WO2011161139A1 - Systeme antichoc de piece d'horlogerie - Google Patents

Systeme antichoc de piece d'horlogerie Download PDF

Info

Publication number
WO2011161139A1
WO2011161139A1 PCT/EP2011/060405 EP2011060405W WO2011161139A1 WO 2011161139 A1 WO2011161139 A1 WO 2011161139A1 EP 2011060405 W EP2011060405 W EP 2011060405W WO 2011161139 A1 WO2011161139 A1 WO 2011161139A1
Authority
WO
WIPO (PCT)
Prior art keywords
pivot
timepiece
shock absorbing
amorphous
bearing according
Prior art date
Application number
PCT/EP2011/060405
Other languages
English (en)
Inventor
Jean-Luc Helfer
Yves Winkler
Michel Willemin
Original Assignee
The Swatch Group Research And Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Swatch Group Research And Development Ltd filed Critical The Swatch Group Research And Development Ltd
Priority to US13/806,405 priority Critical patent/US8926170B2/en
Priority to EP11729944.6A priority patent/EP2585882B1/fr
Priority to CN201180040285.6A priority patent/CN103124935B/zh
Priority to JP2013515878A priority patent/JP5657106B2/ja
Publication of WO2011161139A1 publication Critical patent/WO2011161139A1/fr
Priority to HK13111571.9A priority patent/HK1184241A1/xx

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • G04B31/04Shock-damping bearings with jewel hole and cap jewel

Definitions

  • the present invention relates to a shock absorbing bearing for an axis of a mobile of a timepiece.
  • the spindle comprises a spine extended by a pivot and the bearing comprises a support, said support being provided with a housing adapted to receive a suspended pivot system in which the spine is inserted.
  • the technical field of the invention is the technical field of fine mechanics.
  • the present invention relates to bearings for timepieces, and more particularly to the type for damping shocks.
  • the mechanical watch manufacturers have long designed numerous devices for absorbing the energy resulting from a shock, including a side impact, by the axis by abutting against a wall of the hole of the base block that it traverses, while allowing a momentary movement of the tigeron before it is brought back to its rest position under the action of a spring.
  • Figures 1 and 2 illustrate a device, said inverted double cone which is currently used in timepieces on the market.
  • the kitten 20 is held in a housing 6 of the support 1 by a spring 10 which comprises in this example of the radial extensions 9 compressing the pivoting stone 5.
  • the housing 6 comprises two bearing surfaces 7, 7a in the form of inverted cones on which support complementary bearing surfaces 8, 8a of the kitten 20, said litters to be performed with a very large precision.
  • the spring 10 acts alone to bring the balance shaft 3 back to its initial position.
  • the spring 10 is dimensioned to have a limit of displacement so that beyond this limit, the axis of the balance comes into contact with abutments allowing said axis to absorb the shock, which the tigerons of the axis does not can do under pain of breaking.
  • the spring 10 cooperates with the complementary inclined planes 7, 7a; 8, 8a to refocus the kitten 20.
  • Such bearings have, for example been sold under the brand Incabloc®.
  • These springs can be made of phynox or brass and are manufactured by traditional means of cutting.
  • Shock absorbing bearings are also known in which the spring, the pierced stone and the counter-pivot stone form a whole.
  • the advantage of these shock absorbing bearings is to be less expensive.
  • the document US 3,942,848 describes a shock absorbing bearing comprising an annular body intended to be driven in a bridge or a plate.
  • a spring formed to define a conical housing is attached to the body.
  • This housing forms a truss inside which a conical pivot of the balance comes to engage.
  • the pivoting conditions are unfavorable, metal-to-metal pivoting generating significant friction.
  • a thrust type bearing according to this document US Pat. No. 3,942,848, cooperating with a conical pivot is poorly adapted for a timepiece of quality, the positioning of the balance being imprecise.
  • the springs used in these shock-absorbing bearings are made of crystalline metal.
  • the use of crystalline metals for these springs can cause some problems.
  • the crystalline metals are characterized by weak mechanical properties such as limited elastic deformation which can lead to plastic deformation if the shocks are too high. This is amplified by the fact that the current springs can not be designed with complex shapes and, therefore, the elastic deformation of the current springs is very close to the elastic limit.
  • This permanent deformation can also occur during the handling of said springs during their installation, when they are removed to operate lubrication or during retouching or after-sales service.
  • Shock absorbing bearings are also known in which the spring, the pierced stone and the counter-pivot stone form a whole.
  • the advantage of these shock absorbing bearings is to be less expensive.
  • the fact of using a spring formed to define a conical housing has the disadvantage of having a radial clearance that depends on play or axial displacement.
  • the conical shape of the spring makes it possible, in good time, to maintain the axis of the wheel. But when the springs deform, the spring moves axially and radially.
  • the conical shape of the spring implies that a radial displacement is also present. It can be seen that the greater the axial displacement, the greater the radial clearance.
  • the invention aims to overcome the disadvantages of the prior art by proposing to provide a shockproof timepiece system that is more shock resistant and allows better positioning of the axis of the damped wheel.
  • the invention relates to the shockproof timepiece system cited above which is characterized in that said pivot system is arranged to absorb, at least in part, the shocks suffered by the timepiece mobile and in that the pivot system is formed of a single piece made of an at least partially amorphous metal alloy.
  • a first advantage of the present invention is to allow shock systems to better withstand shocks. Indeed, amorphous metals have more interesting elastic characteristics.
  • the elastic limit ⁇ ⁇ is increased, which makes it possible to increase the ratio ⁇ ⁇ / ⁇ so that the material sees the stress beyond which it does not return to its initial shape to increase. The pivot system can then undergo a greater stress before deforming plastically and the workpiece can thus suffer greater shocks without the shock system losing efficiency.
  • Another advantage of the present invention is that it makes it possible to produce pivot systems. Indeed, as the amorphous metal is capable to withstand higher stresses before deforming plastically, it is possible to make smaller springs without losing resistance.
  • said pivot system is made of totally amorphous material.
  • said metal alloy comprises at least one metal element of the precious type or one of its alloys.
  • said precious metal element comprises gold, platinum, palladium, rhenium, ruthenium, rhodium, silver, iridium or osmium.
  • said pivot system is a pellet comprising an annular portion, a central portion and elastic arms connecting the central portion to the annular portion, the central portion comprising a recess so that the pivot which there is engaged can turn freely.
  • the recess consists of a cylindrical portion having at its end a convex rounded portion.
  • the amorphous metal is very easy to shape and allows the manufacture of complicated shapes with greater precision. This is due to the particular characteristics of the amorphous metal which can soften while remaining amorphous for a certain time in a given temperature range [T g - T x ] specific to each alloy. It is thus possible to shape it under a relatively low stress and at a low temperature then allowing the use of a simplified process such as forming while hot, while reproducing very precisely fine geometries because the viscosity of the alloy decreases strongly depending on the temperature in said temperature range [T g - T x ]. Therefore, it becomes possible to achieve complex and accurate pivot systems simply.
  • FIG. 1 and 2 schematically show a shockproof timepiece system according to the prior art
  • FIG. 3 to 5 show schematically a shockproof timepiece system according to the invention
  • the present invention proceeds from the general inventive idea of providing a shock absorbing system having greater reliability and providing better positioning using an at least partially amorphous metal alloy.
  • the damping bearing 101, 102 is shown in Figure 3; this illustrates a part 100 of timepiece provided with bearings according to the invention.
  • the timepiece shown in Figure 3 comprises a frame comprising a support 103 in which a lower bearing 101 and an upper bearing 102 are mounted. These bearings 101, 102 are mounted in holes in said support 103.
  • a wheel 105 for example a rocker, is pivotally mounted in the bearings. This wheel 105 comprises an axis 120 provided at its two ends with tigers 121 carrying pivots 122.
  • the upper bearing 102 comprises an annular piece 127 in the form of a disc having a peripheral wall 128.
  • This annular piece also comprises a flange 129 located on the surface of the disc and contiguous to the wall.
  • This annular piece 127 is pierced with a central hole 130.
  • the bearing 102 further comprises a pivoting means 126 'disposed in the housing formed by the peripheral wall 128 and the flange 129.
  • the pivoting means 126' is placed on the rim 129 at its periphery so as to be suspended. This pivoting means 126 'can for example be engaged by force or glued to the annular piece 127.
  • the lower bearing 101 is identical in design to the upper bearing 102, that is to say that it comprises an annular piece 124 in the form of a disk having a peripheral wall. This annular piece also comprises a rim located on the disk surface and contiguous to the wall. This annular piece 124 is pierced with a central hole 125.
  • the bearing 102 further comprises a pivoting means 126 disposed in the housing formed by the peripheral wall and the rim. This pivoting means 126 may be engaged for example by force or glued to the annular piece 124.
  • the dimensions of the lower bearing 101 will be smaller than those of the upper bearing 102 to show that the size of the bearing is easily modular and can be adapted to the needs, here reducing its size for example.
  • the dimensions of the upper bearing 102 and the lower bearing 101 may be identical.
  • the lower bearing 101 or upper 102 may be arranged so that the pivoting means 126, 126 'is directly driven into the support 103.
  • Said bearing 101, 102 further comprises a part 200 in the form of a ring which serves to maintain the pivoting means 126, 126 'and a part 201 which is under the a disc having a peripheral flange 202 and pierced at its center with a hole 125, 130.
  • This piece 201 in the form of a pierced disc is used as a stop and its flange 202 is used to ensure a suspended system.
  • the pivoting means 126, 126 ' is thus held radially by the walls of the hole made in the support 103 and axially by the annular piece 200 and the pierced disk-shaped part 201.
  • the pivoting means 126, 126 ', visible in Figure 4 are in the form of pellets comprising a full annular portion 126a, a central portion 126b provided with a non-through cylindrical recess 126c and elastic arms 126d.
  • the non-through cylindrical recess 126c has a diameter selected so that the pivot 122 engaged therein can rotate freely with a minimum of clearance.
  • the arms 126d are spirally wound so that they connect the central portion 126b to the annular portion 126a.
  • the pivoting means 126 'of the upper bearing 102 is mounted in the annular part 127 of said upper bearing 102.
  • the pivoting means 126 of the lower bearing 103 is mounted in the annular part 124 of said lower bearing 103.
  • the two annular pieces 127, 124 are then mounted in the hole of the support 103 in sequence so as to allow the insertion of the wheel on its axis.
  • the wheel is pivotally mounted by being engaged at its pivots 122 in the non-through cylindrical recesses 126c of the pivoting means 126, 126 'and at its tigger 121 in the zones provided by the support 103.
  • the wheel 105 is subjected to a force which is proportional to the acceleration. This force is transmitted to the bearings by means of the pivots 122. The effect of this force is to deform the elastic arms 126d of the pivoting means 126, 126 'until the axis of the wheel comes to bear, through its tigger 121, against the wall of the holes of the annular pieces 127,124. The wheel is then stopped and blocked by a part of its axis having dimensions much larger than those pivots 122 not to damage the tigerons 121. As this part has dimensions much larger than those of the pivots, it is able to undergo much more important constraints without harmful consequences for the mobile.
  • the elastic arms are dimensioned so that the tigger 121 come into contact with the annular parts when the acceleration reaches about 500g.
  • the pivoting means 126, 126 ' are formed by three curved arms 126d whose attachment points, respectively to the annular portion 126a and the central portion 126b, are angularly offset by 120 degrees. It is obvious that the elastic function could be ensured with a different number of arms, or with other forms.
  • the pivoting means 126, 126 comprise a conical recess so that the end of the tigeron can be inserted to allow a difference in amplitude between the different positions of the watch minimized.
  • This conical recess known from patent EP 2 142 965 consists of a trapezoidal or cylindrical portion having at its end a convex rounded portion.
  • the pivoting means 126, 126 ' are made of an amorphous material or at least partially amorphous.
  • a material comprising at least one metal element is used.
  • the material will be an at least partially amorphous or totally amorphous metal alloy. It will be understood by at least partially amorphous material that the material is capable of solidifying at least partially in the amorphous phase, that is to say that it is capable of losing at least locally all of its crystalline structure.
  • the advantage of these amorphous metal alloys comes from the fact that, during their manufacture, the atoms of these amorphous materials do not arrange according to a particular structure as is the case for crystalline materials.
  • the elastic limit ⁇ ⁇ is different.
  • An amorphous metal is thus distinguished by an elastic limit ⁇ ⁇ higher than that of the crystalline metal by a factor of approximately two to three. This allows the amorphous metals to be able to undergo a greater stress before reaching the elastic limit ⁇ ⁇ .
  • pivoting means 126, 126 have the advantage of having higher strength and durability compared to their crystalline metal counterparts.
  • pivoting means 126, 126 ' several methods are possible. It may be envisaged to realize the pivoting means 126, 126 'using the properties of amorphous metals. Indeed, the amorphous metal has a great ease in shaping allowing the manufacture of parts with complicated shapes with greater precision. This is due to the particular characteristics of the amorphous metal which can soften while remaining amorphous for a certain time in a given temperature range [T g - T x ] of each alloy (for example for a Zr 41 24 Ti 13 77 alloy. Cu 12 7 Ni 10 Be 22 7 ,
  • the use of such a material also makes it possible to reproduce very precisely fine geometries because the viscosity of the alloy decreases strongly as a function of the temperature in the temperature range [T g - T x ] and the alloy marries so all the details of the negative.
  • the shaping is done around 300 ° C for a viscosity up to 10 3 Pa.s for a stress of 1 MPa, instead of a viscosity of 10 12 Pa. s at the temperature Tg.
  • One method used is the hot forming of an amorphous preform.
  • This preform is obtained by melting in a furnace the metallic elements constituting the amorphous alloy. This fusion is made under a controlled atmosphere with the aim of obtaining as low a contamination of the oxygen alloy as possible. Once these elements are melted, they are cast as semi-finished products, then cooled rapidly to maintain the at least partially amorphous state or phase.
  • the hot forming is performed in order to obtain a final piece. This hot forming is carried out by pressing in a temperature range between the glass transition temperature T g of the amorphous material and the crystallization temperature T x of said amorphous material for a predetermined time to maintain a totally or partially amorphous structure. The goal is then to retain the characteristic elastic properties of amorphous metals.
  • the different stages of definitive shaping of the pivoting means are then:
  • the hot forming of the metal or amorphous alloy therefore makes it possible to produce complex and precise parts but also a good reproducibility of the part, which is a significant advantage for mass production such as that of the pivot means 126, 126 'of systems damper.
  • the casting is used.
  • This process involves casting the alloy obtained by melting the metal elements in a mold having the shape of the final piece. Once the mold filled, it is rapidly cooled to a temperature below T g to prevent crystallization of the alloy and thus obtain pivoting means of amorphous or partially amorphous metal.
  • T g temperature below T g
  • the advantage of casting an amorphous metal with respect to the casting of a crystalline metal is to be more precise.
  • the solidification shrinkage is very low for an amorphous metal, less than 1% relative to that of the crystalline metals which is 5 to 7%.

Abstract

L'invention concerne un palier amortisseur de chocs pour un axe (120) d'un mobile d'une pièce d'horlogerie. L'axe comprend un tigeron (121) prolongé d'un pivot (122). Le palier comporte un support (103) pourvu d'un logement prévu pour recevoir un système pivot (126, 126') dans lequel le tigeron est inséré. Le système pivot (126, 126') est agencé pour absorber, au moins en partie, les chocs subis par le mobile de pièce d'horlogerie et est formé d'une seule pièce réalisée en un alliage métallique au moins partiellement amorphe.

Description

SYSTE M E ANTI CHOC D E P I EC E D ' HO RLOG E R I E
La présente invention concerne un palier amortisseur de chocs pour un axe d'un mobile d'une pièce d'horlogerie. L'axe comprend un tigeron prolongé d'un pivot et le palier comporte un support, ledit support étant pourvu d'un logement prévu pour recevoir un système pivot suspendu dans lequel le tigeron est inséré.
Le domaine technique de l'invention est le domaine technique de la mécanique fine.
ARRIERE PLAN TECHNOLOGIQUE
La présente invention concerne des paliers pour pièces d'horlogerie, et plus particulièrement du type permettant d'amortir les chocs. Les constructeurs de montres mécaniques ont conçu depuis longtemps de nombreux dispositifs permettant de faire absorber l'énergie résultant d'un choc, notamment d'un choc latéral, par l'axe en venant buter contre une paroi du trou du bloc de base qu'elle traverse, tout en permettant un déplacement momentané du tigeron avant qu'il ne soit ramené à sa position de repos sous l'action d'un ressort.
Les figures 1 et 2 illustrent un dispositif, dit à double cône inversé qui est actuellement utilisé dans des pièces d'horlogerie se trouvant sur le marché.
Un support 1 , dont la base comporte un trou 2 pour le passage de l'axe de balancier 3 terminé par un tigeron 3a, permet de positionner un chaton 20 dans lequel sont immobilisées une pierre percée 4 traversée par le tigeron 3a et une pierre contre-pivot 5. Le chaton 20 est maintenu dans un logement 6 du support 1 par un ressort 10 qui comprend dans cet exemple des extensions radiales 9 comprimant la pierre contre-pivot 5. Le logement 6 comporte deux portées 7, 7a en forme de cônes inversés sur lesquelles prennent appui des portées complémentaires 8, 8a du chaton 20, lesdites portées devant être exécutées avec une très grande précision. En cas de choc axial, la pierre percée 4, la pierre contre-pivot 5 et l'axe du balancier se déplacent et le ressort 10 agit seul pour ramener l'axe de balancier 3 dans sa position initiale. Le ressort 10 est dimensionné pour avoir une limite de déplacement de sorte qu'au delà de cette limite, l'axe du balancier arrive en contact avec des butées permettant audit axe d'absorber le choc, ce que les tigerons de l'axe ne peuvent faire sous peine de casser. En cas de choc latéral, c'est-à-dire lorsque l'extrémité du tigeron déséquilibre le chaton 20 hors de son plan de repos, le ressort 10 coopère avec les plans inclinés complémentaires 7, 7a ; 8, 8a pour recentrer le chaton 20. De tels paliers ont, par exemple été vendus sous la marque Incabloc®. Ces ressorts peuvent être réalisés en phynox ou laiton et sont fabriqués par des moyens traditionnels de découpage.
Il est également connu des paliers amortisseurs de chocs dans lesquels le ressort, la pierre percée et la pierre contre-pivot forment un tout. L'avantage de ces paliers amortisseurs de chocs est d'être moins coûteux.
Ainsi, le document US 3'942'848 décrit un palier amortisseur de chocs comportant un corps annulaire destiné à être chassé dans un pont ou une platine. Un ressort formé pour définir un logement conique est fixé sur le corps. Ce logement forme une crapaudine à l'intérieur de laquelle un pivot conique du balancier vient s'engager. Dans une telle construction, les conditions de pivotement sont peu favorables, le pivotement métal sur métal engendrant des frottements importants. Par ailleurs, un palier de type crapaudine selon ce document US 3,942,848, coopérant avec un pivot conique est mal adapté pour une pièce d'horlogerie de qualité, le positionnement du balancier étant peu précis.
Par ailleurs, les ressorts utilisés dans ces paliers amortisseurs de chocs sont en métal cristallin. Or, l'utilisation de métaux cristallins pour ces ressorts peut entraîner certains problèmes. Effectivement, les métaux cristallins se caractérisent par des propriétés mécaniques faibles telle qu'une déformation élastique limitée pouvant entraîner une déformation plastique si les chocs sont trop élevés. Cela est amplifié par le fait que les ressorts actuels ne peuvent pas être conçus avec des formes complexes et, de ce fait, la déformation élastique des ressorts actuels est très proche de la limite élastique.
Ainsi, si un choc trop important est appliqué sur la pièce d'horlogerie, le déplacement des pierres et du balancier peut être de grande amplitude et, par conséquent, une déformation plastique c'est-à-dire permanente du ressort peut se produire. Le ressort devient moins efficace pour amortir les chocs et recentrer l'axe du balancier dans sa position de repos car il ne reprend plus sa forme d'origine et perd donc en élasticité.
Cette déformation permanente peut également se produire lors de la manipulation desdits ressorts lors de leur mise en place, lorsqu'ils sont retirés pour opérer la lubrification ou lors des opérations de retouche ou de service après vente.
Il est également connu des paliers amortisseurs de chocs dans lesquels le ressort, la pierre percée et la pierre contre-pivot forment un tout. L'avantage de ces paliers amortisseurs de chocs est d'être moins coûteux.
Ainsi, le document US 3,942,848 décrit un palier amortisseur de chocs comportant un corps annulaire destiné à être chassé dans un pont ou une platine. Un ressort formé pour définir un logement conique est fixé sur le corps. Ce logement forme une crapaudine à l'intérieur de laquelle un pivot conique du balancier vient s'engager. Dans une telle construction, les conditions de pivotement sont peu favorables, le pivotement métal sur métal engendrant des frottements importants. Par ailleurs, un palier de type crapaudine selon ce document US 3,942,848, coopérant avec un pivot conique est mal adapté pour une pièce d'horlogerie de qualité, le positionnement du balancier étant peu précis. Par ailleurs, le fait d'utiliser un ressort formé pour définir un logement conique présente l'inconvénient d'avoir un jeu radial qui dépend du jeu ou du déplacement axial. En effet, la forme conique du ressort permet, en temps normal de bien maintenir l'axe de la roue. Mais lorsque les ressorts se déforment, le ressort se déplace axialement et radialement. Or, quand le ressort se déplace axialement, la forme conique du ressort implique qu'un déplacement radial est aussi présent. On constate alors que plus le déplacement axial est important et plus le jeu radial est important.
RESUME DE L'INVENTION
L'invention a pour but de pallier les inconvénients de l'art antérieur en proposant de fournir un système antichoc de pièce d'horlogerie qui résiste mieux aux chocs et qui permet un meilleur positionnement de l'axe de la roue amortie.
A cet effet, l'invention concerne le système antichoc de pièce d'horlogerie cité ci-dessus qui se caractérise en ce que ledit système pivot est agencé pour absorber, au moins en partie, les chocs subis par le mobile de pièce d'horlogerie et en ce que le système pivot est formé d'une seule pièce réalisée en un alliage métallique au moins partiellement amorphe.
Un premier avantage de la présente invention est de permettre aux systèmes antichocs de mieux supporter les chocs. En effet, les métaux amorphes ont des caractéristiques élastiques plus intéressantes. La limite élastique σθ est augmentée, ce qui permet d'augmenter le rapport σθ/Ε de sorte que le matériau voit la contrainte au-delà de laquelle il ne reprend pas sa forme initiale augmenter. Le système pivot peut alors subir une plus forte contrainte avant de se déformer plastiquement et la pièce peut ainsi subir des chocs plus importants sans que le système antichoc ne perde en efficacité.
Un autre avantage de la présente invention est de permettre de réaliser des systèmes pivot. En effet, comme le métal amorphe est capable de supporter des contraintes plus élevées avant de se déformer plastiquement, il est possible de réaliser des ressorts de plus faibles dimensions sans perdre en résistance.
Des modes de réalisation avantageux de ces systèmes pivot font l'objet des revendications dépendantes.
Dans un premier mode de réalisation avantageux, ledit système pivot est réalisé en matériau totalement amorphe.
Dans un deuxième mode de réalisation avantageux, ledit alliage métallique comprend au moins un élément métallique du type précieux ou un de ses alliages.
Dans un troisième mode de réalisation avantageux, ledit élément métallique précieux comporte de l'or, du platine, du palladium, du rhénium, du ruthénium, du rhodium, de l'argent, de l'iridium ou de l'osmium.
Dans un autre mode de réalisation avantageux, ledit système pivot est une pastille comprenant une partie annulaire, une partie centrale et des bras élastiques reliant la partie centrale à la partie annulaire, la partie centrale comprenant un évidement de manière à ce que le pivot qui y est engagé puisse y tourner librement.
Dans un autre mode de réalisation avantageux, l'évidement consiste en une portion cylindrique ayant à son extrémité une portion arrondie convexe.
Un des avantages de ces modes de réalisation est de permettre de réaliser des systèmes pivot de formes plus complexes. En effet, le métal amorphe est très facile à mettre en forme et permet la fabrication de pièces aux formes compliquées avec une plus grande précision. Ceci est dû aux caractéristiques particulières du métal amorphe qui peut se ramollir tout en restant amorphe durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage. Il est ainsi possible de le mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud, tout en reproduisant très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans ledit intervalle de température [Tg - Tx]. Par conséquent, il devient possible de réaliser des systèmes pivot complexes et précis mais simplement.
BREVE DESCRIPTION DES FIGURES
Les buts, avantages et caractéristiques du système antichoc selon la présente invention apparaîtront plus clairement dans la description détaillée suivante d'au moins une forme de réalisation de l'invention donnée uniquement à titre d'exemple non limitatif et illustrée par les dessins annexés sur lesquels :
- les figures 1 et 2 représentent de manière schématique un système antichoc de pièce d'horlogerie selon l'art antérieur;
- les figures 3 à 5 représentent de manière schématique un système antichoc de pièce d'horlogerie selon l'invention;
DESCRIPTION DETAILLEE
La présente invention procède de l'idée générale inventive qui consiste à procurer un système amortisseur de choc ayant une plus grande fiabilité et proposant un meilleur positionnement à l'aide d'un alliage métallique au moins partiellement amorphe.
Le palier amortisseur 101 , 102 est représenté à la figure 3 ; celle-ci illustre une partie 100 de pièce d'horlogerie munie de paliers selon l'invention.
La pièce d'horlogerie représentée à la figure 3 comprend un bâti comprenant un support 103 dans lequel un palier inférieur 101 et un palier supérieur 102 sont montés. Ces paliers 101 , 102 sont montés dans des trous pratiqués dans ledit support 103. Une roue 105, pouvant par exemple être un balancier, est montée en pivotement dans les paliers. Cette roue 105 comporte un axe 120 muni à ses deux extrémités de tigerons 121 portant des pivots 122.
Le palier supérieur 102 comprend une pièce annulaire 127 se présentant sous la forme d'un disque ayant une paroi périphérique 128. Cette pièce annulaire comprend également un rebord 129 localisé sur la surface du disque et contigu à la paroi. Cette pièce annulaire 127 est percée d'un trou central 130. Le palier 102 comprend, en outre, un moyen de pivotement 126' disposé dans le logement formé par la paroi périphérique 128 et le rebord 129. Le moyen de pivotement 126' est posé sur le rebord 129 au niveau de sa périphérie de sorte à être suspendu. Ce moyen de pivotement 126' peut par exemple être engagé à force ou collé à la pièce annulaire 127.
Le palier inférieur 101 est de conception identique au palier supérieur 102 c'est-à-dire qu'il comprend une pièce annulaire 124 se présentant sous la forme d'un disque ayant une paroi périphérique. Cette pièce annulaire comprend également un rebord localisé sur la surface du disque et contigu à la paroi. Cette pièce annulaire 124 est percée d'un trou central 125. Le palier 102 comprend, en outre, un moyen de pivotement 126 disposé dans le logement formé par la paroi périphérique et le rebord. Ce moyen de pivotement 126 peut être engagé par exemple à force ou collé à la pièce annulaire 124. Dans le présent exemple, les dimensions du palier inférieur 101 seront plus faibles que celles du palier supérieur 102 afin de montrer que la taille du palier est facilement modulable et peut être adaptée aux besoins, ici en réduisant sa taille par exemple. Bien entendu, les dimensions du palier supérieur 102 et du palier inférieur 101 peuvent être identiques.
Toutefois, le palier inférieur 101 ou supérieur 102 peut être agencé de sorte que le moyen de pivotement 126, 126' soit directement chassé dans le support 103. Ledit palier 101 , 102 comprend en outre une pièce 200 se présentant sous la forme d'un anneau qui sert au maintient des moyens de pivotement 126, 126' et une pièce 201 se présentant sous la forme d'un disque ayant un rebord périphérique 202 et percée en son centre d'un trou 125, 130. Cette pièce 201 en forme de disque percée est utilisée pour servir de butée et son rebord 202 est utilisé pour assurer un système suspendu. Le moyen de pivotement 126, 126' est ainsi maintenu de façon radiale par les parois du trou réalisé dans le support 103 et de façon axiale par la pièce annulaire 200 et la pièce en forme de disque percé 201 .
Les moyens de pivotement 126, 126', visibles à la figure 4 se présentent sous forme de pastilles comprenant une partie annulaire pleine 126a, une partie centrale 126b munie d'un évidement cylindrique non traversant 126c et de bras élastiques 126d. L'évidement cylindrique non traversant 126c a un diamètre choisi de manière à ce que le pivot 122 qui y est engagé puisse y tourner librement avec un minimum de débattement. Les bras 126d sont enroulés en spirale de sorte qu'ils relient la portion centrale 126b à la partie annulaire126a. Préférentiellement, les moyens de pivotement 126, 126' comprennent trois bras. Le moyen de pivotement 126' du palier supérieur 102 est monté dans la pièce annulaire127 dudit palier supérieur 102. Le moyen de pivotement 126 du palier inférieur 103 est monté dans la pièce annulaire 124 dudit palier inférieur 103. Les deux pièces annulaires 127, 124 sont ensuite montées dans le trou du support 103 en séquence de manière à permettre l'insertion de la roue sur son axe.
La roue est donc montée pivotante en étant engagée au niveau de ses pivots 122 dans les évidements cylindriques non traversant 126c des moyens de pivotement 126, 126' et au niveau de ses tigerons 121 dans les zones prévues du support 103.
En cas de choc, la roue 105 est soumise à une force qui est proportionnelle à l'accélération subie. Cette force est transmise aux paliers par l'intermédiaire des pivots 122. L'effet de cette force est de déformer les bras élastiques 126d des moyens de pivotement 126, 126' jusqu'à ce que l'axe de la roue vienne prendre appui, par l'intermédiaire de ses tigerons 121 , contre la paroi des trous des pièces annulaires 127,124. La roue est alors stoppée et bloquée par une partie de son axe ayant des dimensions beaucoup plus grandes que celles des pivots 122 permettant de ne pas endommager les tigerons 121 . Comme cette partie a des dimensions beaucoup plus grandes que celles des pivots, elle est capable de subir des contraintes bien plus importantes sans conséquence néfaste pour le mobile.
De façon préférentielle, les bras élastiques sont dimensionnés de manière à ce que les tigerons 121 entrent en contact avec les pièces annulaires lorsque l'accélération atteint environ 500g.
De façon préférentielle, les moyens de pivotement 126, 126' sont formés par trois bras recourbés 126d dont les points d'attache, respectivement à la partie annulaire 126a et à la partie centrale 126b, sont décalés angulairement de 120 degrés. Il est bien évident que la fonction élastique pourrait être assurée avec un nombre différent de bras, ou avec d'autres formes.
On pourra également comprendre que les moyens de pivotement 126, 126' comprennent un évidement conique afin que l'extrémité du tigeron puisse s'y insérer permettant d'avoir un écart d'amplitude entre les différentes positions de la montre réduit au minimum. Cet évidement conique connu du brevet EP 2 142 965 consiste en une portion trapézoïdale ou cylindrique ayant à son extrémité, une portion arrondie convexe.
Avantageusement, les moyens de pivotement 126, 126' sont réalisés en un matériau amorphe ou au moins partiellement amorphe. En particulier, on utilise un matériau comprenant au moins un élément métallique. Préférentiellement, le matériau sera un alliage métallique au moins partiellement amorphe voir totalement amorphe. On comprendra par matériau au moins partiellement amorphe que le matériau est apte à se solidifier au moins partiellement en phase amorphe, c'est-à-dire qu'il est apte à perdre au moins localement toute sa structure cristalline. En effet, l'avantage de ces alliages métalliques amorphes vient du fait que, lors de leur fabrication, les atomes composant ces matériaux amorphes ne s'arrangent pas selon une structure particulière comme c'est le cas pour les matériaux cristallins. Ainsi, même si le module d'Young E d'un métal cristallin et d'un métal amorphe est identique, la limite élastique σθ est différente. Un métal amorphe se différencie ainsi par une limite élastique σθ plus élevée que celle du métal cristallin d'un facteur d'environ deux à trois. Cela permet aux métaux amorphes de pouvoir subir une plus forte contrainte avant d'arriver à la limite élastique σθ.
De tels moyens de pivotement 126, 126' ont l'avantage d'avoir une résistance et une longévité plus élevées par rapport à leurs équivalents en métal cristallin.
Par ailleurs, comme la limite élastique d'un métal amorphe est plus élevée que celle d'un métal cristallin d'un facteur d'environ deux à trois permettant de résister à des contraintes plus élevées, il est envisageable de réduire les dimensions desdits moyens de pivotement 126, 126'. En effet, comme les moyens de pivotement de systèmes d'antichoc en métal amorphe peuvent supporter une plus forte contrainte sans se déformer plastiquement, il est alors possible, à contrainte équivalente, de réduire les dimensions des moyens de pivotement 126, 126' par rapport à un métal cristallin.
Pour réaliser ces moyens de pivotement 126, 126', plusieurs méthodes sont envisageables. Il peut être envisagé de réaliser les moyens de pivotement 126, 126' en utilisant les propriétés des métaux amorphes. En effet, le métal amorphe présente une grande facilité dans la mise en forme permettant la fabrication de pièces aux formes compliquées avec une plus grande précision. Ceci est dû aux caractéristiques particulières du métal amorphe qui peut se ramollir tout en restant amorphe durant un certain temps dans un intervalle de température [Tg - Tx] donné propre à chaque alliage (par exemple pour un alliage Zr 41 24 Ti 13 77Cu12 7Ni10Be22 7 ,
Tg=350°C et TX=460°C). Il est ainsi possible de les mettre en forme sous une contrainte relativement faible et à une température peu élevée permettant alors l'utilisation d'un procédé simplifié tel que le formage à chaud. L'utilisation d'un tel matériau permet en outre de reproduire très précisément des géométries fines car la viscosité de l'alliage diminue fortement en fonction de la température dans l'intervalle de température [Tg - Tx] et l'alliage épouse ainsi tous les détails du négatif. Par exemple, pour un matériau à base de platine, la mise en forme se fait aux alentours de 300 °C pour une viscosité atteignant 103 Pa.s pour une contrainte de 1 MPa, au lieu d'une viscosité de 1012 Pa.s à la température Tg.
Un procédé utilisé est le formage à chaud d'une préforme amorphe.
Cette préforme est obtenue par fusion dans un four des éléments métalliques constituant l'alliage amorphe. Cette fusion est faite sous atmosphère contrôlée avec pour but d'obtenir une contamination de l'alliage en oxygène aussi faible que possible. Une fois ces éléments fondus, ils sont coulés sous forme de produits semi-fini, puis refroidis rapidement afin de conserver l'état ou la phase au moins partiellement amorphe. Une fois la préforme obtenue, le formage à chaud est effectué dans le but d'obtenir une pièce définitive. Ce formage à chaud est réalisé par pressage dans une gamme de températures comprise entre la température de transition vitreuse Tg du matériau amorphe et la température de cristallisation Tx dudit matériau amorphe durant un temps déterminé pour conserver une structure totalement ou partiellement amorphe. Le but est alors de conserver les propriétés élastiques caractéristiques des métaux amorphes. Les différentes étapes de mise en forme définitive des moyens de pivotement sont alors :
Chauffage des matrices du moule ayant la forme négative des moyens de pivotement 126, 126' jusqu'à une température choisie,
Introduction de la préforme en métal amorphe entre les matrices chaudes, c) Application d'une force de fermeture sur les matrices afin de répliquer la géométrie de ces dernières sur la préforme en métal amorphe,
d) Attente durant un temps maximal choisi,
e) Refroidissement rapide du ressort en dessous de Tg de sorte que le matériau garde sa phase au moins partiellement amorphe,
f) Ouverture des matrices,
g) Sortie des moyens de pivotement 126, 126' des matrices.
Le formage à chaud du métal ou alliage amorphe permet donc de réaliser des pièces complexes et précises mais aussi une bonne reproductibilité de la pièce ce qui est un avantage conséquent pour la fabrication en grande série comme celle des moyens de pivotements 126, 126' de systèmes amortisseur.
Selon une variante de ce procédé, la coulée est utilisée. Ce procédé consiste à couler l'alliage obtenu par fusion des éléments métalliques dans un moule possédant la forme de la pièce définitive. Une fois le moule rempli, celui-ci est refroidi rapidement jusqu'à une température inférieure à Tg afin d'éviter la cristallisation de l'alliage et ainsi obtenir des moyens de pivotement en métal amorphe ou partiellement amorphe. L'avantage de la coulée d'un métal amorphe par rapport à la coulée d'un métal cristallin est d'être plus précise. Le retrait de solidification est très faible pour un métal amorphe, moins de 1 % par rapport à celui des métaux cristallins qui est de 5 à 7%.
Les procédés utilisés pour le métal amorphe permettent donc la réalisation de pièces précises ce qui est avantageux pour la réalisation des moyens de pivotement avec de plus faibles dimensions. Cette précision est combinée avec une très forte reproductibilité du procédé permettant de réaliser facilement des pièces en série. On comprendra que diverses modifications et/ou améliorations et/ou combinaisons évidentes pour l'homme du métier peuvent être apportées aux différents modes de réalisation de l'invention exposée ci-dessus sans sortir du cadre de l'invention définie par les revendications annexées.

Claims

REVENDICATIONS
1 . Palier amortisseur de chocs pour un axe (120) d'un mobile d'une pièce d'horlogerie, ledit axe comprenant un tigeron (121 ) prolongé d'un pivot (122), ledit palier comportant un support (102, 103) étant pourvu d'un logement prévu pour recevoir un système pivot (126, 126') suspendu dans lequel le tigeron est inséré, caractérisé en ce que ledit système pivot (126,126') est agencé pour absorber, au moins en partie, les chocs subis par le mobile de pièce d'horlogerie et en ce que le système pivot (126, 126') est formé d'une seule pièce réalisée en un alliage métallique au moins partiellement amorphe.
2. Palier amortisseur de chocs selon la revendication 1 , caractérisé en ce que ledit système pivot est réalisé en alliage métallique totalement amorphe.
3. Palier amortisseur de chocs selon la revendication 1 caractérisé en ce que ledit alliage métallique comprend au moins un élément métallique du type précieux ou un de ses alliages.
4. Palier amortisseur de chocs selon la revendication 3, caractérisé en ce que ledit élément métallique précieux comporte de l'or, du platine, du palladium, du rhénium, du ruthénium, du rhodium, de l'argent, de l'iridium ou de l'osmium.
5. Palier amortisseur de chocs selon l'une des revendications précédentes, caractérisé en ce que ledit système pivot est une pastille comprenant une partie annulaire (126a), une partie centrale (126b) et des bras élastiques (126d) reliant la partie centrale à la partie annulaire, la partie centrale comprenant un évidement (126c) de manière à ce que le pivot qui y est engagé puisse y tourner librement.
6. Palier amortisseur de chocs selon la revendication 5, caractérisé en ce que l'évidement (126c) consiste en une portion cylindrique ayant à son extrémité une portion arrondie convexe.
PCT/EP2011/060405 2010-06-22 2011-06-22 Systeme antichoc de piece d'horlogerie WO2011161139A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/806,405 US8926170B2 (en) 2010-06-22 2011-06-22 Timepiece anti-shock system
EP11729944.6A EP2585882B1 (fr) 2010-06-22 2011-06-22 Systeme antichoc de piece d'horlogerie
CN201180040285.6A CN103124935B (zh) 2010-06-22 2011-06-22 钟表抗震系统
JP2013515878A JP5657106B2 (ja) 2010-06-22 2011-06-22 時計の衝撃吸収軸受
HK13111571.9A HK1184241A1 (en) 2010-06-22 2013-10-15 Timepiece anti-shock system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH10172010 2010-06-22
CH01017/10 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011161139A1 true WO2011161139A1 (fr) 2011-12-29

Family

ID=44628072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/060405 WO2011161139A1 (fr) 2010-06-22 2011-06-22 Systeme antichoc de piece d'horlogerie

Country Status (6)

Country Link
US (1) US8926170B2 (fr)
EP (1) EP2585882B1 (fr)
JP (1) JP5657106B2 (fr)
CN (1) CN103124935B (fr)
HK (1) HK1184241A1 (fr)
WO (1) WO2011161139A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062888A (zh) * 2013-03-19 2014-09-24 尼瓦洛克斯-法尔股份有限公司 钟表机构组件
EP2781972A1 (fr) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Pivot pour mécanisme d'horlogerie
EP2884348A1 (fr) * 2013-12-11 2015-06-17 The Swatch Group Research and Development Ltd. Système antichoc bi-matiere pour piece d'horlogerie
WO2017055986A1 (fr) * 2015-09-29 2017-04-06 Patek Philippe Sa Geneve Mouvement horloger comprenant un système de guidage flexible
JP2017173341A (ja) * 2013-05-24 2017-09-28 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 差し込み式フィッティングを備えたショックアブソーバー
RU2679479C2 (ru) * 2014-04-07 2019-02-11 Ниварокс-Фар С.А. Узел часов с использованием аморфного металлического сплава

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603236C2 (ru) * 2011-12-12 2016-11-27 Те Свотч Груп Рисерч Энд Дивелопмент Лтд Ударостойкий подшипник для хронометра
EP2677370A1 (fr) * 2012-06-21 2013-12-25 ETA SA Manufacture Horlogère Suisse Système antichoc à montage simplifié pour pièce d'horlogerie
EP3067756B1 (fr) * 2015-03-09 2017-11-22 Nivarox-FAR S.A. Ensemble pivotant pour une pièce d'horlogerie
EP3182211A1 (fr) * 2015-12-17 2017-06-21 Nivarox-FAR S.A. Pièce composite avec moyens élastiques sous contrainte
EP3291025B1 (fr) * 2016-08-30 2020-08-19 Montres Breguet S.A. Amortisseur de chocs multilames
EP3422117B1 (fr) * 2017-06-29 2020-05-27 Nivarox-FAR S.A. Palier amortisseur de choc pour un axe d'un mobile d'une pièce d horlogerie
CH714819A2 (fr) * 2018-03-21 2019-09-30 Dominique Renaud Sa Dispositif de fixation et de réglage d'un palier, notamment pour pièces d'horlogerie.
EP3561606B1 (fr) * 2018-04-27 2022-01-26 The Swatch Group Research and Development Ltd Protection antichoc d'un résonateur à lames a pivot rcc
EP3671368B1 (fr) 2018-12-20 2022-11-23 The Swatch Group Research and Development Ltd Palier, notamment amortisseur de choc, et mobile tournant d'un mouvement horloger
EP3800511B1 (fr) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Axe de pivotement d'un organe réglant
EP3929666A1 (fr) * 2020-06-26 2021-12-29 ETA SA Manufacture Horlogère Suisse Système mobile tournant d'un mouvement horloger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH199012A (de) * 1936-06-24 1938-07-31 C C Wakefield & Company Limite Verfahren zur Erzeugung metallischer Gleitflächen auf der Reibung ausgesetzten Maschinenteilen.
CH235315A (fr) * 1942-09-30 1944-11-30 Erismann Schinz Sa Pare-choc pour pièce d'horlogerie.
US3942848A (en) 1973-04-06 1976-03-09 Seitz S.A. Shock absorbing pivot bearing for rotary watch parts
EP1696153A1 (fr) * 2003-09-02 2006-08-30 Namiki Seimitsu Houseki Kabushiki Kaisha Engrenage de precision, son mecanisme d'engrenage et procede de production d'engrenage de precision
WO2007038882A1 (fr) * 2005-10-03 2007-04-12 Eth Zurich Composites de graphite/verre métallique massif
EP2015147A2 (fr) * 2007-07-12 2009-01-14 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Palier amortisseur de chocs pour pièce d'horlogerie
EP2142965A2 (fr) 2007-04-26 2010-01-13 ETA SA Manufacture Horlogère Suisse Dispositif de pivotement d'un arbre dans une piece d'horlogerie

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145138A (en) * 1979-04-26 1980-11-12 Seiko Epson Corp Exterior parts for watch
JPS6421386A (en) * 1987-07-16 1989-01-24 Gutsudo Air Japan Kk Solar analogue quartz time-piece
JP3498315B2 (ja) * 1997-08-28 2004-02-16 セイコーエプソン株式会社 バネ、ゼンマイ、これらを利用した駆動機構、および時計
JP4257062B2 (ja) * 2002-01-25 2009-04-22 セイコーエプソン株式会社 滑り軸受け装置及び滑り軸受け装置を用いた小型機器
CH697017A5 (fr) * 2003-03-26 2008-03-14 Franck Muller Watchland S A Dispositif anti-chocs pour mobile tournant sur un axe.
JP2005140674A (ja) * 2003-11-07 2005-06-02 Seiko Epson Corp 時計用ばね、ぜんまい、ひげぜんまい、及び時計
DE602005025585D1 (de) * 2005-02-23 2011-02-10 Eta Sa Mft Horlogere Suisse Stoßdämpfende Uhrenlagerung
EP1705537B1 (fr) * 2005-03-23 2008-05-14 Rolex S.A. Palier amortisseur de chocs pour pièce d'horlogerie
CH705112B1 (fr) * 2007-11-07 2012-12-31 Manuf Et Fabrique De Montres Et Chronometres Ulysse Nardin Le Locle Sa Palier amortisseur de chocs pour pièce d'horlogerie.
JP2009186394A (ja) * 2008-02-08 2009-08-20 Seiko Epson Corp 回転体の軸受構造
CH698962B1 (fr) * 2008-06-10 2014-10-31 Rolex Sa Ressort de barillet et procédé pour sa mise en forme.
EP2400352A1 (fr) * 2010-06-22 2011-12-28 The Swatch Group Research and Development Ltd. Système d'échappement pour pièce d'horlogerie

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH199012A (de) * 1936-06-24 1938-07-31 C C Wakefield & Company Limite Verfahren zur Erzeugung metallischer Gleitflächen auf der Reibung ausgesetzten Maschinenteilen.
CH235315A (fr) * 1942-09-30 1944-11-30 Erismann Schinz Sa Pare-choc pour pièce d'horlogerie.
US3942848A (en) 1973-04-06 1976-03-09 Seitz S.A. Shock absorbing pivot bearing for rotary watch parts
EP1696153A1 (fr) * 2003-09-02 2006-08-30 Namiki Seimitsu Houseki Kabushiki Kaisha Engrenage de precision, son mecanisme d'engrenage et procede de production d'engrenage de precision
WO2007038882A1 (fr) * 2005-10-03 2007-04-12 Eth Zurich Composites de graphite/verre métallique massif
EP2142965A2 (fr) 2007-04-26 2010-01-13 ETA SA Manufacture Horlogère Suisse Dispositif de pivotement d'un arbre dans une piece d'horlogerie
EP2015147A2 (fr) * 2007-07-12 2009-01-14 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Palier amortisseur de chocs pour pièce d'horlogerie

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051623A (zh) * 2013-03-19 2015-11-11 尼瓦洛克斯-法尔股份有限公司 用于钟表机构的支枢装置
US9684283B2 (en) 2013-03-19 2017-06-20 Nivarox-Far S.A. Pivot for timepiece mechanism
US20140286139A1 (en) * 2013-03-19 2014-09-25 Nivarox-Far S.A. Timepiece mechanism structure
WO2014146832A1 (fr) 2013-03-19 2014-09-25 Nivarox-Far S.A. Pivot pour mécanisme d'horlogerie
US9235191B2 (en) * 2013-03-19 2016-01-12 Nivarox-Far S.A. Timepiece mechanism structure
TWI610154B (zh) * 2013-03-19 2018-01-01 尼瓦克斯 法爾公司 時計機構構造、形成該構造的方法、和機械式時計機芯
EP2781972A1 (fr) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Pivot pour mécanisme d'horlogerie
CN104062888A (zh) * 2013-03-19 2014-09-24 尼瓦洛克斯-法尔股份有限公司 钟表机构组件
JP2017173341A (ja) * 2013-05-24 2017-09-28 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 差し込み式フィッティングを備えたショックアブソーバー
EP2884348A1 (fr) * 2013-12-11 2015-06-17 The Swatch Group Research and Development Ltd. Système antichoc bi-matiere pour piece d'horlogerie
WO2015086472A3 (fr) * 2013-12-11 2015-08-06 The Swatch Group Research And Development Ltd Système antichoc de pièce d'horlogerie bi-matiere
US10012955B2 (en) 2013-12-11 2018-07-03 The Swatch Group Research And Development Ltd Bimaterial anti-shock system for timepieces
RU2679479C2 (ru) * 2014-04-07 2019-02-11 Ниварокс-Фар С.А. Узел часов с использованием аморфного металлического сплава
WO2017055986A1 (fr) * 2015-09-29 2017-04-06 Patek Philippe Sa Geneve Mouvement horloger comprenant un système de guidage flexible
EP3356891B1 (fr) * 2015-09-29 2023-10-04 Patek Philippe SA Genève Mouvement horloger comprenant un système de guidage flexible

Also Published As

Publication number Publication date
JP2013529778A (ja) 2013-07-22
JP5657106B2 (ja) 2015-01-21
EP2585882B1 (fr) 2021-02-24
US8926170B2 (en) 2015-01-06
HK1184241A1 (en) 2014-01-17
EP2585882A1 (fr) 2013-05-01
CN103124935B (zh) 2015-05-13
US20130188462A1 (en) 2013-07-25
CN103124935A (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
EP2585882B1 (fr) Systeme antichoc de piece d'horlogerie
EP2400353A1 (fr) Aiguille de pièce d'horlogerie
EP2206022B1 (fr) Palier amortisseur de chocs pour piece d'horlogerie
EP3220211B1 (fr) Systeme antichoc a blocage angulaire
CH704707B1 (fr) Masse oscillante pour montre automatique.
EP2864843B1 (fr) Système antichoc non démontable pour pièce d'horlogerie
WO2011161080A1 (fr) Pieds de cadran de piece d'horlogerie
EP3080666B1 (fr) Procédé de fabrication d'un système antichoc de pièce d'horlogerie bi-matiere
WO2011161079A1 (fr) Systeme antichoc pour piece d'horlogerie
EP3011396B1 (fr) Systeme antichoc a montage securise
CH705906A2 (fr) Palier antichoc de pièce d'horlogerie en céramique.
EP2791741B1 (fr) Systeme antichoc a membrane pour piece d'horlogerie
CH703344A2 (fr) Systeme antichoc pour piece d'horlogerie.
CH705905A2 (fr) Palier antichoc à membrane pour pièce d'horlogerie.
CH703343B1 (fr) Aiguille de pièce d'horlogerie.
EP2791742B1 (fr) Systeme antichoc de piece d'horlogerie en polymere
CH705908A2 (fr) Palier antichoc pour pièce d'horlogerie, en élastomère.
EP2791740B1 (fr) Système antichoc pour pièce d'horlogerie en élastomère
CH705421B1 (fr) Roulement à bille.
CH706639A2 (fr) Palier antichoc non demontable pour pièce d'horlogerie.
CH703360B1 (fr) Cadran de piece d'horlogerie.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040285.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11729944

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10201200002907

Country of ref document: CH

Ref document number: 2011729944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10682/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013515878

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13806405

Country of ref document: US