EP3671368B1 - Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger - Google Patents
Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger Download PDFInfo
- Publication number
- EP3671368B1 EP3671368B1 EP18214830.4A EP18214830A EP3671368B1 EP 3671368 B1 EP3671368 B1 EP 3671368B1 EP 18214830 A EP18214830 A EP 18214830A EP 3671368 B1 EP3671368 B1 EP 3671368B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pivot
- bearing
- cone
- curvature
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035939 shock Effects 0.000 title claims description 13
- 239000006096 absorbing agent Substances 0.000 title claims description 7
- 239000007787 solid Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 21
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 230000005484 gravity Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000005300 metallic glass Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 239000010979 ruby Substances 0.000 description 3
- 229910001750 ruby Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000009740 moulding (composite fabrication) Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229910021069 Pd—Co Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000002468 ceramisation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- -1 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B37/00—Cases
- G04B37/04—Mounting the clockwork in the case; Shock absorbing mountings
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/02—Shock-damping bearings
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/02—Shock-damping bearings
- G04B31/04—Shock-damping bearings with jewel hole and cap jewel
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B13/00—Gearwork
- G04B13/02—Wheels; Pinions; Spindles; Pivots
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B29/00—Frameworks
- G04B29/02—Plates; Bridges; Cocks
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/004—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/004—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
- G04B31/012—Metallic bearings
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/004—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used
- G04B31/016—Plastic bearings
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/06—Manufacture or mounting processes
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B33/00—Calibers
Definitions
- the present invention relates to a bearing of a watch movement, in particular a shock absorber, for an axis of a rotating mobile.
- the invention also relates to a rotating mobile of a watch movement.
- the invention also relates to a watch movement provided with such a bearing and such a rotating wheel set.
- the axes of revolving mobiles In watch movements, the axes of revolving mobiles generally have pivots at their ends, which turn in bearings mounted in the plate or in bridges of a watch movement.
- the bearings For certain mobiles, in particular the balance wheel, it is customary to equip the bearings with a shock-absorbing mechanism. Indeed, as the pivots of the axis of a balance are generally thin and the mass of the balance is relatively high, the pivots can break under the effect of a shock in the absence of a damping mechanism.
- the configuration of a conventional shock absorber bearing 1 is represented by the figure 1 .
- a domed olive-shaped stone 2 is driven into a bearing support 3 commonly called a chaton, on which is mounted a counter-pivot stone 4.
- the chaton 3 is held against the bottom of a bearing block 5 by a damping spring 6 arranged to exert an axial stress on the upper part of the counter-pivot stone 4.
- the bezel 3 further comprises a conical outer wall arranged in correspondence with a conical inner wall arranged at the periphery of the bottom of the bearing block 5.
- the kitten comprises an outer wall having a surface of convex shape, that is to say domed.
- the bearing 10 comprises a counter pivot 7 of the center plate type, comprising a cavity 8 in the shape of a cone to receive a pivot 12 of the axis 9 of the rotary wheel set, the bottom of the cavity being formed by the top 11 of the cone.
- Pivot 12 is also tapered to fit into cavity 8, but the solid angle of pivot 12 is smaller than that of the cone of cavity 8.
- this type of bearing has a significant drawback concerning the centering of the axis with respect to the bearing plates. Indeed, it is not possible to achieve good centering in the current configurations of this type of shock absorber. Thus, there is a high risk of having the shaft jammed by jamming between the clamps holding the shaft of the rotating mobile on either side.
- a counter-pivot comprising a main body provided with a cavity configured to receive a pivot having the shape of a first cone having a first solid angle, the apex of the first cone being rounded with a first predefined radius of curvature included in a range from 0.2 ⁇ m to 50 ⁇ m, the cavity having a shape of a second cone having a second solid angle greater than the first solid angle, so that the pivot can rotate in the cavity, the top of the second cone being rounded and having a second predefined radius of curvature.
- An object of the invention is, therefore, to provide a bearing, in particular a shock absorber, for an axis of a rotating mobile of a watch movement, for example an axis of a balance wheel, which avoids the aforementioned problem.
- a bearing makes it possible to correctly center the axis in the center plate.
- the invention relates to a bearing comprising a bearing block provided with a housing and a counter-pivot arranged in the housing, the counter-pivot comprising a main body provided with a cavity configured to receive a pivot of the axis of the rotating mobile, the pivot having the shape of a first cone having a first solid angle, the apex of the first cone being rounded with a first predefined radius of curvature comprised in an interval ranging from 5 ⁇ m to 50 ⁇ m, the cavity having a shape of a second cone having a second solid angle greater than the first solid angle, so that the pivot can rotate in the cavity, the apex of the second cone being rounded and having a second predefined radius of curvature, characterized in that the second radius of curvature is less than the first radius of curvature.
- the bearing is remarkable in that the second radius of curvature is less than the first radius of curvature.
- the pivot is well maintained in the cavity of the counter-pivot to prevent the axle from jamming in the bearing, while leaving it free to rotate.
- the pivot can decenter in the bottom of the cavity and risks causing the shaft to jam, so that the balance is braked, or even completely blocked. Thanks to a radius of curvature of the bottom of the cavity smaller than that of the pivot of the axis, the pivot remains centered in the cavity, whatever the movement or the position of the timepiece.
- this configuration of the counter-pivot makes it possible to keep a constant friction of the pivot inside the counter-pivot, whatever the position of the axis with respect to the direction of gravity, which is for example important for a balance shaft of a movement of a timepiece.
- the cone shape of the cavity, as well as that of the pivot minimizes the difference in friction between the different positions of the axis with respect to the direction of gravity.
- the second radius of curvature is less than 40 ⁇ m.
- the second radius of curvature is less than 30 ⁇ m.
- the second radius of curvature is less than 20 ⁇ m.
- the second radius of curvature is less than 10 ⁇ m.
- the second radius of curvature is substantially equal to 4 ⁇ m.
- the second radius of curvature is at least equal to 0.1 ⁇ m.
- the second radius of curvature is at least equal to 1 ⁇ m.
- the main body of the counter-pivot is formed of a material to be chosen from the following list: an at least partially amorphous metal alloy, an electro-formed material, or a synthetic material.
- the cavity can be obtained by a process of hot deformation of an at least partially amorphous metal alloy by a tool whose diameter is less than the first radius of curvature of the first cone.
- the second solid angle is within a range ranging from 60 to 120°, or even 80 to 100°, preferably equal to 90°.
- the at least partially amorphous metal alloy can be crystallized in order to create phases favorable to friction.
- the at least partially amorphous metal alloy is ceramized to harden the surface of the main body, in particular in the second cone of the cavity.
- the main body of the counter-pivot can be produced by a process of galvanic growth, such as electroforming on a corresponding cavity.
- the main body of the counter-pivot made of synthetic material, for example of the POM type, and can be obtained by molding.
- the main body of the counter-pivot made of composite material for example of the POM type loaded with particles of a material that lowers friction, for example PTFE, and can be obtained by molding.
- it comprises an elastic support for the counter-pivot, such as a spring, to absorb shocks.
- the main body of the counter-pivot and the elastic support are formed from the same piece.
- the resilient support may be formed by a LIGA type lithography, electrodeposition and forming process.
- the main body of the counter-pivot is molded onto the elastic support.
- the first radius of curvature is within an interval ranging from 0.2 ⁇ m to 35 ⁇ m.
- the first solid angle of the first cone is within an interval ranging from 0.2 ⁇ m to 25 ⁇ m.
- the first solid angle of the first cone is within an interval ranging from 0.2 to 15 ⁇ m.
- the invention also relates to a rotating mobile of a watch movement, such as a pendulum, for a bearing according to the invention, the mobile being provided with an axis with at least one pivot having the shape of a first cone having a first predefined solid angle, the vertex of the first cone being rounded and having a first predefined radius of curvature.
- the mobile is remarkable in that the first radius of curvature is included in an interval going from 0.2 ⁇ m to 50 ⁇ m.
- the first radius of curvature is within an interval ranging from 0.2 ⁇ m to 35 ⁇ m.
- the first radius of curvature is within an interval ranging from 0.2 ⁇ m to 25 ⁇ m.
- the first radius of curvature is within an interval ranging from 0.2 to 15 ⁇ m.
- a particular shape of the rotary wheel set is defined in claim 17, in which the apex of the first cone of the pivot is cut to form a third circular cone, presenting a third solid angle greater than the first solid angle.
- the third solid angle is substantially equal to the second angle of the counter-pivot.
- the invention also relates to a watch movement comprising a plate and at least one bridge, said plate and/or the bridge comprising an orifice.
- the movement is remarkable in that it comprises a bearing according to the invention inserted in the orifice and a rotating mobile according to the invention.
- a bearing and an axle of a rotary wheel set will be described according to two embodiments, the same numbers being used to designate identical objects.
- the bearing is used to maintain an axis of a rotating mobile, for example a pendulum axis, by allowing it to perform rotations around its axis.
- the watch movement generally comprises a plate and at least one bridge, not shown in the figures, said plate and/or the bridge comprising an orifice, the movement further comprising a rotating wheel set and a bearing inserted in the orifice.
- the picture 3 shows part 15 of a watch movement comprising two bearings 18, 20 and an axis 16 of a balance held at each end by two bearings 18, 20.
- the axis 16 comprises a pivot 17 at each end, the pivots being formed in a hard material, preferably ruby.
- Each bearing 18, 20 comprises a cylindrical bearing block 13 provided with a housing 14, a counter-pivot 22 arranged in the housing 14, and an opening 19 made in one face of the bearing 18, 20, the opening 19 leaving a passage for inserting the pivot 17 in the bearing as far as the counter-pivot 22.
- the counter-pivot 22 comprises a main body provided with a cavity configured to receive the pivot 17 of the axis of the rotary wheel set. The pivots 17 of the shaft 16 are inserted into the housing 14, the shaft 16 being held while being able to rotate to allow the movement of the rotating mobile.
- the two bearings 18, 20 are shock absorbers, and further comprise an elastic support 21 of the counter-pivot 22 to absorb shocks and prevent the axis 16 from breaking.
- An elastic support 21, represented on the figure 4 is for example a flat spring with axial and radial deformation on which the counter-pivot 22 is assembled.
- the elastic support 21 is fitted into the housing 14 of the bearing block 13 and it maintains the counter-pivot 22 in suspension in the housing 14.
- the elastic support 21 has the shape of a spiral with several strands 25, here three, each strand 25 connecting a rigid central ring 24 to a rigid peripheral ring 23.
- the peripheral ring 23 is fitted into the housing 14 of the bearing block 13 and held by one or more internal faces of the bearing block 13 of the picture 3 .
- the counter-pivot 22 is fitted into the central ring 24 of the elastic support 21.
- the material of the elastic support and its thickness is chosen to allow its deformation by a strong force, for example following an impact which can generate a force of 100G or 200G, one G being the force of earth's attraction due to gravity.
- the pivot 17 has the shape of a substantially circular first cone 26 having a first solid angle 31.
- the solid angle 31 is the angle formed inside the cone by its outer wall.
- the vertex 29 of the first cone 26 is also rounded with a first predefined radius of curvature to allow rotation of the pivot 17.
- the first radius of curvature is included in an interval ranging for example from 0.2 ⁇ m to 40 ⁇ m, or even 0.2 ⁇ m to 25 ⁇ m, preferably from 0.2 ⁇ m to 15 ⁇ m. On the picture 3 , the first radius of curvature is equal to 10 ⁇ m.
- the cavity of the counter-pivot 22 has the shape of a second cone 28 having a second solid angle 32 at the apex.
- second solid angle 32 is greater than first solid angle 31 of first cone 26. , or even 80 to 100°.
- the second solid angle 32 is substantially equal to 90° on the picture 3 , because it is the angle which makes it possible to have a substantially equal friction between the different positions of the axis with respect to the direction of gravity, as explained previously.
- the apex 27 of the second cone 28 is also rounded and has a second predefined radius of curvature. The curvatures of the vertices 27, 29 of the two cones 26, 28 facilitate the rotation of the pivot 17 in the counter-pivot 22.
- the second radius of curvature 27 of the second cone 28 of the counter-pivot 22 is less than the first radius of curvature 29 of the first cone 26 of the pivot 19.
- the second radius of curvature is for example less than 40 ⁇ m, or less than 30 ⁇ m, or even less than 20 ⁇ m, or even less than 10 ⁇ m.
- the second radius of curvature is preferably at least equal to 0.1 ⁇ m, or even greater than 1 ⁇ m.
- the second radius of curvature is equal to 4 ⁇ m, while the first radius of curvature is 10 ⁇ m.
- Such radii of curvature improve the centering of the pivot 17 in the cavity and further avoid the risk of the axis being off-centered between the bearings 22.
- the second radius of curvature of the counter-pivot is equal to 10 ⁇ m, while the first radius of curvature is 15 ⁇ m.
- the counter-pivot 22 is the same as that of the first embodiment, but the pivot 30 is different.
- the vertex 40 of the first cone 33 of the pivot 30 is recut to form a third circular cone 35, having a third solid angle 42 substantially equal to the second solid angle 32 of the second cone 28 of the counter-pivot 22.
- the second solid angle 32 and the third solid angle 42 are 90°.
- the third cone 35 is restricted around the vertex 40 of the pivot 30.
- the third cone 35 has an average diameter 37 of 29 ⁇ m and a lateral radius 38 of 21 ⁇ m, while the height of the first cone is for example 500 ⁇ m.
- the first cone 33 forms the body of the pivot 30, but it is truncated at its apex by the third cone 35 whose solid angle 42 is different to adapt to the cavity of the counter-pivot 22.
- the third cone 35 has the same rounded apex with the same radius of curvature as the first cone 26 of the first mode of realization of the figure 5 , to keep the same advantages.
- the connection between the pivot 30 and the counter-pivot 22 is also improved by slightly increasing the friction zone, to avoid premature wear of the pivot 30 and the counter-pivot 22.
- the material used to make the body of the tailstock must be specifically chosen. Indeed, the materials conventionally used to manufacture counter-pivots are too hard to obtain such a radius of curvature.
- the machining of a ruby or steel material allows to obtain second radii of curvature in the cavity of the counter-pivot of more than 40 ⁇ m, because the tool used to hollow out the cavity must have a thickness enough not to break during the machining of the main body of the counter-pivot.
- the main body of the counter-pivot is formed of a material to be chosen from the following list: an at least partially amorphous metal alloy, an electro-formed material, an synthetic, or a composite material.
- the main body is formed from an at least partially amorphous metal alloy comprising a metal element.
- This metallic element can be a conventional metallic element of the iron, nickel, zirconium, titanium or aluminum type or a precious metallic element such as gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium.
- the material is able to solidify at least partially in the amorphous phase, that is to say that it is subjected to a rise in temperature above its melting temperature allowing it to locally lose any crystalline structure, said rise being followed by cooling to a temperature below its glass transition temperature allowing it to become at least partially amorphous.
- the amorphous metal is for example chosen from the following compositions: Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 based on Zirconium (Zr), Pd43Cu27Ni10P20 based on Palladium (Pd), or Pt57.5Cu14.7Ni5.3P22. 5 based on Platinum (Pt).
- Other compositions of amorphous metals can of course be used, and the invention is in no way limited to these examples.
- the cavity is then obtained by a hot deformation process.
- the amorphous metal is heated to a temperature above its glass transition temperature, which considerably reduces its viscosity and therefore makes it possible to faithfully replicate the tool on which it is deformed.
- the tool will have been previously machined to have a conical shape whose radius of curvature is substantially equal to the second desired radius of curvature.
- the second radius of curvature is smaller than the first radius of curvature.
- the amorphous metal can be ceramized to improve the tribological properties and thus harden the surface of the main body, in particular in the second cone of the cavity.
- the surface treatment consists in forming a layer of ceramic nature on this surface.
- routes chemical, thermal, plasma, etc.
- the main body of the counter-pivot is formed by an electro-formed material, for example of the type Ni, Ni-P, Ni-Co, Pd, Pd-Co, Pt , Au750, Au9ct, or others.
- the galvanic growth is operated on a corresponding imprint.
- the imprint has the shape of a convex cone whose dimensions correspond to those of the second cone.
- a third embodiment of the formation of the main body consists in forming the main body in a synthetic or composite material, such as a polymer material or a filled polymer material.
- the polymer is chosen from the group comprising polyoxymethylene, polyamide, polyetheretherketone, polyphenylene sulfide.
- the filler can be, for example, particles of PTFE or of graphite, making it possible to modify the tribological properties of the base polymer material.
- Other types of fillers can be envisaged, such as for example silicon oxide nanoparticles or other ceramics to mechanically reinforce the base polymer. It is also of course possible to combine several types of fillers with a given polymer.
- the material is molded on an imprint corresponding to the desired shape.
- the imprint has the shape of a convex cone whose dimensions correspond to those of the second cone. The body is obtained by molding this material on the impression.
- the main body of the counter-pivot and the elastic support are formed from the same piece.
- the main body and the elastic support are made of the same material, for example of amorphous metal, to form a single piece.
- the main body of the counter-pivot is molded onto the elastic support.
- the elastic support is formed beforehand by a LIGA type lithography, electrodeposition and forming process (for “Rôntgenlithographie, Galvanoformung, Abformung” in German).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sliding-Contact Bearings (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18214830.4A EP3671368B1 (fr) | 2018-12-20 | 2018-12-20 | Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger |
JP2019224233A JP2020101539A (ja) | 2018-12-20 | 2019-12-12 | 時計ムーブメントの軸受、とりわけ、ショック・アブソーバー、およびロータリー・ホイール・セット |
US16/713,079 US11592784B2 (en) | 2018-12-20 | 2019-12-13 | Bearing, particularly a shock absorber, and rotary wheel set of a timepiece movement |
CN201911329064.5A CN111352332B (zh) | 2018-12-20 | 2019-12-20 | 时计机芯的轴承、尤其是减震器和旋转轮组 |
JP2022149179A JP7411040B2 (ja) | 2018-12-20 | 2022-09-20 | 時計ムーブメントの軸受、とりわけ、ショック・アブソーバー、およびロータリー・ホイール・セット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18214830.4A EP3671368B1 (fr) | 2018-12-20 | 2018-12-20 | Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3671368A1 EP3671368A1 (fr) | 2020-06-24 |
EP3671368B1 true EP3671368B1 (fr) | 2022-11-23 |
Family
ID=64755271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18214830.4A Active EP3671368B1 (fr) | 2018-12-20 | 2018-12-20 | Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger |
Country Status (4)
Country | Link |
---|---|
US (1) | US11592784B2 (zh) |
EP (1) | EP3671368B1 (zh) |
JP (2) | JP2020101539A (zh) |
CN (1) | CN111352332B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3929666A1 (fr) * | 2020-06-26 | 2021-12-29 | ETA SA Manufacture Horlogère Suisse | Système mobile tournant d'un mouvement horloger |
EP3929667A1 (fr) * | 2020-06-26 | 2021-12-29 | ETA SA Manufacture Horlogère Suisse | Système mobile tournant d'un mouvement horloger |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2300362A (en) * | 1939-11-27 | 1942-10-27 | Shotter George Frederick | Bearing for integrating and like meters |
CH305508A (fr) * | 1953-01-30 | 1955-02-28 | Marti Fritz | Palier de butée amortisseur de chocs pour axe à pointe d'instrument de mesure. |
US3036871A (en) * | 1959-09-30 | 1962-05-29 | Parechoc Sa | Device for pivoting a movable element of a clockwork movement or of a small mechanism |
US3132907A (en) * | 1961-07-05 | 1964-05-12 | Golay Buchel And Co | Shock absorbing bearing for a time-piece wheel |
US3050350A (en) * | 1961-11-30 | 1962-08-21 | Loretan Eduard | Shock-absorbing bearing for the movable element of a small mechanism |
FR1333053A (fr) * | 1962-09-04 | 1963-07-19 | Perfectionnement aux dispositifs de pivotement d'un arbre de balancier pour mouvement de montre | |
JPS484508Y1 (zh) * | 1968-10-22 | 1973-02-05 | ||
CH1881071A4 (zh) * | 1971-12-23 | 1973-09-28 | ||
CH495673A4 (fr) * | 1973-04-06 | 1976-10-29 | Seitz Sa | Dispositif de pivotement de l'ace d'un mobile d'horlogerie |
JPS5813756Y2 (ja) * | 1977-12-28 | 1983-03-17 | リズム時計工業株式会社 | 回転振子時計 |
JPH0645278Y2 (ja) * | 1986-11-19 | 1994-11-16 | カシオ計算機株式会社 | 指針式腕時計の合成樹脂製四番車 |
DE10247179A1 (de) * | 2002-10-02 | 2004-04-15 | Ensinger Kunststofftechnologie Gbr | Haltering zum Halten von Halbleiterwafern in einer chemisch-mechanischen Poliervorrichtung |
EP1986059A1 (fr) * | 2007-04-26 | 2008-10-29 | ETA SA Manufacture Horlogère Suisse | Dispositif de pivotement d'un arbre dans une pièce d'horlogerie |
JP5455115B2 (ja) * | 2009-10-07 | 2014-03-26 | セイコーインスツル株式会社 | 時計用軸受、ムーブメントおよび携帯用時計 |
WO2011161139A1 (fr) | 2010-06-22 | 2011-12-29 | The Swatch Group Research And Development Ltd | Systeme antichoc de piece d'horlogerie |
JP6231264B2 (ja) * | 2011-07-29 | 2017-11-15 | ロレックス・ソシエテ・アノニムRolex Sa | 最適化された枢動支持(pivoting)を有するテンプ輪(balancewheel)組立体 |
JP2013088179A (ja) | 2011-10-14 | 2013-05-13 | Seiko Instruments Inc | てんぷの耐振軸受機構、これを備えたてんぷ及びこれを備えた時計 |
CH705861A2 (fr) | 2011-12-12 | 2013-06-14 | Swatch Group Res & Dev Ltd | Palier antichoc pour pièce d'horlogerie. |
JP2013170821A (ja) * | 2012-02-17 | 2013-09-02 | Seiko Instruments Inc | 時計用軸受ユニット、ムーブメント及び時計 |
EP2781972B1 (fr) * | 2013-03-19 | 2018-08-01 | Nivarox-FAR S.A. | Pivot pour mécanisme d'horlogerie |
EP2884348A1 (fr) * | 2013-12-11 | 2015-06-17 | The Swatch Group Research and Development Ltd. | Système antichoc bi-matiere pour piece d'horlogerie |
CN203930351U (zh) | 2013-12-20 | 2014-11-05 | Eta瑞士钟表制造股份有限公司 | 减震轴承、包括该减震轴承的机芯及包括该机芯的钟表 |
EP2952971B1 (fr) * | 2014-06-05 | 2016-10-12 | Nivarox-FAR S.A. | Ancre pour mécanisme d'échappement d'un mouvement de montre |
EP2990883A1 (fr) | 2014-08-29 | 2016-03-02 | Nivarox-FAR S.A. | Ensemble balancier-spiral d'horlogerie |
EP3258325B1 (fr) | 2016-06-13 | 2019-10-30 | Rolex Sa | Axe horloger |
EP3291026B1 (fr) | 2016-08-30 | 2020-01-01 | ETA SA Manufacture Horlogère Suisse | Palier amortisseur de chocs pour pièce d'horlogerie |
EP3382472A1 (fr) * | 2017-03-30 | 2018-10-03 | Rolex Sa | Palier de guidage d'un pivot de balancier de pièce d'horlogerie |
-
2018
- 2018-12-20 EP EP18214830.4A patent/EP3671368B1/fr active Active
-
2019
- 2019-12-12 JP JP2019224233A patent/JP2020101539A/ja active Pending
- 2019-12-13 US US16/713,079 patent/US11592784B2/en active Active
- 2019-12-20 CN CN201911329064.5A patent/CN111352332B/zh active Active
-
2022
- 2022-09-20 JP JP2022149179A patent/JP7411040B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US11592784B2 (en) | 2023-02-28 |
JP7411040B2 (ja) | 2024-01-10 |
JP2020101539A (ja) | 2020-07-02 |
EP3671368A1 (fr) | 2020-06-24 |
US20200201259A1 (en) | 2020-06-25 |
CN111352332B (zh) | 2022-02-25 |
CN111352332A (zh) | 2020-06-30 |
JP2022171887A (ja) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3548973B1 (fr) | Dispositif pour pièce d'horlogerie, mouvement horloger et pièce d'horlogerie comprenant un tel dispositif | |
EP2257855B1 (fr) | Procédé de fabrication d'un balancier composite | |
CH704016B1 (fr) | Assemblage d'une pièce ne comportant pas de domaine plastique. | |
EP3671368B1 (fr) | Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger | |
EP2104006A1 (fr) | Double spiral monobloc et son procédé de fabrication | |
EP3112953B1 (fr) | Composant horloger avec une pièce à surface de soudage découplée | |
EP2860592A1 (fr) | Système d'assemblage utilisant un élément de blocage élastique plan | |
WO2009115470A1 (fr) | Spiral monobloc en matériau à base de silicium et son procédé de fabrication | |
EP2860591A1 (fr) | Système d'assemblage utilisant un élément de blocage élastique conique | |
CH715679A2 (fr) | Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger. | |
EP3112951B1 (fr) | Procédé de fabrication comportant une étape d'usinage modifiée | |
WO2011161079A1 (fr) | Systeme antichoc pour piece d'horlogerie | |
EP3112955B1 (fr) | Procédé de fabrication d'une piéce comportant une étape de brunissage modifiée | |
EP3422117B1 (fr) | Palier amortisseur de choc pour un axe d'un mobile d'une pièce d horlogerie | |
EP3499318B1 (fr) | Système oscillant pour montre | |
EP3839651A1 (fr) | Oscillateur horloger mecanique a guidage flexible | |
EP4107585A1 (fr) | Masse de remontage oscillante munie d'un element decoratif rotatif pour mouvement automatique d'une piece d'horlogerie | |
EP3825782B1 (fr) | Composant horloger renforcé | |
EP3948433B1 (fr) | Oscillateur sphérique pour mécanisme horloger | |
CH717570A2 (fr) | Système mobile tournant d'un mouvement horloger. | |
CH711923B1 (fr) | Procédé de fabrication d'une pièce composite avec moyens élastiques sous contrainte, pièce composite et assortiment horloger. | |
EP4033307A1 (fr) | Ensemble comprenant un mobile tournant en matériau amagnétique et un coussinet muni d'un cône | |
CH717571A2 (fr) | Système mobile tournant d'un mouvement horloger. | |
CH717059B1 (fr) | Masselotte de réglage. | |
CH717143A2 (fr) | Masse de remontage oscillante munie d'un élément décoratif rotatif pour mouvement automatique d'une pièce d'horlogerie. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210111 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220105 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220907 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1533512 Country of ref document: AT Kind code of ref document: T Effective date: 20221215 Ref country code: DE Ref legal event code: R096 Ref document number: 602018043326 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221123 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1533512 Country of ref document: AT Kind code of ref document: T Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230323 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230223 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230323 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018043326 Country of ref document: DE Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221220 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221220 |
|
26N | No opposition filed |
Effective date: 20230824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 6 Ref country code: DE Payment date: 20231121 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20181220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240102 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |