WO2021116177A1 - Kältemaschine mit einem verdampfer, einem ansaugtrichter und einem verflüssiger - Google Patents

Kältemaschine mit einem verdampfer, einem ansaugtrichter und einem verflüssiger Download PDF

Info

Publication number
WO2021116177A1
WO2021116177A1 PCT/EP2020/085289 EP2020085289W WO2021116177A1 WO 2021116177 A1 WO2021116177 A1 WO 2021116177A1 EP 2020085289 W EP2020085289 W EP 2020085289W WO 2021116177 A1 WO2021116177 A1 WO 2021116177A1
Authority
WO
WIPO (PCT)
Prior art keywords
funnel
refrigerating machine
heat exchanger
inlet opening
evaporator
Prior art date
Application number
PCT/EP2020/085289
Other languages
English (en)
French (fr)
Inventor
Nicolò Cattania
Roland Klein
Johannes Lang
Original Assignee
Efficient Energy Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efficient Energy Gmbh filed Critical Efficient Energy Gmbh
Priority to DE112020004929.9T priority Critical patent/DE112020004929A5/de
Publication of WO2021116177A1 publication Critical patent/WO2021116177A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/046Condensers with refrigerant heat exchange tubes positioned inside or around a vessel containing water or pcm to cool the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a refrigeration machine according to the preamble of claim 1.
  • Compression chillers that use water (R718) as the refrigerant are currently in demand, either as cooling or heat generators.
  • the cycle of such refrigeration machines typically includes the evaporation of water in a low vacuum, the subsequent compression of the resulting water vapor in a low vacuum and finally the liquefaction of the water vapor at a higher pressure and temperature level.
  • a so-called intake funnel is used to collect the water vapor from the evaporator and to feed it to the compressor suction device at a controlled increasing speed despite the rough vacuum prevailing above the evaporator.
  • Great care must be taken to ensure that the intake funnel is designed in a fluidically favorable manner. This is because the turbo compressors driving the cycle of such refrigerating machines have to cope with high suction flows. Any flow breaks that occur in the area of the flow funnel and the further pressure drop that can be found there therefore lead to a decisive impairment of the efficiency of such a refrigeration machine.
  • the intake funnels previously designed for this purpose are approximately conical and inherently rotationally symmetrical. They have a round inlet opening, which is adjoined towards the discharge opening by an increasingly smaller flow cross-section, which takes into account the increasing speed of the sucked in water vapor flow towards the suction of the turbo-compressor.
  • the object of the invention is to create a refrigeration machine in which the intake funnel can be assembled more easily without having to make significant compromises in terms of intake efficiency.
  • the solution according to the invention resides in a refrigerating machine that can be used as a cold or heat generator with an evaporator for evaporating the refrigerant, a suction funnel, a compressor and a condenser.
  • the suction funnel catches evaporated refrigerant, collects it and feeds it to the compressor connected to its discharge opening.
  • its clear cross section is reduced from its inlet opening to its discharge opening, in such a way that despite the increasing speed towards its discharge opening of the water vapor flow is nowhere reached a critical negative pressure below which a stall is to be expected.
  • the intake funnel has an inlet opening, the clear cross-section of which - at least essentially - has an elliptical shape with a first clear cross-sectional area LQF 1.
  • the intake funnel has a dispensing opening, the clear cross-section of which - at least essentially - has an elliptical or circular shape with a second clear cross-sectional area LQF 2.
  • LQF1> LQF2 whereby LQF1> 1.75 * LQF2 preferably applies and the ideal case even satisfies the condition LQF1> 2.75 * LQF2.
  • elliptical shape denotes a shape - completely or at least substantially - corresponding to an ellipse.
  • elliptical shape also denotes one of the circular shape and shape deviating from the real ellipse shape. It is then a shape that only approximately corresponds to the shape of an ellipse, such as an oval or an almond shape.
  • This design of the intake funnel leads to the fact that the intake funnel can be assembled and dismantled relatively easily, despite the largest possible design of its inlet opening, even in confined spaces, since it can be rotated one or more times during the installation process so that the intake funnel with its the narrow side formed on the inlet opening can be pushed past obstacles to be passed in the course of the installation. This is how you can do the Install and remove the intake funnel without removing the condenser.
  • Figure 1 illustrates the structure and the functional principle of the refrigeration machine or heat pump according to the invention preferably used type of system, here using the example of the heat pump 2a with its evaporator 3 and its condenser 4 and the associated evaporator inputs and outputs 3.1 and 3.2 as well as the associated condenser inlets and outlets 4.1 and 4.2.
  • the cold liquid enters the evaporator 3 of the heat pump via the evaporator inlet 3.1.
  • the vapor W produced during the evaporation is compressed by the turbo compressor 17, which is driven by an electric motor, preferably at more than 25,000 revolutions per minute to a maximum of one third of its initial volume, its pressure and temperature increasing. It is pressed into the condenser 4 in the process.
  • the heated steam W condenses in the condenser 4 directly into the circulating coolant flow K, the heat of condensation given off in the process also heats it by approx. 6 ° C.
  • the circuit is closed via a self-regulating expansion element 18.
  • FIG. 1 does not show the heat exchangers that are preferably used within the evaporator and mostly also within the condenser according to the invention.
  • the figure also shows the chimney-like ascending "suction area" only rudimentary, within which the current generated by the evaporator rises and is fed to the suction of the compressor.
  • FIGS. 2 and 3 The details that are desirable in this regard are shown in FIGS. 2 and 3.
  • the intake funnel 6 with its inlet opening 7 and its discharge opening 8 can be seen clearly in FIGS. 2 and 3.
  • the evaporator 3 and the condenser 4 are separated from one another. In the present case, the separation takes place by the mostly horizontally running, generally essentially flat bulkhead 9.
  • the intake funnel is positioned like a chimney (without a chimney effect necessarily having to be achieved in all cases). It collects the rising steam and feeds it to the radial compressor 2, which is arranged at its other end, on its axial suction side.
  • the intake funnel 6 breaks through the bulkhead 9.
  • Its inlet opening 7 usually has a radial flange 12 that is ground on the side of its contact surface.
  • the suction funnel On the side of its discharge opening 8, the suction funnel has a socket, which is usually ground on its contact side, or a plug-in nozzle 13 which is ground on its contact side. With this, the suction funnel is pushed onto or into the suction mouth of the centrifugal compressor tightly. This simplifies the assembly under the spatially cramped conditions encountered here.
  • the heat exchanger 5 of the evaporator is designed here as a tube bundle heat exchanger.
  • the longitudinal axes of the tubes of the tube bundle preferably run essentially perpendicular to the longitudinal axis L of the intake funnel.
  • the tube bundle of this heat exchanger expediently has a length L ⁇ and a width B, if it is projected onto the imaginary plane that spans the inlet opening 7 perpendicular to the longitudinal axis L of the intake funnel - it should be noted with regard to FIG. 2 that here only half Width of the tube bundle is shown.
  • the intake funnel 6 preferably takes this into account. Then the longest side of its clear entry surface is in the Aligned substantially or completely parallel to the length L ⁇ of the tube bundle heat exchanger. Its shortest side is arranged in a corresponding manner parallel to the width B of the tube bundle heat exchanger.
  • the condenser 4 is preferably also equipped with a tube bundle heat exchanger. Ideally, what has just been said about the tube bundle heat exchanger of the evaporator applies accordingly - with the exception that the heat exchanger 10 of the condenser 4 is divided into at least two heat exchanger components that leave an area or a window between them at least locally. The intake funnel 6 can be pushed through this area or this window in order to thereby contact the suction mouth of the compressor 2 which is at least partially above the heat exchanger components.
  • FIGS 4, 5 and 6 show the suction funnel 6 according to the invention as such in detail.
  • the suction funnel 6 is preferably made of a material produced by 3D printing, plastic or metal. It consists of a material that is usually at least macroscopically recognizable by its granularity, which is, so to speak, the "footprint" of 3D printing. This material is preferably sealed by infiltrating a suitable material or additive before it is used for the first time the suction funnel 6 is made by plastic injection molding or metal spinning.
  • FIG. 3 shows the intake funnel approximately from the perspective shown in FIG. 2
  • FIG. 4 shows it in a position rotated by 90 ° about the longitudinal axis L by comparison.
  • the ribs 11 used for reinforcement can also be clearly seen.
  • protection for a refrigeration machine is also claimed with an evaporator for evaporating the refrigerant, an intake funnel, a compressor and a condenser, where the Suction funnel collects evaporated refrigerant and feeds it to the compressor connected to its discharge opening along its clear cross-section, which decreases from its inlet opening to its discharge opening, the suction funnel being predominantly or essentially asymmetrical with respect to its longitudinal axis L.
  • the intake funnel does not have any circular cross-sections when cut perpendicular to the longitudinal axis L over the predominant or even complete part of its length along the longitudinal axis L.
  • Such protection is also claimed for an intake funnel, which instead is characterized in that at least its inlet opening (its clear cross-section) is out of round or elliptical, oval or almond-shaped and merges continuously into the rest of the intake funnel.
  • LQF1 first clear cross-sectional area of the inlet opening of the intake funnel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Kältemaschine (1) mit einem Verdampfer (3) zum Verdampfen des Kältemittels, einem Ansaugtrichter (6), einem Verdichter (2) und einem Verflüssiger (4), wobei der Ansaugtrichter (6) verdampftes Kältemittel auffängt und dem an seiner Abgabeöffnung (8) angeschlossenen Verdichter (2) entlang seines sich von seiner Eintrittsöffnung (7) zu seiner Abgabeöffnung (8) hin verringernden lichten Querschnitts zuführt, wobei der Ansaugtrichter (6) eine Eintrittsöffnung (7) besitzt, deren lichter Querschnitt (im Wesentlichen) eine ellipsenartige Gestalt mit einer ersten lichten Querschnittsfläche (LQF1) besitzt, und eine Abgabeöffnung (8), deren lichter Querschnitt (im Wesentlichen) eine ellipsenartige oder kreisrunde Gestalt mit einer zweiten lichten Querschnittsfläche (LQF2) besitzt, wobei LQF1 > LQF2 ist.

Description

KÄLTEMASCHINE MIT EINEM VERDAMPFER, EINEM ANSAUGTRICHTER UND
EINEM VERFLÜSSIGER
Die Erfindung betrifft eine Kältemaschine nach dem Oberbegriff des Anspruchs 1.
TECHNISCHER HINTERGRUND
Aktuell sind, wahlweise als Kälte- oder Wärmeerzeuger dienende, Kompressionskältemaschinen gefragt, die Wasser (R718) als Kältemittel einsetzen.
Der Kreisprozess solcher Kältemaschinen beinhaltet typischerweise die Verdampfung von Wasser im Grobvakuum, die anschließende Verdichtung des entstandenen Wasserdampfes im Grobvakuum und schließlich die Verflüssigung des Wasserdampfes auf einem höheren Druck- und Temperaturniveau. Um den Wasserdampf des Verdampfers zu sammeln und ihn trotz des über dem Verdampfer herrschenden Grobvakuums dem Ansauger des Verdichters mit kontrolliert zunehmender Geschwindigkeit zuzuleiten, wird ein sogenannter Ansaugtrichter eingesetzt. Dabei ist große Sorgfalt auf eine strömungstechnisch günstige Gestaltung des Ansaugtrichters zu verwenden. Dies deshalb, weil die den Kreisprozess solcher Kältemaschinen treibenden Turboverdichter hohe Ansaugströme bewältigen müssen. Etwaige im Bereich des Strömungstrichters und der dort anzutreffenden, weiteren Druckabsenkung entstehende Strömungsabrisse führen daher zu einer entscheidenden Beeinträchtigung des Wirkungsgrades einer solchen Kältemaschine.
Die bisher zu diesem Zweck konzipierten Ansaugtrichter sind näherungsweise kegelförmig und in sich rotationssymmetrisch. Sie besitzen eine runde Eintrittsöffnung, an die sich zur Abgabeöffnung hin ein immer kleiner werdender Strömungsquerschnitt anschließt, der der zum Ansaugen des Turboverdichters hin immer größer werdenden Geschwindigkeit des angesaugten Wasserdampfstroms Rechnung trägt.
Es ist aus verschiedenen Gründen günstig, die hier in Rede stehende Kältemaschine mit einem innenliegenden Verflüssiger auszurüsten, der oberhalb des Verdampfers angeordnet ist. Eine solche Konzeption der Kältemaschine macht allerdings die Montage des Ansaugtrichters schwierig.
DIE AUFGABE DER ERFINDUNG
Angesichts dessen ist es die Aufgabe der Erfindung, eine Kältemaschine zu schaffen, bei der sich der Ansaugtrichter einfacher montieren lässt, ohne dass dabei wesentliche Kompromisse bei der Ansaugeffizienz eingegangen werden müssen.
DIE ERFINDUNGSGEMASSE LOSUNG
Die erfindungsgemäße Lösung liegt in einer als Kälte- oder Wärmeerzeuger einsetzbaren Kältemaschine mit einem Verdampfer zum Verdampfen des Kältemittels, einem Ansaugtrichter, einem Verdichter und einem Verflüssiger. Der Ansaugtrichter fängt verdampftes Kältemittel auf, sammelt es und führt es dem an seiner Abgabeöffnung angeschlossenen Verdichter zu. Dabei verringert sich sein lichter Querschnitt von seiner Eintrittsöffnung zu seiner Abgabeöffnung hin, derart, dass trotz der zu seiner Abgabeöffnung zunehmenden Geschwindigkeit des Wasserdampfstroms nirgendwo ein kritischer Unterdrück erreicht wird, bei dessen Unterschreiten ein Strömungsabriss zu erwarten ist. Erfindungsgemäß besitzt der Ansaugtrichter eine Eintrittsöffnung, deren lichter Querschnitt - zumindest im Wesentlichen - eine ellipsenartige Gestalt mit einer ersten lichten Querschnittsfläche LQF 1 aufweist. Darüber hinaus besitzt der Ansaugtrichter eine Abgabeöffnung, deren lichter Querschnitt - zumindest im Wesentlichen - eine ellipsenartige oder kreisrunde Gestalt mit einer zweiten lichten Querschnittsfläche LQF 2 besitzt. Dabei gilt, dass LQF1 > LQF2 ist, wobei bevorzugt gilt LQF1 > 1,75 * LQF2 und der Idealfall sogar der Bedingung LQF1 > 2,75 * LQF2 genügt.
In seinem bevorzugten engeren Sinn bezeichnet der Begriff „ellipsenartige Gestalt" eine - vollständig oder zumindest im Wesentlichen - einer Ellipse entsprechende Gestalt. In seinem weiteren, patentrechtlich motivierten, aber nicht bevorzugten Sinne bezeichnet der Begriff „ellipsenartige Gestalt" aber auch eine von der Kreisform und der echten Ellipsenform abweichende Gestalt. Es handelt sich dann um eine Gestalt, die nur näherungsweise der Ellipsenform entspricht, wie etwa ein Oval oder die Mandelform.
Diese Ausgestaltung des Ansaugtrichters führt dazu, dass der Ansaugtrichter trotz der möglichst großflächigen Gestaltung seiner Eintrittsöffnung auch bei räumlich beengten Einbauverhältnissen relativ problemlos montiert und demontiert werden kann, da er im Zuge des Einbauvorgangs ein- oder mehrfach so gedreht werden kann, dass der Ansaugtrichter mit seiner an der Eintrittsöffnung ausgebildeten Schmalseite an im Zuge des Einbaus zu passierenden Hindernissen vorbeigeschoben werden kann. Auf diese Art und Weise kann man den Ansaugtrichter ein- und ausbauen, ohne den Verflüssiger zu entfernen .
BEVORZUGTES AUSFUHRUNGSBEI SPIEL
Die Figur 1 veranschaulicht den Aufbau und das Funktionsprinzip des als erfindungsgemäße Kältemaschine bzw. Wärmepumpe bevorzugt zum Einsatz kommenden Anlagentyps, hier am Beispiel der Wärmepumpe 2a mit ihrem Verdampfer 3 und ihrem Verflüssiger 4 und den zugehörigen Verdampferein- und - ausgängen 3.1 bzw. 3.2 sowie den zugehörigen Verflüssigerein- und -ausgängen 4.1 bzw. 4.2.
Es handelt sich um ein bis an die Wärmetauscher, die die Systemgrenze des eingehausten Systems bilden mögen, vakuumdichtes System. Dieses wird vorzugsweise mit reinem Wasser als Arbeitsflüssigkeit betrieben, sowohl auf Seiten der Kühlflüssigkeit als auch auf Seiten der Kaltflüssigkeit.
Die Kaltflüssigkeit tritt über den Verdampfereingang 3.1 in den Verdampfer 3 der Wärmepumpe.
Etwa 1 % der eingetretenen Kaltflüssigkeit verdampft im dort herrschenden Vakuum. Die hierfür benötigte Verdampfungsenergie wird dem restlichen Kaltflüssigkeitsstrom KW entzogen, der sich dadurch um ca. 6 °C abkühlt.
Der bei der Verdampfung entstandene Dampf W wird von dem Turboverdichter 17, der mit einem Elektromotor angetrieben wird, mit vorzugsweise mehr als 25.000 Umdrehungen pro Minute auf maximal ein Drittel seines Ausgangsvolumens verdichtet, wobei sich sein Druck und seine Temperatur erhöhen. Er wird dabei in den Verflüssiger 4 gedrückt.
Der erhitzte Dampf W kondensiert im Verflüssiger 4 direkt in den umlaufenden Kühlflüssigkeitsstrom K, die dabei abgegebene Kondensationswärme erwärmt diesen dabei ebenfalls um ca. 6 °C.
Geschlossen wird der Kreislauf über ein selbstregelndes Expansionsorgan 18.
Bemerkenswert ist, dass die Verdampfung und Rekondensation vollständig innerhalb der jeweiligen Wärmepumpe abläuft, d. h. innerhalb der Dose, die die Wärmepumpe gegenüber ihrer Umgebung kapselt. Die Verdampfung und Rekondensation erfolgen nicht in den Wärmetauschern, die in dem zu heizenden oder zu kühlenden Raum angebracht sind und/oder zum Zwecke der Nutzwärmeaufnahme bzw. der Abwärmeabgabe gebäudeaußenseitig.
Zu beachten ist in diesem Zusammenhang, dass die Figur 1 die nach Maßgabe der Erfindung vorzugsweise innerhalb des Verdampfers und meist auch innerhalb des Verflüssigers zum Einsatz kommenden Wärmetauscher nicht zeigt. Darüber hinaus zeigt die Figur auch den kaminartig aufsteigenden „Ansaugbereich" nur rudimentär, innerhalb dessen der vom Verdampfer erzeugte Strom aufsteigt und dem Ansauger des Verdichters zugeführt wird.
Die diesbezüglich wünschenswerten Einzelheiten zeigen die Figuren 2 und 3.
Gut in Figur 2 und 3 zu erkennen ist der erfindungsgemäße Ansaugtrichter 6 mit seiner Eintrittsöffnung 7 und seiner Abgabeöffnung 8. Wie man nicht zuletzt an der Figur 3 erkennt, sind der Verdampfer 3 und der Verflüssiger 4 voneinander getrennt. Im vorliegenden Fall erfolgt die Trennung durch die meist horizontal verlaufende, im Regelfall im Wesentlichen in sich ebene Schottwand 9. Wie man sieht, ist der Ansaugtrichter nach Art eines Kamins positioniert (ohne dass in allen Fällen zwingend eine Kaminwirkung erreicht werden muss). Er sammelt den aufsteigenden Dampf und führt ihn dem an seinem anderen Ende angeordneten Radialverdichter 2 auf dessen axialer Saugseite zu. Wie man sieht, durchbricht der Ansaugtrichter 6 die Schottwand 9. Seine Eintrittsöffnung 7 weist meist einen im Regelfall auf der Seite seiner Kontaktfläche geschliffenen Radialflansch 12 auf. Über diesen ist er im Regelfall dicht, aber lösbar mit der Schottwand 9 verbunden. Auf der Seite seiner Abgabeöffnung 8 weist der Ansaugtrichter eine meist auf ihrer Kontaktseite geschliffene Muffe oder einen auf seiner Kontaktseite geschliffenen Einsteckstutzen 13 auf. Hiermit wird der Ansaugtrichter dicht auf oder in den Saugmund des Radialverdichters auf- oder eingeschoben. Das vereinfacht die Montage unter den hier anzutreffenden, räumlich beengten Verhältnissen. Bemerkenswert ist, dass der Wärmetauscher 5 des Verdampfers hier als Rohrbündelwärmetauscher ausgeführt ist. Die Längsachsen der Rohre des Rohrbündels verlaufen bevorzugt im Wesentlichen senkrecht zur Längsachse L des Ansaugtrichters .
Zweckmäßigerweise besitzt das Rohrbündel dieses Wärmetauschers, wenn man es auf diejenige gedachte Ebene projiziert, die die Eintrittsöffnung 7 senkrecht zur Ansaugtrichterlängsachse L aufspannt, eine Länge LÄ und eine Breite B - wobei in Ansehung der Fig. 2 zu beachten ist, dass hier nur die halbe Breite des Rohrbündels gezeigt wird. Bevorzugt trägt der Ansaugtrichter 6 dem Rechnung. Dann ist die längste Seite seiner lichten Eintrittsfläche im Wesentlichen oder vollständig parallel zu der der Länge LÄ des Rohrbündelwärmetauschers ausgerichtet. Seine kürzeste Seite ist in entsprechender Art und Weise parallel zur Breite B des Rohrbündelwärmetauschers angeordnet.
Der Verflüssiger 4 ist bevorzugt ebenfalls mit einem Rohrbündelwärmetauscher ausgestattet. Idealerweise gilt für diesen das eben zum Rohrbündelwärmetauscher des Verdampfers Gesagte entsprechend - allerdings mit der Ausnahme, dass der Wärmetauscher 10 des Verflüssigers 4 in mindestens zwei Wärmetauscherkomponenten aufgeteilt ist, die zumindest örtlich zwischen sich einen Bereich oder ein Fenster freilassen. Durch diesen Bereich oder dieses Fenster hindurch kann der Ansaugtrichter 6 hindurchgeschoben werden, um dadurch den Saugmund des zumindest teilweise oberhalb der Wärmetauscherkomponenten liegenden Verdichters 2 zu kontaktieren .
Die Figuren 4, 5 und 6 zeigen den erfindungsgemäßen Ansaugtrichter 6 als solchen im Detail. Bevorzugt besteht der Ansaugtrichter 6 aus einem durch 3D-Druck hergestellten Material, Kunststoff oder Metall. Er besteht also aus einem Material, das sich im Regelfall zumindest makroskopisch durch seine Körnigkeit zu erkennen gibt, die sozusagen der „Fußabdruck" des 3D-Drucks ist. Bevorzugt wird dieses Material vor der Erstverwendung durch Infiltrieren eines geeigneten Materials oder Additivs versiegelt. Alternativ wird der Ansaugtrichter 6 durch KunststoffSpritzguss oder Metalldrücken hergestellt .
Die genaue Funktionsweise und Ausgestaltbarkeit des erfindungsgemäßen Ansaugtrichters ergibt sich aus dem zuvor Gesagten, den Ansprüchen und den beigefügten Figuren. Bei den Figuren ist alles, was daraus zu erkennen ist, optional erfindungsrelevant ist und kann daher auch nachträglich noch zu einem Teil der Ansprüche gemacht werden. Die Figur 3 zeigt den Ansaugtrichter in etwa aus der von Fig. 2 dargestellten Perspektive, die Fig. 4 zeigt ihn in einer demgegenüber um 90° um die Längsachse L gedrehten Position.
Gut zu erkennen sind auch die zur Verstärkung dienenden Rippen 11.
ABSCHLIESSENDE ANMERKUNG
Unabhängig von den bereits aufgestellten Ansprüchen, bei Bedarf aber in Kombination damit, dann optional auch ohne Rückbezug auf den Anspruch 1, wird auch Schutz für eine Kältemaschine beansprucht mit einem Verdampfer zum Verdampfen des Kältemittels, einem Ansaugtrichter, einem Verdichter und einem Verflüssiger, wobei der Ansaugtrichter verdampftes Kältemittel auffängt und dem an seiner Abgabeöffnung angeschlossenen Verdichter entlang seines sich von seiner Eintrittsöffnung zu seiner Abgabeöffnung hin verringernden lichten Querschnitts zuführt, wobei der Ansaugtrichter überwiegend bzw. im Wesentlichen unsymmetrisch in Bezug auf seine Längsachse L ist. Das ist jedenfalls dann der Fall, wenn der Ansaugtrichter auf dem überwiegenden oder gar vollständigen Teil seiner Länge entlang der Längsachse L keine kreisrunden Querschnitte bei Schnitt senkrecht zur Längsachse L aufweist.
Solcher Schutz wird zudem auch für einen Ansaugtrichter beansprucht, der sich stattdessen dadurch auszeichnet, dass zumindest seine Eintrittsöffnung (deren lichter Querschnitt) unrund ist bzw. elliptisch, oval oder mandelförmig und stetig in den Rest des Ansaugtrichters übergeht.
BEZUGSZEICHENLISTE
1 Kältemaschine
2 Verdichter
3 Verdampfer
3.1 Verdampfereingang
3.2 Verdampferausgang
4 Verflüssiger
4.1 Verflüssigereingang
4.2 Verflüssigerausgang
5 Wärmetauscher des Verdampfers
6 Ansaugtrichter
7 Eintrittsöffnung des Ansaugtrichters
8 Abgabeöffnung des Ansaugtrichters
9 Schottwand
10 Wärmetauscher des Verflüssigers
11 Rippe des Ansaugtrichters (Versteifung)
12 Radialflansch
13 Einstreckstutzen bzw. Muffe
14 bis 15 nicht vergeben
16 Dose/Kapselung (nur in Fig. 1)
17 Turboverdichter
18 Expansionsorgan
W Dampf
K Kühlflüssigkeitsstrom KW Kaltflüssigkeitsstrom
L Längsachse des Ansaugtrichters LÄ Länge Rohrbündel B Breite Rohrbündel
B/2 halbe Breite Rohrbündel
LQF1 erste lichte Querschnittsfläche der Eintrittsöffnung des Ansaugtrichters
LQF2 zweite lichte Querschnittsfläche der Abgabeöffnung des Ansaugtrichters KL Kaminlängsachse

Claims

PATENTANSPRÜCHE
1. Kältemaschine (1) mit einem Verdampfer (3) zum Verdampfen des Kältemittels, einem Ansaugtrichter (6), einem Verdichter (2) und einem Verflüssiger (4), wobei der Ansaugtrichter (6) verdampftes Kältemittel auffängt und dem an seiner Abgabeöffnung (8) angeschlossenen Verdichter (2) entlang seines sich von seiner Eintrittsöffnung (7) zu seiner Abgabeöffnung (8) hin verringernden lichten Querschnitts zuführt, dadurch gekennzeichnet, dass der Ansaugtrichter (6) eine Eintrittsöffnung (7) besitzt, deren lichter Querschnitt (im Wesentlichen) eine ellipsenartige Gestalt mit einer ersten lichten Querschnittsfläche (LQF1) besitzt, und eine Abgabeöffnung (8), deren lichter Querschnitt (im Wesentlichen) eine ellipsenartige oder kreisrunde Gestalt mit einer zweiten lichten Querschnittsfläche (LQF2) besitzt, wobei LQF1 > LQF2 ist.
2. Kältemaschine (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Verdampfer (3) einen Wärmetauscher (5) vorzugsweise in Gestalt eines Rohrbündelwärmetauschers umfasst, dessen in die gedachte Ebene der Eintrittsöffnung (7) des Ansaugtrichters (6) projizierte Grundfläche länger als breit ist, und bei der der Ansaugtrichter (6) so positioniert ist, dass die lange Seite der Eintrittsöffnung (7) parallel zur besagten längeren Seite der projizierten Grundfläche orientiert ist.
3. Kältemaschine (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, das der Verflüssiger (4) einen Wärmetauscher (10) vorzugsweise in Gestalt eines Rohrbündelwärmetauschers umfasst, dessen in die gedachte Ebene der Eintrittsöffnung (7) des Ansaugtrichters (6) projizierte Grundfläche länger als breit ist, und bei der der Ansaugtrichter (6) vorzugsweise so positioniert ist, dass die lange Seite der Eintrittsöffnung (7) parallel zur besagten längeren Seite der projizierten Grundfläche orientiert.
4. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ansaugtrichter (6) einen sich von unten nach oben verjüngenden Kamin bildet, dessen Kaminlängsachse (KL) vorzugsweise zumindest im Wesentlichen vertikal verlaufend angeordnet ist.
5. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verflüssiger
(4) mehrere Wärmetauscherkomponenten umfasst und mitsamt der Wärmetauscherkomponenten oberhalb des Verdampfers (3) positioniert ist, wobei der Ansaugtrichter (6) eine Passage bildet, die den Bereich zwischen zwei seitlich nebenliegend angeordneten Wärmetauscherkomponenten durchquert und so den unter den Wärmetauscherkomponenten liegenden Verdampfer (3) mit dem zumindest teilweise oberhalb der Wärmetauscherkomponenten liegenden Verdichter (2) fluidleitend verbindet.
6. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Innenoberfläche des Ansaugtrichters (6) in Längsrichtung (L) durchgehend stetig verläuft.
7. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Innenoberfläche des Ansaugtrichters (6) derart ausgestaltet ist, dass an ihr keine Stellen vorhanden sind, an denen die Strömung abreißt.
8. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Innenoberfläche des Ansaugtrichters (6) in Längsrichtung (L) durchgehend stetig konvex gekrümmt ist.
9. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Außenoberfläche des Ansaugtrichters (6) verrippt ist und zu diesem Zweck vorzugsweise in Längsrichtung (L) verlaufende Rippen (11) trägt.
10. Kältemaschine (1) nach Anspruch 9, dadurch gekennzeichnet, dass der Abstand benachbarter Rippen (11) in Umfangsrichtung gemessen im Bereich der Eintrittsöffnung (7) größer ist als im Bereich der Abgabeöffnung (8).
11. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ansaugtrichter (6) auf der Seite seiner Abgabeöffnung (8) einen rohrartigen Anschlusskragen trägt, der vorzugsweise eine geschliffene Umfangsfläche aufweist.
12. Kältemaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ansaugtrichter (6) auf der Seite seiner Eintrittsöffnung
(7) einen sich radial erstreckenden Anschlussflansch (12) aufweist, der vorzugsweise eine geschliffene Dichtfläche aufweist.
PCT/EP2020/085289 2019-12-13 2020-12-09 Kältemaschine mit einem verdampfer, einem ansaugtrichter und einem verflüssiger WO2021116177A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020004929.9T DE112020004929A5 (de) 2019-12-13 2020-12-09 Kältemaschine mit einem Verdampfer, einem Ansaugtrichter und einem Verflüssiger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019134332.1 2019-12-13
DE102019134332 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021116177A1 true WO2021116177A1 (de) 2021-06-17

Family

ID=73834511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/085289 WO2021116177A1 (de) 2019-12-13 2020-12-09 Kältemaschine mit einem verdampfer, einem ansaugtrichter und einem verflüssiger

Country Status (2)

Country Link
DE (1) DE112020004929A5 (de)
WO (1) WO2021116177A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115419616A (zh) * 2022-09-05 2022-12-02 江森自控空调冷冻设备(无锡)有限公司 离心压缩机的吸气管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285380A (ja) * 1987-05-15 1988-11-22 Matsushita Refrig Co 冷凍サイクル用四方弁
WO2006090387A2 (en) * 2005-02-23 2006-08-31 I.D.E. Technologies Ltd. Compact heat pump using water as refrigerant
US20090208331A1 (en) * 2008-02-20 2009-08-20 Haley Paul F Centrifugal compressor assembly and method
DE102008016664A1 (de) * 2008-04-01 2009-10-29 Efficient Energy Gmbh Vertikal angeordnete Wärmepumpe und Verfahren zum Herstellen der vertikal angeordneten Wärmepumpe
DE102012220186A1 (de) * 2012-11-06 2014-05-08 Efficient Energy Gmbh Tropfenabscheider und Verdampfer
US20180187908A1 (en) * 2017-01-04 2018-07-05 Johnson Controls Technology Company Blower housing with fluted outlet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285380A (ja) * 1987-05-15 1988-11-22 Matsushita Refrig Co 冷凍サイクル用四方弁
WO2006090387A2 (en) * 2005-02-23 2006-08-31 I.D.E. Technologies Ltd. Compact heat pump using water as refrigerant
US20090208331A1 (en) * 2008-02-20 2009-08-20 Haley Paul F Centrifugal compressor assembly and method
DE102008016664A1 (de) * 2008-04-01 2009-10-29 Efficient Energy Gmbh Vertikal angeordnete Wärmepumpe und Verfahren zum Herstellen der vertikal angeordneten Wärmepumpe
DE102012220186A1 (de) * 2012-11-06 2014-05-08 Efficient Energy Gmbh Tropfenabscheider und Verdampfer
US20180187908A1 (en) * 2017-01-04 2018-07-05 Johnson Controls Technology Company Blower housing with fluted outlet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115419616A (zh) * 2022-09-05 2022-12-02 江森自控空调冷冻设备(无锡)有限公司 离心压缩机的吸气管
WO2024051608A1 (zh) * 2022-09-05 2024-03-14 江森自控空调冷冻设备(无锡)有限公司 离心压缩机的吸气管

Also Published As

Publication number Publication date
DE112020004929A5 (de) 2022-07-14

Similar Documents

Publication Publication Date Title
DE69509469T2 (de) Kühlmittelverdampfer
DE102016203414B4 (de) Wärmepumpe mit einem Fremdgassammelraum, Verfahren zum Betreiben einer Wärmepumpe und Verfahren zum Herstellen einer Wärmepumpe
DE102008005077B4 (de) Plattenverdampfer, insbesondere für einen Kältemittelkreis
EP3543626B1 (de) Wasser-lithiumbromid-absorptionskälteanlage
EP3728975B1 (de) Luftgekühlte kondensatoranlage
DE3205879A1 (de) Luftgekuehlter dampfverfluessiger
DE10242901A1 (de) Kühlmittelkreislaufsystem mit Austragsfunktion gasförmigen Kühlmittels in einen Aufnahmebehälter
EP0939288A1 (de) Kondensationssystem
WO2021116177A1 (de) Kältemaschine mit einem verdampfer, einem ansaugtrichter und einem verflüssiger
DE60118552T2 (de) Integrierter entlüfter und kondensator
EP2223815B1 (de) Vorrichtung zur Luftkonditionierung eines Kraftfahrzeuges
EP3472528B1 (de) Kühleinrichtung zur montage unter einer raumdecke
DE3714727C2 (de)
EP3423766B1 (de) Wärmepumpe mit einer gasfalle, verfahren zum betreiben einer wärmepumpe mit einer gasfalle und verfahren zum herstellen einer wärmepumpe mit einer gasfalle
DE102020129695A1 (de) Kältemaschine mit assymetrischem ansaugtrichter
DE102014216216A1 (de) Kreisförmiger Wärmetauscher mit angeformtem Trockner und Kältekreislauf mit diesem Wärmetauscher
DE102004039327A1 (de) Absorptionskältemaschine
WO2022096334A1 (de) Kältegerät
WO2013092644A2 (de) Wärmeübertrager
DE102010037206A1 (de) Wärmetauscher
DE102012220186A1 (de) Tropfenabscheider und Verdampfer
DE102020213822B4 (de) Gaskältemaschine, Verfahren zum Betreiben einer Gaskältemaschine und Verfahren zum Herstellen einer Gaskältemaschine als offenes System
EP1388722A2 (de) Kondensator, insbesondere für eine Kraftfahrzeug-Klimaanlage
EP1293736A1 (de) Kältesystem zur Klimatisierung eines Fahrzeuges und Kühleinrichtung zum Einsatz in einem derartigen Kältesystem
WO2022207450A1 (de) Brennstoffzellensystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824191

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020004929

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20824191

Country of ref document: EP

Kind code of ref document: A1