arranged above a platform with fans. In terms of flow, it is best to divert the mass flow of the steam as little as possible. Therefore, a linear arrangement of wet / dry coolers and subsequent dry coolers, in the immediate vicinity, is preferred.
  • the arrangement of fans on a platform creates the necessary suction space for the cooling air below the fans.
  • the dry coolers and the at least one wet / dry cooler are also in a row, but the steam distribution line is not centrally above the wet / dry cooler, but feeds it from the side.
  • the fan of the wet / dry cooler is located below the wet / dry cooler.
  • the wet / dry cooler is associated with the at least two rows in common.
  • a single wet / dry cooler may also be associated with three or more rows.
  • a typical arrangement for example, provides for three adjacent rows, which are connected via three risers to a steam supply.
  • the wet / dry cooler in this case is preferably arranged at the beginning of the middle row adjacent to the riser to the steam distribution line.
  • the wet / dry cooler has the same footprint as a group of A- or V-shaped dry coolers so that the pitch of one or more rows of capacitor arrays can be maintained. It is even possible to retrofit an existing condenser system with such a wet / dry cooler in order to increase the cooling capacity on particularly hot days.
  • the wet / dry cooler according to the invention has a plurality of cooling tubes whose inlet sides are connected to a common inlet chamber and whose outlet sides are connected to a common condensate collecting chamber.
  • the outlet sides of the cooling tubes are located lower than the respective inlet sides. It only has to be ensured that the condensate can flow off in sufficient quantity.
  • the inclination of the cooling tubes is substantially less than the inclination of the A or V-shaped tube bundles.
  • the cooling tubes of the wet / dry coolers taking into account the necessary gradient, may be referred to as being substantially horizontal.
  • the wet / dry cooler has a cooling water distribution above the cooling tubes to distribute cooling water on the outside of the cooling tubes. Below the cooling tubes are catchers to catch cooling water, which has not evaporated by contact with the cooling tubes, below the cooling tubes. The collected cooling water is returned to a cooling water circuit to pump it again for cooling water distribution. An intercooling of the cooling water is possible.
  • the wet / dry cooler is preferably surrounded by walls, which define a collecting space for the cooling air on the underside of the cooling tubes.
  • the wet / dry cooler according to the invention is based on the principle that an overpressure is generated below the dry cooler by the fans.
  • the cooling air flows between the cooling tubes, wherein in wet operation, the evaporative cooling of the cooling water is utilized to increase the cooling capacity. Also, a sucking operation is possible.
  • the capacitor arrangement according to the invention prevents the reduction of power plant performance on very hot days or in windy conditions. In windy conditions, which can lead to hot air recirculation, the performance of the wet / dry cooler increases because of the increased evaporation.
  • the measured evaporation rates are lower in the wet / dry cooler according to the invention than evaporation rates in other technologies, such. B. in the adiabatic pre-cooling of the cooling air. Accordingly, the proportion of the cooling water, which is to be replaced by increasing salt concentration, in the inventive capacitor arrangement is also lower than in separate wet cooling towers.
  • Another advantage of the invention is to be mentioned that the extensive wetting of the cooling tubes by means of spray nozzles, which emit also coarse drops, is technically easier and more reliable to implement than with adiabatic pre-cooling of the cooling air.
  • Adiabatic pre-cooling requires the use of nozzles that produce fine droplets, which is only possible with high water pressure. The effort is high.
  • nozzles with small openings of course clog after some time, making the drops are larger and complete evaporation of the drops can not be achieved. This can be an undesirable Wetting of the tube bundles lead, which is not desirable for reasons of corrosion alone.
  • the capacitor arrangement according to the invention can reduce the costs for the construction of a cooling system but also the operating costs.
  • the space required for such a system is reduced.
  • the overall construction of the cooling arrangement is less complex than with two separately arranged cooling systems.
  • the capacitor arrangement according to the invention can be adapted to negative environmental influences such. B. on strong winds or on the recirculation of heated air, react very quickly by switching from dry cooling to wet cooling. The system can be shut down quickly when the operating parameters have improved again.
  • Figure 1 is a schematic representation of a capacitor arrangement in a side view
  • FIG. 2 shows a cross section through the capacitor arrangement of FIG. 1 in the region of a wet / dry cooler
  • Figure 3 is a perspective view, partially in section, of a
  • FIG. 5 shows the capacitor arrangement of FIG. 4 in a side view in FIG
  • FIG. 6 shows the wet / dry cooler of Figures 4 and 5 in side elevation in section
  • FIG. 7 shows the wet / dry cooler of FIG. 6 in cross section
  • FIG. 8 shows a further embodiment of a capacitor arrangement in an end view
  • FIG. 1 shows a condenser system 1 for condensing steam 2, which receives process steam via a horizontally extending steam distribution line 3.
  • the arrows illustrate the flow directions of the steam 2.
  • the steam 2 flows through the steam distribution line 3 in the image plane from top to bottom in four condensibly connected tube bundles 4 a.
  • the vapor condenses 2 wherein the condensate flows down and is collected and discharged in a condensate collecting line 5.
  • the designated K tube bundle 4 are connected in a condensing.
  • the steam 2 and the condensate flow in the same direction.
  • the four condensibly connected tube bundles 4 do not completely condense the vapor 2.
  • Excess steam 2 is fed via the steam distribution line 3 to a dephlegmatorily connected tube bundle 6.
  • This tube bundle 6 is traversed by the steam 2 from bottom to top, that is opposite to the flow direction of the condensate.
  • a suction for non-condensed gases At the upper end of the dephlegmatorily connected tube bundle 6 is, not shown here, a suction for non-condensed gases.
  • the above-described section of the condenser system forms a total of a dry cooler 7, because it is flowed from below by cooling air 8, which is moved by fans 9 below the tube bundle 4.
  • Cooling air 8 flows, which is moved by a fan 9.
  • the wet / dry cooler 10 is operated in parallel to the dry cooler 7 and is also connected directly to the steam distribution line.
  • the wet / dry cooler 10 is therefore in parallel with the following dry coolers.
  • the ridge-side steam distribution line 3 is the common supply line for the wet / dry cooler 10 and the subsequent dry cooler 7.
  • the space requirement of the wet / dry cooler 10 is adapted to the grid dimension of the fans 9 and the tube bundle 4.
  • the wet / dry cooler 10 can be incorporated with little additional construction effort.
  • FIG. 2 shows a sectional view in cross section through the steam distribution line 3 in the area of the wet / dry cooler 10. Cooling air 8 is sucked in from below by the fan 9 and pressed into a collecting space 11 below cooling tubes 12. The cooling air 8 is heated at the outside flowing past the cooling tubes 12 and exits above as warm exhaust air in the area of the arrows P1 on both sides of the steam distribution line 3.
  • the steam 2 to be condensed is directed centrally by the steam distribution line 3 arranged above the wet / dry cooler 10 and into an inlet chamber 13 on both sides and from there into the connected cooling tubes 12.
  • the condensate that forms is collected in condensate collection chambers 14 and discharged via connections 15.
  • the cooling tubes 12 have a slight incline from the inside out, so that the condensate flows in the direction of the condensate collection chambers 14.
  • the wet / dry cooler 10 can be operated both in dry operation and in wet operation. In the wet operation, the cooling tubes 12 are externally supplied with cooling water 16, which is discharged via a water distribution 17 above the cooling tubes 12.
  • the water distribution 17 may be an arrangement of nozzles.
  • mist eliminator 25 Above the water distribution 17 is a mist eliminator 25, which is flowed through by the heated cooling air 8.
  • the mist eliminator 25 may be a grid-like arrangement of sheets, which should prevent lateral winds affect the uniform flow of the cooling tubes 12 from below and thus reduce the condensation performance.
  • Cooling water 16, which does not evaporate, is collected via collecting means 18 below the cooling tubes 12.
  • the cooling water 16 is recycled into a circuit and passed through a pump not shown again to the water distribution 17.
  • the collecting means 18 are arranged so that the cooling air 8 can flow between adjacent collecting means 18 and thereby reaches the cooling tubes 12.
  • FIG. 3 shows the arrangement according to the invention in a perspective view.
  • the steam distribution line 3 passes the vapor 2 in the image plane from right to left.
  • the cross section of the steam distribution line 3 is reduced in the flow direction of the steam 2. It can be seen that the steam distribution line 3 ridge side of the A-shaped arranged tube bundle 4, which are connected with their lower ends to the condensate collecting line 5. Cooling air 8 is pressed via the fans 9 through the funnel-shaped inlet 19 from below into the triangular space below the tube bundle 4. Above the tube bundle 4, the heated cooling air 8 flows in the direction of the arrows P1.
  • a dry cooler 7 In the image plane left is a dry cooler 7 and in the image plane right a wet / dry cooler 10.
  • the wet / dry cooler 10 is located directly below the steam distribution line 3. He is also from below by cold cooling air 8 flows.
  • the wet / dry cooler 10 is shown in wet operation.
  • Cooling water 16 is sprayed through nozzles of the water distribution 17 and thereby passes on the outside of the simplified illustrated as a solid block cooling tubes 12.
  • Below the cooling tubes 12 Below the cooling tubes 12 is the collecting means 18 in the form of multiple grooves that divert the non-evaporated cooling water 16 and a manifold 20 feed.
  • the manifold 20 is connected to a cooling water circuit 21, which has a pump and a tank 22 and the water for renewed Distributing the water distribution 17 supplies.
  • the vapor 2 is condensed within the cooling tubes 12 of the wet / dry cooler 10 and collected in a manner not shown.
  • the whole thing happens on both sides of the ridge-side steam distribution line 3. So that the cooling air 8 can not escape laterally, the wet / dry cooler 10 has closed walls 23, which surround the area between the fan 9 and the water distribution 17 and the mist eliminator 25. This ensures that the warm cooling air 8 exits in the direction of the arrows P1 only above the cooling water distribution 17 and above the mist eliminator 25.
  • FIG. 4 shows a capacitor arrangement 1 with three rows R1, R2, R3, each with four fans 9.
  • the two outer rows R1, R3, underneath the steam distribution lines 3 are exclusively dry coolers 7.
  • the middle row R2 there is additionally a dry cooler 10, so that there are three dry coolers 7 and one wet / dry cooler 10 in the middle row R2.
  • the diagram illustrates that the space requirement for the combination of wet / dry cooler 10 and dry coolers 7 is not greater, because the wet / dry cooler 10 is completely incorporated into the previously formed from pure dry coolers 7 capacitor system 1. Even in height, there is no additional need for space (Figure 5).
  • FIG. 5 shows the ridge-side steam distribution lines of the three rows R1, R2, R3 and the A-shaped tube bundles 4 of the dry cooler 7.
  • the central wet / dry cooler 10, which is connected to the central steam distribution line 3 is not wider than that Arrangement of the A-shaped positioned tube bundle 4. This allows identical fans 9 are used.
  • a main steam line 26 supplies the steam 2 via risers to the three ridge-side steam distribution lines 3.
  • Figures 6 and 7 show the wet / dry cooler 10 of Figures 4 and 5 in longitudinal and in cross section.
  • the collecting means 18 are arranged slightly inclined, so that the cooling water 16, which is distributed over the water distribution 17 on the cooling tubes 12, collected by the collecting means 18 and the channel-shaped, upwardly open manifold 20 is supplied ,
  • the collecting means 18 consists of several eg U- or V-shaped grooves, which run parallel to each other, and in the embodiment of Figure 7, the cooling water 16 in the image plane to the left.
  • the heat exchanger package with the cooling tubes 12 is arranged substantially horizontally in this illustration, so that it is completely covered by the water distribution 17 in length and width, so that the cooling tubes 12 can be uniformly wetted.
  • the fan 9 with its drive 24 is therefore largely protected from moisture.
  • the drive 24 is an electric motor. It can be connected to the fan via a gearbox.
  • the electric motor can also be designed as a direct drive, without an additional transmission is required. It can be a four-pole motor or a permanent magnet motor.
  • FIG. 8 shows, in a side view, a highly schematic representation of a V-shaped arrangement of dry coolers 7 which are respectively connected to upper-side steam distribution lines 3.
  • two rows of dry coolers 7 are shown side by side, resulting in a W-shaped structure.
  • the fans 9 are now above the dry cooler 7, adjacent to the steam distribution lines 3. Cooling air is thus sucked into the triangular space between the dry coolers 7 and discharged upwards. The condensate that forms in the tube bundles flows down into a condensate collecting line 5.
  • wet / dry cooler 10 which is located above the condensate collecting line 5, is fed laterally by two steam distribution lines 3.
  • a further fan 9 below of the wet / dry cooler 10. This becomes clearer from the illustration of FIG. 9.
  • FIG. 9 shows the fans 9 between the steam distribution lines 3 at the upper ends of the tube bundle 6.
  • one wet / dry cooler 10 is shown, which is fed by the two adjacent steam distribution lines 3. Only for this single wet / dry cooler 10, the additional fan 9 is provided, which is arranged below the wet / dry cooler 10. While the fans 9 for the dry coolers 7 suck the air through the tube bundles 6, the lower fan 9 pushes the air from below through the wet / dry cooler 10. It is shown in a greatly simplified manner that both for the dry coolers 7 and for the wet / Dry coolers 10 separate rooms are provided to direct the respective air flow to the wet / dry cooler 10 or to the tube bundles 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft eine luftgekühlte Kondensatoranlage mit einem Trockenkühler (7), der mehrere Rohrbündel (4, 6) aufweist, die außenseitig von Kühlluft (8) gekühlt werden und innseitig von einem zu kondensierenden Dampf (2) durchströmt werden, und mit wenigstens einer Dampfverteilleitung (3), wobei dem Trockenkühler (7) wenigstens ein Nass/Trockenkühler (10) zugeordnet ist, der je nach Witterung durch äußere Benetzung mit Kühlwasser (16) als Nasskühler oder alternativ als Trockenkühler dient. Der Nass/Trockenkühler (10) ist an dieselbe Dampfverteilleitung (3) angeschlossen, wobei Dampf (2) aus der Dampfverteilleitung (3) kommend in den Nass/Trockenkühler (10) einleitbar ist.

Description

Luftgekühlte Kondensatoranlaqe
Die Erfindung betrifft eine luftgekühlte Kondensatoranlage mit den Merkmalen im Oberbegriff des Patentanspruchs 1.
Luftgekühlte Kondensatoren werden als sogenannte Trockenkühler zur Kondensation von Prozessdämpfen, insbesondere von Turbinendampf eingesetzt. Parallel geschaltete Rippenrohre bilden Rohrbündel, die als Oberflächenkondensatoren dienen. Die Rippenrohr-Elemente stehen innenseitig unter Vakuum. Nicht kondensierbare Gase werden abgesaugt. Das gewonnene Kondensat wird in den Speisewasserkreislauf zurückgeführt. Es werden Gleichstrom-Kondensatoren und Gegenstrom-Kondensatoren (Dephlegmatoren) miteinander kombiniert. Der Kühlluftstrom wird im Allgemeinen mittels Ventilatoren erzeugt, seltener durch Naturzug, wobei Trockenkühler in Dachbauweise (A-Anordnung) weit verbreitet sind. Hierbei bilden die Rohrbündel die Schenkel eines Dreiecks, an dessen Basis die Ventilatoren angeordnet sind. Sind die Trockenkühler in V-Form angeordnet, befindet sich der Ventilator oberhalb der Rohrbündel. Bei der Durchfluss- Kondensatorschaltung strömt der Dampf von einer oben gelegenen Verteilerleitung nach unten in den Durchfluss-Kondensator ein. Das ebenfalls nach unten fließende Kondensat wird in einer Kondensatsammelleitung aufgefangen. Bei der Gegenstrom-Kondensatorschaltung wird Abdampf von unten in die Kühlrohre eingeleitet und so gegen das abfließende Kondensat geführt. In der Praxis werden Durchfluss-Kondensatoren und Gegenstrom- Kondensatoren miteinander kombiniert. Das sogenannte Kondensationsende des Dampfes liegt dann im Gegenstrom-Kondensator.
Es zählt durch die WO 2013/011414 A1 zum Stand der Technik, einen Dephlegmator in zweistufiger Bauweise als Nass/Trockenkühler auszubilden. In der ersten Stufe wird ein Gegenstrom-Kondensator als Trockenkühler verwendet, an den sich eine zweite Stufe mit einem horizontalen Rohrbündel anschließt mit glatten oder berippten Rohren. Diese zweite Stufe kann nass oder trocken betrieben werden. Im Nassbetrieb werden oberhalb des Rohrbündels angeordnete Düsen geöffnet, welche das Rohrbündel außenseitig benetzen, um die Kondensationsleistung zu steigern. Das nicht verdampfte Wasser wird unterhalb des Rohrbündels aufgefangen. Innerhalb des Rohrbündels wird der kondensierende Dampfstrom mehrfach umgelenkt.
Die GB 900 949 offenbart Wärmetauscher in A-Bauweise mit vorgeschalteter adiabater Kühlung zu kombinieren. Allerdings können nicht verdampfte Wassertropfen an der Struktur zu Korrosion und Ablagerungen führen, was aus wirtschaftlicher Sicht nicht erwünscht ist.
Es ist aus der US 7,926,555 B2 bekannt, den Dampfstrom einer Turbine über zwei separate Dampfverteilerleitungen einerseits zu einem luftgekühlten Kondensator zu leiten und andererseits zu einem Oberflächenkondensator, dessen Kühlrohre innenseitig gekühlt werden. Da der Oberflächenkondensator getrennt von dem Trockenkühler angeordnet ist, ergibt sich ein hoher apparativer Aufwand für die Dampfverteilleitung. Auch der Platzbedarf einer solchen Kondensatoranlage ist höher, weil eine größere Grundfläche benötigt wird. Zudem ist zu bedenken, dass auch bei einem Oberflächenkondensator das Kühlwasser in einem weiteren Kühlturm rückgekühlt werden muss, was den Platzbedarf noch einmal erhöht.
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine luftgekühlte Kondensatoranlage mit einem Trockenkühler mit mehreren A-förmig angeordneten Rohrbündeln dahingehend weiterzuentwickeln, dass möglichst kurze Dampfverteilleitungen bei geringem Platzbedarf und hoher Kühlleistung der Anlage realisierbar sind mit geringem Querschnitt.
Diese Aufgabe ist bei einer luftgekühlten Kondensatoranlage mit den Merkmalen des Patentanspruchs 1 gelöst.
Die Unteransprüche betreffen vorteilhafte Weiterbildungen der Erfindung.
Die erfindungsgemäße, luftgekühlte Kondensatoranlage umfasst einen Trockenkühler, der mehrere Rohrbündel aufweist. Die Rohrbündel werden innenseitig von einem zu kondensierenden Dampf durchströmt und außenseitig von Kühlluft gekühlt. Der Dampf wird über wenigstens eine Dampfverteilleitung zugeführt. Die Dampfverteilleitung verläuft im Bereich der oberen Enden der Rohrbündel. Die Rohrbündel sind A- oder V-förmig angeordnet. Den Trockenkühlern ist wenigstens ein Nass/Trockenkühler zugeordnet, der je nach Witterung (kühl, windstill) nur als Trockenkühler betrieben wird oder bei höheren Außentemperaturen und/oder starkem Wind zusätzlich mit Kühlwasser benetzt wird und in diesem Fall als Nasskühler dient. Der Nass/Trockenkühler ist an dieselbe Dampfverteilleitung angeschlossen wie der Trockenkühler. Aus der Dampfverteilleitung kommend ist der Dampf in den Nass/Trockenkühler einleitbar.
Die Erfindung sieht vor, dass der Nass/Trockenkühler an dieselbe, an den oberen Enden der Rohrbündel verlaufende Dampfverteilleitung angeschlossen wie die A- oder V-förmig angeordneten Rohrbündel. Die Dampfverteilleitung verläuft im Wesentlichen horizontal. Der Nass/Trockenkühler ist daher in unmittelbarer Nähe der A- oder V-förmig angeordneten Rohrbündel angeordnet. Die unmittelbare Nähe hat den Vorteil, dass keine weitere Dampfverteilleitung zur Zuführung des Dampfes zu einem entfernt angeordneten Nass/Trockenkühler erforderlich ist.
Dadurch ergibt sich die Möglichkeit, den Nass/Trockenkühler in seinen Abmessungen bezüglich der Grundfläche der A- oder V-förmig angeordneten Rohrbündel anzupassen. Üblicherweise werden A-förmig angeordnete Rohrbündel von unten mit Kühlluft angeströmt, die über einen Ventilator in den Anströmraum zwischen den A-förmig angeordneten Rohrbündeln gedrückt wird. Ein solcher Ventilator kann auch unterhalb des Nass/Trockenkühlers angeordnet werden. Der erfindungsgemäße Nass/Trockenkühler ist daher einfach in das Raster der Ventilatoren der Kondensatoranlage eingliederbar. Alternativ ist ein Lüfter bei einer V-förmigen Anordnung der Rohrbündel oberhalb der Rohrbündel angeordnet. Der Lüfter saugt Luft in den Raum zwischen den Rohrbündeln (InAir).
Der Nass/Trockenkühler ist den Trockenkühlern in Strömungsrichtung der Dampfverteilleitung vorgeschaltet. Das bedeutet, dass bei den A- oder V-förmig angeordneten Rohrbündeln, die typischerweise in K-D-Schaltung angeordnet sind, an erster Position der Nass/Trockenkühler angeströmt wird. Dadurch kann die Dampfverteilleitung für die nachfolgenden Trockenkühler kleiner ausfallen. Im Unterschied zu Systemen, bei welchen der Nass/Trockenkühler dem Dephlegmator nachgeschaltet ist, ist bei der Erfindung der Nass/Trockenkühler parallel zum Dephlegmator geschaltet. Berechnungen haben gezeigt, dass diese Anordnung des Nass/Trockenkühlers sich positiv auf die Verbesserung des Kraftwerkwirkungsgrades auswirkt. Der Kraftwerkwirkungsgrad wird hier nur stellvertretend für andere Anlagenwirkungsgrade genannt, weil insbesondere bei Dampfkraftwerken große Mengen von Dampf kondensiert werden müssen. In gleicher Weise ergeben sich positive Effekte für den Wirkungsgrad auch bei Prozessdämpfen anderer dampferzeugender Prozesse. Die Trockenkühler und der wenigstens eine Nass/Trockenkühler sind bei der A- Form bevorzugt in einer Reihe unterhalb der Dampfverteilleitungen angeordnet und gleichzeitig oberhalb einer Plattform mit Ventilatoren angeordnet. Es ist strömungstechnisch am günstigsten, den Massenstrom des Dampfes möglichst wenig umzuleiten. Daher wird eine lineare Anordnung von Nass/Trockenkühlern und sich anschließenden Trockenkühlern, und zwar in unmittelbarer Nachbarschaft bevorzugt. Die Anordnung von Ventilatoren an einer Plattform schafft unterhalb der Ventilatoren den notwendigen Ansaugraum für die Kühlluft.
Bei der V-Form befinden sich die Trockenkühler und der wenigstens eine Nass/Trockenkühler auch in einer Reihe, allerdings befindet sich die Dampfverteilleitung nicht zentral oberhalb des Nass/Trockenkühlers, sondern speist diesen von der Seite her. Der Lüfter des Nass/Trockenkühlers befindet sich unterhalb des Nass/Trockenkühlers.
In bevorzugter Weise werden mehrere Reihen von Trockenkühlern nebeneinander errichtet, weil hierdurch Einsparungen beim Stahlunterbau oder generell bei der Tragwerkskonstruktion möglich sind. Nicht jede Reihe von Trockenkühlern benötigt einen eigenen Nass/Trockenkühler. Dementsprechend kann neben der einen Reihe mit dem oben beschriebenen Nass/Trockenkühler wenigstens eine weitere Reihe ohne einen solchen Nass/Trockenkühler angeordnet sein. Dabei werden die wenigstens zwei Reihen von Dampfverteilleitungen gespeist, die bevorzugt parallel verlaufen und die an eine gemeinsame Hauptabdampfleitung angeschlossen sind. Im Ergebnis ist der Nass/Trockenkühler den wenigstens zwei Reihen gemeinsam zugeordnet. Ein einzelner Nass/Trockenkühler kann auch drei oder mehr Reihen zugeordnet sein. Eine typische Anordnung sieht beispielsweise drei nebeneinander verlaufende Reihen vor, die über drei Steigleitungen an eine Dampfzuführung angeschlossen sind. Der Nass/Trockenkühler ist in diesem Fall bevorzugt anfangs der mittleren Reihe benachbart der Steigleitung zur Dampfverteilleitung angeordnet. Der Nass/Trockenkühler besitzt dieselbe Grundfläche wie eine Gruppe von A- oder V-förmig angeordneten Trockenkühlern, so dass das Rastermaß einer aus ein oder mehreren Reihen bestehenden Kondensatoranordnungen eingehalten werden kann. Es ist sogar eine spätere Umrüstung einer bestehenden Kondensatoranlage mit einem solchen Nass/Trockenkühler möglich, um an besonders heißen Tagen die Kühlleistung zu erhöhen.
Der erfindungsgemäße Nass/Trockenkühler besitzt mehrere Kühlrohre, deren Eintrittsseiten an eine gemeinsame Eintrittskammer und deren Austrittsseiten an eine gemeinsame Kondensatsammelkammer angeschlossen sind. Die Austrittsseiten der Kühlrohre befinden sich tiefer als die jeweiligen Eintrittsseiten. Es muss lediglich sichergestellt werden, dass das Kondensat in hinreichender Menge abfließen kann. Die Neigung der Kühlrohre ist wesentlich geringer als die Neigung der A- oder V-förmigen Rohrbündel. Die Kühlrohre der Nass/Trockenkühler können unter Berücksichtigung des notwendigen Gefälles als im Wesentlichen horizontal verlaufend bezeichnet werden.
Der Nass/Trockenkühler besitzt eine Kühlwasserverteilung oberhalb der Kühlrohre, um Kühlwasser außenseitig auf den Kühlrohren zu verteilen. Unterhalb der Kühlrohre befinden sich Auffangmittel, um Kühlwasser, das nicht durch Kontakt mit den Kühlrohren verdunstet ist, unterhalb der Kühlrohre aufzufangen. Das aufgefangene Kühlwasser wird in einen Kühlwasserkreislauf zurückgeführt, um es erneut zur Kühlwasserverteilung zu pumpen. Eine Zwischenkühlung des Kühlwassers ist möglich.
Der Nass/Trockenkühler ist vorzugsweise von Wänden umgeben, die unterseitig der Kühlrohre einen Sammelraum für die Kühlluft begrenzen. Der erfindungsgemäße Nass/Trockenkühler basiert auf dem Prinzip, dass unterhalb des Trockenkühlers durch die Ventilatoren ein Überdruck erzeugt wird. Die Kühlluft strömt zwischen den Kühlrohren hindurch, wobei im Nassbetrieb die Verdunstungskälte des Kühlwassers ausgenutzt wird, um die Kühlleistung zu erhöhen. Auch ein saugender Betrieb ist möglich. Die erfindungsgemäße Kondensatoranordnung verhindert die Reduzierung der Kraftwerksleistung an sehr heißen Tagen oder auch bei windigen Bedingungen. Bei windigen Bedingungen, diezur Heißluftrezirkulation führen können, steigt die Leistung des Nass/Trockenkühlers wegen der erhöhten Verdampfung.
Die gemessenen Verdunstungsraten sind bei dem erfindungsgemäßen Nass/Trockenkühler niedriger als Verdunstungsraten bei anderen Technologien, wie z. B. bei der adiabaten Vorkühlung der Kühlluft. Dementsprechend ist der Anteil des Kühlwassers, der durch zunehmende Salzkonzentration auszutauschen ist, bei der erfindungsgemäßen Kondensatoranordnung auch geringer als bei separaten Nasskühltürmen.
Die Integration der Nasskühlung in Verbindung mit der ohnehin existierenden Dampfverteilleitung ist ein konstruktiver Vorteil, so dass der Platzbedarf insgesamt reduziert wird. Im Vergleich zu einer separaten, örtlich getrennten Nasskühlung können einige Strukturen und Komponenten entfallen, wie beispielsweise Nasskühltürme und entsprechend lange Rohrleitungen, Ventile sowie Oberflächenkondensatoren, über die der Prozessdampf nach außen geleitet wird. Hierbei ist nicht zu unterschätzen, dass das Kühlwasser in separaten Kühltürmen mit einem hohen Pumpaufwand bewegt werden muss. Bei der erfindungsgemäßen Kondensatoranordnung ist der Energiebedarf durch den Wegfall der großen Umwälzpumpen geringer.
Als weiterer Vorteil der Erfindung ist zu nennen, dass auch die umfangreiche Benetzung der Kühlrohre mittels Sprühdüsen, die auch grobe Tropfen ausstoßen, technisch einfacher und zuverlässiger zu realisieren ist als bei adiabatischer Vorkühlung der Kühlluft. Bei der adiabatischen Vorkühlung müssen Düsen verwendet werden, die feine Tropfen erzeugen, was nur mit hohem Wasserdruck möglich ist. Der Aufwand hierfür ist hoch. Zudem verstopfen Düsen mit kleinen Öffnungen naturgemäß nach einiger Zeit, wodurch die Tropfen größer werden und eine komplette Verdunstung der Tropfen nicht mehr erreicht werden kann. Dies kann zu einer unerwünschten Benetzung der Rohrbündel führen, was auch allein aus Korrosionsgründen nicht erwünscht ist.
Zusammengefasst ist es mit der erfindungsgemäßen Kondensatoranordnung möglich, die Kosten zur Errichtung eines Kühlungssystems aber auch die Betriebskosten zu senken. Der Platzbedarf für eine solche Anlage wird geringer. Gleichzeitig ist der gesamte Aufbau der Kühlanordnung weniger komplex als bei zwei getrennt angeordneten Kühlsystemen. Die erfindungsgemäße Kondensatoranordnung kann auf negative Umwelteinflüsse wie z. B. auf starke Winde oder auf die Rezirkulation von erwärmter Luft, sehr schnell reagieren, indem von der Trockenkühlung auf die Nasskühlung umgeschaltet wird. Das System kann rasch wieder abgeschaltet werden, wenn sich die Betriebsparameter wieder verbessert haben.
Die Erfindung wird nachfolgend anhand von in Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung einer Kondensatoranordnung in einer Seitenansicht;
Figur 2 einen Querschnitt durch die Kondensatoranordnung der Figur 1 im Bereich eines Nass/Trockenkühlers;
Figur 3 eine perspektivische Darstellung, teilweise im Schnitt, eines
Nass/Trockenkühlers gemäß dem Ausführungsbeispiel der Figuren 1 und 2;
Figur 4 ein Ausführungsbeispiel einer Kondensatoranordnung in der
Draufsicht;
Figur 5 die Kondensatoranordnung der Figur 4 in einer Seitenansicht in
Längsrichtung von Dampfverteilleitungen;
Figur 6 den Nass/Trockenkühler der Figuren 4 und 5 in der Seitenansicht im Schnitt; Figur 7 den Nass/Trockenkühler der Figur 6 im Querschnitt;
Figur 8 ein weiteres Ausführungsbeispiel einer Kondensatoranordnung in einer Stirnansicht und
Figur 9 das Ausführungsbeispiel der Figur 8 in einer perspektivischen
Darstellung.
Figur 1 zeigt eine Kondensatoranlage 1 zur Kondensation von Dampf 2, der über eine horizontal verlaufende Dampfverteilleitung 3 Prozessdampf aufnimmt. Die eingezeichneten Pfeile verdeutlichen die Strömungsrichtungen des Dampfes 2. Der Dampf 2 strömt über die Dampfverteilleitung 3 in der Bildebene von oben nach unten in vier kondensatorisch geschaltete Rohrbündel 4 ein. In diesen Rohrbündeln kondensiert der Dampf 2, wobei das Kondensat nach unten fließt und in einer Kondensatsammelleitung 5 aufgefangen und abgeleitet wird. Die mit K bezeichneten Rohrbündel 4 sind kondensatorisch geschaltet. Der Dampf 2 und das Kondensat strömen in dieselbe Richtung. Die vier kondensatorisch geschalteten Rohrbündel 4 kondensieren den Dampf 2 nicht vollständig. Überschüssiger Dampf 2 wird über die Dampfverteilleitung 3 einem dephlegmatorisch geschalteten Rohrbündel 6 zugeführt. Dieses Rohrbündel 6 wird vom Dampf 2 von unten nach oben, das heißt entgegen der Strömungsrichtung des Kondensats durchströmt. Am oberen Ende des dephlegmatorisch geschalteten Rohrbündels 6 befindet sich, hier nicht näher dargestellt, eine Absaugung für nicht kondensierte Gase.
Der vorstehend beschriebene Abschnitt der Kondensatoranlage bildet insgesamt einen Trockenkühler 7, weil er von unten von Kühlluft 8 angeströmt wird, die über Ventilatoren 9 unterhalb der Rohrbündel 4 bewegt wird.
Zusätzlich zu dem Trockenkühler 7, bestehend aus den mehreren A-förmig angeordneten Rohrbündeln 4, 6, gibt es bei der erfindungsgemäßen Kondensatoranlage einen Nass/Trockenkühler 10. Er wird ebenfalls von Kühlluft 8 angeströmt, die von einem Ventilator 9 bewegt wird. Der Nass/Trockenkühler 10 wird parallel zu dem Trockenkühler 7 betrieben und ist ebenfalls unmittelbar mit der Dampfverteilleitung verbunden. Der Nass/Trockenkühler 10 befindet sich daher in Parallelschaltung mit den nachfolgenden Trockenkühlern. Die firstseitige Dampfverteilleitung 3 ist die gemeinsame Versorgungsleitung für den Nass/Trockenkühler 10 und den darauf folgenden Trockenkühler 7. Der Platzbedarf des Nass/Trockenkühlers 10 ist an das Rastermaß der Ventilatoren 9 bzw. der Rohrbündel 4 angepasst. Der Nass/Trockenkühler 10 ist mit nur geringem baulichen Mehraufwand eingliederbar.
Figur 2 zeigt eine Schnittdarstellung im Querschnitt durch die Dampfverteilleitung 3 im Bereich des Nass/Trockenkühlers 10. Kühlluft 8 wird durch den Ventilator 9 von unten angesaugt und in einen Sammelraum 11 unterhalb von Kühlrohren 12 gedrückt. Die Kühlluft 8 wird beim außenseitigen Vorbeiströmen an den Kühlrohren 12 erwärmt und tritt oben als warme Abluft im Bereich der Pfeile P1 beiderseits der Dampfverteilleitung 3 aus.
Der zu kondensierende Dampf 2 wird von der oberhalb des Nass/Trockenkühlers 10 angeordneten Dampfverteilleitung 3 zentral und zu beiden Seiten hin in eine Eintrittskammer 13 und von dort in die angeschlossenen Kühlrohre 12 geleitet. Das sich bildende Kondensat wird in Kondensatsammelkammern 14 aufgefangen und über Anschlüsse 15 abgeleitet. Die Kühlrohre 12 haben ein leichtes Gefälle von innen nach außen, damit das Kondensat in Richtung der Kondensatsammelkammern 14 fließt. Der Nass/Trockenkühler 10 kann sowohl im Trockenbetrieb als auch im Nassbetrieb betrieben werden. Im Nassbetrieb werden die Kühlrohre 12 außenseitig mit Kühlwasser 16 beaufschlagt, das über eine Wasserverteilung 17 oberhalb der Kühlrohre 12 ausgebracht wird. Bei der Wasserverteilung 17 kann es sich um eine Anordnung von Düsen handeln. Oberhalb der Wasserverteilung 17 befindet sich ein Tropfenabscheider 25, der von der erwärmten Kühlluft 8 durchströmt wird. Der Tropfenabscheider 25 kann eine gitterartige Anordnung aus Blechen sein, die verhindern soll, dass seitliche Winde die gleichmäßige Anströmung der Kühlrohre 12 von unten beeinträchtigen und damit die Kondensationsleistung reduzieren.
Kühlwasser 16, das nicht verdunstet, wird über Auffangmittel 18 unterhalb der Kühlrohre 12 aufgefangen. Das Kühlwasser 16 wird in einen Kreislauf zurückgeführt und über eine nicht näher dargestellte Pumpe erneut zur Wasserverteilung 17 geleitet. Die Auffangmittel 18 sind so angeordnet, dass die Kühlluft 8 zwischen benachbarten Auffangmitteln 18 hindurchströmen kann und dadurch die Kühlrohre 12 erreicht.
Figur 3 zeigt die erfindungsgemäße Anordnung in einer perspektivischen Darstellung. Die Dampfverteilleitung 3 leitet den Dampf 2 in der Bildebene von rechts nach links. Der Querschnitt der Dampfverteilleitung 3 reduziert sich in Strömungsrichtung des Dampfes 2. Es ist zu erkennen, dass die Dampfverteilleitung 3 firstseitig der A-förmig angeordneten Rohrbündel 4 verläuft, die mit ihren unteren Enden an die Kondensatsammelleitung 5 angeschlossen sind. Kühlluft 8 wird über die Ventilatoren 9 durch die trichterförmige Einströmdüse 19 von unten in den dreieckförmigen Raum unterhalb der Rohrbündel 4 gedrückt. Oberhalb der Rohrbündel 4 strömt die erwärmte Kühlluft 8 in Richtung der Pfeile P1 ab.
In der Bildebene links befindet sich ein Trockenkühler 7 und in der Bildebene rechts ein Nass/Trockenkühler 10. Der Nass/Trockenkühler 10 befindet sich unmittelbar unterhalb der Dampfverteilleitung 3. Auch er wird von unten von kalter Kühlluft 8 angeströmt. Der Nass/Trockenkühler 10 ist im Nassbetrieb dargestellt. Kühlwasser 16 wird über Düsen der Wasserverteilung 17 versprüht und gelangt dadurch außenseitig auf die als zeichnerisch vereinfacht als massiver Block dargestellten Kühlrohre 12. Unterhalb der Kühlrohre 12 befindet sich das Auffangmittel 18 in Form von mehreren Rinnen, die das nicht verdunstete Kühlwasser 16 ableiten und einer Sammelleitung 20 zuführen. Die Sammelleitung 20 ist an einen Kühlwasserkreislauf 21 angeschlossen, der über eine Pumpe und einen Tank 22 verfügt und das Wasser zum erneuten Verteilen der Wasserverteilung 17 zuführt. Gleichzeitig wird innerhalb der Kühlrohre 12 des Nass/Trockenkühlers 10 der Dampf 2 kondensiert und in nicht näher dargestellter Weise aufgefangen. Das Ganze geschieht beiderseits der firstseitigen Dampfverteilleitung 3. Damit die Kühlluft 8 nicht seitlich abströmen kann, besitzt der Nass/Trockenkühler 10 geschlossene Wände 23, die den Bereich zwischen dem Ventilator 9 und der Wasserverteilung 17 sowie dem Tropfenabscheider 25 umschließen. Dadurch wird sichergestellt, dass die warme Kühlluft 8 in Richtung der Pfeile P1 nur oberhalb der Kühlwasserverteilung 17 und oberhalb der Tropfenabscheider 25 austritt.
Figur 4 zeigt eine Kondensatoranordnung 1 mit drei Reihen R1 , R2, R3 mit jeweils vier Ventilatoren 9. In den beiden äußeren Reihen R1 , R3 befinden sich unterhalb der Dampfverteilleitungen 3 ausschließlich Trockenkühler 7. In der mittleren Reihe R2 befindet sich zusätzlich ein Trockenkühler 10, so dass es in der mittleren Reihe R2 drei Trockenkühler 7 und einen Nass/Trockenkühler 10 gibt. Die Darstellung verdeutlicht, dass der Platzbedarf für die Kombination aus Nass/Trockenkühler 10 und Trockenkühlern 7 nicht größer ist, weil der Nass/Trockenkühler 10 vollständig in die bisher aus reinen Trockenkühlern 7 gebildete Kondensatoranlage 1 eingegliedert ist. Auch in der Höhe ergibt sich kein zusätzlicher Bedarf für Bauraum (Figur 5).
Die Ansicht der Figur 5 zeigt die firstseitigen Dampfverteilleitungen der drei Reihen R1 , R2, R3 und die A-förmig angeordneten Rohrbündel 4 der Trockenkühler 7. Der zentrale Nass/Trockenkühler 10, der an die mittlere Dampfverteilleitung 3 angeschlossen ist, ist nicht breiter als die Anordnung der A-förmig positionierten Rohrbündel 4. Dadurch können identische Ventilatoren 9 verwendet werden. Es wird in Bodennähe kein weiterer Bauraum für die Kühlrohre 12 des Nass/Trockenkühlers 10 benötigt. Lediglich eine Pumpe und ein Tank 22 für das Kühlwasser 16 sind erforderlich, um den Kreislauf für das Kühlwasser 16 aufrecht zu erhalten. Eine Hauptabdampfleitung 26 leitet den Dampf 2 über Steigleitungen den drei firstseitigen Dampfverteilleitungen 3 zu. Die Figuren 6 und 7 zeigen den Nass/Trockenkühler 10 der Figuren 4 und 5 im Längs- sowie im Querschnitt. Insbesondere aus Figur 7 ist zu erkennen, dass die Auffangmittel 18 leicht geneigt angeordnet sind, damit das Kühlwasser 16, das über die Wasserverteilung 17 auf den Kühlrohren 12 verteilt wird, von dem Auffangmittel 18 aufgefangen und der rinnenförmigen, nach oben offenen Sammelleitung 20 zugeführt wird. Das Auffangmittel 18 besteht aus mehreren z.B. U- oder V-förmigen Rinnen, die parallel zueinander verlaufen, und in dem Ausführungsbeispiel der Figur 7 das Kühlwasser 16 in der Bildebene nach links leiten. Das Wärmetauscherpaket mit den Kühlrohren 12 ist in dieser Darstellung im Wesentlichen horizontal angeordnet, so dass es vollständig von der Wasserverteilung 17 in Länge und Breite überspannt wird, so dass die Kühlrohre 12 gleichmäßig benetzt werden können. Der Ventilator 9 mit seinem Antrieb 24 wird daher weitestgehend vor Feuchtigkeit geschützt. Der Antrieb 24 ist ein Elektromotor. Er kann über ein Getriebe mit dem Ventilator verbunden sein. Der Elektromotor kann auch als Direktantrieb ausgeführt sein, ohne dass ein zusätzliches Getriebe erforderlich ist. Es kann sich dabei um einen vierpoligen Motor handeln oder um einen Permanent-Magnet-Motor.
Figur 8 zeigt in einer Seitenansicht in stark schematisierter Darstellung eine V- förmige Anordnung von Trockenkühlern 7, die jeweils an oberseitige Dampfverteilleitungen 3 angeschlossen sind. Bei diesem Ausführungsbeispiel sind zwei Reihen von Trockenkühlern 7 nebeneinander dargestellt, so dass sich eine W-förmige Struktur ergibt. Im Unterschied zu den drückenden Lüftern bei den vorher dargestellten Ausführungsbeispielen in A-förmiger Bauweise befinden sich die Ventilatoren 9 nun oberhalb der Trockenkühler 7, benachbart der Dampfverteilleitungen 3. Kühlluft wird also in den dreieckigen Raum zwischen den Trockenkühlern 7 gesaugt und nach oben abgeleitet. Das Kondensat, das sich in den Rohrbündeln bildet, fließt nach unten in eine Kondensatsammelleitung 5. Aus der Darstellung ist ferner erkennbar, dass der Nass/Trockenkühler 10, der sich oberhalb der Kondensatsammelleitung 5 befindet, jeweils von zwei Dampfverteilleitungen 3 seitlich gespeist wird. Zur Anströmung des Nass/Trockenkühlers 10 ist ein weiterer Ventilator 9 unterhalb des Nass/Trockenkühlers 10 angeordnet. Dies wird aus der Darstellung der Figur 9 deutlicher.
Die stark vereinfachte Darstellung der Figur 9 (teilweise im Schnitt) zeigt die Ventilatoren 9 zwischen den Dampfverteilleitungen 3 an den oberen Enden der Rohrbündel 6. Beispielhaft ist nur ein Nass/Trockenkühler 10 dargestellt, der von den beiden angrenzenden Dampfverteilleitungen 3 gespeist wird. Nur für diesen einzelnen Nass/Trockenkühler 10 ist der zusätzliche Ventilator 9 vorgesehen, der unterhalb des Nass/Trockenkühlers 10 angeordnet ist. Während die Ventilatoren 9 für die Trockenkühler 7 die Luft durch die Rohrbündel 6 saugen, drückt der untere Ventilator 9 die Luft von unten durch den Nass/Trockenkühler 10. In stark vereinfachter Weise ist dargestellt, dass sowohl für die Trockenkühler 7 als auch für den Nass/Trockenkühler 10 getrennte Räume vorhanden sind, um den jeweiligen Luftstrom zu dem Nass/Trockenkühler 10 oder zu den Rohrbündeln 6 zu leiten.
Bezuqszeichen:
1 - Kondensatoranlage
2 - Dampf
3 - Dampfverteilleitung
4 - Rohrbündel
5 - Kondensatsammelleitung
6 - Rohrbündel
7 - Trockenkühler
8- Kühlluft
9 - Ventilator
10- Nass/Trockenkühler
11 - Sammelraum
12- Kühlrohr
13- Eintrittskammer
14- Kondensatsammelkammer
15- Anschluss
16- Kühlwasser
17- Wasserverteilung
18- Auffangmittel
19- Einströmdüse
20 - Sammelleitung
21 - Kühlwasserkreislauf
22- Pumpe und Tank
23 - Gehäuse
24 - Antrieb
25- Tropfenabscheider
26 - Hauptabdampfleitung
P1 - warme Kühlluft
K - kondensatorisches Rohrbündel D - dephlegmatorisches Rohrbündel R1 - Reihe 1
R2 - Reihe 2
R3 - Reihe 3

Claims

Patentansprüche
1. Luftgekühlte Kondensatoranlage mit wenigstens einem Trockenkühler (7), der mehrere Rohrbündel (4, 6) aufweist, die außenseitig von Kühlluft (8) gekühlt werden und innenseitig von einem zu kondensierenden Dampf (2) durchströmt werden, und mit wenigstens einer Dampfverteilleitung (3), wobei dem wenigstens einen Trockenkühler (7) wenigstens ein Nass/Trockenkühler (10) zugeordnet ist, der je nach Witterung durch äußere Benetzung mit Kühlwasser (16) als Nasskühler oder alternativ als Trockenkühler dient, wobei der Nass/Trockenkühler (10) an dieselbe Dampfverteilleitung (3) angeschlossen ist und von Kühlluft (8) angeströmt wird, die von einem Ventilator (10) bewegt wird, wobei Dampf (2) aus der Dampfverteilleitung (3) kommend in den Nass/Trockenkühler (10) einleitbar ist, dadurch gekennzeichnet, dass der Nass/Trockenkühler (10) dem wenigstens einen Trockenkühler (7) in Strömungsrichtung des Dampfes (2) in der Dampfverteilleitung (3) vorgelagert ist.
2. Kondensatoranordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der wenigstens eine Trockenkühler (7) und der wenigstens eine Nass/Trockenkühler (10) in einer Reihe (R2) unterhalb der Dampfverteilleitung (3) und oberhalb einer Plattform mit Ventilatoren (9) angeordnet sind.
3. Kondensatoranordnung nach Anspruch 2, dadurch gekennzeichnet, dass neben der einen Reihe (R2) mit dem Nass/Trockenkühler (10) wenigstens eine weitere Reihe (R1 , R3) ohne Nass/Trockenkühler (10) angeordnet ist, wobei die wenigstens zwei Reihen (R1 , R2, R3) von Dampfverteilleitungen (3) gespeist werden, die an eine gemeinsame Hauptabdampfleitung (26) angeschlossen sind.
4. Kondensatoranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Nass/Trockenkühler (10) dieselbe Grundfläche oberhalb eines Ventilators (9) hat wie eine Gruppe von A- oder V-förmig angeordneten Rohrbündeln (4, 6).
5. Kondensatoranordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Nass/Trockenkühler (10) mehrere Kühlrohre (12) umfasst, deren Eintrittsseiten an eine gemeinsame Eintrittskammer (13) und deren Austrittsseiten an eine gemeinsame Kondensatsammelkammer (14) angeschlossen sind.
6. Kondensatoranordnung nach Anspruch 5, dadurch gekennzeichnet, dass der Nass/Trockenkühler (10) eine Kühlwasserverteilung (17) oberhalb der Kühlrohre (12) besitzt, um Kühlwasser (16) auf den Kühlrohren (12) zu verteilen, und Auffangmittel (18) unterhalb der Kühlrohre (12), um Kühlwasser (16) unterhalb der Kühlrohre (12) aufzufangen.
7. Kondensatoranordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Nass/Trockenkühler (10) von geschlossenen Wänden (23) umgeben ist, die unterseitig der Kühlrohre (12) einen Sammelraum (11 ) für Kühlluft (8) begrenzen.
8. Kondensatoranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der wenigstens eine aus Rohrbündeln (4, 6) gebildete Trockenkühler (7) wenigstens einen Kondensatorteil und einen Dephlegmatorteil besitzt.
EP18821991.9A 2017-12-20 2018-12-06 Luftgekühlte kondensatoranlage Active EP3728975B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017130807.5A DE102017130807A1 (de) 2017-12-20 2017-12-20 Luftgekühlte Kondensatoranlage
PCT/DE2018/100997 WO2019120376A1 (de) 2017-12-20 2018-12-06 Luftgekühlte kondensatoranlage

Publications (2)

Publication Number Publication Date
EP3728975A1 true EP3728975A1 (de) 2020-10-28
EP3728975B1 EP3728975B1 (de) 2021-08-18

Family

ID=64744342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18821991.9A Active EP3728975B1 (de) 2017-12-20 2018-12-06 Luftgekühlte kondensatoranlage

Country Status (5)

Country Link
EP (1) EP3728975B1 (de)
DE (1) DE102017130807A1 (de)
ES (1) ES2897556T3 (de)
HU (1) HUE056954T2 (de)
WO (1) WO2019120376A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567291A (zh) * 2019-09-20 2019-12-13 华北电力科学研究院有限责任公司 一种空冷岛的蒸汽分配系统
RU196300U1 (ru) * 2019-12-23 2020-02-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Дефлегматор
RU2760424C1 (ru) * 2021-04-13 2021-11-24 Акционерное общество "Машиностроительный завод "ЗиО-Подольск" (АО "ЗиО-Подольск") Воздушно-конденсационная установка и способ ее работы при пусках при минимальном расходе пара и отрицательных температурах охлаждающего воздуха

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US900949A (en) 1907-11-13 1908-10-13 W H Benteen Apple quartering and trimming machine.
GB900949A (en) * 1958-10-27 1962-07-11 Happel Gmbh Air and water cooled heat exchanger
BE754580A (fr) * 1969-08-08 1971-01-18 Balcke Maschbau Ag Procede pour l'exploitation d'une tour de refrigeration a sec sous des temperatures d'air elevees
US4506508A (en) * 1983-03-25 1985-03-26 Chicago Bridge & Iron Company Apparatus and method for condensing steam
BE1006285A3 (fr) * 1992-10-28 1994-07-12 Hamon Sobelco Sa Procede et dispositif de condensation d'appoint dans une centrale d'energie.
WO2008002635A2 (en) * 2006-06-27 2008-01-03 Gea Power Cooling Systems, Llc Series-parallel condensing system
CN101936669B (zh) * 2010-09-02 2012-09-05 洛阳隆华传热科技股份有限公司 一种混联式复合凝汽方法及凝汽器
CN201772768U (zh) * 2010-09-02 2011-03-23 洛阳隆华传热科技股份有限公司 空蒸并联高效复合凝汽器
CN103827619B (zh) 2011-07-15 2016-11-16 斯泰伦博斯大学 分凝器
JP6086746B2 (ja) * 2013-02-14 2017-03-01 アネスト岩田株式会社 動力発生装置及びその運転方法

Also Published As

Publication number Publication date
HUE056954T2 (hu) 2022-04-28
EP3728975B1 (de) 2021-08-18
DE102017130807A1 (de) 2019-06-27
ES2897556T3 (es) 2022-03-01
WO2019120376A1 (de) 2019-06-27

Similar Documents

Publication Publication Date Title
DE2754330C2 (de)
DE60309217T2 (de) Kombinierter kondensator mit luftkühlung
DE4439801C2 (de) Luftbeaufschlagter Trockenkühler
EP3728975B1 (de) Luftgekühlte kondensatoranlage
DE2845181A1 (de) Rohrbuendel
DE2166477A1 (de) Vorrichtung fuer die verteilung des zu kuehlenden mediums, insbesondere warmwasser, auf die rieseleinbauten bei nasskuehltuermen
DE3205879A1 (de) Luftgekuehlter dampfverfluessiger
DE202011109035U1 (de) Vorrichtung zur Rückgewinnung des aus Kühltürmen in Form von Dampf austretenden Wassers
DE2828942C2 (de) Kondensator
EP0939288A1 (de) Kondensationssystem
EP1996886B1 (de) Luftbeaufschlagter kondensator
DE2132264A1 (de) Verdunstungswaermetauscher mit Injektor
DE2045082B2 (de) Berieselungskoerper fuer luftbefeuchter
EP1883774B1 (de) Kondensationsanlage
DE2418545A1 (de) Verfahren und vorrichtung zum einkuehlen von waren
WO2006099970A2 (de) Nasskühlturm
DE1939245C3 (de) Luftgekühlter Kondensator für das Kopf produkt einer Destillier- oder Rektifizier-Kolonne
WO2021116177A1 (de) Kältemaschine mit einem verdampfer, einem ansaugtrichter und einem verflüssiger
DE3510277A1 (de) Bruedenkondensor
EP0170616B1 (de) Anordnung zur Verminderung der Schwadenbildung bei einem Hybridkühlturm
EP0687878B1 (de) Verdunstungskühlturm
DE3041754C2 (de)
WO2023217319A1 (de) Kondensationsanlage
DE10016080A1 (de) Kondensator
DE102008031221B3 (de) Kondensationsanlage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006680

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1421997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2897556

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E056954

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018006680

Country of ref document: DE

Owner name: ENEXIO ACC GMBH, DE

Free format text: FORMER OWNER: ENEXIO GERMANY GMBH, 44651 HERNE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006680

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220519

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ENEXIO ACC GMBH

Effective date: 20220720

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: ENEXIO GERMANY GMBH, DE

Free format text: FORMER OWNER(S): ENEXIO GERMANY GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: ENEXIO ACC GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ENEXIO GERMANY GMBH

Effective date: 20220706

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: ENEXIO ACC GMBH, DE

Free format text: FORMER OWNER(S): ENEXIO GERMANY GMBH, DE; ENEXIO GERMANY GMBH, DE

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Representative=s name: SBGK SZABADALMI UEGYVIVOEI IRODA, HU

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211206

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 6

Ref country code: HU

Payment date: 20231222

Year of fee payment: 6

Ref country code: FR

Payment date: 20231222

Year of fee payment: 6

Ref country code: DE

Payment date: 20231030

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 6