EP3688206B1 - Elektrolysevorrichtung - Google Patents

Elektrolysevorrichtung Download PDF

Info

Publication number
EP3688206B1
EP3688206B1 EP18786231.3A EP18786231A EP3688206B1 EP 3688206 B1 EP3688206 B1 EP 3688206B1 EP 18786231 A EP18786231 A EP 18786231A EP 3688206 B1 EP3688206 B1 EP 3688206B1
Authority
EP
European Patent Office
Prior art keywords
webs
ribs
holes
electrolysis device
cutouts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18786231.3A
Other languages
English (en)
French (fr)
Other versions
EP3688206A1 (de
Inventor
Dmitri Donst
Philipp Hofmann
Dirk Hoormann
Gregor Damian POLCYN
Peter Woltering
Alessandro FIORUCCI
Federico Fulvio
Michele Perego
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera AG and Co KGaA
Original Assignee
ThyssenKrupp Uhde Chlorine Engineers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Uhde Chlorine Engineers GmbH filed Critical ThyssenKrupp Uhde Chlorine Engineers GmbH
Publication of EP3688206A1 publication Critical patent/EP3688206A1/de
Application granted granted Critical
Publication of EP3688206B1 publication Critical patent/EP3688206B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells

Definitions

  • the present invention relates to an electrolysis device for the electrolytic treatment of liquids with an anode chamber and a cathode chamber, which are separated from one another by an ion exchange membrane, the chambers being equipped with an inlet opening and an outlet opening for the flowing electrolyte and each with an electrode, and the interior the anode chamber and / or the cathode chamber is subdivided by webs or ribs extending transversely to the electrodes, the webs or ribs being provided with holes or recesses at least in some areas.
  • the electrolyte For the electrolysis process to function properly in the interior of the electrode chambers, the electrolyte must be distributed as evenly as possible over the entire chamber height and width, which is why good mixing of the liquid in the two electrolysis chambers is desirable.
  • this liquid mixing is particularly important in the anolyte chambers (anode chambers), since the ion exchange membranes only work optimally in a relatively narrow range of chloride concentration, temperature and pH value. It cannot be ruled out that, in areas of the anode chamber that are unfavorably located in terms of flow, stagnation of the anolyte may lead to chloride depletion, which can lead to local membrane damage.
  • the buoyancy effect of the chlorine gas causes a certain natural mixing in the vertical direction.
  • the mean flow velocity in the anolyte chamber in the horizontal direction is low and therefore the natural mixing in the horizontal direction is also very low.
  • the gas bubbles rising in the electrolyte tend to unite in the upper area to form a closed foam layer. This foam formation is greater, the greater the cell load and the higher the cell. Since the electrical resistance in the foam is greater than in the rest of the electrolyte, the current distribution over the membrane surface and thus the membrane load becomes uneven.
  • an electrolysis device is known with the features mentioned at the beginning, in which a better liquid mixing is sought in the two electrolysis chambers.
  • at least one separating element in the form of a separating plate which is surrounded by flow in some areas, is provided, which is equipped with flow guide webs.
  • the gas bubbles formed on the electrodes are used as a kind of conveying aid, in that the distribution of the gas bubbles over the entire chamber space is prevented.
  • An upward flow is generated due to the gas bubbles that arise only on one side of the separating plate in the area of the electrode. Since the separating element is designed so that it can be flushed around, there is a natural vertical circulation in the chambers.
  • an electrolytic device of the bipolar type which contains a plurality of bipolar unit cells arranged in series, each cell is composed of an anode-side trough-shaped body and a cathode-side trough-shaped body, each comprising a hook-shaped flange, a frame wall and a partition wall, the anode and cathode are each welded to the partition wall via electrically conductive ribs (webs).
  • Each of these conductive ribs is provided with spaced-apart holes over its entire height in order to enable the electrolyte and the electrolysis product to pass through the ribs.
  • the membrane In electrolysis devices of the type mentioned above, the membrane is usually very close to the electrodes.
  • the ribs or webs running between the electrodes and in the transverse direction to them divide the interior of the electrolysis device into several compartments (also referred to as compartments). If massive ribs or webs are used, the membrane may not be supplied with sufficient brine which, if flat anodes are used, leads to the formation of blisters on the membrane.
  • mammoth pump effect is understood to mean the phenomenon described by Carl Immanuel Löscher that the liquid level can be raised by a certain amount by gas bubbles introduced into a liquid below the liquid level. This effect is used in the so-called mammoth pumps for pumping liquids.
  • an electrode arrangement for an electrolyzer of the filter press type is known in which anode spacers and cathode spacers are used which extend in the transverse direction to the flat electrodes.
  • a Z-shaped spacer is also referred to as an upper spacer, while U-shaped or C-shaped spacers are located below it.
  • These Z-shaped or U-shaped spacers are, however, arranged horizontally in the electrolytic cell, that is to say they run transversely to the vertical direction of the electrolytic cell.
  • the spacers have circular or oval perforations of different sizes. These perforations serve to mix the electrolyte vertically, the larger perforations being intended to improve the gas flow of the gas rising in the electrolyte.
  • a subdivision of the electrolysis cell in the longitudinal direction that is to say in the direction of the longitudinal extension of the spacers, is not provided here.
  • the U.S. 5,693,202 A also describes an electrochemical cell with an ion exchange membrane, in which a lower inlet opening and an upper outlet opening are provided.
  • horizontally extending connecting elements run transversely to the electrodes, which divide the cell into several superimposed chambers and in which a plurality of regularly arranged openings are provided, which allow gas to pass through in the vertical direction of the electrolytic cell.
  • a vertical mixing of the electrolyte is provided, whereas a further subdivision of the cell by vertically extending webs cannot be seen.
  • an electrolytic cell is known, the electrodes being attached to the half-shells by means of ribs.
  • Flat strips are arranged between the ribs, which divide the electrolyte space into an ascending flow of gas / electrolyte and a descending degassed flow.
  • the ribs are provided with openings that allow the electrolyte to mix crosswise. Depending on the arrangement of the flat or folded strips, these openings are free, completely covered or partially covered in the vertical direction, the ribs not having at least one lower area, seen in the vertical direction, in which the ribs are free of openings to maintain the mammoth pump effect.
  • the object of the present invention is to provide an electrolysis device with the features of the type mentioned at the outset, in which, on the one hand, there is sufficient mixing in the longitudinal direction, but at the same time the mammoth pump effect is maintained.
  • the electrolysis cell extends in three spatial directions that are orthogonal to one another.
  • the spatial direction in which the electrolytic cell usually has its greatest extent is defined as the longitudinal direction.
  • the flat electrodes extend in this longitudinal direction and in the height direction.
  • the direction of the normal to the surface of the electrodes is referred to herein as the transverse direction. Gas bubbles rise in the electrolysis cell against gravity from bottom to top. This direction from bottom to top is referred to herein as the height direction.
  • the conventional mixing of the electrolyte in the vertical direction which is also present in the prior art, is referred to in the present application as vertical mixing.
  • This is to be distinguished from the thorough mixing of the electrolyte in the longitudinal direction of the electrolytic cell, for the purpose of which the vertical webs provided according to the invention have holes or recesses through which the electrolyte can flow.
  • These webs thus run in the vertical direction of the electrolytic cell according to the above definition or essentially in the vertical direction, and they also extend in the transverse direction of the electrolytic cell, that is to say transversely to the flat electrodes.
  • a subdivision of the electrolytic cell in its longitudinal direction into several compartments is created by these webs.
  • the flow of the electrolyte through holes or recesses in these webs is thus essentially a flow in the longitudinal direction of the electrolytic cell and is also referred to herein as horizontal mixing.
  • lower or “above” used herein relate to the extent of the electrolytic cell in the vertical direction. In the context of the present invention, therefore, means that an “upper” area, viewed in the height direction of the electrolysis cell, is located higher up than a “lower” area.
  • the webs or ribs extend in the vertical direction of the electrolysis device and, viewed in the vertical direction, have at least one lower area in which they are free of holes or recesses, that is, no holes or recesses are provided there. Because the webs or ribs are solid in the lower area and have no holes or recesses, the unimpeded mammoth pump effect is guaranteed there. In the lower area, the gas bubbles formed during the electrolysis can thus rise upwards unhindered in the compartment of the electrolysis cell separated by the web. The vertical flow predominates in this lower area and there is no significant longitudinal mixing of the electrolysis medium. In contrast, according to the invention, there are holes or recesses in the upper region of the webs or ribs.
  • the rising gas bubbles form a foam phase of the electrolysis medium and longitudinal mixing is therefore desirable here.
  • This longitudinal mixing is achieved through the holes or recesses in the webs or ribs, which allow the electrolysis medium to flow into the adjacent compartment of the electrolysis cell.
  • the direction in which the electrodes extend is understood in the present application as the longitudinal direction of the electrolysis device.
  • the webs or ribs extend transversely to the electrodes, this means that the webs or ribs extend essentially in the transverse direction of the electrolysis device and preferably approximately at right angles to the electrodes.
  • the two electrolysis chambers each have an approximately cuboidal interior space which receives the electrolyte. The webs or ribs thus run in the electrolysis cell essentially in the vertical direction and in the transverse direction in the sense of the above definitions.
  • holes does not imply any restriction to any particular outline shape.
  • the holes can, for example, have a round, oval, oblong or angular outline.
  • the term “recesses” used herein includes on the one hand through holes with any contour shape that are surrounded on all sides by the material of a web, as well as openings in the material that allow the electrolysis medium to pass through, but are not surrounded on all sides by the material of a web , that is, they can optionally also be open at one or more places on their circumference.
  • the design of the webs or ribs according to the invention thus advantageously combines two effects with one another.
  • the mammoth pump effect is obtained in the lower area of the webs (which leads to cross-mixing) and, on the other hand, a longitudinal mixing is achieved in the upper area of the webs.
  • This ensures optimal mixing of the inflow and brine transport to the anode over the entire cell height through the mammoth pump effect and at the same time an optimal brine transport to the anode over the cell width through the holes or recesses in the webs in the upper foam phase.
  • a preferred development of the object solution according to the invention provides that the webs or ribs have at least one upper area with holes or recesses, as seen in the height direction of the electrolysis cell. Longitudinal mixing is possible there through these holes or recesses in the upper area of the webs or ribs. A foam phase is formed there by the rising gas bubbles, in the area of which longitudinal mixing of the electrolyte is advantageous.
  • the lower region in which the webs or ribs have no holes or recesses preferably extends at least approximately over the lower half of the total height of the webs or ribs, in particular at least over the lower half of the total height of the webs or ribs.
  • the end of the lower range naturally depends on the individual conditions in the respective electrolysis cell. For example, it can be determined empirically up to which height of the webs the mammoth pump effect is desired and longitudinal mixing is to be prevented and at what level the foam phase begins. Tests have shown that it is generally advantageous to make at least approximately the lower half of the webs or ribs, in particular at least the lower half of the webs or ribs, solid, i.e. without holes or recesses. The area in which the holes begin can thus be determined in individual cases, for example, depending on the parameters of the electrolysis cell, the type of electrolyte used and the conditions under which electrolysis takes place, such as temperature, pH value, current density, etc. vary.
  • the lower area, in which the webs or ribs have no holes or recesses extends at least approximately over the lower two thirds, in particular over the lower two thirds, of the entire height of the webs or ribs.
  • the area in which the webs or ribs are solid extends over the middle of the webs or ribs upwards, while only approximately in the upper third, especially in the upper third, where the foam phase is formed , Holes or recesses are provided.
  • the upper area in which the webs or ribs have holes or recesses extends at least approximately over the upper quarter, in particular over the upper quarter, of the entire height of the webs or ribs.
  • the area in which the webs or ribs are solid thus extends further upwards, while holes or recesses are provided at least approximately in the upper quarter, in particular in the upper quarter, where the foam phase is formed are.
  • the upper area in which the webs or ribs have holes or recesses extends at least approximately over the upper third of the total height of the webs or ribs, in particular at least over the upper third of the total height of the webs or ribs.
  • a preferred development of the invention provides that the webs or ribs have a plurality of holes or recesses spaced from one another by solid regions in the height direction of the webs or ribs in the at least one upper region.
  • the webs or ribs in the at least one upper area have at least partially approximately round holes in outline.
  • the shape of a keyhole is only mentioned as an example at this point. However, in principle, any other contour shapes for the holes or recesses are also conceivable. For example, holes or recesses with different outlines and in different sizes can also be provided, for example depending on how strong the effect is Longitudinal mixing is desired and how much volume of electrolyte per unit of time should flow through the holes or recesses into the adjacent compartment.
  • the webs or ribs in the at least one upper area have a plurality of holes or recesses which are spaced differently from one another, viewed in the direction of the height of the webs or ribs.
  • This offers a further possibility of varying the effect of mixing in the longitudinal direction by using holes or recesses of approximately the same size, but the distances between them vary over the height of the webs or ribs, so that with more densely arranged holes or recesses larger total areas of holes per unit area of the webs are given.
  • a similar effect can of course also be achieved by using holes or recesses of different sizes.
  • the holes or recesses in the webs or ribs can be arranged in a first lower section of the upper region at smaller distances from one another than in a second section of the upper region that adjoins them upwards.
  • the holes or recesses have a certain minimum size in order to achieve the desired mixing effect.
  • the free cross section of at least one hole or recess is therefore preferably at least about 10 mm 2 , particularly preferably at least about 15 mm 2 .
  • the free cross-section of all holes or recesses is preferably at least about 300 mm 2 in total and the individual holes have the aforementioned minimum cross-sections, this also depending on how many holes or recesses are provided in total and the distance between them.
  • the present invention also relates to a method for the electrolytic treatment of a flowable medium in an electrolysis device having the features of one of claims 1 to 10.
  • the method according to the invention preferably comprises a chlor-alkali electrolysis. Electrolysis devices of the type described herein are particularly suitable for chloralkali electrolysis. However, the electrolysis devices according to the invention can also be used for other electrolysis processes.
  • an electrolytic cell 10 comprises a housing with two half-shells, namely a cathode half-shell 11 and an anode half-shell 12, which are each provided with flange-like edges at the top and bottom, between which a membrane 13 is clamped by means of seals.
  • This membrane 13 forms a partition between the cathode half-shell 11 (corresponds to the cathode chamber or catholyte chamber) and anode half-shell 12 (corresponds to the anode chamber or anolyte chamber).
  • the cathode half-shell 11 and anode half-shell are connected to one another at the top and bottom by means of screws 14 aligned in the transverse direction to form an electrolytic cell 10.
  • an inlet manifold 15, 16 for electrolyte solution and used electrolyte is discharged from the electrolytic cell via an outlet pipe 17.
  • the anode and cathode each extend flat in the vertical direction in the respective half-shell close to the membrane.
  • FIG 3 is the in Figure 2
  • the electrolytic cell shown is shown cut open in the longitudinal direction. It can be seen here that, in electrolysis cells of this type, the rear space of the two electrodes in both half-shells is divided into individual compartments by webs 20 running in an approximately vertical direction and in the transverse direction. These webs also serve to stiffen and support the cathode and anode.
  • webs 20 In the cross-sectional view according to Figure 4 one of these webs 20 can be clearly seen in the drawing on the left. It can be seen that the web 20 is provided with holes 24 in the upper area, via which the electrolyte is mixed longitudinally. More details regarding the training and the function of these webs 20 are shown below with reference to the individual part drawing Figure 5 explained in more detail.
  • the representation according to Figure 5 shows a single web 20, which is cut obliquely in its lower end area 21 and thus tapers continuously in width towards the lower end. Viewed in the direction of its height, this web 20 has in principle two differently designed areas, namely a lower area 22 and an upper area 23.
  • the lower area 22 is solid, with no holes or recesses being provided in it.
  • This lower region 22 extends in the exemplary embodiment according to FIG Figure 5 over a little more than the lower two thirds of the total height of the web 20.
  • the upper region 23 of the web 20 adjoins the lower region 22 at the top, the web 20 being provided in this upper region 23 with holes 24 through which Electrolyte can pass through in the longitudinal direction of the electrolytic cell, so that longitudinal mixing of the electrolyte takes place in this upper region 23. There is a foam phase of the electrolyte due to the rising gas bubbles.
  • FIG. 5 How to get in Figure 5 sees a number of several spaced apart holes 24 are provided. In the exemplary embodiment, five such holes 24 are shown by way of example. It can also be seen that the two lower holes 24 a at the level of the web 20 have a smaller distance from one another than the upper holes. The number of holes 24 and their respective spacings from one another can be varied virtually as desired within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Elektrolysevorrichtung zum elektrolytischen Behandeln von Flüssigkeiten mit einer Anodenkammer und einer Kathodenkammer, die über eine lonenaustauschermembran voneinander getrennt sind, wobei die Kammern mit einer Einlassöffnung und einer Auslassöffnung für den strömenden Elektrolyten und mit je einer Elektrode ausgerüstet sind und wobei der Innenraum der Anodenkammer und/oder der Kathodenkammer durch sich quer zu den Elektroden erstreckende Stege oder Rippen unterteilt ist, wobei die Stege oder Rippen mindestens bereichsweise mit Löchern oder Aussparungen versehen sind.
  • Für eine einwandfreie Funktion des Elektrolysevorgangs im Inneren der Elektrodenkammern ist eine möglichst gleichmäßige Verteilung des Elektrolyten über die gesamte Kammerhöhe und Kammerbreite erforderlich, weshalb eine gute Flüssigkeitsdurchmischung in den beiden Elektrolysekammern anzustreben ist. Diese Flüssigkeitsdurchmischung ist bei Chloralkalizellen besonders in den Anolytkammern (Anodenkammern) wichtig, da die lonenaustauschermembranen nur in einem verhältnismäßig engen Bereich von Chloridkonzentration, Temperatur und pH-Wert optimal arbeiten. Es ist nicht auszuschließen, dass in strömungsmäßig ungünstig gelegenen Bereichen der Anodenkammer durch Stagnation des Anolyten eine Chloridverarmung auftritt, die zu lokalen Membranschädigungen führen kann.
  • In der Anolytkammer tritt durch die Auftriebswirkung des Chlorgases eine gewisse natürliche Durchmischung in vertikaler Richtung ein. Die mittlere Strömungsgeschwindigkeit in der Anolytkammer in horizontaler Richtung ist niedrig und daher ist auch die natürliche Durchmischung in horizontaler Richtung sehr gering. Außerdem haben die im Elektrolyten aufsteigenden Gasblasen die Neigung, sich im oberen Bereich zu einer geschlossenen Schaumschicht zu vereinigen. Diese Schaumbildung ist umso größer, je größer die Zellenbelastung und je höher die Zelle ist. Da der elektrische Widerstand im Schaum größer ist als im übrigen Elektrolyten, wird dadurch die Stromverteilung über die Membranfläche und damit die Membranbelastung ungleichmäßig.
  • Aus der DE 42 24 492 C1 ist eine Elektrolysevorrichtung mit den eingangs genannten Merkmalen bekannt, bei der eine bessere Flüssigkeitsdurchmischung in den beiden Elektrolysekammern angestrebt wird. Zur Ausbildung einer definierten Vermischungsströmung in jeder Anoden- und/oder Kathodenkammer wenigstens ein bereichsweise umströmtes Trennelement in Form einer Trennplatte vorzusehen, welche mit Strömungsleitstegen ausgerüstet ist. Die an den Elektroden entstehenden Gasblasen werden quasi als Förderhilfsmittel eingesetzt, indem die Verteilung der Gasblasen über den gesamten Kammerraum verhindert wird. Durch die nur auf einer Seite der Trennplatte im Bereich der Elektrode entstehenden Gasblasen wird eine nach oben gerichtete Strömung erzeugt. Da das Trennelement umspülbar ausgebildet ist, ergibt sich eine natürliche vertikale Zirkulation in den Kammern.
  • In der EP 0 220 659 B1 wird eine Elektrolysevorrichtung des bipolaren Typs beschrieben, die mehrere bipolare Einheitszellen in Serie angeordnet enthält, wobei jede Zelle aus einem anodenseitigen muldenförmigen Körper und einem kathodenseitigen muldenförmigen Körper aufgebaut ist, die jeweils einen hakenförmigen Flansch, eine Rahmenwand und eine Trennwand umfassen, wobei Anode und Kathode jeweils über elektrisch leitfähige Rippen (Stege) an die Trennwand angeschweißt sind. Jede dieser leitfähigen Rippen ist über ihre gesamte Höhe mit in Abständen zueinander angeordneten Löchern versehen, um einen Durchgang des Elektrolyten und des Elektrolyseprodukts durch die Rippen hindurch zu ermöglichen.
  • Bei Elektrolysevorrichtungen der zuvor genannten Art liegt die Membran zumeist jeweils sehr dicht an den Elektroden. Die zwischen den Elektroden und in Querrichtung zu diesen verlaufenden Rippen oder Stege unterteilen den Innenraum der Elektrolysevorrichtung in mehrere Kompartments (auch als Kompartimente bezeichnet). Wenn man massive Rippen oder Stege verwendet, kann es zu einer nicht ausreichenden Soleversorgung der Membran kommen, die bei Verwendung von planen Anoden zu Blisterbildung an der Membran führt.
  • Wenn man andererseits jedoch Stege mit Aussparungen oder Löchern über die gesamte Höhe der Stege versieht, wie dies in der oben zitierten EP 0 220 659 B1 vorgeschlagen wird, um so eine bessere Längsdurchmischung in der gesamten Zellkammer zu erreichen, hat dies den Nachteil, dass der erwünschte Mammutpumpeneffekt in dem einzelnen Kompartiment der Zellkammer nicht mehr gegeben ist. Unter dem Begriff "Mammutpumpeneffekt" versteht man das von Carl Immanuel Löscher beschriebene Phänomen, dass durch in eine Flüssigkeit unter dem Flüssigkeitspegel eingebrachte Gasblasen sich der Flüssigkeitsspiegel um ein gewisses Maß anheben lässt. Dieser Effekt wird in den so genannten Mammutpumpen zum Fördern von Flüssigkeiten genutzt. Da bei der Elektrolyse im Elektrolyten Gasblasen entstehen, die dann in der Flüssigkeit nach oben steigen, tritt hier der Mammutpumpeneffekt auf, durch den man eine vertikale Durchmischung des Elektrolyten erzielt, die in gewissem Maße bei einer erfindungsgemäßen Elektrolysevorrichtung erwünscht ist.
  • Aus der DE 696 07 197 T2 ist eine Elektrodenanordnung für einen Elektrolyseur der Filterpressenbauart bekannt, bei der Anoden-Abstandshalter und Kathodenabstandshalter verwendet werden, die sich in Querrichtung zu den flächigen Elektroden erstecken. Ein Z-förmiger Abstandshalter wird auch als oberer Abstandshalter bezeichnet, während sich unterhalb von diesem U-förmige oder C-förmige Abstandshalter befinden. Diese Z-förmigen oder U-förmigen Abstandhalter sind jedoch in der Elektrolysezelle horizontal angeordnet sind, das heißt sie verlaufen quer zur Höhenrichtung der Elektrolysezelle. Die Abstandshalter weisen unterschiedlich große kreisförmige oder auch ovale Perforationen auf. Diese Perforationen dienen der Vertikaldurchmischung des Elektrolyten, wobei durch die größeren Perforationen die Gasströmung des im Elektrolyten aufsteigenden Gases verbessert werden soll. Eine Unterteilung der Elektrolysezelle in Längsrichtung, das heißt in Richtung der Längserstreckung der Abstandshalter ist hier nicht vorgesehen.
  • In der DE 199 54 247 A1 wird eine Elektrolysezelle mit Gasdiffusionselektrode beschrieben, bei der die Zelle durch horizontal verlaufende Stege in mehrere übereinander liegende Räume unterteilt wird, so dass das Gas mäanderförmig den Gasraum von unten nach oben hin durchströmt und dabei in den einzelnen Räumen jeweils horizontal strömt. Eine weitere Unterteilung der Elektrolysezelle durch vertikal in Höhenrichtung verlaufende Stege ist hier nicht vorgesehen.
  • Die US 5,693,202 A beschreibt ebenfalls eine elektrochemische Zelle mit einer lonenaustauschermembran, bei der eine untere Einlassöffnung und eine obere Auslassöffnung vorgesehen ist. In der Zelle verlaufen in Querrichtung zu den Elektroden sich in horizontaler Richtung erstreckende Verbindungselemente, die die Zelle in mehrere übereinander liegende Kammern unterteilen und in denen eine Mehrzahl regelmäßig angeordneter Öffnungen vorgesehen ist, die dazu dienen, den Gasdurchtritt in Höhenrichtung der Elektrolysezelle zu ermöglichen. Es ist eine Vertikaldurchmischung des Elektrolyten vorgesehen, wohingegen eine weitere Unterteilung der Zelle durch vertikal verlaufende Stege nicht ersichtlich ist.
  • Aus DE 10 2004 014 969 A1 ist eine Elektrolysezelle bekannt, wobei die Elektroden mittels Rippen an den Halbschalen befestigt sind. Dabei sind zwischen den Rippen flache Streifen angeordnet, die den Elektrolytraum in einen aufsteigenden Strom von Gas/Elektrolyt und einen absteigenden entgasten Strom aufteilen. Die Rippen sind mit Öffnungen versehen, welche die Quervermischung des Elektrolyten ermöglichen. Diese Öffnungen sind, je nach Anordnung der flachen oder gefalteten Streifen frei, völlig verdeckt oder teilweise in vertikaler Richtung verdeckt, wobei die Rippen in Höhenrichtung gesehen keinen mindestens einen unteren Bereich aufweisen, in dem zur Erhaltung des Mammutpumpeneffekts die Rippen frei von Öffnungen sind.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, eine Elektrolysevorrichtung mit den Merkmalen der eingangs genannten Gattung zur Verfügung zu stellen, bei der einerseits eine ausreichende Durchmischung in Längsrichtung gegeben ist, aber zugleich auch der Mammutpumpeneffekt erhalten bleibt.
  • Die Lösung der vorgenannten Aufgabe liefert eine Elektrolysevorrichtung der eingangs genannten Art mit den Merkmalen des Anspruchs 1.
  • Zum besseren Verständnis der vorliegenden Erfindung werden an dieser Stelle die geometrischen Verhältnisse in einer Elektrolysezelle des erfindungsgemäßen Typs definiert. Die Elektrolysezelle hat eine Ausdehnung in drei zueinander jeweils orthogonal stehenden Raumrichtungen. Als Längsrichtung wird diejenige Raumrichtung definiert, in der die Elektrolysezelle in der Regel ihre größte Ausdehnung hat. Die flächig ausgebildeten Elektroden erstrecken sich in dieser Längsrichtung und in Höhenrichtung. Als Querrichtung wird hierin die Richtung der Normalen zur Fläche der Elektroden bezeichnet. Gasblasen steigen in der Elektrolysezelle entgegen der Schwerkraft von unten nach oben hin auf. Diese Richtung von unten nach oben hin wird hierin als Höhenrichtung bezeichnet.
  • Die herkömmliche auch im Stand der Technik vorhandene Durchmischung des Elektrolyten in Höhenrichtung wird in der vorliegenden Anmeldung als Vertikaldurchmischung bezeichnet. Davon zu unterscheiden ist die Durchmischung des Elektrolyten in Längsrichtung der Elektrolysezelle, zu deren Zweck die erfindungsgemäß vorgesehenen vertikalen Stege Löcher oder Aussparungen aufweisen, durch die der Elektrolyt hindurchströmen kann. Diese Stege verlaufen somit in Höhenrichtung der Elektrolysezelle gemäß der obigen Definition oder im Wesentlichen in vertikaler Richtung, wobei sie sich außerdem in Querrichtung der Elektrolysezelle, das heißt quer zu den flächigen Elektroden erstrecken. Somit wird durch diese Stege eine Unterteilung der Elektrolysezelle in ihrer Längsrichtung in mehrere Kompartments geschaffen. Die Strömung des Elektrolyten durch Löcher oder Aussparungen in diesen Stegen hindurch ist somit im Wesentlichen eine Strömung in Längsrichtung der Elektrolysezelle und wird hierin auch als Horizontaldurchmischung bezeichnet.
  • Die hierin verwendeten Bezeichnungen "unten" bzw. "oben" beziehen sich auf die Erstreckung der Elektrolysezelle in Höhenrichtung. Somit bedeutet im Rahmen der vorliegenden Erfindung, dass sich ein "oberer" Bereich in Höhenrichtung der Elektrolysezelle gesehen weiter oben befindet als ein "unterer" Bereich.
  • Erfindungsgemäß ist vorgesehen, dass die Stege oder Rippen sich in Höhenrichtung der Elektrolysevorrichtung erstrecken und in Höhenrichtung gesehen mindestens einen unteren Bereich aufweisen, in dem sie frei von Löchern oder Aussparungen sind, das heißt, dass dort keine Löcher oder Aussparungen vorgesehen sind. Dadurch, dass im unteren Bereich die Stege oder Rippen massiv sind und keine Löcher oder Aussparungen aufweisen, ist dort der ungehinderte Mammutpumpeneffekt gewährleistet. Im unteren Bereich können somit die bei der Elektrolyse entstehenden Gasblasen in dem durch den Steg abgetrennten Kompartment der Elektrolysezelle ungehindert nach oben hin aufsteigen. Es überwiegt in diesem unteren Bereich die Vertikalströmung und es besteht hier keine wesentliche Längsdurchmischung des Elektrolysemediums. Im oberen Bereich der Stege oder Rippen befinden sich hingegen erfindungsgemäß Löcher oder Aussparungen. In diesem oberen Bereich bildet sich durch die aufsteigenden Gasblasen eine Schaumphase des Elektrolysemediums aus und hier ist daher eine Längsdurchmischung erwünscht. Diese Längsdurchmischung wird durch die Löcher oder Aussparungen in den Stegen oder Rippen erreicht, die eine Durchströmung des Elektrolysemediums in das benachbarte Kompartiment der Elektrolysezelle zulassen.
  • Die Richtung, in der sich die Elektroden erstrecken, wird in der vorliegenden Anmeldung als Längsrichtung der Elektrolysevorrichtung verstanden. Wenn somit hierin davon die Rede ist, dass sich die Stege oder Rippen quer zu den Elektroden erstrecken, dann ist damit gemeint, die Stege oder Rippen erstrecken sich im Wesentlichen in Querrichtung der Elektrolysevorrichtung und bevorzugt etwa im rechten Winkel zu den Elektroden. Die beiden Elektrolysekammern weisen in der Regel jeweils einen etwa quaderförmigen Innenraum auf, welcher den Elektrolyten aufnimmt. Die Stege oder Rippen verlaufen somit im Sinne der obigen Definitionen in der Elektrolysezelle im Wesentlichen in vertikaler Richtung und in Querrichtung. Die auch bei herkömmlichen Elektrolysezellen vorgesehene Vertikaldurchmischung entspricht einer Strömung des Elektrolyten im Wesentlichen parallel zu den Stegen oder Rippen, das heißt einer Strömung in Höhenrichtung der Elektrolysezelle in den einzelnen Kompartments zwischen jeweils zwei Stegen oder Rippen. Bei der in der vorliegenden Anmeldung beschriebenen Längsdurchmischung erfolgt hingegen eine Strömung des Elektrolyten durch die Löcher eines Steges hindurch in einer im Wesentlichen horizontalen Strömung, so dass der Elektrolyt durch Löcher eines Stegs von einem Kompartment in ein benachbartes Kompartment strömt. Die Längsdurchmischung erfolgt somit in einer im Wesentlichen horizontalen Strömungsrichtung, die grundsätzlich orthogonal zu der Vertikaldurchmischung in Höhenrichtung ausgerichtet ist, das heißt orthogonal oder zumindest quer zu den im Elektrolyten aufsteigenden Gasblasen.
  • Der hierin verwendete Begriff "Löcher" beinhaltet keine Einschränkung auf eine bestimmte Umrissform. Die Löcher können beispielsweise einen runden, ovalen, länglichen oder eckigen Umriss aufweisen. Der hierin verwendete Begriff "Aussparungen" umfasst zum einen durchgehende Löcher mit beliebiger Umrissform, die allseits von dem Material eines Stegs umgeben sind, sowie aber auch Durchbrechungen des Materials, die einen Durchtritt des Elektrolysemediums erlauben, aber nicht allseits von dem Material eines Stegs umgeben sind, das heißt, sie können auch gegebenenfalls an einer oder mehreren Stellen ihres Umfangs offen sein.
  • Durch die erfindungsgemäße Ausgestaltung der Stege oder Rippen kombiniert man somit in vorteilhafter Weise zwei Effekte miteinander. Zum einen erhält man den Mammutpumpeneffekt im unteren Bereich der Stege (der zu einer Querdurchmischung führt) und zum anderen erzielt man dennoch eine Längsdurchmischung im oberen Bereich der Stege. Dadurch wird eine optimale Vermischung des Zulaufs und Sole-Antransports an der Anode über die gesamte Zellhöhe durch den Mammutpumpeneffekt gewährleistet und gleichzeitig wird ein optimaler Sole-Antransport an der Anode über die Zellbreite durch die Löcher oder Aussparungen in den Stegen in der oberen Schaumphase erreicht. Auf diese Weise verhindert man Schäden an der Membran, die sonst durch deren Unterversorgung mit NaCl entstehen, wenn beispielsweise in der Elektrolysezelle eine Chloralkali-Elektrolyse durchgeführt wird. Bei einer solchen Unterversorgung der Membran mit Sole wird die Bildung von Blistern an der Membran begünstigt, was sich insbesondere beim Betrieb mit permanent hohen Stromdichten beobachten lässt.
  • Eine bevorzugte Weiterbildung der erfindungsgemäßen Aufgabenlösung sieht vor, dass die Stege oder Rippen mindestens einen in Höhenrichtung der Elektrolysezelle gesehen oberen Bereich mit Löchern oder Aussparungen aufweisen. Durch diese Löcher oder Aussparungen in oberen Bereich der Stege oder Rippen ist dort eine Längsdurchmischung möglich. Dort bildet sich durch die aufsteigenden Gasblasen eine Schaumphase aus, in deren Bereich eine Längsdurchmischung des Elektrolyten vorteilhaft ist.
  • Vorzugsweise erstreckt sich der untere Bereich, in dem die Stege oder Rippen keine Löcher oder Aussparungen aufweisen, mindestens etwa über die untere Hälfte der gesamten Höhe der Stege oder Rippen, insbesondere mindestens über die untere Hälfte der gesamten Höhe der Stege oder Rippen.
  • Das Ende des unteren Bereichs hängt natürlich ab von den individuellen Verhältnissen in der jeweiligen Elektrolysezelle. Es kann beispielsweise empirisch ermittelt werden, bis zu welcher Höhe der Stege der Mammutpumpeneffekt erwünscht ist und eine Längsdurchmischung unterbunden werden soll und in welcher Höhe jeweils die Schaumphase beginnt. Versuche haben ergeben, dass es in der Regel vorteilhaft ist, mindestens etwa die untere Hälfte der Stege oder Rippen, insbesondere mindestens die untere Hälfte der Stege oder Rippen, massiv, d.h. ohne Löcher oder Aussparungen auszubilden. Der Bereich, in dem die Löcher beginnen, kann somit im Einzelfall beispielsweise in Abhängigkeit von den Parametern der Elektrolysezelle, von der Art des jeweils verwendeten Elektrolyten und von den Bedingungen, bei denen elektrolysiert wird, wie beispielsweise Temperatur, pH-Wert, Stromdichte etc. variieren.
  • Eine bevorzugte Weiterbildung der Erfindung sieht vor, dass sich der untere Bereich, in dem die Stege oder Rippen keine Löcher oder Aussparungen aufweisen, mindestens etwa über die unteren beiden Drittel, insbesondere über die unteren beiden Drittel, der gesamten Höhe der Stege oder Rippen erstreckt. Bei dieser möglichen Variante erstreckt sich somit der Bereich, in dem die Stege oder Rippen massiv ausgebildet sind, über die Mitte der Stege oder Rippen nach oben hin hinaus, während nur etwa im oberen Drittel, insbesondere im oberen Drittel, dort wo sich die Schaumphase ausbildet, Löcher oder Aussparungen vorgesehen sind.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, dass sich der obere Bereich, in dem die Stege oder Rippen Löcher oder Aussparungen aufweisen, mindestens etwa über das obere Viertel, insbesondere über das obere Viertel, der gesamten Höhe der Stege oder Rippen erstreckt. Bei dieser möglichen Variante erstreckt sich somit der Bereich, in dem die Stege oder Rippen massiv ausgebildet sind, weiter nach oben hin, während jedoch mindestens etwa im oberen Viertel, insbesondere im oberen Viertel, dort, wo sich die Schaumphase ausbildet, Löcher oder Aussparungen vorgesehen sind.
  • Besonders bevorzugt erstreckt sich der obere Bereich, in dem die Stege oder Rippen Löcher oder Aussparungen aufweisen, mindestens etwa über das obere Drittel der gesamten Höhe der Stege oder Rippen, insbesondere mindestens über das obere Drittel der gesamten Höhe der Stege oder Rippen.
  • Eine bevorzugte Weiterbildung der Erfindung sieht vor, dass die Stege oder Rippen in dem mindestens einen oberen Bereich mehrere durch massive Bereiche in Höhenrichtung der Stege oder Rippen voneinander beabstandete Löcher oder Aussparungen aufweisen.
  • Eine weitere bevorzugte Weiterbildung der erfindungsgemäßen Einrichtung sieht vor, dass die Stege oder Rippen in dem mindestens einen oberen Bereich im Umriss mindestens teilweise etwa runde Löcher aufweisen. Nur beispielhaft sei an dieser Stelle die Form eines Schlüssellochs genannt. Jedoch sind im Prinzip auch beliebige andere Umrissformen für die Löcher oder Aussparungen denkbar. Es können beispielsweise auch Löcher oder Aussparungen mit unterschiedlichen Umrissformen und in verschiedenen Größen vorgesehen sein, beispielsweise abhängig davon, wie stark der Effekt der Längsdurchmischung erwünscht ist und wie viel Volumen an Elektrolyt pro Zeiteinheit durch die Löcher oder Aussparungen jeweils in das benachbarte Kompartment strömen soll.
  • Eine weitere bevorzugte Weiterbildung der Erfindung sieht vor, dass die Stege oder Rippen in dem mindestens einen oberen Bereich mehrere Löcher oder Aussparungen aufweisen, die untereinander, in Richtung der Höhe der Stege oder Rippen gesehen, unterschiedliche Abstände aufweisen. Dies bietet eine weitere Möglichkeit, den Effekt der Durchmischung in Längsrichtung zu variieren, indem man zwar Löcher oder Aussparungen von in etwa jeweils gleicher Größe verwendet, deren Abstände untereinander aber über die Höhe der Stege oder Rippen variiert, so dass bei dichter angeordneten Löchern oder Aussparungen größere Gesamtflächen an Löchern pro Flächeneinheit der Stege gegeben sind. Einen ähnlichen Effekt kann man natürlich auch erzielen, wenn man unterschiedlich große Löcher oder Aussparungen verwendet. Jedoch besteht aufgrund der Breite der Stege oder Rippen schon aus Gründen der mechanischen Stabilität der Stege eine Obergrenze für den Durchmesser oder die Breite der Löcher oder Aussparungen, so dass man in diesem Fall größere Lochflächen für die Längsdurchmischung über eine Anordnung der Löcher in dichteren Abständen erzielen kann.
  • Beispielsweise können die Löcher oder Aussparungen in den Stegen oder Rippen in einem ersten unteren Abschnitt des oberen Bereichs in geringeren Abständen zueinander angeordnet sind als in einem sich daran nach oben hin anschließenden zweiten Abschnitt des oberen Bereichs.
  • Im Rahmen der vorliegenden Erfindung ist es vorteilhaft, wenn die Löcher oder Aussparungen eine gewisse Mindestgröße aufweisen, um den gewünschten Effekt der Durchmischung zu erreichen. Vorzugsweise beträgt daher der freie Querschnitt wenigstens eines Loches oder einer Aussparung wenigstens etwa 10 mm2, besonders bevorzugt wenigstens etwa 15 mm2. Vorzugsweise beträgt der freie Querschnitt aller Löcher oder Aussparungen insgesamt wenigstens etwa 300 mm2 und die einzelnen Löcher weisen die vorgenannten Mindestquerschnitte auf, wobei dies auch davon abhängt, wie viele Löcher oder Aussparungen insgesamt vorgesehen sind und welchen Abstand diese jeweils untereinander aufweisen.
  • Gegenstand der vorliegenden Erfindung ist weiterhin ein Verfahren zur elektrolytischen Behandlung eines fließfähigen Mediums in einer Elektrolysevorrichtung mit den Merkmalen eines der Ansprüche 1 bis 10.
  • Vorzugsweise umfasst das erfindungsgemäße Verfahren eine Chloralkali-Elektrolyse. Elektrolysevorrichtungen der hierin beschriebenen Art eignen sich für die Chloralkali-Elektrolyse in besonderer Weise. Jedoch können die erfindungsgemäßen Elektrolysevorrichtungen auch für andere Elektrolyseprozesse eingesetzt werden.
  • Nachfolgend wird die vorliegende Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. Dabei zeigt:
    • Figur 1 eine schematisch vereinfachte Ansicht eines Querschnitts durch eine beispielhafte erfindungsgemäße Elektrolysevorrichtung gemäß einer ersten Ausführungsvariante;
    • Figur 2 eine Ansicht einer beispielhaften erfindungsgemäßen Elektrolysevorrichtung;
    • Figur 3 eine Schnittansicht in Längsrichtung der in Figur 2 dargestellten Elektrolysevorrichtung;
    • Figur 4 eine Schnittansicht in Querrichtung der in Figur 2 dargestellten Elektrolysevorrichtung;
    • Figur 5 eine Detailansicht eines einzelnen Stegs mit den Löchern für die Längsdurchmischung des Elektrolyten.
  • Nachfolgend wird unter Bezugnahme auf die Figur 1 der grundsätzliche Aufbau einer Elektrolysevorrichtung dieses Typs näher erläutert. In der Regel umfasst eine Elektrolysezelle 10 jeweils ein Gehäuse mit zwei Halbschalen, nämlich einer Kathodenhalbschale 11 und einer Anodenhalbschale 12, die jeweils oben und unten mit flanschartigen Rändern versehen sind, zwischen denen mittels Dichtungen jeweils eine Membran 13 eingespannt ist. Diese Membran 13 bildet eine Trennwand zwischen Kathodenhalbschale 11 (entspricht der Kathodenkammer oder Katholytkammer) und Anodenhalbschale 12 (entspricht der Anodenkammer oder Anolytkammer). Jeweils im Bereich ihrer flanschartigen Ränder sind Kathodenhalbschale 11 und Anodenhalbschale oben und unten über in Querrichtung ausgerichtete Schrauben 14 miteinander zu einer Elektrolysezelle 10 verbunden. Im unteren Bereich erstreckt sich in jeder der beiden Halbschalen 11, 12 in Längsrichtung der Elektrolysezelle jeweils ein Einlassverteilerrohr 15, 16 für Elektrolytlösung und verbrauchter Elektrolyt wird über ein Auslassrohr 17 aus der Elektrolysezelle abgeführt. Anode und Kathode erstrecken sich jeweils nahe an der Membran flächig in vertikaler Richtung in der jeweiligen Halbschale.
  • Wie man in Figur 1 erkennt, ist im oberen Bereich in der Anodenhalbschale ein schräg ausgerichtetes Leitblech 18 vorhanden, so dass auf der der Anode zugewandten Seite dieses Leitblechs 18 gasbeladene Flüssigkeit in Richtung der Pfeile aufsteigt und auf der Rückseite des Leitblechs die weniger oder gar nicht gasbeladene Flüssigkeit absinkt. Dadurch ergibt sich eine Zirkulation des Anolyten im unteren Bereich, der zu einer vertikalen Durchmischung führt. Diese Zirkulation gleicht die Konzentrationsunterschiede an Elektrolyt (zum Beispiel NaCl) zwischen Zulauf und Flüssigkeit in der Zelle aus.
  • In der Ansicht einer Elektrolysezelle gemäß Figur 2 erkennt man die beiden Einlassverteilerrohre 15, 16 für die beiden Halbschalen sowie die jeweils einer Halbschale zugeordneten Auslassrohre 17. Weiterhin sieht man in Figur 2 den umlaufenden Rahmen 19, in dessen Bereich die flanschartigen Ränder der beiden Halbschalen miteinander verschraubt sind.
  • In Figur 3 ist die in Figur 2 dargestellte Elektrolysezelle in Längsrichtung aufgeschnitten dargestellt. Hier kann man erkennen, dass bei Elektrolysezellen dieses Typs der Rückraum der beiden Elektroden in beiden Halbschalen jeweils durch in etwa vertikaler Richtung und in Querrichtung verlaufende Stege 20 in einzelne Kompartments unterteilt ist. Diese Stege dienen auch zur Aussteifung und Abstützung von Kathode und Anode. In der Querschnittansicht gemäß Figur 4 kann man in der Zeichnung links einen dieser Stege 20 gut erkennen. Man sieht, dass der Steg 20 im oberen Bereich mit Löchern 24 versehen ist, über die eine Längsdurchmischung des Elektrolyten erfolgt. Weitere Details bezüglich der Ausbildung und Funktion dieser Stege 20 werden nachfolgend anhand der Einzelteilzeichnung gemäß Figur 5 näher erläutert.
  • Die Darstellung gemäß Figur 5 zeigt einen einzelnen Steg 20, der in seinem unteren Endbereich 21 schräg angeschnitten ist und sich dadurch zum unteren Ende hin in seiner Breite kontinuierlich verjüngt. In Richtung seiner Höhe gesehen hat dieser Steg 20 im Prinzip zwei unterschiedlich ausgebildete Bereiche, nämlich einen unteren Bereich 22 und einen oberen Bereich 23. Der untere Bereich 22 ist massiv, wobei in diesem keine Löcher oder Aussparungen vorgesehen sind. Dieser untere Bereich 22 erstreckt sich in dem Ausführungsbeispiel gemäß Figur 5 über etwas mehr als die unteren beiden Drittel der Gesamthöhe des Steges 20. Der obere Bereich 23 des Stegs 20 schließt sich an den unteren Bereich 22 nach oben hin an, wobei der Steg 20 in diesen oberen Bereich 23 mit Löchern 24 versehen ist, durch die Elektrolyt in Längsrichtung der Elektrolysezelle hindurchtreten kann, so dass eine Längsdurchmischung des Elektrolyten in diesem oberen Bereich 23 erfolgt. Dort befindet sich durch die aufsteigenden Gasblasen eine Schaumphase des Elektrolyten.
  • Wie man in Figur 5 sieht, ist eine Anzahl von mehreren untereinander beabstandeten Löchern 24 vorgesehen. In dem Ausführungsbeispiel sind exemplarisch fünf solcher Löcher 24 dargestellt. Man erkennt weiterhin, dass die beiden unteren Löcher 24 a in Höhe des Stegs 20 gesehen einen geringeren Abstand zueinander aufweisen als die oberen Löcher. Die Anzahl der Löcher 24 und deren jeweilige Abstände untereinander kann im Rahmen der vorliegenden Erfindung quasi beliebig variiert werden.
  • Bezugszeichenliste
  • 10
    Elektrolysezelle
    11
    Kathodenhalbschale
    12
    Anodenhalbschale
    13
    Membran
    14
    Schrauben
    15
    Einlassverteilerrohr
    16
    Einlassverteilerrohr
    17
    Auslassrohr
    18
    Leitblech
    19
    umlaufender Rahmen
    20
    Stege
    21
    unterer Endbereich, schräg angeschnitten
    22
    unterer Bereich, massiv
    23
    oberer Bereich, mit Löchern
    24
    Löcher
    24 a
    untere Löcher, mit geringeren Abständen

Claims (13)

  1. Elektrolysevorrichtung zum elektrolytischen Behandeln von Flüssigkeiten mit einer Anodenkammer und einer Kathodenkammer, die über eine lonenaustauschermembran voneinander getrennt sind, wobei die Kammern mit mindestens einer Einlassöffnung und einer Auslassöffnung für einen strömenden Elektrolyten und mit mindestens je einer Elektrode ausgerüstet sind und wobei der Innenraum der Anodenkammer und/oder der Kathodenkammer durch sich quer zu den Elektroden erstreckende Stege (20) oder Rippen unterteilt ist, wobei die Stege oder Rippen mindestens bereichsweise mit Löchern (24) oder Aussparungen versehen sind, dadurch gekennzeichnet, dass die Stege (20) oder Rippen sich in Höhenrichtung der Elektrolysevorrichtung erstrecken und in Höhenrichtung gesehen mindestens einen unteren Bereich (22) aufweisen, in dem die Stege (20) oder Rippen frei von Löchern (24) oder Aussparungen sind.
  2. Elektrolysevorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Stege (20) oder Rippen mindestens einen in Höhenrichtung der Elektrolysezelle gesehen oberen Bereich (23) mit Löchern (24) oder Aussparungen aufweisen.
  3. Elektrolysevorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich der untere Bereich (22), in dem die Stege (20) oder Rippen frei von Löchern (24) oder Aussparungen sind, mindestens etwa über die untere Hälfte der gesamten Höhe der Stege (20) oder Rippen erstreckt.
  4. Elektrolysevorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich der untere Bereich (22), in dem die Stege (20) oder Rippen keine Löcher (24) oder Aussparungen aufweisen, mindestens etwa über die unteren beiden Drittel der gesamten Höhe der Stege (20) oder Rippen erstreckt.
  5. Elektrolysevorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sich der obere Bereich (23), in dem die Stege (20) oder Rippen Löcher (24) oder Aussparungen aufweisen, mindestens etwa über das obere Viertel der gesamten Höhe der Stege (20) oder Rippen erstreckt.
  6. Elektrolysevorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich der obere Bereich (23), in dem die Stege (20) oder Rippen Löcher oder Aussparungen aufweisen, mindestens etwa über das obere Drittel der gesamten Höhe der Stege (20) oder Rippen erstreckt.
  7. Elektrolysevorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Stege (20) oder Rippen in dem mindestens einen oberen Bereich (23) mehrere durch massive Bereiche in Höhenrichtung der Stege (20) oder Rippen voneinander beabstandete Löcher (24) oder Aussparungen aufweisen.
  8. Elektrolysevorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Stege (20) oder Rippen in dem mindestens einen oberen Bereich (23) mindestens teilweise im Umriss etwa runde Löcher (24) aufweisen.
  9. Elektrolysevorrichtung nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die Stege (20) oder Rippen in dem mindestens einen oberen Bereich (23) mehrere Löcher (24, 24 a) oder Aussparungen aufweisen, die untereinander, in Richtung der Höhe der Stege (20) oder Rippen gesehen, unterschiedliche Abstände aufweisen.
  10. Elektrolysevorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Löcher (24 a) oder Aussparungen in den Stegen (20) oder Rippen in einem ersten unteren Abschnitt des oberen Bereichs (23) in geringeren Abständen zueinander angeordnet sind als in einem sich daran nach oben hin anschließenden zweiten Abschnitt des oberen Bereichs (23).
  11. Elektrolysevorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der freie Querschnitt wenigstens eines Loches (24) oder einer Aussparung wenigstens etwa 10 mm2, besonders bevorzugt wenigstens etwa 15 mm2 beträgt.
  12. Verfahren zur elektrolytischen Behandlung eines fließfähigen Mediums in einer Elektrolysevorrichtung mit den Merkmalen eines der Ansprüche 1 bis 11.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass dieses eine Chloralkali-Elektrolyse umfasst.
EP18786231.3A 2017-09-29 2018-09-27 Elektrolysevorrichtung Active EP3688206B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017217361.0A DE102017217361A1 (de) 2017-09-29 2017-09-29 Elektrolysevorrichtung
PCT/EP2018/076205 WO2019063659A1 (de) 2017-09-29 2018-09-27 Elektrolysevorrichtung

Publications (2)

Publication Number Publication Date
EP3688206A1 EP3688206A1 (de) 2020-08-05
EP3688206B1 true EP3688206B1 (de) 2021-08-04

Family

ID=63857869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18786231.3A Active EP3688206B1 (de) 2017-09-29 2018-09-27 Elektrolysevorrichtung

Country Status (10)

Country Link
US (2) US11608561B2 (de)
EP (1) EP3688206B1 (de)
JP (1) JP7055864B2 (de)
KR (1) KR102376799B1 (de)
CN (1) CN111279017B (de)
CA (1) CA3074795C (de)
DE (1) DE102017217361A1 (de)
EA (1) EA038689B1 (de)
TW (1) TWI686511B (de)
WO (1) WO2019063659A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375556A1 (de) 2022-11-28 2024-05-29 Fluor Tubing B.V. Rohr für eine elektrolyse- oder hydrolysezelle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234761A1 (de) 2022-02-25 2023-08-30 thyssenkrupp nucera AG & Co. KGaA Elektrolysezelle
EP4375555A1 (de) 2022-11-24 2024-05-29 thyssenkrupp nucera AG & Co. KGaA Verbindungsrohr, elektrolysesystem und verbindungsverfahren

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475999A (en) 1983-06-06 1984-10-09 Stauffer Chemical Company Sensitization of glyoxylate photoinitiators
JPH0674513B2 (ja) 1985-10-23 1994-09-21 旭化成工業株式会社 複極式電解槽ユニツト
JPH04350190A (ja) * 1991-05-28 1992-12-04 Asahi Chem Ind Co Ltd 複極式電解槽を用いた塩化アルカリの電解方法
DE4224492C1 (de) 1992-07-24 1993-12-09 Uhde Gmbh Vorrichtung zum elektrolytischen Behandeln von Flüssigkeiten mit einer Anoden- und einer Kathodenkammer sowie deren Verwendung
DE4444114C2 (de) * 1994-12-12 1997-01-23 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
US5653857A (en) 1995-11-29 1997-08-05 Oxteh Systems, Inc. Filter press electrolyzer electrode assembly
DE19622744C1 (de) 1996-06-07 1997-07-31 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
JP3229266B2 (ja) * 1998-01-12 2001-11-19 旭化成株式会社 複極式フィルタープレス型電解槽
DE19802850A1 (de) 1998-01-26 1999-07-29 Siemens Ag Bildrekonstruktionsverfahren für die 3D-Rekonstruktion
JP4007565B2 (ja) * 1998-05-11 2007-11-14 クロリンエンジニアズ株式会社 イオン交換膜電解槽
CA2379512C (en) 1999-08-27 2008-07-29 Asahi Kasei Kabushiki Kaisha Unit cell for use in an aqueous alkali metal chloride solution electrolytic cell
DE19954247C2 (de) * 1999-11-11 2002-11-14 Wolfgang Strewe Elektrolysezelle mit Gasdiffusionselektrode für großtechnische Anlagen sowie Verwendungen der Elektrolysezelle
US6797136B2 (en) * 2001-09-07 2004-09-28 Akzo Nobel N.V. Electrolytic cell
ES2547403T3 (es) 2002-11-27 2015-10-06 Asahi Kasei Chemicals Corporation Celda electrolítica bipolar, del tipo sin intersticios
DE102004014696A1 (de) * 2004-03-25 2005-10-13 De Nora Deutschland Gmbh Hydrodynamische Einrichtungen für elektrochemische Zellen
DE102006028168A1 (de) * 2006-06-16 2007-12-20 Uhde Gmbh Vorrichtung zur elektrochemischen Wasseraufbereitung
JPWO2010137283A1 (ja) 2009-05-26 2012-11-12 クロリンエンジニアズ株式会社 ガス拡散電極装着イオン交換膜電解槽
JP5714098B2 (ja) 2011-03-31 2015-05-07 三菱重工業株式会社 摩擦抵抗低減型船舶、及び、船舶の摩擦抵抗低減装置
CN103469245B (zh) * 2013-09-04 2015-12-02 蓝星(北京)化工机械有限公司 离子膜电解槽
JP6139589B2 (ja) * 2015-03-18 2017-05-31 株式会社東芝 電解装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375556A1 (de) 2022-11-28 2024-05-29 Fluor Tubing B.V. Rohr für eine elektrolyse- oder hydrolysezelle
WO2024115191A1 (en) 2022-11-28 2024-06-06 Fluor Tubing Bv Tubing for an electrolysis or hydrolysis cell

Also Published As

Publication number Publication date
KR102376799B1 (ko) 2022-03-18
DE102017217361A1 (de) 2019-04-04
TWI686511B (zh) 2020-03-01
JP2020535314A (ja) 2020-12-03
US11608561B2 (en) 2023-03-21
WO2019063659A1 (de) 2019-04-04
JP7055864B2 (ja) 2022-04-18
CA3074795A1 (en) 2019-04-04
EP3688206A1 (de) 2020-08-05
TW201920772A (zh) 2019-06-01
CN111279017B (zh) 2022-04-15
EA202090574A1 (ru) 2020-05-27
CA3074795C (en) 2021-10-26
KR20200080230A (ko) 2020-07-06
US20230220563A1 (en) 2023-07-13
US20200283919A1 (en) 2020-09-10
CN111279017A (zh) 2020-06-12
EA038689B1 (ru) 2021-10-05

Similar Documents

Publication Publication Date Title
EP0717130B1 (de) Druckkompensierte elektrochemische Zelle
EP3688206B1 (de) Elektrolysevorrichtung
DE2616614C2 (de) Elektrolyseeinrichtung
DE2134752A1 (de) Stutzplatte fur die Membranen eines Dialysators, insbesondere fur Hämodialyse
EP0150017A1 (de) Elektrochemisches Verfahren zur Behandlung von flüssigen Elektrolyten
EP2183409B1 (de) Verfahren zum betreiben von kupfer-elektrolysezellen
EP2029492B1 (de) Vorrichtung zur elektrochemischen wasseraufbereitung
DE2262786B2 (de) Gehaeuse fuer eine filterpressen- elektrolysezelle
EP1601817B1 (de) Elektrolysezelle mit innenrinne
DE2059868B2 (de) Vertikal anzuordnende Elektrodenplatte für eine gasbildende Elektrolyse
EP0514392A1 (de) Elektrodenelement für elektrolytische zwecke und dessen verwendung.
DD297191A5 (de) Gestell fuer einen elektrolyseur vom typ filterpresse und monopolarer elektrolyseur vom typ filterpresse
DE102005006555A1 (de) Elektrode für Elektrolysezellen
DE2538000C3 (de) Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle
EP1743051A2 (de) Verfahren zum erzeugen einer gleichmässigen durchströmung eines elektrolytraumes einer elektrolysezelle
DE2923818C2 (de)
DE3017006C2 (de)
EP1133587B1 (de) Membran-elektrolysezelle mit aktiver gas-/flüssigkeitstrennung
DE69921735T2 (de) Elektrolysevorrichtung mit Ionenaustauschermembran
DE4202480C1 (de)
EP0150019B1 (de) Elektrolyseverfahren mit flüssigen Elektrolyten und porösen Elektroden
DE4224492C1 (de) Vorrichtung zum elektrolytischen Behandeln von Flüssigkeiten mit einer Anoden- und einer Kathodenkammer sowie deren Verwendung
DE4419091A1 (de) Elektrodenstruktur für eine monopolare Elektrolysezelle nach dem Diaphragma- oder Membranzellen-Verfahren
EP3469118B1 (de) Elektrolyseur sowie verfahren zum betrieb eines elektrolyseurs
DE3426781C2 (de)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018006465

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0009080000

Ipc: C25B0001460000

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PEREGO, MICHELE

Inventor name: FULVIO, FEDERICO

Inventor name: FIORUCCI, ALESSANDRO

Inventor name: WOLTERING, PETER

Inventor name: POLCYN, GREGOR DAMIAN

Inventor name: HOORMANN, DIRK

Inventor name: HOFMANN, PHILIPP

Inventor name: DONST, DMITRI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210430

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 9/19 20210101ALI20210416BHEP

Ipc: C25B 1/46 20060101AFI20210416BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006465

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018006465

Country of ref document: DE

Owner name: THYSSENKRUPP NUCERA AG & CO. KGAA, DE

Free format text: FORMER OWNER: THYSSENKRUPP UHDE CHLORINE ENGINEERS GMBH, 44141 DORTMUND, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006465

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210927

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210927

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 6

Ref country code: GB

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 6

Ref country code: DE

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804