EP3688247B1 - Device for thermal external facade insulation of roof edges - Google Patents
Device for thermal external facade insulation of roof edges Download PDFInfo
- Publication number
- EP3688247B1 EP3688247B1 EP18782211.9A EP18782211A EP3688247B1 EP 3688247 B1 EP3688247 B1 EP 3688247B1 EP 18782211 A EP18782211 A EP 18782211A EP 3688247 B1 EP3688247 B1 EP 3688247B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- roof edge
- roof
- external
- insulation
- façade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009413 insulation Methods 0.000 title claims description 154
- 239000004570 mortar (masonry) Substances 0.000 claims description 11
- 238000005253 cladding Methods 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000003973 paint Substances 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 6
- 238000007789 sealing Methods 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- 229920002943 EPDM rubber Polymers 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000004575 stone Substances 0.000 description 5
- 239000011505 plaster Substances 0.000 description 4
- 239000004567 concrete Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 239000011495 polyisocyanurate Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000002969 artificial stone Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- -1 masonry Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/14—Junctions of roof sheathings to chimneys or other parts extending above the roof
- E04D13/1407—Junctions of roof sheathings to chimneys or other parts extending above the roof for flat roofs
- E04D13/1415—Junctions to walls extending above the perimeter of the roof
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/16—Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
- E04D13/1606—Insulation of the roof covering characterised by its integration in the roof structure
- E04D13/1662—Inverted roofs or exteriorly insulated roofs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/40—Slabs or sheets locally modified for auxiliary purposes, e.g. for resting on walls, for serving as guttering; Elements for particular purposes, e.g. ridge elements, specially designed for use in conjunction with slabs or sheets
- E04D3/405—Wall copings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/14—Junctions of roof sheathings to chimneys or other parts extending above the roof
- E04D2013/1422—Parapet building elements for retaining the roof flashing
Definitions
- the present invention relates to a device for thermal external façade insulation, for example an ETICS system (External Thermal Insulation Composite System), more particularly on a roof edge system for all external façade finishes with external façade insulation.
- ETICS External Thermal Insulation Composite System
- Façade insulation is the application of insulation material, between the supporting wall of a building and the external wall. Insulation is available in the form of stiff pre-formed panels. The edges are provided with a groove (with an overhang), with tongue and groove or with straight edges. The panel surface may have a profile or may be flat.
- the roof edge must be assembled taking into account certain rules: prevent rainwater flowing over from the roof surface towards the roof edge, guide dripping rainwater away from the façade, prevent water penetrating the roof perimeter (the place where the seal ends).
- the finishing off of the roof edge is required to be higher than the roof surface.
- the roof edge must drain towards the roof surface. For this reason the roof edge of flat and slightly sloping roofs, or roofs with no overhanging roof edge, are finished with a raised part.
- roof seal refers to an assembly whereby the roof seal is connected in a watertight manner against a raised side, for example an ascending wall, a roof edge or a roof penetration (e.g. chimneys, domes, sills, ).
- roof penetration e.g. chimneys, domes, sills, .
- roof edge i.e. where the roof meets the wall below.
- Waterproofing a raised part comprises two steps: sealing the kim, i.e. where the flat roof and the vertical wall meet, and finishing the raised part.
- the roof edge seal must be continued right up to the short side of the raised part.
- the roof edge must always be provided with a finish, whereby it needs to be ensured that said finish can be connected in a durable manner to the roof seal.
- the known methods of roof edge finishing are classed into three groups of finishes.
- a first group are the profiles that are connected directly with the seal, such as for example metal collars (seldom still used in new buildings) and roof edge profiles in aluminium, plastic or metal foil sheets.
- a disadvantage with such profiles is that they are visible on the top of the external façade and they also require a separate seal in order to connect to the roof seal.
- a second group are the composite profiles, whereby the seal or a seal strip is clamped in.
- These profiles have been developed for use with plastic seals.
- the roof seal is first placed under the profile, after which the profile is fixed to the structure.
- the seal strip clamped in the profile is connected with the roof seal.
- the assembled fittings are screwed tight and connection to the seal is carried out according to the manufacturer's instructions.
- the corners are made with pre-welded corner pieces.
- a disadvantage of such profiles is the complex structure and assembly.
- a third group are the capstones (made from concrete or stone) or wall copings (made from metal). In both cases the seal is continued across the entire width and length of the wall and must be wider than the wall. These are placed on the seal (regardless of the type), without being directly connected to it. A capstone is not widely recommended because there is actually no vertical protection present in the zone directly under the capstone.
- the insulation of the roof edge is also particularly important.
- the raised part is thermally insulated. There must be no interruption in the continuity of the thermal insulation layers at the level of the roof edge.
- a known insulation method involves the use of an insulation sheet placed horizontally on the raised part and vertically against the raised part. A disadvantage is that this is a rather laborious method during which great care is required in connecting the insulation at the level of the raised part.
- Finishing, sealing and insulating roof edges therefore poses a number of problems.
- the roof edge is mostly finished with an L-profile that stretches partly over the roof and partly over the wall.
- a disadvantage is that this roof profile looks unattractive.
- Another major disadvantage is that the insulation of the roof edge is not optimum at the level of the roof profile and allows thermal bridges.
- Damaged roof edges are also a major problem, with parts affected by thermal tension, corrosion, atmospheric pollution, stains, penetration of rainwater and cold penetration.
- the purpose of the present invention is to provide a solution to any one of the aforementioned and other disadvantages. More particularly the present invention offers a solution to the combined problem of finishing, sealing and insulating roof edges.
- the invention relates to a roof edge system for the thermal and watertight finishing of roof edges on buildings with a flat or slightly sloping roof surface, whereby external façade insulation is provided between a supporting wall and an external façade, whereby the roof edge may be provided with a raised part, whereby the device at the level of the roof edge comprises one or more L-shaped insulation elements consisting of a vertical leg for use in the space between the supporting wall (or optional raised part) and the external façade and a horizontal leg for use on the supporting wall or the optional roof edge, whereby the device at the level of top of the external façade and the one or more insulation elements comprises a roof edge profile to finish the roof edge, whereby the roof edge profile is proportioned in such a way that it is not visible on the external façade.
- the one or more L-shaped insulation elements are placed adjacent to or against each other so that no thermal bridges are formed.
- the insulation elements are inserted on site and do not need to be mechanically fastened, consequently no additional thermal bridges are formed or no corrosion of screws and suchlike occurs.
- the vertical leg of the insulation element and the external façade insulation located between the supporting wall and the external façade join up, and the horizontal leg spans at least the thickness of the supporting wall or the optional roof edge.
- the insulation element of the invention is for example part of an all-in-one Etics system.
- the length of the horizontal leg of the insulation element is at least equal to the thickness of the supporting wall or the optional raised part, the supporting wall or raised part is finished off completely.
- the length of the horizontal leg of the insulation element is preferably greater than the thickness of the supporting wall or the optional raised part, such that a certain seal margin is obtained.
- the L-shaped insulation elements consist of a single part. In this way no thermal bridges are formed when installing the two insulation legs. This also makes installation much simpler and only one insulation block needs to be installed on the roof edge. Preferably said block joins perfectly to the roof edge in the inside corner of the L-shape.
- the insulation elements on the top part of the vertical side of the external façade are provided with a recess for the roof edge profile. In this way the profile is integrated even more seamlessly or less finishing is required in order for this to be achieved.
- the insulation elements are treated, at least on their free tops, preferably also on their free sides, with a reinforcing mortar which also attaches the roof edge profile firmly to the insulation elements.
- the insulation elements are preferably treated, at least on their free tops and preferably also on their free sides, with a UV-resistant roof paint.
- the insulation elements are preferably slightly sloping at the top in order to drain rainwater towards the roof surface. It is possible for only part of the top to be slightly sloping.
- the advantage is that this encourages water to drain towards the roof surface.
- the insulation element When installed, the insulation element has two free sides, the top side and the outer end side of the horizontal leg.
- the insulation element is provided in a number of standard sizes, but can be cut in all kinds of ways to fit into existing dimensions.
- the standard thickness of the vertical leg of the insulation element is 10 cm.
- the thickness of the vertical leg is equal to the thickness of the façade insulation between the supporting wall and the external façade if there is no façade insulation at the level of the vertical leg, or is smaller than said thickness if there is a narrower section of façade insulation at the level of the vertical leg.
- the insulation element is completely compatible with all Etics façade systems.
- the thickness of the vertical leg of the insulation element can correspond with the space between the supporting wall and the external façade. In this case the outer end of the vertical leg joins the Etics external façade insulation below, located between the supporting wall and the external façade.
- the thickness of the vertical leg is smaller than the space between the supporting wall and the external façade.
- an additional section of external façade insulation is applied between the vertical leg and the supporting wall.
- the vertical leg of the insulation element preferably connects against the external façade in order to achieve a complete finish for the space between the external façade and the roof edge.
- the top of the insulation element When installed, the top of the insulation element preferably reaches to just below the top of the external façade.
- the insulation element should certainly not protrude above the external façade.
- a complementary recess can be provided in order to slide or snap both insulations together. This can also be the case between two connecting insulation elements where complementary recesses are provided on the short sides of the insulation element, for example tongue and groove. This can also be the case for the end of the vertical element that can be provided with complementary recesses.
- the end of the horizontal element can have a straight or slanting finish.
- the end of the horizontal element can have a vertical part that "hooks" over the raised part.
- the insulation element When a roof edge makes a angle, of for example 90°, the insulation element is mitre cut (45°). The insulation element can also be cut at the correct angle to tightly fit against a façade at a particular angle.
- the insulation elements are seamlessly treated with a reinforcing mortar at least on the tops, preferably also on the short sides.
- the insulation elements are treated with a UV-resistant roof paint, preferably in a shade of white, at least on the tops, preferably also on the short sides.
- the roof paint is preferably applied to the reinforcing mortar.
- the roof edge system comprises a roof edge profile for finishing the roof edge, whereby the roof edge profile is proportioned such that it is not visible on the external façade.
- the roof edge profile of the invention is seamlessly integrated in the external façade and no protruding profiles are visible. This means that the roof edge profile is entirely concealed and provides a profile-less appearance on the external façade, whereby the roof edge and the façade form one single unit. This responds to the contemporary needs of modern buildings.
- the roof edge profile extends from the insulation element to the external façade, whereby the roof edge profile comprises two profiled ends, whereby the one end leans against the top of the external façade to before or just up to the furthest edge of the external façade and the other end at least leans against the sloping side of the insulation element.
- the roof edge profile extends from the insulation element to the external façade, whereby the roof edge profile comprises two profiled ends, whereby the one end leans against the top of the external façade to before or just up to the extreme edge of the external façade and the other end leans against at least the horizontal leg of the insulation element.
- the roof edge profile leans with a third end against the vertical side of the insulation elements.
- the roof edge profile is preferably retained or fixed on the insulation elements using a finishing layer, for example a reinforcing mortar. Consequently the roof edge profile is firmly and seamlessly concealed on the roof edge.
- the roof edge comprising the insulation elements and the roof edge profile, is further subsequently finished with a vapour barrier (7), an insulation layer (8), an EPDM sealing barrier (17), a finishing layer (20) and/or a white EPDM finishing layer (21) .
- a roof edge profile is provided for each type of external façade finish, such as for example decorative plaster, concrete, stone strips or other masonry.
- the roof edge profile is narrower or wider, depending on the thickness of the external façade finish. The purpose is that the entire top side of the external façade finish is covered by the profile in a waterproof manner, without the roof edge profile being visible and whereby the profile is seamlessly integrated.
- the roof edge profile has a special shape comprising a universal part and an exchangeable specific part, whereby the universal part connects to the insulation elements and the specific part is provided with a nose against which the external façade cladding connects seamlessly to the front of the façade surface.
- a connection provides a seamless and watertight finish.
- the universal part can be used for every type of roof edge and allows for the roof edge profile to be integrated or fixed against/to/on the insulation elements.
- the insulation elements could be equipped as standard before installation with a universal part of a roof edge profile, either in the factory or on the site (before installation). In this case only the specific part of the roof edge profile needs to be assembled on site or when finishing.
- the roof edge profile can therefore be partly or entirely pre-fastened to the one or more insulation elements.
- the length of the nose of the specific part is adapted to the thickness of different types of external façade finishes.
- the tip of the nose can also be adapted to the type of façade cladding, such that a seamless and watertight finish is obtained.
- the specific part is preferably snapped or slid onto the universal part.
- the universal part comprises a part that runs in parallel with the roof surface or the top of the façade cladding and this universal part is formed in a shape that is complementary to the form of the specific part.
- Two roof edge profiles are preferably fixed to each other using a coupling piece that is for example slid into the two profiles.
- the profiles are specially equipped for this purpose.
- the roof edge profile is preferably a pultrusion or glass fibre-reinforced polyester profile.
- the thermal expansion of these profiles is very small, in contrast to PVC profiles.
- the thermal expansion coefficient of a tested profile varies from 7.707 to 7.970 ⁇ m/(m*C) in longitudinal terms.
- the pultrusion profiles are resistant to chemicals and corrosion.
- the tensile strength is comparable to that of steel and aluminium.
- the profiles are also transparent to radar and electromagnetic radiation and have very good electrical properties. As an option the profiles can be fire resistant.
- the roof edge profiles are preferably in a specific form depending on the material of the external façade.
- the insulation elements are preferably composed of expanded polystyrene (EPS, XPS), mineral wool (MW), polyisocyanurate (PIR), polyurethane (PUR), hemp (HEMP), wood fibre (Wood wool), cellular glass.
- EPS expanded polystyrene
- XPS mineral wool
- PIR polyisocyanurate
- PUR polyurethane
- HEMP wood fibre
- Wood wool wood fibre
- the wall cladding of the external façade preferably consists of decorative plaster, masonry, concrete or other.
- the invention relates to a method for the thermal and watertight finish of roof edges of buildings with a flat or slightly sloping roof surface with a roof edge system such as described above according to claim 15.
- the method further comprises the following steps: c) installation of a sealing membrane and a reinforcing mortar on top of the insulation element and the free side, and d) installation of one or more layers of UV-resistant roof paint on the sloping side of the insulation element and on the free side.
- Figure 1 snows an example or an existing embodiment for the thermal insulation of a roof edge.
- the construction of the roof edge is as follows.
- a raised part 5 in masonry is placed on the supporting masonry (supporting wall) 1 and the supporting floor/roof panel 4.
- a cavity wall insulation 3 (whose thickness must be aligned with the relevant thermal regulations) is provided in the space between, on the one hand, the supporting wall 1 and the raised part 5 and, on the other hand, the façade masonry (external façade) 2.
- On the supporting floor/roof panel 4 a sloping layer 6 is applied plus a vapour barrier 7.
- an insulation layer 8 in order to insulate the roof surface.
- the vertical wall of the raised part 5 is also provided with an insulation layer 8.
- Figure 2 shows an embodiment of a roof edge system according to the invention.
- a raised part 5 made from masonry is placed on the supporting masonry (supporting wall) 1 and the supporting floor/roof panel 4.
- a sloping layer 6 is preferably applied plus an insulation layer 8 in order to insulate the roof surface 4.
- the vertical wall of the raised part 5 is also provided with an insulation layer 8.
- a vapour barrier can be applied underneath the insulation layer 8.
- a cavity wall insulation 3 is provided in the space between the supporting wall 1 and the façade masonry (external façade) 2 .
- the cavity wall insulation 3 is thinner in the space where the insulation element 16 is placed. As illustrated in the figure the insulation element 16 in the cavity is provided against the external façade.
- the cavity wall insulation 3 can be the same thickness across the entire height of the wall at the level of the roof edge (including the supporting wall 1, end of the roof surface 4 and raised part 5).
- the L-shaped insulation element 16 can replace the cavity wall insulation 3 at the level of the insulation element 16.
- a universal sealing membrane 17 is provided that is laid all the way across the raised part 5 and the insulation layers 8 of the vertical wall of the raised part 5 as far as the roof surface.
- an angled corner profile is preferably applied using a fibre-reinforced mortar. This facilitates the installation of the EPDM sealing membrane 17 in the corner.
- the L-shaped insulation element 16 is provided on top of the universal sealing membrane 17 with the vertical leg in the remaining space of the cavity against the external façade or cavity wall insulation 3.
- the L-shaped insulation element 16 is preferably slightly sloping towards the roof.
- a roof edge profile 18 is placed on the top of the L-shaped insulation element 16, on the side of the external façade and connecting to the roof edge.
- the roof edge profile 18 is placed with a fibre-reinforced mortar on the front of the L-shaped insulation element 16 joining the roof edge.
- roof edge profile 18 can be cut to size using the appropriate cutting material.
- the top surface of the insulation element 16 reaches to just under the façade masonry 2, where a roof edge profile 18 is provided.
- the roof edge profile 18 covers the top edge of the external façade 2 and reaches just as far as the furthest edge of the façade.
- the roof edge profile 18 is concealed in such a way that it is invisible from the external façade. In this way the insulation is seamlessly integrated in the façade and the whole thing appears to include no profiles, in contrast to the known roof finishes.
- a sealing membrane 19 and a reinforcing mortar 20 are added on top of the insulation element 16.
- the unit is finished with one or more layers of UV-resistant roof paint 21.
- the water seal consists of a 5-stage seal. In this way water infiltration is completely prevented.
- a first seal stage consists of an insulation layer on the roof panel and one against the raised part (roof edge).
- a second seal stage consists of an L-shaped insulation block according to the invention, integrated in a façade system, as a buffer against thermal bridges. The insulation block acts like an umbrella across the roof edge.
- a third seal stage comprises a glass fibre-reinforced reinforcing mortar which is applied to the free parts of the insulation block, i.e. to the top and free vertical side.
- a fourth seal stage comprises a roof paint, which is UV-resistant, environmentally-friendly, cold elastic, and hardly heats up (white colour).
- a fifth seal stage comprises a seal of the expansion joints with for example Fugendichtband from Caparol.
- Figure 3 shows in an alternative embodiment the different phases in the installation and finish of a roof edge according to the invention.
- the roof edge ( figure 3a ) comprises a supporting wall 1 on which there is a roof panel 4 which is finished with a raised part 5.
- the supporting wall 1, roof panel 4 and raised part 5 preferably form one surface on the side where the external façade 2 is provided.
- the roof worker provides the following layers in sequence on the roof edge:
- the insulation worker provides the following finishing layers:
- Figure 3k shows a cross-section of a finished roof edge 18 with decorative plaster as external façade finish 2.
- the builder can then place the external façade 2 against the cavity wall insulation 3 and at the top reaching as far as the roof edge profile 18.
- An appropriate type of roof edge profile 18 must be used for each type of external façade 2, such as for example for plasterwork, tiles or façade stones.
- the roof edge profile 18 is adapted in the sense that the top of the external façade finish 2 is covered by the roof edge profile 18, but in such a way that the roof edge profile 18 does not stick out or overlap on the external façade 2.
- the roof edge profile 18 is integrated in a way that is invisible on the external façade 2.
- the view on the roof edge 18 of the external façade 2 is as if the external façade finish continues all the way to the top of the roof edge 18. This means that the roof edge construction is very clean and modern and no pollution is possible between the roof edge 18 and the external façade 2.
- Figure 4 a and b shows an L-shaped insulation element 16 of the roof edge system according to the invention.
- the top slope is preferably 8°.
- the vertical leg 16' has a standard thickness of 10 cm.
- the horizontal leg 16" is a standard of 40 cm ( figure 3a ) or 60 cm ( figure 3b ) and can be shortened according to the total thickness of the façade.
- Figure 5 shows a specific preferred embodiment of an L-shaped insulation element 16 of the roof edge system according to the invention, whereby a recess 25 is provided for the roof edge profile 18 on the top external side in continuation of the leg 16' .
- FIG 6 shows some embodiments of a roof edge profile 18 of the roof edge system according to the invention.
- the roof edge profiles are preferably pultrusion profiles.
- the thermal expansion coefficient is very low compared to thermoplastic profiles.
- the roof edge profile 18 is fixed to the insulation element with a fibre-reinforced mortar.
- Figure 6a shows a simplified roof edge profile for decorative plaster, figure 6b a roof edge profile for bricks and figure 6c a roof edge profile for artificial stone.
- every roof edge profile 18 has a horizontal leg 18a, 26a and a vertical leg 26b. Both legs follow the lines of the insulation element.
- a minimal amount of gluing is required on the insulation element increasing the strength of this profile and reducing the thermal linear tension between the two materials.
- every roof edge profile 18 has a specific raised part provided with a nose against which the façade cladding can connect seamlessly on the front (façade surface).
- the roof edge profile 18 can also be provided with a horizontal sealing nose against rainwater infiltration.
- a pultrusion coupling piece 23 is provided that slides between two profiles on the façade side. This connection allows different profiles to be coupled to each other whereby a horizontal and level line can be achieved.
- An additional advantage of this coupling piece 23 is that it is placed on the front in line with the profile, whereby the top between two profiles is sealed.
- the coupling piece 23 also adds additional strength. Given the very limited thermal linear expansion of the profiles there is no rain water infiltration.
- a pultration thermoprofile 22 can be used to seal the insulation element at the level of the insulation layer 8 of the raised part. This thermoprofile is installed first and then the insulation element.
- Figure 7 shows some specific embodiments of a roof edge profile 18 of the roof edge system according to the invention.
- Figure 7 shows three different profiles: ( fig 7a ) for a plastered external façade, ( fig 7b ) for an external façade finish with ceramic tiles and thin stone strips such as Meldorfer and ( fig 7c ) for an external façade finish with thicker stone strips or brick.
- the L-shaped insulation element 16 is provided with a recess 25 for the roof edge profile 18.
- the roof edge profile 18 is made in two parts: a universal part 18a that forms the basis for all profiles, and a specific part 18b that is adapted to the specific external façade cladding.
- a coupling piece 23 is also provided via a recess in the universal part 18a.
- the universal part 18a comprises two legs 26a, 26b which connect on the top of the L-shaped insulation element 16, on the one hand to the top of the element and on the other hand to the side wall.
- the legs 26a, 26b are preferably at an angle of less than 90°.
- the universal part extends further, above the top of the L-shaped element 16, in continuation of the leg 26b that joins against the side wall of the element 16 and is provided with a fastening means (or third leg) 26c on to which the specific part 18b can be snapped or slid.
- This third leg 26c extends towards the roof, away from the roof edge, preferably sloping a little towards the roof so that rain can run off towards the roof and not on to the external façade. This forms a strong support surface for the specific part 18b.
- the third leg 26c is made in such a way that the specific part cannot slide forwards or backwards. It can possibly only be slid entirely onto the part.
- the specific part 18b has a shape that is complementary to that of the third leg 26c.
- the specific parts for different types of external façade finish differ from each other on the side of the external façade in the length of the protruding part 27 that must cover the external façade. Depending on the thickness of the external façade finish the protruding part 27 is shorter or longer.
- the longer version ( fig7c ) can be provided with a strengthening attachment 28 at the level of the protruding part.
- Two roof edge profiles are attached to each other using a coupling piece 23 that slides into a recess of the second leg 26b.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Building Environments (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201830552T SI3688247T1 (sl) | 2017-09-26 | 2018-09-25 | Naprava za zunanje fasadno toplotno izoliranje strešnih robov |
PL18782211T PL3688247T3 (pl) | 2017-09-26 | 2018-09-25 | Urządzenie do izolacji termicznej krawędzi dachu zewnętrznej elewacji |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE2017/5682A BE1025577B1 (nl) | 2017-09-26 | 2017-09-26 | Inrichting voor thermische buitengevelisolatie |
PCT/IB2018/057383 WO2019064167A1 (en) | 2017-09-26 | 2018-09-25 | EXTERNAL THERMAL INSULATION DEVICE OF ROOF EDGE FACADES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3688247A1 EP3688247A1 (en) | 2020-08-05 |
EP3688247B1 true EP3688247B1 (en) | 2021-11-24 |
Family
ID=60019650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18782211.9A Active EP3688247B1 (en) | 2017-09-26 | 2018-09-25 | Device for thermal external facade insulation of roof edges |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3688247B1 (pl) |
BE (1) | BE1025577B1 (pl) |
PL (1) | PL3688247T3 (pl) |
SI (1) | SI3688247T1 (pl) |
WO (1) | WO2019064167A1 (pl) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115387546B (zh) * | 2022-08-26 | 2023-11-24 | 中建八局第一建设有限公司 | 一种立面卷材压边装置 |
CN115897913B (zh) * | 2022-10-14 | 2024-10-22 | 中国建筑第六工程局有限公司 | 一种预制装配式女儿墙保温装饰防水盖板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06146509A (ja) * | 1992-11-13 | 1994-05-27 | Sekisui House Ltd | 笠木を備えたパラペットの防水装置 |
DE502006000477D1 (de) * | 2005-06-22 | 2008-04-30 | Ulrich Maag | Dachrandeement |
AT12710U3 (de) * | 2012-01-12 | 2013-03-15 | Flachdachtechnik Doering Gbr | Attika-dichtungs- und unterkonstruktionsprofil |
-
2017
- 2017-09-26 BE BE2017/5682A patent/BE1025577B1/nl active IP Right Grant
-
2018
- 2018-09-25 WO PCT/IB2018/057383 patent/WO2019064167A1/en active Search and Examination
- 2018-09-25 SI SI201830552T patent/SI3688247T1/sl unknown
- 2018-09-25 EP EP18782211.9A patent/EP3688247B1/en active Active
- 2018-09-25 PL PL18782211T patent/PL3688247T3/pl unknown
Also Published As
Publication number | Publication date |
---|---|
BE1025577A1 (nl) | 2019-04-17 |
SI3688247T1 (sl) | 2022-04-29 |
WO2019064167A1 (en) | 2019-04-04 |
BE1025577B1 (nl) | 2019-04-24 |
EP3688247A1 (en) | 2020-08-05 |
PL3688247T3 (pl) | 2022-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9458631B2 (en) | NP-EIFS non-permissive exterior insulation and finish systems concept technology and details | |
US5826388A (en) | Composite insulating drainage wall system | |
US9267294B2 (en) | Bracket, a building module, a method for making the module, and a method for using the module to construct a building | |
EP3688247B1 (en) | Device for thermal external facade insulation of roof edges | |
US9863139B2 (en) | Building module, a method for making same, and a method for using same to construct a building | |
CA3040093C (en) | Drainage channel for use in a building wall | |
KR20200126568A (ko) | 방수구조 | |
WO2009077998A1 (en) | A panel system comprising a composite panel and a translucent panel | |
US20210025176A1 (en) | Resizable Insulated and Watertightness Wall Panel Joint Structure | |
US8413386B2 (en) | Building protection structures and methods for making and using the protection structures | |
CN217269625U (zh) | 一种断桥平开门窗框施工节点 | |
CN106381959A (zh) | 外露式钢结构屋面防水结构的施工工艺 | |
AU2012101755A4 (en) | Waterproofing System for Wet Areas | |
CN111851896B (zh) | 一种建筑外墙的保温装饰烧结一体板施工方法 | |
EP2740854A1 (en) | Insulated flashing construction | |
CN210563122U (zh) | 保温装饰复合alc外围护墙板 | |
GB2087453A (en) | Edge Rail | |
EP2703574B1 (en) | Insulating element | |
CN212802318U (zh) | 木瓦饰面天窗 | |
RU2777582C2 (ru) | Готовая изолированная строительная панель с по меньшей мере одним отвержденным цементным слоем, сцепленным с изоляцией | |
Fronapfel et al. | Synthetic Stone Veneer: Why Problems Occur and How to Avoid Them | |
CZ264096A3 (en) | Dormer-window | |
JP7097661B2 (ja) | 入隅部用防水部材および該防水部材を用いた防水構造、防水工法 | |
GB2562492A (en) | Moisture-retarding weathering protection feature for inclusion in construction sandwich panels | |
US20110000156A1 (en) | Lap trim system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210708 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1449978 Country of ref document: AT Kind code of ref document: T Effective date: 20211215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018027220 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220324 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220324 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220225 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018027220 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
26N | No opposition filed |
Effective date: 20220825 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1449978 Country of ref document: AT Kind code of ref document: T Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220925 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230911 Year of fee payment: 6 Ref country code: IE Payment date: 20230907 Year of fee payment: 6 Ref country code: GB Payment date: 20230914 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230929 Year of fee payment: 6 Ref country code: CH Payment date: 20231004 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180925 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240821 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240822 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240805 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240809 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240822 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240820 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20240809 Year of fee payment: 7 |