EP1996886B1 - Luftbeaufschlagter kondensator - Google Patents

Luftbeaufschlagter kondensator Download PDF

Info

Publication number
EP1996886B1
EP1996886B1 EP07722024A EP07722024A EP1996886B1 EP 1996886 B1 EP1996886 B1 EP 1996886B1 EP 07722024 A EP07722024 A EP 07722024A EP 07722024 A EP07722024 A EP 07722024A EP 1996886 B1 EP1996886 B1 EP 1996886B1
Authority
EP
European Patent Office
Prior art keywords
aerated
water
condenser according
contact bodies
contact body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07722024A
Other languages
English (en)
French (fr)
Other versions
EP1996886A1 (de
Inventor
Heinrich Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Energietchnik GmbH
Original Assignee
GEA Energietchnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Energietchnik GmbH filed Critical GEA Energietchnik GmbH
Publication of EP1996886A1 publication Critical patent/EP1996886A1/de
Application granted granted Critical
Publication of EP1996886B1 publication Critical patent/EP1996886B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/04Distributing or accumulator troughs

Definitions

  • the invention relates to an air-charged capacitor having the features in the preamble of patent claim 1.
  • the major disadvantage of known adiabatic cooling is the soaking of the cooling elements, supporting structures and other plant components that are located below the cooling elements.
  • the soaking of the cooling elements leads in the long term to an undesirable deposition of insoluble matter, while electrical components such as transformers must be fully protected against the ingress of moisture to avoid short circuits.
  • the exact dosage of water and the distribution of water is very difficult to calculate, since the distribution of Water droplets depend, inter alia, on the wind direction and the temperature distribution An uneven distribution inevitably leads to local wetting and thus also to droplet formation, ie the water drips down on the capacitors and the supporting structure. This can cause unwanted corrosion even when using demineralized water.
  • An air-charged condenser for generating a cooling air flow in the region of condensation elements is known.
  • means for adiabatic cooling of the cooling air flow are provided, wherein the means for adiabatic cooling are feedable with water to be evaporated contact body, which are arranged in the region of the cooling air flow. It is proposed to arrange the means for adiabatic cooling in the intake of the cooling air flow in front of the fan.
  • the WO 03/006908 A describes a heat exchanger assembly for buildings, in which also means for adiabatic cooling are provided, which are upstream of the fans in the region of the cooling air flow. This is also in the DE 44 23 960 A1 and in the FR 1 254 045 A described.
  • the object of the invention is to improve an air-charged condenser in such a way that the condensation elements are not soaked by the means provided for adiabatic cooling of the cooling air and the means for adiabatic cooling can also be retrofitted with little effort.
  • the core of the invention is that the means for adiabatic cooling can be charged with water to be evaporated contact body, which are arranged in the region of the cooling air flow, that is on the downstream side of the condensation elements.
  • the contact bodies have a large surface on which water introduced into the contact bodies can evaporate.
  • the water is located At no time free within the cooling air flow, as is the case with a spraying by means of nozzles. Unlike nebulization or spraying, virtually no excess water is required since the water taken up in the contact body is transferred to the cooling air flow exclusively through mass transfer, ie evaporation. This also ensures that corrosion damage caused by unwanted moistening of nearby components, such as the fan, is avoided.
  • the air-charged condenser according to the invention is preferably provided for the condensation of water vapor.
  • these are condensers for condensing the exhaust steam flow from a turbine of a power plant.
  • the air-charged capacitors for the condensation of other substances, such as for the condensation of propane are provided.
  • the inventive concept is not limited to the condensation of water vapor.
  • the air-charged capacitor according to the invention is not limited to a specific type of capacitor.
  • the contact bodies which can be charged with water to be evaporated can be used in combination with A-shaped, V-shaped, vertically or horizontally arranged condensation elements. The use of such contact bodies in connection with A or roof-shaped condensation elements is considered to be particularly favorable.
  • the contact bodies are also in the exit region of the cooling air flow from the fan, i. arranged in Kühtluftstromraum behind the fan.
  • a further variant provides that contact bodies are arranged directly in front of the condensation elements and cover at least part of the inflow surface of the condensation elements.
  • the contact body can cover the entire Anströrn printing the condensation elements or even a wedge surface. It is conceivable that e.g. only some of the condensation elements are provided with Maiskörpem, others, however, not. Partial coverage of the condensation elements may be e.g. in the upper, middle or lower third. The respective degree of coverage and the exact positioning of the contact bodies must be made dependent on the local conditions. Here can not be called a rigid rule.
  • the degree of coverage of the inflow surface is adjustable by displacement of the contact body.
  • the contact bodies are inactivated, i. that no prehumidification of the cooling air is desired, these could e.g. be pivoted and taken in a certain way out of the cooling air flow, so that a larger flow surface of the condensation elements is released for pure dry cooling.
  • the swinging out also has the advantage that no additional pressure loss caused by the contact body.
  • the axis about which the contact bodies are pivoted depends on the spatial conditions.
  • the pivot axis in the ridge region that is to say essentially horizontal, but at least parallel to those of the con condensation elements spanned levels.
  • the pivot axis is not horizontal, but runs parallel to the planes spanned by the condensation elements, that is to say in the case of condensation elements arranged in an A-shape, in accordance with the inclination of the condensation elements.
  • the contact bodies can also be arranged to be translationally displaceable.
  • contact bodies are fastened directly to the condensation elements on their sides facing the fan.
  • the contact bodies may e.g. be attached to the end faces of the transversely ribbed tubes of the condensation elements.
  • the attachment of contact bodies directly to the condensation elements only leads to a negligible increase in the flow resistance, so that no pressure losses occur. Nevertheless, the Köntakt stresses are completely within the cooling air flow.
  • contact body can be provided only in partial areas. For example, every second tube of the condensation elements could be provided with contact bodies.
  • the contact bodies are preferably a fleece, a fabric or a porous plastic.
  • the essential characteristics of having suitable contact bodies are high storage capacity for water and a large surface area to allow rapid evaporation of the water.
  • the material used should have sufficient air permeability, depending on the arrangement within the cooling air flow, in order to limit the pressure losses.
  • Self-supporting materials are considered to be particularly advantageous, and combined multi-layer materials may be used, wherein one position of the contact body fulfills the support function and at least one other layer is designed specifically for water absorption and high evaporation.
  • Common and inexpensive available on the market are geotextiles or Nonwovens that provide the desired absorbency and good evaporation of water.
  • the materials mentioned have a high resistance to aging and are also mechanically sufficiently resistant.
  • the contact bodies can preferably be cleaned after a predetermined period of use and then reused.
  • the contact body should therefore not decompose under the influence of air and water.
  • By a suitable choice of material both a high mechanical strength and at the same time a corresponding desired water absorption capacity can be achieved. Both are prerequisites for use within the cooling air flow in air-cooled condensers.
  • the contact bodies are preferably formed as flat plates.
  • one-piece or multi-layer contact bodies deviate in their geometry from flat plates, ie, for example, are wavy or are adapted in their contouring to the flow conditions of the air-cooled condenser or are intended by their positioning and contouring influence on the flow conditions to take.
  • This means that the contact bodies can also have a certain conductive or deflecting function with respect to the cooling air flow, depending on the positioning and contouring.
  • the amount of water to be introduced into the contact bodies is selected such that no significant excess is produced, which would lead to a wetting of the installation. Therefore, a metering system controlling the amount of water to be introduced into the contact bodies is provided, which precisely supplies the contact body with precisely the amount of water which has to be supplied under the given climatic conditions and operating conditions of the system in order to ensure maximum evaporation in the area of the contact bodies.
  • This may be a control circuit or a control circuit equipped with corresponding measuring devices. The measuring devices detect whether at certain measuring points outside the contact body water is present, which suggests that the contact bodies too much water has been supplied to the evaporation.
  • a metering line extends with a plurality of openings through which the water to be evaporated can be introduced into the contact body.
  • This may be a rigid or flexible line that runs in the edge region of the contact body.
  • a dosing line can introduce water, for example from above, into a contact body.
  • the water runs down inside the contact body, wets its surface and evaporates within the cooling air flow. The amount of water is metered so that it passes on its way through the contact body straight to the lower end and partially evaporated already on the way there.
  • the metering lines are arranged on the cooling air flow facing or facing away from the surface of the contact body.
  • the distance that the water has to cover within a plate-shaped contact body is shorter and it ensures a more even distribution of the cooling water, which also simplifies the dosage.
  • the metering line is embedded in the contact body. This can be realized, for example, by a meandering dosing line which is positioned, for example, between two contact bodies formed as a nonwoven. Through the metering both contact bodies are wetted equally with water. The risk of water escaping uncontrollably from the fleece is thereby minimized.
  • the water to be evaporated is preheated in the metering, by heat transfer from the condensation elements to the metering.
  • the metering lines can extend between the end faces of the condensation elements and the contact bodies attached to the end faces. The preheated in this way water extracts the condensing elements to a small extent heat and evaporates faster in the contact body. This increases the efficiency of such an air-charged capacitor.
  • FIG. 1 shows an A-type air-powered condenser 1, as known in its basic form from the prior art.
  • Such an air-cooled condenser 1 is mounted on a steel framework, not shown, so that cold cooling air can be sucked in a cooling air stream 3 by a fan 2 from below and in the limited by the condensation elements 4, 5, triangular interior 6.
  • the cooling air flows through the condensation elements 4, 5 designed as finned tube bundles and is heated in this case.
  • the steam flowing through the condensation elements 4, 5 is cooled and condensed.
  • a contact body 7 is in the intake region 8 of the ventilator 2 arranged.
  • the cooling air is pre-moistened by the contact body 7.
  • the cooling air flows through the contact body 7, which is fed in a manner not shown with water.
  • the contact body 7 acts it is preferably a non-woven or a porous structure made of a plastic.
  • the introduced water is transferred by mass transfer to the cooling air, so that can be significantly increase the cooling capacity of the air-cooled condenser 1, especially in summer operation.
  • FIG. 2 is a contact body 7a in the outlet region 9 of the cooling air flow 3 from the fan 2, that is, it is located in the interior 6 between the condensation elements 4, 5.
  • a third variant shows FIG. 3 ,
  • a contact body 7b is provided, which can be pivoted between two positions A, B.
  • the degree of coverage of the inflow surface 10 of the condensation elements 4, 5 can be changed.
  • the pressure loss which inevitably occurs when flowing through the contact body 7b, can be changed.
  • the connection of the contact body 7b is not required, it can be displaced from the position A to the position B.
  • FIG. 4 shows an embodiment with a contact body 7c, which is pivotable about a pivot axis S.
  • the contact body 7c can be displaced into the position shown in broken line.
  • the contact body 7c is arranged on the other condensation element 4, wherein the pivot axis S then of course runs parallel to this condensation element 4.
  • FIG. 5 shows a perspective view of the condensation element 4 in the direction from the interior 6 out.
  • the condensation element 4 comprises a series of juxtaposed tubes 11, which are traversed by water vapor.
  • the tubes 11 have an elongate, almost rectangular cross section, wherein between the mutually facing transverse sides 12 of the tubes 11 are ribs 13, which are flowed around by the cooling air flow 3.
  • the special feature of the illustrated condensation element 4 is that 14 contact bodies 7d are attached to the respective unaffected end faces, which are exemplified by the hatching drawn. Such contact bodies 7d are not present laterally in the finned gap, ie they do not reduce the flow cross section between the tubes 11. Nevertheless, there is an intensive exchange with the passing cooling air, which is moistened when flowing past.
  • FIGS. 6 to 8 show flat contact body in different representations, which essentially depends on the arrangement of the metering 15.
  • dosing line 15 shown extends on the surface of the illustrated contact body 7e.
  • the metering line 15 has a plurality of openings, not shown, through which the water to be evaporated is introduced into the contact body 7e.
  • the meandering course ensures a uniform introduction of water into the contact body 7e.
  • FIG. 7 shows the contact body 7e of FIG. 5 in longitudinal section. It can be seen that the metering line 15 in this exemplary embodiment directly adjoins the schematically indicated condensation element 4, so that the heat prevailing in the condensation element 4 is transferred to the metering line 15 and thus to the water to be evaporated.
  • the dosing line 15 approximately in the middle of the illustrated contact body.
  • This variant in turn has the advantage that the water to be evaporated must first pass through the illustrated contact body 7e before it reaches the surface of the contact body 7e. On the way to the outer surface of the contact body 7e this is wetted.
  • the metering line is embedded between two Kontäkt Sciencesn, wherein the water to be evaporated is discharged on both sides of the metering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

  • Die Erfindung betrifft einen luftbeaufschlagten Kondensator mit den Merkmalen im Oberbegriff des Patentanspruchs 1.
  • Es ist bekannt, dass sich durch die Vorbefeuchtung der Kühlluft, d.h. die sogenannte adiabatische Kühlung, die Kühlleistung von luftgekühlten Kondensatoren, besonders im Sommerbetrieb erheblich steigern lässt. Insbesondere bei größeren Anlagen im Kraftwerksbereich konnte bisher keine praktikable und zuverlässige Lösung dieses Problems gefunden werden, wie H.B. Goldschagg in "Lessons learned from the world's largest forced draft direct air cooled condenser", EPRI Conference, Washington D.C., 01. - 03. 03.1993 beschreibt. Andererseits wird von den Betreibern derartiger Anlagen zunehmend die Forderung nach funktions- und leistungsfähigen Vorbefeuchtungseinrichtungen gestellt.
  • Der wesentliche Nachteil bekannter adiabatischer Kühlungen ist die Durchnässung der Kühlelemente, Tragstrukturen und weiterer Anlagenbauteile, die sich unterhalb der Kühlelemente befinden. Die Durchnässung der Kühlelemente führt langfristig zu einer unerwünschten Ablagerung von nicht lösbaren Stoffen, während elektrische Bauteile wie z.B. Trafos vollständig vor dem Zutritt von Nässe geschützt werden müssen um Kurzschlüsse zu vermeiden. Die exakte Dosierung des Wassers als auch die Verteilung des Wassers ist nur sehr schwer kalkulierbar, da die Verteilung der Wassertröpfchen unter anderem von der Windrichtung und der Temperaturverteilung abhängig ist Eine ungleichmäßige Verteilung führt zwangsläufig zu einer lokalen Durchnässung und damit auch zu einer Tropfenbildung, d.h. das Wasser tropft an den Kondensatoren und der Tragstruktur herab. Dies kann, selbst bei Verwendung von demineralisiertem Wasser unerwünschte Korrosionen mit sich bringen.
  • Aus der US 2 655 795 A ist ein luftbeaufschlagter Kondensator zur Erzeugung eines Kühlluftstroms im Bereich von Kondensationselementen bekannt. Es ist ein Ventilator vorgesehen. Ferner sind Mittel zur adiabatischen Kühlung des Kühlluftstroms vorgesehen, wobei die Mittel zur adiabatischen Kühlung mit zu verdunstendem Wasser beschickbare Kontaktkörper sind, die im Bereich des Kühlluftstroms angeordnet sind. Es wird vorgeschlagen, die Mittel zur adiabatischen Kühlung im Ansaugbereich des Kühlluftstroms vor dem Ventilator anzuordnen.
  • Die WO 03/006908 A beschreib eine Wärmetauscheranordnung für Gebäude, bei welchem ebenfalls Mittel zur adiabatischen Kühlung vorgesehen sind, welche den Ventilatoren im Bereich des Kühlluftstroms vorgeschaltet sind. Dies wird auch in der DE 44 23 960 A1 und in der FR 1 254 045 A beschrieben.
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, einen luftbeaufschlagten Kondensator dahingehend zu verbessern, dass die Kondensationselemente von den vorgesehenen Mitteln zur adiabatischen Kühlung der Kühlluft nicht durchnässt werden und wobei die Mittel zur adiabatischen Kühlung mit geringem Aufwand auch nachgerüstet werden können.
  • Diese Aufgabe wird durch einen luftbeaufschlagten Kondensator mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Kern der Erfindung ist, dass die Mittel zur adiabatischen Kühlung mit zu verdunstendem Wasser beschickbare Kontaktkörper sind, die im Bereich des Kühlluftstroms angeordnet sind, das heißt auf der Abströmseite der Kondensationselemente. Die Kontaktkörper besitzen eine große Oberfläche, auf der in die Kontaktkörper eingebrachtes Wasser verdunsten kann. Das Wasser befindet sich zu keinem Zeitpunkt frei innerhalb des Kühlluftstroms, wie es bei einem Versprühen mittels Düsen der Fall ist. Anders als beim Vernebeln oder Versprühen wird so gut wie kein Überschusswasser benötigt, da das in den Kontaktkörper aufgenommene Wasser ausschließlich durch Stoffübergang, d.h. Verdunstung, an den Kühlluftstrom übertragen wird. Dadurch wird auch sichergestellt, dass Korrosionsschäden durch unerwünschte Befeuchtung an in der Nähe befindlichen Bauteilen, wie z.B. dem Ventilator, vermieden werden.
  • Bei den erfindungsgemäß gestalteten luftgekühlten Kondensatoren wird eine deutliche Leistungssteigerung bei moderatem Anstieg der Investitionskosten erwartet. Neu zu errichtende Anlagen lassen sich auch bei vorgegebener Leistung kleiner ausführen, wenn eine adiabatische Kühlung mit Hilfe von Kontaktkörpem vorgesehen wird. Dadurch können die Herstellkosten neuer Anla gen voraussichtlich reduziert werden. Ein weiterer Vorteil ist, dass sich z.B. durch Warmluftrezirkulation bedingte Leistungsdefizite reduzieren lassen, zum anderen aber auch die Leistung eines Kraftwerks durch Reduzierung des Turbinenabdampfdrucks um einige 10 kPa gesteigert werden kann.
  • Vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand der Unteransprüche.
  • Der erfindungsgemäße luftbeaufschlagte Kondensator ist vorzugsweise zur Kondensation von Wasserdampf vorgesehen. Insbesondere handelt es sich um Kondensatoren zur Kondensation des Abdampfstroms aus einer Turbine eines Kraftwerks. Grundsätzlich ist es aber auch denkbar, dass die luftbeaufschlagten Kondensatoren zur Kondensation anderer Stoffe, wie beispielsweise zur Kondensation von Propan, vorgesehen sind. Der Erfindungsgedanke ist nicht auf die Kondensation von Wasserdampf beschränkt. Ebenso ist der erfindungsgemäße luftbeaufschlagte Kondensator auch nicht auf eine bestimmte Bauform eines Kondensators beschränkt. Grundsätzlich können die mit zu verdunstendem Wasser beschickbaren Kontaktkörper in Kombination mit A-förmig, V-förmig, vertikal oder horizontal angeordneten Kondensationselementen zum Einsatz kommen. Als besonders günstig wird die Verwendung derartiger Kontaktkörper im Zusammenhang mit A- oder dachförmig angeordneten Kondensationselementen angesehen.
  • Die Kontaktkörper sind auch im Austrittsbereich des Kühlluftstroms aus dem Ventilator, d.h. in Kühtluftstromrichtung hinter dem Ventilator angeordnet.
  • Eine weitere Variante sieht vor, dass Kontaktkörper unmittelbar vor den Kondensationselementen angeordnet sind und zumindest einen Teil der Anströmfläche der Kondensationselemente bedecken. Die Kontaktkörper können dabei die gesamte Anströrnfläche der Kondensationselemente oder auch nur eine Keilfläche bedecken. Denkbar ist, dass z.B. nur einige der Kondensationselemente mit Kontaktkörpem versehen sind, andere hingegen nicht. Eine teilweise Bedeckung der Kondensationselemente kann z.B. im oberen, mittleren oder unteren Drittel erfolgen. Der jeweilige Bedeckungsgrad und die exakte Positionierung der Kontaktkörper muss von den örtlichen Gegebenheiten abhängig gemacht werden. Hier lässt sich keine starre Regel nennen.
  • Es wird als besonders vorteilhaft angesehen, wenn der Grad der Bedeckung der Anströmfläche durch Verlagerung der Kontaktkörper einstellbar ist. Für den Fall, dass die Kontaktkörper inaktiviert sind, d.h. dass keine Vorbefeuchtung der Kühlluft gewünscht wird, könnten diese z.B. verschwenkt werden und in gewisser Weise aus dem Kühlluftstrom heraus genommen werden, so dass eine größere Anstromfläche der Kondensationselemente für die reine Trockenkühlung freigegeben wird. Das Herausschwenken hat zudem den Vorteil, dass kein zusätzlicher Druckverlust durch die Kontaktkörper entsteht.
  • Die Achse, um die die Kontaktkörper geschwenkt werden, ist von den räumlichen Gegebenheiten abhängig. Beispielsweise kann bei A-förmig angeordneten Kondensationselementen die Schwenkachse im Firstbereich, das heißt im Wesentlichen horizontal verlaufen, zumindest aber parallel zu den von den Kon densationselementen aufgespannten Ebenen. Denkbar ist auch, dass die Schwenkachse nicht horizontal, sondern parallel zu den von den Kondensationselementen aufgespannten Ebenen, das heißt bei A-förmig angeordneten Kondensationselementen entsprechend der Neigung der Kondensationselemente verläuft. Wenn es die räumlichen Gegebenheiten zulassen, können die Kontaktkörper auch translatorisch verlagerbar angeordnet sein.
  • Als besonders günstig wird es angesehen, wenn Kontaktkörper unmittelbar an den Kondensationselementen auf ihren, dem Ventilator zugewandten Seiten befestigt sind. Die Kontaktkörper können z.B. an den Stirnseiten von an den Querseiten mit Rippen versehenen Rohren der Kondensationselemente befestigt sein. Die Befestigung von Kontaktkörpern unmittelbar an den Kondensationselementen führt nur zu einer vernachlässigbaren Erhöhung des Strömungswiderstandes, sodass keinerlei Druckverluste entstehen. Dennoch befinden sich die Köntaktkörper vollständig innerhalb des Kühlluftstroms. Wie auch bei der Anordnung von Kontaktkörpem in Strömungsrichtung vor den Kondensationselementen können unmittelbar an den Kondensationselementen befestigte Kontaktkörper nur in Teilbereichen vorgesehen sein. Beispielsweise könnte jedes zweite Rohr der Kondensationselemente mit Kontaktkörpern versehen sein.
  • Bei den Kontaktkörpern handelt es sich vorzugsweise um ein Vlies, ein Gewebe oder einen porösen Kunststoff. Die wesentlichen Eigenschaften, die geeignete Kontaktkörper aufweisen, sind eine hohe Speicherkapazität für Wasser und eine große Oberfläche, um eine rasche Verdunstung des Wassers zu ermöglichen. Zudem sollte das verwendete Material je nach Anordnung innerhalb des Kühlluftstroms eine hinreichende Luftdurchlässigkeit aufweisen, um die Druckverluste zu begrenzen. Selbsttragende Materialien werden als besonders vorteilhaft angesehen, wobei auch kombinierte mehrlagige Materialien zum Einsatz kommen können, bei denen wobei eine Lage des Kontaktkörpers die Tragfunktion erfüllt und wenigstens eine andere Lage speziell für die Wasseraufnahme und hohe Verdunstung ausgebildet ist. Gängige und am Markt kostengünstig verfügbare Stoffe sind Geotextilien oder Vliese, die die gewünschte Saugfähigkeit und eine gute Verdunstung von Wasser bieten. Die genannten Materialien besitzen eine hohe Alterungsbeständigkeit und sind zudem mechanisch hinreichend widerstandsfähig. Die Kontaktkörper lassen sich vorzugsweise nach einer vorbestimmten Einsatzzeit reinigen und anschließend wieder verwenden. Der Kontaktkörper sollte sich daher unter Einfluss von Luft und Wasser möglichst nicht zersetzen. Durch geeignete Materialwahl kann sowohl eine hohe mechanische Belastbarkeit als auch gleichzeitig ein entsprechendes gewünschtes Wasseraufnahmevermögen erzielt werden. Beides sind Voraussetzungen für den Einsatz innerhalb des Kühlluftstroms bei luftgekühlten Kondensatoren. Die Kontaktkörper sind bevorzugt als ebene Platten ausgebildet. Selbstverständlich ist es möglich, dass ein- oder mehrlagige Kontaktkörper in ihrer Geometrie von ebenen Platten abweichen, d.h. beispielsweise gewellt sind oder in ihrer Konturgebung an die Strömungsverhältnisse des luftgekühlten Kondensators angepasst sind oder dafür vorgesehen sind, durch ihre Positionierung und Konturierung gezielt Einfluss auf die Strömungsverhältnisse zu nehmen. Das heißt, dass die Kontaktkörper je nach Positionierung und Konturierung auch eine gewisse leitende oder umlenkende Funktion in Bezug auf den Kühlluftstrom haben können.
  • Wesentlich bei dem erfindungsgemäßen Kondensator ist, dass die Menge des in die Kontaktkörper einzubringenden Wassers so gewählt ist, dass kein deutlicher Überschuss entsteht, der zu einer Durchnässung der Anlage führen würde. Daher ist ein die Menge des in die Kontaktkörper einzubringenden Wassers steuerndes Dosiersystem vorgesehen, das dem Kontaktkörper gezielt genau die Menge Wasser zuführt, die unter den gegebenen klimatischen Bedingungen und Betriebszuständen der Anlage zugeführt werden muss, um eine maximale Verdunstung im Bereich der Kontaktkörper zu gewährleisten. Hierbei kann es sich um einen Steuer- oder auch um einen Regelkreis handeln, der mit entsprechenden Messeinrichtungen ausgestattet ist. Die Messeinrichtungen detektieren, ob an bestimmten Messpunkten außerhalb der Kontaktkörper Wasser vorhanden ist, das darauf schließen lässt, dass den Kontaktkörpern zu viel Wasser zur Verdunstung zugeführt worden ist.
  • Um die Verteilung des Wassers innerhalb der Kontaktkörper zu verbessern, ist vorgesehen, dass angrenzend an einen Kontaktkörper eine Dosierleitung mit einer Vielzahl von Öffnungen verläuft, durch welche das zu verdunstende Wasser in den Kontaktkörper einleitbar ist. Hierbei kann es sich um eine starre oder auch flexible Leitung handeln, die im Randbereich der Kontaktkörper verläuft. Eine solche Dosierleitung kann unter Ausnutzung der Schwerkraft Wasser beispielsweise von oben in einen Kontaktkörper einleiten. Das Wasser läuft innerhalb des Kontaktkörpers nach unten, benetzt dessen Oberfläche und verdunstet innerhalb des Kühlluftstroms. Die Menge des Wassers ist so dosiert, dass es auf seinem Weg durch den Kontaktkörper gerade bis zum unteren Ende gelangt und teilweise bereits auf dem Weg dorthin verdunstet. Denkbar ist es auch, dass die Dosierleitungen auf der dem Kühlluftstrom zugewandten oder abgewandten Fläche des Kontaktkörpers angeordnet sind. Dadurch sind die Weg, die das Wasser innerhalb eines plattenförmig konfigurierten Kontaktkörpers zurücklegen muss, kürzer und es wird eine gleichmäßigere Verteilung des Kühlwassers gewährleistet, was auch die Dosierung vereinfacht. Als besonders vorteilhaft wird es dabei angesehen, wenn die Dosierleitung in den Kontaktkörper eingebettet ist. Dies kann beispielsweise durch eine mäanderförmig verlegte Dosierleitung realisiert werden, die beispielsweise zwischen zwei als Vlies ausgebildeten Kontaktkörpern positioniert ist. Durch die Dosierleitung werden beide Kontaktkörper gleichermaßen mit Wasser benetzt. Das Risiko, dass Wasser unkontrolliert aus dem Vlies heraustritt, ist dadurch minimiert.
  • Ferner wird es als vorteilhaft angesehen, wenn das zu verdunstende Wasser in den Dosierleitungen vorgewärmt ist, und zwar durch Wärmeübertragung von den Kondensationselementen auf die Dosierleitungen. Hierzu können die Dosierleitungen zwischen den Stirnseiten der Kondensationselemente und den an den Stirnseiten befestigten Kontaktkörpern verlaufen. Das auf diese Weise vorgewärmte Wasser entzieht den Kondensationselementen in geringem Umfang Wärme und verdunstet dadurch im Bereich der Kontaktkörper schneller. Dadurch wird die Leistungsfähigkeit eines derartig luftbeaufschlagten Kondensators erhöht.
  • Die Erfindung wird nachfolgend anhand der in den schematischen Zeichnungen dargestellten Ausführungsbeispiele der Figuren 2 bis 8 näher erläutert. Die andere, nachfolgend beschriebene Figur 1 dient lediglich zur Illustrierung der beanspruchten Erfindung und ist nicht Ausführungsform der Erfindung, für die Schutz begehrt wird. Es zeigen:
  • Figur 1
    eine schematische Darstellung eines luftbeaufschlagten Kondensators in A-Form bzw. Dachbauweise mit zusätzlichen Kontaktkörpem zur Wasserverdunstung;
    Figuren 2bis 4
    weitere Ausführungsformen eines Trockenkühlers in Dachbauweise mit anderen Anordnungen der Kontaktkörper,
    Figur 5
    eine perspektivische Darstellung eines Kondensationselements mit daran befestigten Kontaktkörpem;
    Figur 6
    ein Ausführungsbeispiel eines Kontaktkörpers mit einer mäanderförmig verlaufenden Dosierleitung in der Draufsicht;
    Figur 7
    den Kontaktkörper der Figur 1 im Längsschnitt und
    Figur 8
    eine weitere Ausführungsform eines Kontaktkörpers mit einer Dosier- leitung.
  • Figur 1 zeigt einen luftbeaufschlagbaren Kondensator 1 in A-Bauweise, wie er in seiner Grundform aus dem Stand der Technik bekannt ist. Ein solcher luftgekühlter Kondensator 1 wird auf einem nicht näher dargestellten Stahlgerüst montiert, so dass kalte Kühlluft in einem Kühlluftstrom 3 von einem Ventilator 2 von unten angesaugt und in den von den Kondensationselementen 4, 5 begrenzten, dreieckförmigen Innenraum 6 gedrückt werden kann. Die Kühlluft strömt durch die als Rippenrohrbündel ausgebildeten Kondensationselemente 4, 5 und wird hierbei erwärmt. Gleichzeitig wird der die Kondensationselemente 4, 5 durchströmende Wasserdampf abgekühlt und kondensiert. Bei diesem ersten Ausführungsbeispiel ist ein Kontaktkörper 7 im Ansaugbereich 8 des Ventilators 2 angeordnet. Die Kühlluft wird durch den Kontaktkörper 7 vorbefeuchtet. Die Kühlluft durchströmt den Kontaktkörper 7, welcher in nicht näher dargestellter Weise mit Wasser gespeist wird. Bei dem Kontaktkörper 7 handelt es sich vorzugsweise um ein Vlies oder um eine poröse Struktur aus einem Kunststoff. Das eingeleitete Wasser wird durch Stoffübergang an die Kühlluft übertragen, so das sich die Kühlleistung des luftgekühlten Kondensators 1, insbesondere im Sommerbetrieb erheblich steigern lässt.
  • In der Ausführungsform der Figur 2 befindet sich ein Kontaktkörper 7a im Austrittsbereich 9 des Kühlluftstroms 3 aus dem Ventilator 2, d.h. er ist im Innenraum 6 zwischen den Kondensationselementen 4, 5 angeordnet.
  • Eine dritte Variante zeigt Figur 3. Dort ist ein Kontaktkörper 7b vorgesehen, der zwischen zwei Positionen A, B verschwenkt werden kann. Auf diese Weise kann der Grad der Bedeckung der Anströmfläche 10 der Kondensationselemente 4, 5 verändert werden. Dadurch lässt sich der Druckverlust, der beim Durchströmen des Kontaktkörpers 7b zwangsläufig auftritt, verändern. Insbesondere, wenn die Zuschaltung des Kontaktkörpers 7b nicht erforderlich ist, kann dieser von der Stellung A in die Stellung B verlagert werden.
  • Figur 4 zeigt eine Ausführungsform mit einem Kontaktkörper 7c, der um eine Schwenkachse S schwenkbar ist. Dadurch kann der Kontaktkörper 7c in die in unterbrochener Linie eingezeichnete Position verlagert werden. Im Unterschied zur Ausführungsform der Figur 3 ist bei der in Figur 4 dargestellten Variante unter Umständen mit einer geringeren Beeinflussung des Strömungsverhaltens zu rechnen. Die eingezeichnete Schwenkachse S verläuft in diesem Ausführungsbeispiel parallel zu den Kondensationselementen 5. Selbstverständlich ist es auch denkbar, dass der Kontaktkörper 7c an dem anderen Kondensationselement 4 angeordnet ist, wobei die Schwenkachse S dann selbstverständlich parallel zu diesem Kondensationselement 4 verläuft.
  • Als besonders vorteilhaft wird die Ausführungsform der Figur 5 angesehen. Figur 5 zeigt eine perspektivische Ansicht des Kondensationselements 4 in Blickrichtung aus dem Innenraum 6 heraus. Das Kondensationselement 4 umfasst eine Reihe von nebeneinander angeordneten Rohren 11, die von Wasserdampf durchströmt werden. Die Rohre 11 besitzen einen länglichen, fast rechteckigen Querschnitt, wobei sich zwischen den einander zugewandten Querseiten 12 der Rohre 11 Rippen 13 befinden, die von dem Kühlluftstrom 3 umströmt werden. Das Besondere bei dem dargestellten Kondensationselement 4 ist, dass an den jeweiligen unberippten Stirnseiten 14 Kontaktkörper 7d befestigt sind, die beispielhaft durch die eingezeichnete Schraffur kenntlich gemacht sind. Derartige Kontaktkörper 7d stehen seitlich nicht in den berippten Zwischenraum vor, d.h. sie vermindern auch nicht den Strömquerschnitt zwischen den Rohren 11. Dennoch findet ein intensiver Austausch mit der vorbeiströmenden Kühlluft statt, welche beim Vorbeiströmen befeuchtet wird.
  • Bei allen vorhergehenden Figuren wurde auf die Darstellung einer oder mehrerer Dosierleitungen zur Speisung der Kontaktkörper mit Wasser verzichtet. Die Figuren 6 bis 8 zeigen flächige Kontaktkörper in unterschiedlichen Darstellungen, wobei es im Wesentlichen auf die Anordnung der Dosierleitung 15 ankommt. Die in Figur 6 dargestellte Dosierleitung 15 verläuft auf der Oberfläche des dargestellten Kontaktkörpers 7e. Die Dosierleitung 15 weist eine Vielzahl nicht dargestellter Öffnungen auf, über welche das zu verdunstende Wasser in den Kontaktkörper 7e eingeleitet wird. Der mäanderförmige Verlauf gewährleistet einen gleichmäßigen Wassereintrag in den Kontaktkörper 7e.
  • Figur 7 zeigt den Kontaktkörper 7e der Figur 5 im Längsschnitt. Es ist zu erkennen, dass die Dosierleitung 15 in diesem Ausführungsbeispiel unmittelbar an das schematisch angedeutete Kondensationselement 4 grenzt, so dass die in dem Kondensationselement 4 herrschende Wärme auf die Dosierleitung 15 und damit auf das zu verdunstende Wasser übertragen wird.
  • Im Unterschied hierzu befindet sich bei dem Ausführungsbeispiel der Figur 8 die Dosierleitung 15 etwa in der Mitte des dargestellten Kontaktkörpers. Diese Variante hat wiederum den Vorteil, dass das zu verdunstende Wasser zwingend zunächst den dargestellten Kontaktkörper 7e passieren muss, bevor es an die Oberfläche des Kontaktkörpers 7e gelangt. Auf dem Weg zur äußeren Oberfläche des Kontaktkörpers 7e wird dieser benetzt.
  • Denkbar ist es auch, dass die Dosierleitung zwischen zwei Kontäktkörpern eingebettet ist, wobei das zu verdunstende Wasser beiderseits der Dosierleitungen abgegeben wird.
  • Bezugszeichen:
  • 1 -
    Kondensator
    2 -
    Ventilator
    3 -
    Kühlluft
    4 -
    Kondensationselement
    5 -
    Kondensationselement
    6 -
    Innenraum
    7 -
    Kontaktkörper
    7a -
    Kontaktkörper
    7b -
    Kontaktkörper
    7c -
    Kontaktkörper
    7d -
    Kontaktkörper
    7e -
    Kontaktkörper
    8 -
    Ansaugbereich
    9 -
    Austrittsbereich
    10 -
    Anströmfläche
    11 -
    Rohr
    12 -
    Querseite
    13 -
    Rippe
    14 -
    Stirnseite v. 11
    15 -
    Dosierleitung
    A -
    Position v. 7b
    B -
    Position v. 7b

Claims (15)

  1. Luftbeaufschlagter Kondensator, welchem zur Erzeugung eines Kühlluftstroms im Bereich von Kondensationselementen (4, 5) wenigstens ein Ventilator (2) zugeordnet ist, und wobei Mittel zur adiabatischen Kühlung des Kühlluftstroms (3) vorgesehen sind, wobei die Mittel zur adiabatischen Kühlung mit zu verdunstendem Wasser beschickbare Kontaktkörper (7, 7a, 7b, 7c, 7d, 7e) sind, die im Bereich des Kühlluftstroms (3) angeordnet sind, dadurch gekennzeichnet, dass Kontaktkörper (7a) im Austrittsbereich des Kühlluftstroms (3) aus dem wenigstens einen Ventilator (2) angeordnet sind.
  2. Luftbeaufschlagter Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass die Kondensationselemente (4, 5) zur Kondensation von Wasserdampf vorgesehen sind.
  3. Luftbeaufschlagter Kondensator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Kontaktkörper (7b, 7c) unmittelbar vor den Kondensationselementen (4, 5) angeordnet sind und zumindest einen Teil der Anstromfläche (10) der Kondensationselemente (4, 5) bedecken.
  4. Luftbeaufschlagter Kondensator nach Anspruch 3, dadurch gekennzeichnet, dass der Grad der Bedeckung der Anströmfläche (10) durch Verlagerung der Kontaktkörper (7b, 7c) einstellbar ist.
  5. Luftbeaufschlagter Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass die Kontaktkörper (7b, 7c) schwenkbar sind.
  6. Luftbeaufschlagter Kondensator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Kontaktkörper (7d) unmittelbar an den Kondensationselementen (4, 5) auf ihren dem eintretenden Kühlluftstrom (3) zugewandten Seiten befestigt sind.
  7. Luftbeaufschlagter Kondensator nach Anspruch 6, dadurch gekennzeichnet, dass die Kontaktkörper (7d) an den Stirnseiten (14) von an den Querseiten (12) mit Rippen (13) versehenen Rohren (11) der Kondensationselemente (4, 5) befestigt sind.
  8. Luftbeaufschlagter Kondensator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Kontaktkörper ein Vlies ist.
  9. Luftbeaufschlagter Kondensator nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Kontaktkörper ein poröser Kunststoff ist.
  10. Luftbeaufschlagter Kondensator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein die Menge des in die Kontaktkörper einzubringenden Wassers steuerndes Dosiersystem vorgesehen ist.
  11. Luftbeaufschlagter Kondensator nach Anspruch 10, dadurch gekennzeichnet, dass die Menge des von dem Dosiersystem in die Kontaktkörper eingebrachten Wassers nicht größer ist als die Menge des zu verdunstenden Wassers.
  12. Luftbeaufschlagter Kondensator nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass angrenzend an einen Kontaktkörper (7e) eine Dosierleitung (15) mit einer Vielzahl von Öffnungen verläuft, durch welche das zu verdunstende Wasser in den Kontaktkörper (7e) einleitbar ist.
  13. Luftbeaufschlagter Kondensator nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass in die Kontaktkörper (7e) eine Dosierleitung (15) eingebettet ist, die eine Vielzahl von Öffnungen aufweist, durch welche das zu verdunstende Wasser in den Kontaktkörper (7e) einleitbar ist.
  14. Luftbeaufschlagter Kondensator nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass das zu verdunstende Wasser in den Dosierleitungen (15) durch Wärmeübertragung von dem Kondensationselement (4) auf die Dosierleitungen (15) vorgewärmt ist.
  15. Luftbeaufschfagter Kondensator nach Anspruch 14, dadurch gekennzeichnet, dass die Dosierleitungen (15) zwischen den Stirnseiten (14) der Kondensationselemente und den an den Stirnseiten (14) befestigten Kontaktkörpem (7e) verläuft.
EP07722024A 2006-03-20 2007-03-13 Luftbeaufschlagter kondensator Expired - Fee Related EP1996886B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013011A DE102006013011A1 (de) 2006-03-20 2006-03-20 Luftbeaufschlagter Kondensator
PCT/DE2007/000449 WO2007110034A1 (de) 2006-03-20 2007-03-13 Luftbeaufschlagter kondensator

Publications (2)

Publication Number Publication Date
EP1996886A1 EP1996886A1 (de) 2008-12-03
EP1996886B1 true EP1996886B1 (de) 2010-04-21

Family

ID=38279081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07722024A Expired - Fee Related EP1996886B1 (de) 2006-03-20 2007-03-13 Luftbeaufschlagter kondensator

Country Status (13)

Country Link
US (1) US20100218537A1 (de)
EP (1) EP1996886B1 (de)
JP (1) JP2009530579A (de)
CN (1) CN101400958A (de)
AP (1) AP2008004565A0 (de)
AU (1) AU2007231407B2 (de)
DE (1) DE102006013011A1 (de)
IL (1) IL193222A0 (de)
MA (1) MA30347B1 (de)
MX (1) MX2008010960A (de)
TN (1) TNSN08325A1 (de)
WO (1) WO2007110034A1 (de)
ZA (1) ZA200807981B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589344B (zh) * 2012-03-14 2013-07-03 山西省电力公司电力科学研究院 一种直接空冷系统风机入口百叶窗
CN103196301A (zh) * 2013-04-01 2013-07-10 郭航 复合式管束空冷器换热系统
NO337280B1 (no) * 2014-03-17 2016-02-29 Global Lng Services Ltd Forbedring ved luftkjølte varmevekslere
CN104197748B (zh) * 2014-08-07 2016-03-16 无锡市豫达换热器有限公司 基于倒棱台结构的空冷器
FR3064052B1 (fr) * 2017-03-16 2019-06-07 Technip France Installation de liquefaction de gaz naturel disposee en surface d'une etendue d'eau, et procede de refroidissement associe
DE102021005770A1 (de) 2021-11-22 2023-05-25 Serge Olivier Menkuimb Neuartiges und regeneratives Energieerzeugungskühlsystem
CN114812214A (zh) * 2022-06-24 2022-07-29 中国能源建设集团山西省电力勘测设计院有限公司 使空冷凝汽器兼具节能延寿效果的直接空冷系统改造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655795A (en) * 1952-01-02 1953-10-20 Dyer John Refrigerator condensing unit cooler
DE1760243U (de) * 1957-09-13 1958-01-23 Gea Luftkuehler Ges M B H Luftbeaufschlagter waermeaustauscher.
FR1254045A (fr) * 1960-03-02 1961-02-17 Gea Luftkuehler Happel Gmbh Perfectionnements apportés aux échangeurs de chaleur refroidis par un courant d'air forcé
US3583174A (en) * 1969-10-23 1971-06-08 Wilson J Logue Evaporative air cooler for vehicle cabs
US3738621A (en) * 1969-11-10 1973-06-12 Everkool Inc Evaporative cooler
US3913345A (en) * 1974-04-29 1975-10-21 William H Goettl Air conditioner
US4234526A (en) * 1979-01-09 1980-11-18 Mcgraw-Edison Company Evaporative cooler
US4404814A (en) * 1981-10-30 1983-09-20 Beasley Albert W Auxiliary condenser cooling tool for refrigerated air conditioners
US4428890A (en) * 1982-05-18 1984-01-31 Hi-Lo Manufacturing, Inc. Cylindrical evaporative cooler apparatus
US4615182A (en) * 1984-06-04 1986-10-07 Dalgety Australia Operations Limited Evaporative air conditioner
US4698979A (en) * 1987-02-04 1987-10-13 Mcguigan Brian G Unitary evaporative cooler assembly with mechanical refrigeration supplement
US4827733A (en) * 1987-10-20 1989-05-09 Dinh Company Inc. Indirect evaporative cooling system
US4894994A (en) * 1988-05-20 1990-01-23 Carter Lonnie S Sealed heat engine
US5015420A (en) * 1989-12-26 1991-05-14 Jones Tom F Evaporative cooling
US5758511A (en) * 1991-10-15 1998-06-02 Yoho; Robert W. Desiccant multi-duel hot air/water air conditioning system
DE9313290U1 (de) * 1993-09-03 1993-11-18 Hans Güntner GmbH, 82256 Fürstenfeldbruck Flüssigkeitsrückkühler
DE4423960A1 (de) * 1994-07-07 1996-01-11 Martin Gabler Vorrichtung zum Kühlen einer zirkulierenden Wärmeträgerflüssigkeit
DE19541915A1 (de) * 1995-07-27 1997-01-30 Ong Tiong Soon Adiabatisches Kühlverfahren zur Kraftwerksleistungssteigerung
CA2261325C (en) * 1999-02-05 2004-12-21 Air-King Limited Air flow activated control unit for a furnace
US20020112499A1 (en) * 1999-07-28 2002-08-22 Goldfine Andy A. Evaporative cooling article
JP2002122387A (ja) * 2000-10-13 2002-04-26 Hitachi Eng Co Ltd 空気冷却式熱交換器
US6692231B1 (en) * 2001-02-28 2004-02-17 General Shelters Of Texas S.B., Ltd. Molded fan having repositionable blades
AU751294C (en) * 2001-07-13 2005-04-07 Baltimore Aircoil Company Inc. System and method of cooling
JP4081377B2 (ja) * 2002-04-09 2008-04-23 株式会社不二工機 凝縮器の補助冷却装置
EP1522797A3 (de) * 2003-10-09 2009-02-18 Walter Meier (Klima International) AG Keramikplatte zur Befeuchtung eines Luftstroms

Also Published As

Publication number Publication date
AU2007231407B2 (en) 2010-11-25
TNSN08325A1 (en) 2009-12-29
AP2008004565A0 (en) 2008-08-31
CN101400958A (zh) 2009-04-01
US20100218537A1 (en) 2010-09-02
AU2007231407A1 (en) 2007-10-04
MA30347B1 (fr) 2009-04-01
MX2008010960A (es) 2008-09-08
EP1996886A1 (de) 2008-12-03
DE102006013011A1 (de) 2007-09-27
IL193222A0 (en) 2009-02-11
WO2007110034A1 (de) 2007-10-04
JP2009530579A (ja) 2009-08-27
ZA200807981B (en) 2009-07-29

Similar Documents

Publication Publication Date Title
EP1996886B1 (de) Luftbeaufschlagter kondensator
EP2815186B1 (de) Vorrichtung zur kühlung und/oder wärmerückgewinnung
DE2828942C2 (de) Kondensator
EP1519118B1 (de) Verfahren und Vorrichtung zur Befeuchtung der Luft in raumlufttechnischen Anlagen von Gebauden und Fahrzeugen
DE112014002085B4 (de) Befeuchter und Befeuchter aufweisende Klimaanlage
EP3728975B1 (de) Luftgekühlte kondensatoranlage
EP2418430B1 (de) Klimatisierungseinrichtung sowie Verfahren zum Konditionieren eines Luftstroms
DE2435623C2 (de) Kombinierter Naß-Trockenkühlturm
DE2532544C3 (de) Vorrichtung zum Abkühlen von Kühlwasser, in Naturzug-Kühltürmen
DE2607312B2 (de)
DE2132265B2 (de) Verdunstungskühler zum Kühlen von in einem Rohrsystem geförderten Dämpfen oder Flüssigkeiten
DE19513201C1 (de) Tropfenabscheider für eine dezentrale Heizungs-, Lüftungs- und/oder Kühlvorrichtung
EP1864067A2 (de) Nasskühlturm
DE2559992B1 (de) Tropfenabscheider bei einer Vorrichtung zum Kuehlen durch Verdunsten eingespritzter Fluessigkeit
DE10035881C1 (de) Nachverdunster für Luftbefeuchtungsanlagen
EP1417994B1 (de) Tropfenabscheideeinrichtung für Luftströmungskanal
DE68905402T2 (de) Waermeaustauscher zwischen einem gas und einer fluessigkeit mit erhoehten thermischen austauschfaehigkeiten.
DE102011112200A1 (de) Wärmetauscher
EP0610736A1 (de) Einrichtung zur Verringerung des Schadstoffausstosses bei Kraftfahrzeugen
DE10135859A1 (de) Kondensator mit Verteilungsvorrichtung
EP0590328A1 (de) Vorrichtung zur Befeuchtung eines Luftstroms
EP0170616A2 (de) Anordnung zur Verminderung der Schwadenbildung bei einem Hybridkühlturm
EP4384766A1 (de) Kondensationsanlage
WO2010000249A2 (de) Kondensationsanlage
CH696694A5 (de) Keramikmodul zur Befeuchtung eines Luftstroms.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES GB GR IT TR

17Q First examination report despatched

Effective date: 20090223

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): ES GB GR IT TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES GB GR IT TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421