EP3666917B1 - Ferritic stainless-steel sheet and method for manufacturing same - Google Patents
Ferritic stainless-steel sheet and method for manufacturing same Download PDFInfo
- Publication number
- EP3666917B1 EP3666917B1 EP18873329.9A EP18873329A EP3666917B1 EP 3666917 B1 EP3666917 B1 EP 3666917B1 EP 18873329 A EP18873329 A EP 18873329A EP 3666917 B1 EP3666917 B1 EP 3666917B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- content
- hot
- less
- steel sheet
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 33
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 70
- 239000010959 steel Substances 0.000 claims description 70
- 238000000137 annealing Methods 0.000 claims description 51
- 238000005098 hot rolling Methods 0.000 claims description 46
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 description 35
- 238000005260 corrosion Methods 0.000 description 35
- 230000000694 effects Effects 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 24
- 229910001566 austenite Inorganic materials 0.000 description 23
- 238000001953 recrystallisation Methods 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 150000002910 rare earth metals Chemical class 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910001111 Fine metal Inorganic materials 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 206010070834 Sensitisation Diseases 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 230000008313 sensitization Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a ferritic stainless steel sheet and a method for manufacturing the same, and more particularly relates to a ferritic stainless steel sheet having excellent toughness and excellent corrosion resistance, which is suitable for use as a material for flanges, and a method for manufacturing the same.
- An automobile exhaust gas passage is composed of various components, such as an exhaust manifold, a muffler, a catalyst, a flexible tube, a center pipe, and a front pipe.
- fastening components called flanges are frequently used.
- Flanges used for such exhaust system components are required to have sufficient rigidity. Therefore, thick flanges (e.g., with a sheet thickness of 5 mm or more) are used for such exhaust system components.
- flanges are manufactured by press forming and blanking or the like, and plain steel has been used.
- a ferritic stainless steel sheet having a large thickness has a problem in low-temperature toughness. For example, breakage during manufacturing of flanges frequently occurs in winter. For this reason, there has been a strong demand for improvement in the toughness of a ferritic stainless steel sheet having a large thickness.
- Patent Literature 1 discloses a stainless steel sheet having excellent toughness (with a Charpy impact value of 50 J/cm 2 or more at -40°C), the stainless steel sheet containing, in percent by mass, C: 0.02% or less, N: 0.02% or less, Si: 0.005 to 1.0%, Ni: 0.1 to 1.0%, Mn: 0.1 to 3.0%, P: 0.04% or less, S: 0.0100% or less, Cr: 10% or more and less than 18%, and further one or two of Ti: 0.05 to 0.30% and Nb: 0.01 to 0.50%, the sum of Ti and Nb being 8(C+N) to 0.75%, with the balance being Fe and inevitable impurities, in which ⁇ p is 70% or more, the ferrite grain size is 20 ⁇ m or less, and the amount of martensite formation is 70% or less.
- Patent Literature 2 relates to a stainless steel sheet having a steel composition containing, by mass, 0.005 to 0.100% C, 0.01 to 2.00% Si, 0.01 to 2.00% Mn, ⁇ 0.040% P, ⁇ 0.03% S, 10 to 22% Cr, 0.0005 to 0.2000% Al and 0.005 to 0.080% N, the balance being iron with inevitable impurities.
- the present invention has been made under the circumstances described above, and it is an object of the present invention to provide a ferritic stainless steel sheet which has more excellent toughness and excellent corrosion resistance, and a method for manufacturing the same.
- the term “more excellent toughness” means that the Charpy impact value at -50°C is 100 J/cm 2 or more. Furthermore, in the present invention, the term “excellent corrosion resistance” means that, after a cyclic salt spray test specified in JIS H 8502 is performed for three cycles, the rusting area ratio is 25% or less.
- a method in which after a slab having a steel composition including appropriate steel elements, specifically, Si, Mn, Cr, Ni, and the like, that are controlled in appropriate ranges is heated at 1,050 to 1,250°C, hot rolling is performed, and hot-rolled sheet annealing is performed at an appropriate temperature, is effective in refining the metal structure and obtaining a Charpy impact value of 100 J/cm 2 or more at -50°C.
- appropriate steel elements specifically, Si, Mn, Cr, Ni, and the like
- ferritic stainless steel sheet of the present invention it is possible to obtain a ferritic stainless steel sheet having more excellent toughness and excellent corrosion resistance.
- the ferritic stainless steel sheet of the present invention can be suitably used for thick flanges and the like. Description of Embodiments
- the present inventors have investigated in detail the reason for the occurrence of cracks when various ferritic stainless steel sheets with a sheet thickness of 5.0 mm are each formed into a flange having a burring portion in which a flange hole (30 mm ⁇ ) is raised by 10 mm from the surface of the steel sheet as blanked.
- the results have shown that cracks do not occur in steel sheets having a Charpy impact value of 100 J/cm 2 or more at -50°C, and in steel sheets in which cracks occur, the Charpy impact value at -50°C is less than 100 J/cm 2 . In this way, it has been found that low toughness is a cause for cracks.
- the present inventors have investigated in detail the relationship between the low toughness and the metal structure. As a result, it has been found that as the average crystal grain size of the steel sheet increases, toughness decreases. Accordingly, by using various ferritic stainless steel sheets (sheet thickness: 5.0 mm), forming into the flange has been tried. As a result, it has been found that in steel sheets having an average crystal grain size of more than 45 ⁇ m, toughness decreases and cracks are likely to occur, and that when the average crystal grain size is 45 ⁇ m or less, toughness is excellent and blanking workability of the steel sheet is good.
- the average crystal grain size is set to be 45 ⁇ m or less, and the Charpy impact value at -50°C is set to be 100 J/cm 2 or more.
- the average crystal grain size can be measured by a measurement method used in examples which will be described later.
- the Charpy impact value is a value measured in accordance with JIS Z 2242 (2005) as will be described later.
- the C content When the C content exceeds 0.020%, deterioration in workability and corrosion resistance becomes conspicuous. A lower C content is more desirable from the viewpoint of corrosion resistance and workability.
- the C content is set in a range of 0.001% to 0.020%.
- the C content is preferably 0.003% or more, and more preferably 0.004% or more.
- the C content is preferably 0.015% or less, and more preferably 0.012% or less.
- Si is an element that has an effect of improving corrosion resistance of welds by being concentrated in an oxide film formed during welding and is also effective as a deoxidizing element in the steelmaking process. These effects are obtained at a Si content of 0.05% or more and increase with increasing its content. On the other hand, Si has an effect of accelerating ferrite phase formation. When the Si content exceeds 0.35%, a predetermined amount of austenite phase is not formed sufficiently during heating in the hot rolling process. Accordingly, even when hot rolling and hot-rolled sheet annealing are performed under the conditions specified in the present invention, a desired metal structure cannot be obtained. Therefore, the Si content is set to be 0.05% or more and 0.35% or less. The Si content is preferably 0.10% or more. Furthermore, the Si content is preferably 0.30% or less.
- Mn has an effect of accelerating austenite phase formation. In order to obtain such an effect, a Mn content of 0.05% or more is necessary. However, when the Mn content exceeds 1.00%, precipitation of MnS serving as a starting point of corrosion is accelerated, resulting in deterioration in corrosion resistance. Therefore, the Mn content is set to be 0.05% or more and 1.00% or less.
- the Mn content is preferably 0.20% or more. Furthermore, the Mn content is preferably 0.80% or less, and more preferably 0.70% or less.
- P is an element that is inevitably contained in steel. Since P is an element detrimental to corrosion resistance and workability, it is desirable to decrease the amount of P as much as possible. When the P content exceeds 0.04%, workability markedly deteriorates by solid solution strengthening. Therefore, the P content is set to be 0.04% or less. The P content is preferably 0.03% or less.
- S similar to P, is an element that is inevitably contained in steel. Since S is an element detrimental to corrosion resistance and workability, it is desirable to decrease the amount of S as much as possible. In particular, when the S content exceeds 0.01%, corrosion resistance markedly deteriorates. Therefore, the S content is set to be 0.01% or less.
- the S content is preferably 0.008% or less, and more preferably 0.003% or less.
- Al is an effective deoxidizer. Furthermore, since Al has higher affinity for nitrogen than Cr, in the case where nitrogen enters a weld, by precipitating nitrogen as Al nitrides instead of Cr nitrides, Al has an effect of suppressing sensitization. These effects can be obtained at an Al content of 0.001% or more. However, when the Al content exceeds 0.300%, weld penetration deteriorates, resulting in deterioration in weldability, which is undesirable. Therefore, the Al content is set in a range of 0.001% to 0.300%. The Al content is preferably 0.010% or more. Furthermore, the Al content is preferably 0.200% or less, more preferably 0.100% or less, and still more preferably 0.050% or less.
- the Cr content is set in a range of 10.0% to 13.0%.
- the Cr content is preferably 10.5% or more.
- the Cr content is preferably 12.0% or less, and more preferably 11.7% or less.
- Ni is an austenite-forming element and has an effect of increasing the amount of austenite formed during heating before rolling in the hot rolling process.
- a dual-phase structure of ferrite phase + austenite phase which includes 70% or more, in volume ratio, of austenite phase, is formed during heating the slab in the hot rolling process.
- the interface between different phases i.e., between the ferrite phase and the austenite phase, functions as an obstacle to growth of crystal grains, and therefore, the metal structure before hot rolling is refined.
- the Ni content is set to be 0.75% or more and 1.50% or less.
- the Ni content is preferably 0.80% or more.
- the Ni content is preferably 1.20% or less, and more preferably 1.00% or less.
- Ti preferentially combines with C and N, suppresses precipitation of Cr carbonitrides, and lowers the recrystallization temperature. Ti also has an effect of suppressing deterioration of corrosion resistance caused by sensitization due to precipitation of Cr carbonitrides. In order to obtain these effects, a Ti content of 0.05% or more is necessary. On the other hand, when the Ti content exceeds 0.35%, formation of coarse TiN causes marked deterioration in toughness, and even if the technique of the present invention is applied, predetermined toughness cannot be obtained. Furthermore, when the Ti content exceeds 0.35%, coarse Ti carbonitrides are formed in the casting process, resulting in surface defects, which is undesirable in terms of manufacturing. Therefore, the Ti content is set to be 0.05% or more and 0.35% or less. The Ti content is preferably 0.10% or more. Furthermore, the Ti content is preferably 0.30% or less, and more preferably 0.15% or less.
- the N content exceeds 0.020%, deterioration in workability and corrosion resistance becomes conspicuous. A lower N content is more desirable from the viewpoint of workability and corrosion resistance.
- the N content is set in a range of 0.001% to 0.020%.
- the N content is preferably 0.005% or more, and more preferably 0.007% or more.
- the N content is preferably 0.015% or less, and more preferably 0.012% or less.
- ⁇ I represented by formula (1) below is set to be 65% or more.
- ⁇ I [%] is obtained by using formula (1) below, which evaluates the stability of austenite phase.
- ⁇ I % 24 Ni + 12 Mn + 6 Cu ⁇ 18 Si ⁇ 12 Cr ⁇ 12 Mo + 188 where Ni, Mn, Cu, Si, Cr, and Mo represent contents of the respective elements (percent by mass), and an element not contained represents 0.
- an austenite-forming element has a positive factor
- a ferrite-forming element has a negative factor. The values were experimentally obtained with reference to the Castro formula.
- the balance other than the above is Fe and inevitable impurities.
- the inevitable impurities include oxygen (O), and an O content of 0.01% or less is permissible.
- ferritic stainless steel sheet can further contain one group or two or more groups selected from groups A to C described below.
- Cu is a particularly effective element in improving corrosion resistance in an aqueous solution or when weakly acidic water drops adhere to the steel sheet. Furthermore, Cu has an effect of accelerating austenite phase formation. This effect can be obtained at a Cu content of 0.01% or more and increases with increasing Cu content. However, when the Cu content exceeds 1.00%, hot workability deteriorates, which may induce surface defects in some cases. Furthermore, descaling after annealing may become difficult in some cases. Therefore, when Cu is contained, the Cu content is set in a range of 0.01% to 1.00%. When Cu is contained, the Cu content is preferably 0.10% or more. Furthermore, when Cu is contained, the Cu content is preferably 0.50% or less.
- Mo is an element that markedly improves the corrosion resistance of stainless steel. This effect is obtained at a Mo content of 0.01% or more and improves with increasing content.
- Mo has an effect of accelerating ferrite phase formation.
- the Mo content exceeds 1.00%, a predetermined amount of austenite phase is not formed sufficiently during heating in the hot rolling process. Accordingly, even when hot rolling and hot-rolled sheet annealing are performed under the conditions specified in the present invention, a desired metal structure cannot be obtained. Therefore, when Mo is contained, the Mo content is set to be 0.01% or more and 1.00% or less.
- the Mo content is preferably 0.10% or more, and more preferably 0.30% or more.
- the Mo content is preferably 0.80% or less, and more preferably 0.50% or less.
- W similar to Mo, has an effect of improving corrosion resistance. This effect is obtained at a W content of 0.01% or more.
- the W content exceeds 0.20%, strength increases, which may cause deterioration in productivity due to an increase in the rolling load and the like in some cases. Therefore, when W is contained, the W content is set in a range of 0.01% to 0.20%.
- the W content is preferably 0.05% or more.
- the W content is preferably 0.15% or less.
- Co is an element that improves toughness. This effect is obtained at a Co content of 0.01% or more. On the other hand, when the Co content exceeds 0.20%, workability may deteriorate in some cases. Therefore, when Co is contained, the Co content is set in a range of 0.01% to 0.20%.
- V 0.01 to 0.20%
- V together with C and N, forms carbonitrides, and by suppressing sensitization during welding, improves corrosion resistance of welds. This effect is obtained at a V content of 0.01% or more.
- the V content exceeds 0.20%, workability and toughness may markedly deteriorate in some cases. Therefore, when V is contained, the V content is set to be 0.01% or more and 0.20% or less.
- the V content is preferably 0.02% or more.
- the V content is preferably 0.10% or less.
- Nb has an effect of refining crystal grains. This effect is obtained at a Nb content of 0.01% or more.
- Nb also has an effect of increasing the recrystallization temperature.
- the Nb content exceeds 0.10%, there may be a case where the annealing temperature required to cause sufficient recrystallization in hot-rolled sheet annealing becomes excessively high, and a metal structure with an average crystal grain size of 45 ⁇ m or less cannot be obtained. Therefore, when Nb is contained, the Nb content is set in a range of 0.01% to 0.10%. When Nb is contained, the Nb content is preferably 0.05% or less.
- Zr has an effect of suppressing sensitization by combining with C and N. This effect is obtained at a Zr content of 0.01% or more. On the other hand, when the Zr content exceeds 0.20%, workability may markedly deteriorate in some cases. Therefore, when Zr is contained, the Zr content is set in a range of 0.01% to 0.20%. When Zr is contained, the Zr content is preferably 0.10% or less.
- REM Radar Earth Metals
- the REM content is set in a range of 0.001% to 0.100%.
- the REM content is preferably 0.050% or less.
- B is an element effective in improving resistance to secondary work embrittlement after deep drawing. This effect is obtained at a B content of 0.0002% or more. On the other hand, when the B content exceeds 0.0025%, workability and toughness may deteriorate in some cases. Therefore, when B is contained, the B content is set in a range of 0.0002% to 0.0025%. When B is contained, the B content is preferably 0.0003% or more. Furthermore, when B is contained, the B content is preferably 0.0012% or less.
- Mg has an effect of suppressing coarsening of Ti carbonitrides. This effect is obtained at a Mg content of 0.0005% or more.
- Mg content exceeds 0.0030%, surface properties of steel may deteriorate in some cases. Therefore, when Mg is contained, the Mg content is set in a range of 0.0005 to 0.0030%.
- the Mg content is preferably 0.0010% or more.
- the Mg content is preferably 0.0020% or less.
- Ca is an element effective in preventing nozzle blockage due to crystallization of Ti-based inclusions which is likely to occur during continuous casting. This effect is obtained at a Ca content of 0.0003% or more.
- the Ca content exceeds 0.0030%, corrosion resistance may deteriorate by formation of CaS in some cases. Therefore, when Ca is contained, the Ca content is set in a range of 0.0003% to 0.0030%.
- the Ca content is preferably 0.0005% or more.
- the Ca content is preferably 0.0015% or less, and more preferably 0.0010% or less.
- a method for manufacturing a ferritic stainless steel sheet according to the present invention will be described below.
- the present inventors have performed thorough studies on a technique of improving toughness in a ferritic stainless steel sheet. As a result, it has been found that after a steel slab having an appropriate steel composition is heated preferably at 1,050 to 1,250°C, by performing hot rolling preferably with three or more passes, and subjecting the resulting hot-rolled steel sheet to hot-rolled sheet annealing at 750 to 1,050°C, a metal structure with an average crystal grain size of 45 ⁇ m or less can be obtained, and toughness is greatly improved to a Charpy impact value of 100 J/cm 2 or more at -50°C. Furthermore, it has been found that desired corrosion resistance can be obtained.
- the present inventors have performed thorough studies on an effective technique for obtaining a fine structure after hot-rolled sheet annealing from the viewpoint of both the steel composition and the hot rolling method. As a result, it has been found that it is effective to control the contents of steel elements, in particular, Si, Mn, Cr, and Ni, in appropriate ranges and to perform hot rolling after performing heating of the slab at an appropriate temperature in the hot rolling process so as to form a dual-phase structure of ferrite phase + austenite phase.
- the interface between different phases i.e., between the ferrite phase existing before heating and the austenite phase formed during heating, suppresses coarsening of crystal grains, and therefore, a fine equiaxed structure can be obtained in the stage before hot rolling.
- working strain acting as recrystallization sites in the subsequent hot-rolled sheet annealing process is sufficiently accumulated.
- a fine metal structure is obtained in the subsequent hot-rolled sheet annealing process, and excellent toughness can be exhibited.
- the hot-rolled sheet annealing process is a process of recrystallizing the worked structure formed by hot rolling. Therefore, it is necessary to perform annealing at a temperature at which sufficient recrystallization occurs.
- hot-rolled sheet annealing is performed at an excessively high temperature, although recrystallization occurs, recrystallized grains markedly coarsen. Therefore, a desired fine structure cannot be obtained.
- the present inventors have investigated in detail the relationship between the grain size of recrystallized grains and the annealing temperature. As a result, it has been found that by controlling the hot-rolled sheet annealing temperature to 1,050°C or lower, it is possible to suppress formation of recrystallized grains that are coarse to such an extent that toughness deteriorates.
- molten steel having the composition described above is melted by a known method using a converter, an electric furnace, a vacuum melting furnace, or the like and is formed into a steel (slab) by a continuous casting process or an ingot casting-blooming process.
- the steel slab is heated at 1,050 to 1,250°C and subjected to hot rolling.
- the heating time at the heating temperature is not particularly limited, but preferably, heating is performed for 1 to 24 hours.
- the heating temperature is lower than 1,050°C, the austenite phase formation rate decreases, a fine metal structure cannot be obtained, and thus excellent toughness cannot be obtained.
- the heating temperature increases excessively, the oxidation mass increases resulting in an increase in scale loss. Therefore, the steel slab heating temperature is set to be 1,250°C or lower.
- the steel slab after casting is in a temperature range of 1,050°C or higher, the steel may be, without being heated, directly subjected to rolling.
- the rough rolling conditions are not particularly limited.
- the cumulative rolling reduction in rough rolling is preferably set to be 65% or more. Then, finish hot rolling is performed until a predetermined sheet thickness is reached.
- Hot-rolled sheet annealing temperature 750 to 1,050°C
- hot-rolled sheet annealing is performed after the hot rolling is finished.
- hot-rolled sheet annealing the rolled structure formed in the hot rolling process is recrystallized.
- by effectively imparting rolling strain in the hot rolling process so that the number of recrystallization sites increases coarsening of recrystallization grains in hot-rolled sheet annealing is suppressed.
- the hot-rolled sheet annealing temperature is set in a range of 750°C to 1,050°C.
- the hot-rolled sheet annealing temperature is in a range of 750°C to 900°C. Note that the holding time and the technique of hot-rolled sheet annealing are not particularly limited, and either box annealing (batch annealing) or continuous annealing may be performed.
- the ferritic stainless steel sheet thus obtained may be subjected, as necessary, to a descaling treatment by shotblasting or pickling. Furthermore, in order to improve surface properties, the steel sheet may be subjected to grinding, polishing, or the like. Moreover, the steel sheet may be further subjected to cold rolling and cold-rolled sheet annealing.
- the metal structure of the ferritic stainless steel sheet obtained in the present invention includes a ferrite single phase or includes 3% or less (in volume ratio) in total of one or both of a martensite phase and a retained austenite phase with the balance being a ferrite phase.
- the ferritic stainless steel sheet of the present invention has a Charpy impact value of 100 J/cm 2 or more at -50°C. Because of such excellent low-temperature toughness, occurrence of cracks in the burring portion can be effectively prevented when worked into a thick flange having a burring portion, and the steel sheet can be satisfactorily put into practical use for a thick flange having a burring portion.
- the sheet thickness is not particularly limited, but is desirably a sheet thickness that can be used for a thick flange. Therefore, the sheet thickness is preferably 5.0 mm or more, and more preferably 8.0 mm or more. Furthermore, the sheet thickness is preferably 15.0 mm or less, and more preferably 13.0 mm or less.
- Molten stainless steels having the compositions shown in Table 1 were each formed into a 100-kg steel slab by vacuum induction melting. Subsequently, by performing hot rolling under the manufacturing conditions shown in Table 2, a hot-rolled steel sheet with the finished sheet thickness shown in Table 2 was obtained. By subjecting the hot-rolled steel sheet to hot-rolled sheet annealing, a hot-rolled and annealed steel sheet was obtained. Note that hot-rolled sheet annealing was performed by holding the steel sheet at the hot-rolled sheet annealing temperature shown in Table 2 for 8 hours. The following evaluations were made on the resulting hot-rolled and annealed steel sheet.
- the average crystal grain size was measured by an EBSD (Electron Back Scattering Diffraction) method.
- the measurement conditions were as follows: a magnification, for measurement, of 500 times, with a step size of 0.4 ⁇ m.
- the obtained data were analyzed by OIM (Orientation Imaging Microscopy) analysis software developed by TSL Solutions Ltd., an orientation difference of 15° or more was defined as a grain boundary, and circle equivalent diameters were calculated. A value calculated from the average of the circle equivalent diameters was defined as an average crystal grain size.
- a V-notch Charpy specimen according to JIS Z 2242 (2005) was taken from the central part in the sheet width direction of each of the hot-rolled and annealed steel sheets, without changing the thickness of the steel sheet, such that the rolling direction corresponded to the longitudinal direction of the specimen.
- the specimen was tested in accordance with JIS Z 2242 (2005) to measure a Charpy impact value at -50°C. Specimens with a Charpy impact value of 100 J/cm 2 or more at -50°C were evaluated as "pass", and specimens with a Charpy impact value of less than 100 J/cm 2 at -50°C were evaluated as "rejection".
- a specimen of 60 ⁇ 80 mm was taken from each of the hot-rolled and annealed steel sheets. After a front surface of the specimen was polish-finished with #600 emery paper, end face portions and a back surface of the specimen were sealed. Then, the specimen was subjected to a cyclic salt spray test specified in JIS H 8502. In the cyclic salt spray test, three cycles were performed, each cycle including salt spraying (5% by mass NaCl, 35°C, spraying for 2 hours) ⁇ drying (60°C, 4 hours, relative humidity: 40%) ⁇ wetting (50°C, 2 hours, relative humidity ⁇ 95%).
- the front surface of the specimen was photographed, and a rusting area in the front surface of the specimen was measured by image analysis. From the ratio of the rusting area to the area of a portion in which the rusting area is measured, the rusting area ratio (rusting area/area of portion in which rusting area is measured in specimen) ⁇ 100[%]) was calculated.
- the portion in which the rusting area is measured refers to a portion excluding an outer peripheral portion with a width of 15 mm of the specimen. Note that the rusting area includes areas of a rusting portion and a portion subjected to flow rust.
- Specimens with a rusting area ratio of 10% or less were evaluated as "pass” ( ⁇ ) with particularly excellent corrosion resistance, specimens with a rusting area ratio of more than 10% and 25% or less were evaluated as “pass” ( ⁇ ), and specimens with a rusting area ratio of more than 25% were evaluated as “rejection” ( ⁇ ).
- the ferritic stainless steel sheet obtained in the present invention is suitable for application requiring excellent toughness, for example, particularly suitable for use in a flange or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017209061 | 2017-10-30 | ||
PCT/JP2018/038400 WO2019087761A1 (ja) | 2017-10-30 | 2018-10-16 | フェライト系ステンレス鋼板およびその製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3666917A1 EP3666917A1 (en) | 2020-06-17 |
EP3666917A4 EP3666917A4 (en) | 2020-08-05 |
EP3666917B1 true EP3666917B1 (en) | 2021-07-07 |
Family
ID=66333017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18873329.9A Active EP3666917B1 (en) | 2017-10-30 | 2018-10-16 | Ferritic stainless-steel sheet and method for manufacturing same |
Country Status (8)
Country | Link |
---|---|
US (1) | US20200347475A1 (ko) |
EP (1) | EP3666917B1 (ko) |
JP (1) | JP6536763B1 (ko) |
KR (2) | KR102603113B1 (ko) |
CN (1) | CN111295458A (ko) |
ES (1) | ES2883114T3 (ko) |
MX (1) | MX2020004428A (ko) |
WO (1) | WO2019087761A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7038799B2 (ja) * | 2018-10-25 | 2022-03-18 | Jfeスチール株式会社 | フェライト系ステンレス熱延焼鈍鋼板およびその製造方法 |
WO2023195496A1 (ja) * | 2022-04-06 | 2023-10-12 | 日本製鉄株式会社 | バーリング構造部材 |
CN117286422B (zh) * | 2023-08-09 | 2024-06-18 | 北京首钢吉泰安新材料有限公司 | 一种不锈钢合金及其制备方法与应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5871331A (ja) * | 1981-10-21 | 1983-04-28 | Nisshin Steel Co Ltd | フエライト系ステンレス鋼の熱間圧延方法 |
KR100762151B1 (ko) * | 2001-10-31 | 2007-10-01 | 제이에프이 스틸 가부시키가이샤 | 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법 |
JP3788311B2 (ja) * | 2001-10-31 | 2006-06-21 | Jfeスチール株式会社 | フェライト系ステンレス鋼板及びその製造方法 |
JP4721916B2 (ja) * | 2005-01-24 | 2011-07-13 | 新日鐵住金ステンレス株式会社 | 成形時の面内異方性が小さく耐リジング性及び耐肌荒れ性に優れたフェライト系ステンレス鋼薄板及びその製造方法 |
JP4752620B2 (ja) * | 2005-06-09 | 2011-08-17 | Jfeスチール株式会社 | ベローズ素管用フェライト系ステンレス鋼板 |
JP5908936B2 (ja) * | 2014-03-26 | 2016-04-26 | 新日鐵住金ステンレス株式会社 | フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品 |
JP6791646B2 (ja) | 2015-03-30 | 2020-11-25 | 日鉄ステンレス株式会社 | 靭性に優れたステンレス鋼板およびその製造方法 |
WO2017013850A1 (ja) * | 2015-07-17 | 2017-01-26 | Jfeスチール株式会社 | フェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法 |
US20200385835A1 (en) * | 2017-04-27 | 2020-12-10 | Jfe Steel Corporation | Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same |
-
2018
- 2018-10-16 KR KR1020227016128A patent/KR102603113B1/ko active IP Right Grant
- 2018-10-16 ES ES18873329T patent/ES2883114T3/es active Active
- 2018-10-16 CN CN201880070416.7A patent/CN111295458A/zh active Pending
- 2018-10-16 JP JP2019505000A patent/JP6536763B1/ja active Active
- 2018-10-16 KR KR1020207011817A patent/KR20200057760A/ko active Application Filing
- 2018-10-16 EP EP18873329.9A patent/EP3666917B1/en active Active
- 2018-10-16 WO PCT/JP2018/038400 patent/WO2019087761A1/ja unknown
- 2018-10-16 US US16/758,551 patent/US20200347475A1/en not_active Abandoned
- 2018-10-16 MX MX2020004428A patent/MX2020004428A/es unknown
Also Published As
Publication number | Publication date |
---|---|
EP3666917A4 (en) | 2020-08-05 |
KR20200057760A (ko) | 2020-05-26 |
JPWO2019087761A1 (ja) | 2019-11-14 |
MX2020004428A (es) | 2020-08-06 |
CN111295458A (zh) | 2020-06-16 |
WO2019087761A1 (ja) | 2019-05-09 |
KR20220065904A (ko) | 2022-05-20 |
ES2883114T3 (es) | 2021-12-07 |
KR102603113B1 (ko) | 2023-11-16 |
US20200347475A1 (en) | 2020-11-05 |
JP6536763B1 (ja) | 2019-07-03 |
EP3666917A1 (en) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2787097B1 (en) | Ferritic stainless steel | |
EP3486347B1 (en) | Hot-rolled and annealed ferritic stainless steel sheet and method for producing same | |
EP3587610B1 (en) | Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same | |
EP3556880A1 (en) | Ferrite stainless hot-rolled steel sheet and production method therefor | |
CN110366601B (zh) | 铁素体系不锈钢板、热轧卷材和汽车排气系统法兰构件 | |
EP3666917B1 (en) | Ferritic stainless-steel sheet and method for manufacturing same | |
EP3591083B1 (en) | Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system | |
KR20180017177A (ko) | 페라이트계 스테인리스 열연 강판 및 열연 어닐링판, 그리고 그들의 제조 방법 | |
JPH08144021A (ja) | フェライトステンレス鋼およびその冷延鋼板の製造方法 | |
JPH0551633A (ja) | 高Si含有オーステナイト系ステンレス鋼の製造方法 | |
US20160168673A1 (en) | Ferritic stainless steel having excellent corrosion resistance of weld zone | |
CN113166831B (zh) | 铁素体系不锈钢板及其制造方法 | |
KR101673218B1 (ko) | 페라이트계 스테인리스강 | |
JP4273457B2 (ja) | 穴拡げ加工性に優れた構造用ステンレス鋼板 | |
EP3604588B1 (en) | Ferritic stainless steel | |
JP3285179B2 (ja) | フェライト系ステンレス鋼板とその製造方法 | |
US12123070B2 (en) | Ferritic stainless steel sheet and method for producing same | |
JP7226595B2 (ja) | ラインパイプ用電縫鋼管 | |
JP7038799B2 (ja) | フェライト系ステンレス熱延焼鈍鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200311 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200708 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22F 1/00 20060101ALI20200702BHEP Ipc: C22C 38/50 20060101ALI20200702BHEP Ipc: C22C 38/54 20060101ALI20200702BHEP Ipc: C22C 38/00 20060101AFI20200702BHEP Ipc: C21D 8/02 20060101ALI20200702BHEP Ipc: C22F 1/08 20060101ALI20200702BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602018019915 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0038000000 Ipc: C21D0006000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 8/02 20060101ALI20201210BHEP Ipc: C22C 38/54 20060101ALI20201210BHEP Ipc: C22C 38/00 20060101ALI20201210BHEP Ipc: C22C 38/50 20060101ALI20201210BHEP Ipc: C21D 9/46 20060101ALI20201210BHEP Ipc: C21D 6/00 20060101AFI20201210BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210304 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1408670 Country of ref document: AT Kind code of ref document: T Effective date: 20210715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018019915 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210707 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2883114 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211207 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1408670 Country of ref document: AT Kind code of ref document: T Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211008 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018019915 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
26N | No opposition filed |
Effective date: 20220408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211016 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20181016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221016 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230913 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230830 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231102 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20231011 Year of fee payment: 6 Ref country code: DE Payment date: 20230830 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240917 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240909 Year of fee payment: 7 |