EP3649222A1 - Composition de blanchiment - Google Patents

Composition de blanchiment

Info

Publication number
EP3649222A1
EP3649222A1 EP18734831.3A EP18734831A EP3649222A1 EP 3649222 A1 EP3649222 A1 EP 3649222A1 EP 18734831 A EP18734831 A EP 18734831A EP 3649222 A1 EP3649222 A1 EP 3649222A1
Authority
EP
European Patent Office
Prior art keywords
cleaning composition
surfactant
composition according
laundry cleaning
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18734831.3A
Other languages
German (de)
English (en)
Other versions
EP3649222B1 (fr
Inventor
Stephen Norman Batchelor
Catherine Breffa
Jan DIEDERICHS
Kevin James MUTCH
Steffen ROMANSKI
Carsten Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP3649222A1 publication Critical patent/EP3649222A1/fr
Application granted granted Critical
Publication of EP3649222B1 publication Critical patent/EP3649222B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols

Definitions

  • the present invention concerns a laundry cleaning composition.
  • AD alkoxylated dispersants
  • the present invention provides a laundry cleaning composition
  • X is selected from: ethoxy; and mixtures of ethoxy and propoxy groups, wherein the number of ethoxy groups is greater than the number of propoxy groups, and wherein n is from 6 to 70;
  • n is selected from: 2 and 3;
  • Ri is selected from: uncharged C12 to C20 alkyl groups; uncharged aryl groups; and, uncharged alkyl-aryl groups wherein the alkyl group of the alkyl-aryl is a saturated linear or branched C1 to C3;
  • T is selected from: H; CH 3 ; S0 3 " ; ChbCOO-; PO3 2" ; C 2 H 5 ; n-propyl, i-propyl; n-butyl; t-butyl; and, sulfosuccinate; from 0 to 50 wt.% surfactant, other than the alkoxylated dispersant; and, an active selected from one or more of the following: from 0.001 to 3 wt.% perfume; from 0.0001 to 0.5 wt.% of fluorescent agent; and, from 0.0001 wt.% to 0.1 wt% of an enzyme.
  • Ri is an alkyl-aryl group in the alkoxylated dispersant structure.
  • T is not H in the alkoxylated dispersant structure.
  • X is ethoxy in the alkoxylated dispersant structure.
  • the mole average number of alkoxy groups is from 6 to 40, more preferably from 9 to 30, most preferably from 10 to 20 in the alkoxylated dispersant structure.
  • T is CH3 in the alkoxylated dispersant structure.
  • Ri is selected from: phenylethyl and benzyl. More preferably Ri is benzyl.
  • the alkoxylated dispersant is selected from:
  • a preferred laundry cleaning composition comprise surfactant, other than the alkoxylated dispersant, at a level of from 4 to 40 wt.%, more preferably from 4 to 35 wt.%, most preferably from 6 to 30 wt.%.
  • the surfactant, other than the alkoxylated dispersant comprises anionic and/or non-ionic surfactants.
  • the weight fraction of non-ionic surfactant to anionic surfactant is from 0 to 0.3. This means that non-ionic surfactant can be present (or it may be absent if the weight fraction is 0), but if non-ionic surfactant is present, then the weight fraction of the non-ionic surfactant is preferably at most 30% of the total weight of anionic surfactant + non-ionic surfactant, wherein the alkoxylated dispersant is not considered a surfactant as defined herein.
  • the anionic surfactant is selected from: linear alkyl benzene sulphonates; alkyl sulphates; alkyl ether sulphates; and mixtures thereof.
  • the non-ionic surfactant is an alcohol ethoxylate, more preferably an C10-C18 alcohol ethoxylate having an average of 3-10 moles of ethylene oxide, most preferably an C12-C15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
  • the laundry cleaning composition is preferably an aqueous laundry liquid detergent composition.
  • the pH of the aqueous liquid detergent composition is from 6 to 8.5, more preferably from 6.5 to 7.5, even more preferably from 6.8 to 7.2, most preferably 7.0.
  • the active ingredient is an enzyme and comprises one or more of the following: proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. More preferably the enzyme is a protease, most preferably a subtilase type serine protease.
  • the invention provides a domestic method of treating a textile, the method comprising the steps of:
  • the aqueous solution comprising from 10 ppm to 5000 ppm, preferably from 100 ppm to 1000 ppm, of the alkoxylated dispersant as defined herein; and, 0 to 6 g/L, preferably from 0.5 to 6 g/L, more preferably from 1 to 5 g/L of a surfactant, other than the alkoxylated dispersant; and,
  • one or more of an active ingredient selected from perfume, fluorescent agent and enzyme is present in the aqueous solution of the alkoxylated dispersant,
  • the level of the perfume in the aqueous solution is from 0.1 to 100 ppm; preferably from 1 to 10ppm.
  • the level of the fluorescent agent in the aqueous solution is from 0.0001 g/l to 0.1 g/L, preferably from 0.001 to 0.02 g/L;
  • the level of the enzyme in the aqueous solution is from 0.01 to 10ppm, preferably 0.05 to 1 ppm.
  • the surfactant used is preferably as preferred for the composition aspects of the present invention.
  • domestic methods are preferably conducted in a domestic washing machine or by hand washing.
  • the temperature of the wash is preferably from 285 to 335 degrees Kelvin.
  • the textile is preferably an item of used clothing, bedding or table cloth.
  • Preferred items of clothing are worn cotton containing shirts, trousers, underwear and jumpers.
  • the alkoxylated dispersant has the following structure:-
  • X is selected from: ethoxy; and mixtures of ethoxy and propoxy groups where the number of ethoxy groups is greater than the number of propoxy groups, and wherein n is from 6 to 70;
  • Ri is selected from: uncharged C12 to C20 alkyl groups; uncharged aryl groups; and, uncharged alkyl-aryl groups wherein the alkyl group of the alkyl-aryl is a saturated linear or branched C1 to C3.
  • Ri is an alkyl-aryl group, most preferably benzyl.
  • T is selected from: H; CH 3 ; S0 3 " ; CH 2 COO " ; P0 3 2" ; C 2 H 5 ; n-propyl, i-propyl; n-butyl; t-butyl; and, sulfosuccinate; preferably T is not H, most preferably T is CH3.
  • the value m is selected from 2 and 3, and is preferably 2.
  • the alkoxylated dispersant is preferably formed as a reaction product of trimellitic anhydride or pyromellitic dianhydride with a polyether of the form T-(X) n -OH and alcohol of the form R1-OH, where Ri is selected from uncharged C12 to C20 alkyl groups;
  • uncharged aryl groups and, uncharged alkyl-aryl groups wherein the alkyl group of the alkyl-aryl is a saturated linear or branched C1 to C3.
  • R1-OH is selected from 2-phenylethanol and benzyl alcohol.
  • Ri may be substituted by further uncharged organic groups, for example when Ri contains a benzene ring the benzene ring may be substituted by methyl, ethyl, methoxy, ethoxy, CI, NO2.
  • R1-OH is an aromatic alcohol
  • phenol for example may be used in the reaction.
  • trimetalitc anhydride or pyrometallitic anhydride is reacted with the polyether then the R1-OH alcohol.
  • the trimetalitc anhydride or pyrometallitic anhydride is reacted with 1 mole equivalent of the polyether then the R1-OH alcohol.
  • X is selected from OCH2CH2 (ethoxy) and OCH(CH3)CH2 (propoxy) and mixtures thereof, wherein if a mixture, then the number of ethoxy groups is greater than the number of propoxy groups. If X comprises propoxy groups then preferably the mole ratio of ethoxy/propoxy is greater than 2, more preferably greater than 5.
  • X is a mixture of ethoxy and propoxy groups, then they may distributed blockwise, alternatively, periodically and/or statistically.
  • X is most preferably OCH2CH2 (ethoxy).
  • the value n is the mole average number of alkoxyl groups. The value of n may be measured using NMR. The value of n is from 6 to 70, preferably 6 to 40, more preferably 9 to 30. Indeed the value of n may be individually 9, 10, 1 1 , 12, 13, 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29, or 30. Most preferably the value of n may be from 10 to 20.
  • the alkoxylated dispersant may alternatively be formed by reaction of the anhydride with R1-OH then alkoxylation with an epoxide, however, this route is not preferred. Trimellitic anhydride chloride may also be used.
  • alkoxylated dispersant is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.
  • Sulfoccinate has the structure:
  • the alkoxylated dispersant prevents the deposition of soil present in the wash liquor onto the fabric.
  • the alkoxylated dispersant can also increase stain removal.
  • the laundry cleaning composition comprises an active ingredient selected from one or more of the following: from 0.001 to 3 wt.% perfume; from 0.0001 to 0.5 wt.% of fluorescent agent; and, from 0.0001 wt.% to 0.1 wt.% of an enzyme.
  • Contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • the enzyme is selected from: proteases, alpha-amylases; cellulases and lipases, or mixtures thereof. More preferably the enzyme is a protease, more preferably a subtilase type serine protease.
  • the laundry composition may comprise anionic and non-ionic surfactant (which includes a mixture of the same).
  • the surfactant is present at a level of from 0 to 50 wt.%. This means that surfactant need not be present, but it is preferred that it is present.
  • Preferred laundry cleaning compositions comprise surfactant at a level of from 4 to 40 wt.%, more preferably from 4 to 35 wt.%, most preferably from 6 to 30 wt.%.
  • the surfactant comprises anionic and/or non-ionic surfactants.
  • Suitable nonionic and anionic surfactants may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cie alcohols, produced for example from tallow or coconut oil, Alkyl ether carboxylic acids; sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to Ci5 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyi benzene sulphonate; alkyi sulphates; alkyi ether sulphates; alkyi ether carboxylates; soaps; alkyi (preferably methyl) ester sulphonates, and mixtures thereof. More preferred anionic surfactants are selected from: linear alkyi benzene sulphonate; alkyi sulphates; alkyi ether sulphates and mixtures thereof.
  • the alkyi ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyi benzene sulphonate is a sodium Cn to C15 alkyi benzene sulphonates.
  • the alkyi sulphates is a linear or branched sodium C12 to C18 alkyi sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyi sulphate).
  • two or more anionic surfactant are present, for example linear alkyi benzene sulphonate together with an alkyi ether sulphate.
  • anionic surfactant is selected from: linear alkyi benzene sulphonates; alkyi sulphates; alkyi ether sulphates; and mixtures thereof.
  • composition may comprise anionic and/or non-ionic surfactants.
  • the weight fraction of non-ionic surfactant to anionic surfactant is from 0 to 0.3. This means that non-ionic surfactant can be present (or it may be absent if the weight fraction is 0), but if non-ionic surfactant is present, then the weight fraction of the non- ionic surfactant is preferably at most 30% of the total weight of anionic surfactant + non- ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic Cs to C18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the non-ionic surfactant is an alcohol ethoxylate, more preferably a C10-C18 alcohol ethoxylate having an average of 3- 10 moles of ethylene oxide, most preferably an C12-C15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
  • surfactants used are saturated.
  • surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in A-070 074, and alkyl monoglycosides.
  • the surfactant may comprise a cationic surfactant
  • quaternary ammonium compounds Most preferred are quaternary ammonium compounds. It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
  • the quaternary ammonium compound has the following formula:
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from C12 to C22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from Ci to C 4 alkyl chains and X " is a compatible anion.
  • composition optionally comprises a silicone.
  • One or more perfumes may be present as whole or part of the active ingredient of the laundry cleaning composition.
  • the composition preferably comprises a perfume.
  • the perfume is preferably present in the range from 0.001 to 3 wt.%, more preferably 0.05 to 0.5 wt.%, most preferably 0.1 to 1 wt.%.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; Pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 , 1 -dimethylethyl)-, 1 -acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecyl
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).
  • Preferred top- notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (i.e., those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
  • anthranilate methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p-cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alpha
  • perfume components it is commonplace for a plurality of perfume components to be present in a formulation. It is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • One or more fluorescent agents may be present as whole or part of the active ingredient of the laundry cleaning composition.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino ⁇ stilbene-2-2' disulophonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2- sulphostyryl)biphenyl.
  • the total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt.%, more preferably 0.005 to 2 wt.%, most preferably 0.05 to 0.25 wt.%.
  • the aqueous solution used in the method preferably has a fluorescer present.
  • the fluorescer is preferably present in the aqueous solution used in the method in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • Enzymes may be present as whole or part of the active ingredient of the laundry cleaning composition.
  • One or more enzymes are preferably present in the laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
  • Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
  • Contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • the enzyme is selected from: proteases, alpha-amylases; cellulases and lipases.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in
  • WO 96/13580 a Pseudomonas lipase, e.g. from P. alcaligenes or
  • lipase variants such as those described in WO 92/05249,
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM and LipocleanTM(Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B which can hydrolyze the remaining fatty acyl group in lysophospholipid.
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database
  • Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases” refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub-divisions, i.e.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B.
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270, WO 94/25583 and WO 05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146.
  • protease is a subtilisins (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B.
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in US 6,312,936 Bl, US 5,679,630, US 4,760,025, US7,262,042 and WO 09/021867.
  • Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®,
  • the invention may be use cutinase, classified in EC 3.1 .1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin.
  • Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain
  • B. lichen iformis described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • Commercially available amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • CelluzymeTM Commercially available cellulases include CelluzymeTM, CarezymeTM, CellucleanTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin.
  • peroxidases Chemically modified or protein engineered mutants are included.
  • useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S). Further enzymes suitable for use are discussed in WO 2009/087524, WO 2009/090576, WO 2009/107091 , WO 2009/1 1 1258 and WO 2009/148983.
  • the aqueous solution used in the method preferably has an enzyme present.
  • the enzyme is preferably present in the aqueous solution used in the method at a
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Builder materials may be present. If present then they are generally selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • the composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • the laundry cleaning formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate.
  • the laundry cleaning formulation is most preferably an aqueous liquid laundry detergent.
  • aqueous liquid laundry detergent it is preferred that mono propylene glycol is present at a level from 1 to 30 wt.%, most preferably 2 to 18 wt.%.
  • composition may preferably comprise one or more polymers.
  • Example polymers are carboxymethylcellulose, poly(ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example
  • Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than
  • the dyes are blue or violet in colour.
  • the composition comprises a shading dye.
  • the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine preferably carry a net anionic or cationic charge.
  • Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
  • the white cloth used in this test is bleached non- mercerised woven cotton sheeting.
  • Shading dyes are discussed in WO 2005/003274, WO 2006/032327(Unilever), WO 2006/032397(Unilever), WO 2006/045275(Unilever), WO 2006/027086(Unilever), WO 2008/017570(Unilever), WO 2008/141880 (Unilever), WO 2009/132870(Unilever), WO 2009/141 173 (Unilever), WO 2010/099997(Unilever), WO 2010/102861 (Unilever), WO 2010/148624(Unilever), WO 2008/087497 (P&G), WO 201 1/01 1799 (P&G), WO 2012/054820 (P&G), WO 2013/142495 (P&G) and WO 2013/151970 (P&G).
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 1 1 , direct violet 26, direct violet 31 , direct violet 35, direct violet 40, direct violet 41 , direct violet 51 , Direct Violet 66, direct violet 99 and alkoxylated versions thereof.
  • Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906.
  • An example of an alkoxylated bis-azo dye is :
  • Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS- No 72749-80-5, acid blue 59, and the phenazine dye selected from:
  • X 3 is selected from: -H; -F; -CH 3 ; -C 2 H 5 ; -OCH 3 ; and, -OC 2 H 5 ;
  • X 4 is selected from: -H; -CH 3 ; -C 2 H 5 ; -OCH 3 ; and, -OC 2 H 5 ;
  • Y 2 is selected from: -OH; -OCH 2 CH 2 OH; -CH(OH)CH 2 OH; -OC(0)CH 3 ; and, C(0)OCH 3 .
  • the shading dye is present is present in the composition in range from 0.0001 to
  • the shading dye is a blue or violet shading dye.
  • a mixture of shading dyes may be used.
  • the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • the indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • Trimellitic acid was used as purchased from ACROS Organics. Trimellitic anhydride and pyromellitic acid was used as purchased from Alfa Aesar. Phenoxyethanol, para-toluene sulfonic acid and titanium isopropoxide were used as purchased from Merck.
  • Methanesulfonic acid, 4-dodecylbenzenesulfonic acid mixture of isomers and benzyl alcohol were used as purchased from Sigma Aldrich. Lauryl/myristyl alcohol and cetearyl alcohol were used in technical grade quality and their molecular masses were determined prior to use by measuring the hydroxyl value (OH- value) and subsequently calculating the molecular weight (per hydroxyl function, "Gebrauchsmol"). In this case the OH-value may be measured according to DIN 53240. The acid number (acid value) may be measured according to DIN EN ISO 21 14.
  • Polyglykols M are mono hydroxy-functional polyethylene glycol monomethyl ethers (M- PEG, CAS-Nr. 9004-74-4).
  • Polyglykol M 500 is a linear, mono hydroxy-functional polyethylene glycol monomethyl ether (M-PEG) that has a molecular weight of 470-530 g/mol.
  • Polyglykol M 750 is a linear, mono hydroxy-functional polyethylene glycol monomethyl ether (M-PEG) that has a molecular weight of 720-780 g/mol.
  • Polyglykol M 1000 is a linear, mono hydroxy-functional polyethylene glycol monomethyl ether (M-PEG) that has a molecular weight of 970 - 1060 g/mol.
  • Polyglykol M 1250 is a linear, mono hydroxy-functional polyethylene glycol monomethyl ether (M-PEG) that has a molecular weight of 1 125-1375 g/mol.
  • Polyglykol M 2000 is a linear, mono hydroxy-functional polyethylene glycol monomethyl ether (M-PEG) that has a molecular weight of 1800 - 2200 g/mol.
  • the degree of alkoxylation of the used methyl polyglykols may be checked using NMR spectroscopy, for example using 1 H-NMR spectroscopy in analogy to the method described in R. Stevanova, D. Rankoff, S. Panayotova, S.L. Spassov, J. Am. Oil Chem. Soc, 65, 1516-1518 (1988).
  • NMR spectroscopy for example using 1 H-NMR spectroscopy in analogy to the method described in R. Stevanova, D. Rankoff, S. Panayotova, S.L. Spassov, J. Am. Oil Chem. Soc, 65, 1516-1518 (1988).
  • the samples are derivatised by reacting them with trichloro acetyl isocyanate and measured as solutions in deuterated chloroform containing 1 weight-% (1 wt.-%) of tetramethyl silane as an internal standard.
  • esterification reactions were controlled by determining the residual content of alcohol (e.g. benzyl alcohol, phenoxyethanol, lauryl myristyl alcohol and cetearyl alcohol) by GC- FID. Calibration was performed with pure starting materials. Gas chromatography (GC) was performed using a Hewlett Packard GC 6890 with autosampler, coupled with a flame-ionisation detector (FID).
  • alcohol e.g. benzyl alcohol, phenoxyethanol, lauryl myristyl alcohol and cetearyl alcohol
  • FID flame-ionisation detector
  • samples were separated on a 50 m x 0.2 mm, 0.33 ⁇ film column.
  • the column temperature was initially held at 50°C, then the temperature was raised to 175°C at a rate of 5°C per minute and from 175°C to 300°C at a rate of 25°C per minute.
  • the injector temperature was maintained at 250°C and the injection volume was 1.0 ⁇ _ in the split mode.
  • Helium was used as a carrier gas with a constant pressure of 1 .8 bar.
  • the samples were prepared by diluting 500 mg of sample (duplicate analysis) with 5 ml of methanol.
  • samples were separated on a 25 m x 0.32 mm, 0.52 ⁇ film column.
  • the column temperature was initially held at 50°C, then the temperature was raised to 250°C at a rate of 10°C per minute and held for 6.5 minutes.
  • the injector temperature was maintained at 250°C and the injection volume was 1 .0 ⁇ _ in the split mode.
  • Helium was used as a carrier gas with a constant pressure of 0.9 bar.
  • the samples were prepared by diluting 500 mg of sample (duplicate analysis) with 5 ml of methanol.
  • TLC Thin layer chromatography
  • the alcohol alkoxylate of choice was heated to 80°C with stirring under nitrogen.
  • the polycarboxylic acid or acid anhydride of choice was then added in portions over 5 minutes.
  • the reaction mixture was then stirred for 2.5 hours at 80°C.
  • the product, henceforth termed precursor was isolated and the acid number determined - these are listed in Table I in the column AN1 .
  • Some amount of the precursor (listed in the column "PC" of Table I) was mixed with the alcohol and catalyst of choice and heated to the temperature listed in Table I while stirring under nitrogen.
  • the reaction mixture was stirred at the temperature listed for the time denoted in Table I and water was distilled off. For all examples except examples 1 , 2, 10 and 1 1 , the product was then isolated after cooling and the acid number of the final product determined - listed as AN2 in Table I.
  • sample C1 from Table I was isolated after the first synth step and no reaction with alcohol was performed.
  • the formulation was used to wash eight 5x5 cm knitted cotton cloth pieces in a
  • the inventive dispersants enhance anti-redeposition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne une composition de nettoyage du linge comprenant : i) de 0,2 à 20 % en poids d'un dispersant alcoxylé de structure (F1) suivante : dans laquelle : X est choisi parmi : un éthoxy ; et des mélanges de groupes éthoxy et propoxy, le nombre de groupes éthoxy étant supérieur au nombre de groupes propoxy, et n étant compris entre 6 et 70 ; m est choisi parmi : 2 et 3 ; R1 est choisi parmi : des groupes alkyle en C12 à C20 non chargés ; des groupes aryle non chargés ; et des groupes alkyle-aryle non chargés, le groupe alkyle de l'alkyle-aryle étant un groupe alkyle linéaire ou ramifié saturé en C1 à C3 ; T est choisi parmi : H ; CH3 ; SO3- ; CH2COO- ; PO3 2- ; C2H5 ; un n-propyle, un i-propyle ; un n-butyle ; un t-butyle ; et un sulfosuccinate ; (ii) de 0 à 50 % en poids d'un tensioactif, autre que le dispersant alcoxylé ; (iii) un principe actif choisi parmi un ou plusieurs des éléments suivants : de 0,001 à 3 % en poids d'un parfum ; de 0,0001 à 0,5 % en poids d'un agent fluorescent ; et, de 0,0001 % en poids à 0,1 % en poids d'une enzyme. L'invention concerne en outre un procédé domestique de traitement d'un textile comprenant le traitement du textile avec une liqueur aqueuse comprenant ledit dispersant alcoxylé.
EP18734831.3A 2017-07-07 2018-07-04 Composition de blanchiment Active EP3649222B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17180341 2017-07-07
PCT/EP2018/068090 WO2019008036A1 (fr) 2017-07-07 2018-07-04 Composition de blanchiment

Publications (2)

Publication Number Publication Date
EP3649222A1 true EP3649222A1 (fr) 2020-05-13
EP3649222B1 EP3649222B1 (fr) 2024-03-13

Family

ID=59298396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18734831.3A Active EP3649222B1 (fr) 2017-07-07 2018-07-04 Composition de blanchiment

Country Status (5)

Country Link
EP (1) EP3649222B1 (fr)
CN (1) CN110869480B (fr)
AR (1) AR112380A1 (fr)
WO (1) WO2019008036A1 (fr)
ZA (1) ZA201908604B (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008183A (zh) 2019-06-28 2022-02-01 联合利华知识产权控股有限公司 洗涤剂组合物
US20220372400A1 (en) 2019-06-28 2022-11-24 Conopco, Inc., D/B/A Unilever Detergent composition
WO2020260006A1 (fr) 2019-06-28 2020-12-30 Unilever Plc Compositions détergentes
CN113906124B (zh) 2019-06-28 2024-08-02 联合利华知识产权控股有限公司 洗涤剂组合物
CN113993981A (zh) 2019-06-28 2022-01-28 联合利华知识产权控股有限公司 洗涤剂组合物
EP3990604B1 (fr) 2019-06-28 2022-12-14 Unilever Global IP Limited Composition de détergent
BR112022003050A2 (pt) 2019-09-02 2022-05-17 Unilever Ip Holdings B V Composição detergente de lavagem de roupas aquosa e método doméstico para tratar um tecido
AR120142A1 (es) 2019-10-07 2022-02-02 Unilever Nv Composición detergente
CN116096703A (zh) 2020-08-28 2023-05-09 联合利华知识产权控股有限公司 表面活性剂和洗涤剂组合物
WO2022043042A1 (fr) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Composition détergente
CN116096845A (zh) 2020-08-28 2023-05-09 联合利华知识产权控股有限公司 洗涤剂组合物
CN116018396A (zh) 2020-08-28 2023-04-25 联合利华知识产权控股有限公司 洗涤剂组合物
EP4204396B1 (fr) 2020-08-28 2024-05-29 Unilever IP Holdings B.V. Composition tensioactive et détergente
EP4263773B1 (fr) 2020-12-17 2024-06-26 Unilever IP Holdings B.V. Composition de nettoyage
EP4263771A1 (fr) 2020-12-17 2023-10-25 Unilever IP Holdings B.V. Utilisation et composition de nettoyage
CN117957300A (zh) 2021-09-20 2024-04-30 联合利华知识产权控股有限公司 洗涤剂组合物
EP4433567A1 (fr) 2021-10-21 2024-09-25 Unilever IP Holdings B.V. Compositions détergentes

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (fr) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
SE8001698L (sv) * 1980-03-05 1981-09-06 Eka Ab Antiredepositionsmedel
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
GR76189B (fr) 1981-07-13 1984-08-03 Procter & Gamble
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
WO1987000859A1 (fr) 1985-08-09 1987-02-12 Gist-Brocades N.V. Nouveaux enzymes lipolytiques et leur utilisation dans des compositions de detergents
DE3750450T2 (de) 1986-08-29 1995-01-05 Novo Industri As Enzymhaltiger Reinigungsmittelzusatz.
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
ES2076939T3 (es) 1987-08-28 1995-11-16 Novo Nordisk As Lipasa recombinante de humicola y procedimiento para la produccion de lipasas recombinantes de humicola.
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
JP2624859B2 (ja) 1988-01-07 1997-06-25 ノボ‐ノルディスク アクティーゼルスカブ 酵素洗剤
GB8803036D0 (en) 1988-02-10 1988-03-09 Unilever Plc Liquid detergents
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
DE68911131T2 (de) 1988-03-24 1994-03-31 Novonordisk As Cellulosezubereitung.
CA2001927C (fr) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates et detergents
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
US5427936A (en) 1990-04-14 1995-06-27 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding DNA sequences therefor and bacilli, which produce these lipases
KR930702514A (ko) 1990-09-13 1993-09-09 안네 제케르 리파제 변체
DK58491D0 (da) 1991-04-03 1991-04-03 Novo Nordisk As Hidtil ukendte proteaser
HU213044B (en) 1991-04-30 1997-01-28 Procter & Gamble Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme with additives improving detergent effect
EP0511456A1 (fr) 1991-04-30 1992-11-04 The Procter & Gamble Company Détergents liquides contenant un ester aromatique de l'acide borique pour inhibition d'enzyme protéolitique
DK28792D0 (da) 1992-03-04 1992-03-04 Novo Nordisk As Nyt enzym
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
ATE287946T1 (de) 1993-04-27 2005-02-15 Genencor Int Neuartige lipasevarianten zur verwendung in reinigungsmitteln
DK52393D0 (fr) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
EP0724631A1 (fr) 1993-10-13 1996-08-07 Novo Nordisk A/S Variants de peroxydase stables par rapport a h 2?o 2?
BR9407834A (pt) 1993-10-14 1997-05-13 Procter & Gamble Composições de limpeza contendo protease
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
CN1077598C (zh) 1994-02-22 2002-01-09 诺沃奇梅兹有限公司 制备脂解酶变异体的方法
ATE510010T1 (de) 1994-03-29 2011-06-15 Novozymes As Alkaline amylase aus bacillus
EP0755442B1 (fr) 1994-05-04 2002-10-09 Genencor International, Inc. Lipases a resistance aux tensioactifs amelioree
WO1995035381A1 (fr) 1994-06-20 1995-12-28 Unilever N.V. Lipases modifiees provenant de pseudomonas et leur utilisation
AU2884695A (en) 1994-06-23 1996-01-19 Unilever Plc Modified pseudomonas lipases and their use
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
BR9509525A (pt) 1994-10-26 1995-10-26 Novo Nordisk As Construção de dna vetor de expressão recombinante célula processo para produzir a enzima que exibe atividade lipolítica enzima que exibe atividade lipolítica preparação de enzima aditivo de detergente e composição de detergente
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
DE69635700T3 (de) 1995-03-17 2015-05-21 Novozymes A/S Neue Endoglukanase
DE69633825T2 (de) 1995-07-14 2005-11-10 Novozymes A/S Modifiziertes enzym mit lipolytischer aktivität
EP0851913B1 (fr) 1995-08-11 2004-05-19 Novozymes A/S Nouvelles enzymes lipolytiques
CA2265914C (fr) 1996-09-17 2011-05-03 Novo Nordisk A/S Variants de cellulase
DE69718351T2 (de) 1996-10-08 2003-11-20 Novozymes A/S, Bagsvaerd Diaminobenzoesäure derivate als farbstoffvorläufer
MA24811A1 (fr) 1997-10-23 1999-12-31 Procter & Gamble Compositions de lavage contenant des variantes de proteases multisubstituees
KR100787392B1 (ko) 1999-03-31 2007-12-21 노보자임스 에이/에스 알칼리 α-아밀라제 활성을 가지는 폴리펩티드 및 그것을코드하는 핵산
WO2000060063A1 (fr) 1999-03-31 2000-10-12 Novozymes A/S Variante genetique de lipase
US20020160924A1 (en) * 1999-06-15 2002-10-31 The Procter & Gamble Company Cleaning compositions
NZ517409A (en) 1999-08-31 2004-05-28 Novozymes As RP-II properties with amino acid substitutions used in detergent compositions and additives
CN1337553A (zh) 2000-08-05 2002-02-27 李海泉 地下观光游乐园
AU2001279614B2 (en) 2000-08-21 2006-08-17 Novozymes A/S Subtilase enzymes
DE10162728A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14393) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
JP4880469B2 (ja) 2003-10-23 2012-02-22 ノボザイムス アクティーゼルスカブ 洗剤中で改良された安定性を有するプロテアーゼ
CN103421760A (zh) 2003-11-19 2013-12-04 金克克国际有限公司 丝氨酸蛋白酶、编码丝氨酸酶的核酸以及包含它们的载体和宿主细胞
GB0420203D0 (en) 2004-09-11 2004-10-13 Unilever Plc Laundry treatment compositions
EP2009088B1 (fr) 2004-09-23 2010-02-24 Unilever PLC Compositions de traitement du linge
GB0421145D0 (en) 2004-09-23 2004-10-27 Unilever Plc Laundry treatment compositions
DE102004052007B4 (de) 2004-10-25 2007-12-06 Müller Weingarten AG Antriebssystem einer Umformpresse
BRPI0706277B1 (pt) 2006-08-10 2016-11-01 Unilever Nv composição de tratamento para lavagem de roupa, e, método doméstico de tratamento de produto têxtil
EP2104729B1 (fr) 2007-01-19 2010-11-03 The Procter & Gamble Company Composition de lessive munis d'un agent de blanchiment pour substrats cellulosiques
ES2387142T3 (es) 2007-05-18 2012-09-14 Unilever N.V. Colorantes de trifenodioxazina
DE102007038031A1 (de) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Mittel enthaltend Proteasen
CA2709609C (fr) 2008-01-04 2013-05-28 The Procter & Gamble Company Glycosyl-hydrolase et compositions contenant un agent colorant pour tissu
EP2085070A1 (fr) 2008-01-11 2009-08-05 Procter & Gamble International Operations SA. Compositions de nettoyage et/ou de traitement
EP2247720A2 (fr) 2008-02-29 2010-11-10 The Procter & Gamble Company Composition de détergent contenant une lipase
CN102112602A (zh) 2008-02-29 2011-06-29 宝洁公司 包含脂肪酶的洗涤剂组合物
BRPI0910682B1 (pt) 2008-05-02 2020-09-24 Unilever N.V. Grânulo de corante tonalizante que produzem menos manchas, e, composição detergente granular para lavar roupas
WO2009141173A1 (fr) 2008-05-20 2009-11-26 Unilever Plc Composition de nuançage
ES2720369T3 (es) 2008-06-06 2019-07-19 Procter & Gamble Composición detergente que comprende una variante de una xiloglucanasa de la familia 44
WO2010099997A1 (fr) 2009-03-05 2010-09-10 Unilever Plc Initiateurs radicalaires colorants
WO2010102861A1 (fr) 2009-03-12 2010-09-16 Unilever Plc Formulations de polymères colorants
WO2010148624A1 (fr) 2009-06-26 2010-12-29 Unilever Plc Polymères colorants
JP6129740B2 (ja) 2010-10-22 2017-05-17 ミリケン・アンド・カンパニーMilliken & Company 青味剤用ビス−アゾ着色剤
WO2012054058A1 (fr) 2010-10-22 2012-04-26 The Procter & Gamble Company Colorants bis-azoïques destinés à être utilisés à titre d'agents de bleuissement
US20120101018A1 (en) 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents
CA2817718C (fr) 2010-11-12 2016-02-09 The Procter & Gamble Company Compositions de lessive comprenant des colorants azoiques thiopheniques
TR201900214T4 (tr) 2012-03-19 2019-02-21 Milliken & Co Karboksilat Boyalar
WO2013151970A1 (fr) 2012-04-03 2013-10-10 The Procter & Gamble Company Composition détergente pour la lessive comprenant un composé de phtalocyanine soluble dans l'eau
DE102012016462A1 (de) * 2012-08-18 2014-02-20 Clariant International Ltd. Verwendung von Polyestern in Wasch- und Reinigungsmitteln
BR112017005154A2 (pt) * 2014-09-18 2018-04-24 Unilever Nv composição detergente para lavagem de roupas e método doméstico de tratamento de um tecido
EP3194542B1 (fr) * 2014-09-18 2018-09-26 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Composition de blanchiment

Also Published As

Publication number Publication date
CN110869480B (zh) 2021-08-13
CN110869480A (zh) 2020-03-06
WO2019008036A1 (fr) 2019-01-10
AR112380A1 (es) 2019-10-23
EP3649222B1 (fr) 2024-03-13
ZA201908604B (en) 2021-04-28
BR112020000201A2 (pt) 2020-07-07

Similar Documents

Publication Publication Date Title
EP3649222B1 (fr) Composition de blanchiment
EP3990598A1 (fr) Composition détergente
EP3440170B1 (fr) Composition de détergent pour lessive
EP3990604B1 (fr) Composition de détergent
EP3990603B1 (fr) Composition de détergent
EP3649221B1 (fr) Composition de nettoyage textile
US20220372400A1 (en) Detergent composition
EP3990599B1 (fr) Composition de détergent
EP3884023B1 (fr) Composition de détergent
EP3884022B1 (fr) Composition de détergent
EP3417039B1 (fr) Composition de blanchiment
EP3884024B1 (fr) Composition de détergent
EP3555255B1 (fr) Composition de détergent pour lessive
EP3417042B1 (fr) Composition de blanchiment
BR112020000201B1 (pt) Composição de limpeza para lavagem de tecidos e método doméstico de tratamento de um tecido
EP3884025A1 (fr) Composition détergente

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231009

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240206

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018066563

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240613

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1665769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313