EP3649221B1 - Wäschereinigungszusammensetzung - Google Patents

Wäschereinigungszusammensetzung Download PDF

Info

Publication number
EP3649221B1
EP3649221B1 EP18734830.5A EP18734830A EP3649221B1 EP 3649221 B1 EP3649221 B1 EP 3649221B1 EP 18734830 A EP18734830 A EP 18734830A EP 3649221 B1 EP3649221 B1 EP 3649221B1
Authority
EP
European Patent Office
Prior art keywords
surfactant
alkyl
cleaning composition
laundry cleaning
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18734830.5A
Other languages
English (en)
French (fr)
Other versions
EP3649221B8 (de
EP3649221A1 (de
Inventor
Stephen Norman Batchelor
Catherine Breffa
Jan DIEDERICHS
Kevin James MUTCH
Steffen ROMANSKI
Carsten Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP3649221A1 publication Critical patent/EP3649221A1/de
Application granted granted Critical
Publication of EP3649221B1 publication Critical patent/EP3649221B1/de
Publication of EP3649221B8 publication Critical patent/EP3649221B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/528Carboxylic amides (R1-CO-NR2R3), where at least one of the chains R1, R2 or R3 is interrupted by a functional group, e.g. a -NH-, -NR-, -CO-, or -CON- group

Definitions

  • the present invention concerns a laundry cleaning composition.
  • AD alkoxylated dispersants
  • the present invention provides a laundry cleaning composition comprising:
  • R 1 is selected from C12 to C18 linear alkyl chains; and benzyl and phenylethyl in the alkoxylated dispersant structure.
  • R 1 is selected from C12 to C18 linear alkyl chains.
  • X is ethoxy in the alkoxylated dispersant structure.
  • the mole average number of alkoxy groups is from 6 to 40, more preferably from 9 to 30, most preferably from 10 to 20 in the alkoxylated dispersant structure.
  • alkoxylated dispersant is selected from:
  • a preferred laundry cleaning composition comprises surfactant, other than the alkoxylated dispersant, at a level of from 4 to 40 wt.%, more preferably from 4 to 35 wt.%, most preferably from 6 to 30 wt.%.
  • the surfactant other than the alkoxylated dispersant, comprises anionic and/or non-ionic surfactants.
  • the weight fraction of non-ionic surfactant to anionic surfactant is from 0 to 0.3. This means that non-ionic surfactant can be present (or it may be absent if the weight fraction is 0), but if non-ionic surfactant is present, then the weight fraction of the non-ionic surfactant is preferably at most 30% of the total weight of anionic surfactant + non-ionic surfactant, wherein the alkoxylated dispersant is not considered a surfactant as defined herein.
  • the anionic surfactant is selected from: linear alkyl benzene sulphonates; alkyl sulphates; alkyl ether sulphates; alkyl ether carboxylates; and mixtures thereof.
  • the non-ionic surfactant is an alcohol ethoxylate, more preferably an C 10 -C 18 alcohol ethoxylate having an average of 3-10 moles of ethylene oxide, most preferably an C 12 -C 15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
  • the laundry cleaning composition is preferably an aqueous laundry liquid detergent composition.
  • the pH of the aqueous liquid detergent composition is from 6 to 8.5, more preferably from 6.5 to 7.5, even more preferably from 6.8 to 7.2, most preferably 7.0.
  • the active ingredient is an enzyme and comprises one or more of the following: proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. More preferably the enzyme is a protease, most preferably a subtilase type serine protease.
  • the invention provides a domestic method of treating a textile, the method comprising the steps of:
  • the surfactant used is preferably as preferred for the composition aspects of the present invention.
  • domestic methods are preferably conducted in a domestic washing machine or by hand washing.
  • the temperature of the wash is preferably from 285 to 335 degrees Kelvin.
  • the textile is preferably an item of used clothing, bedding or table cloth.
  • Preferred items of clothing are worn cotton containing shirts, trousers, underwear and jumpers.
  • the alkoxylated dispersant has the following structure:- wherein:
  • the alkoxylated dispersant is preferably formed as a reaction product of trimellitic anhydride or pyromellitic dianhydride with a polyether of the form T-(X) n -NH 2 and alcohol of the form R-OH, where R 1 is selected from: branched and linear C8 to C20 alkyl chains, uncharged aryl groups; and, uncharged alkyl-aryl groups wherein the alkyl group of the alkyl-aryl is a saturated linear or branched C1 to C3.
  • the benzene ring may be substituted by further uncharged organic groups, for example methyl, ethyl, methoxy, ethoxy, CI, NO 2 .
  • ArOH is an aromatic alcohol
  • phenol for example may be used in the reaction.
  • trimellitic anhydride or pyromellitic anhydride is reacted with the polyether T-(X) n -NH 2 , then the R-OH.
  • trimellitic anhydride or pyromellitic anhydride is reacted with 1 mole equivalent of the polyether, T-(X) n -NH 2 , then the R-OH.
  • n is the mole average number of alkoxyl groups.
  • the value of n may be measured using NMR.
  • the value of n is from 6 to 70, preferably 6 to 40, more preferably 9 to 30. Indeed the value of n may be individually 9, 10, 11, 12, 13, 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29, or 30. Most preferably the value of n may be from 10 to 20.
  • X is selected from OCH 2 CH 2 (ethoxy) and mixtures of ethoxy and propoxy groups, wherein if a mixture, then the number of ethoxy groups is greater than the number of propoxy groups. If X comprises propoxy groups then preferably the mole ratio of ethoxy/propoxy is greater than 2, more preferably greater than 5.
  • X is a mixture of ethoxy and propoxy groups, then they may be distributed blockwise alternatively, periodically and/or statistically.
  • X comprises at least one mole of propoxy groups and the mole ratio of ethoxy/propoxy is greater than 5.
  • alkoxylated dispersant is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.
  • the alkoxylated dispersant prevents the deposition of soil present in the wash liquor onto the fabric.
  • the alkoxylated dispersant can also increase stain removal.
  • the laundry cleaning composition comprises an active ingredient selected from one or more of the following: from 0.001 to 3 wt.% perfume; from 0.0001 to 0.5 wt.% of fluorescent agent; and, from 0.0001 wt.% to 0.1 wt.% of an enzyme.
  • Contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • the enzyme is selected from: proteases, alpha-amylases; cellulases and lipases, or mixtures thereof. More preferably the enzyme is a protease, more preferably a subtilase type serine protease.
  • alkoxylated dispersant is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.
  • the laundry composition may comprise anionic and non-ionic surfactant (which includes a mixture of the same).
  • the surfactant is present at a level of from 0 to 50 wt.%. This means that surfactant need not be present, but it is preferred that it is present.
  • Preferred laundry cleaning compositions comprise surfactant at a level of from 4 to 40 wt.%, more preferably from 4 to 35 wt.%, most preferably from 6 to 30 wt.%.
  • the surfactant comprises anionic and/or non-ionic surfactants.
  • Suitable nonionic and anionic surfactants may be chosen from the surfactants described " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 or in Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1996 ).
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, Alkyl ether carboxylic acids; sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; alkyl ether carboxylates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • Preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • anionic surfactant is selected from: linear alkyl benzene sulphonates; alkyl sulphates; alkyl ether sulphates; and mixtures thereof.
  • composition may comprise anionic and/or non-ionic surfactants.
  • the weight fraction of non-ionic surfactant to anionic surfactant is from 0 to 0.3. This means that non-ionic surfactant can be present (or it may be absent if the weight fraction is 0), but if non-ionic surfactant is present, then the weight fraction of the non-ionic surfactant is preferably at most 30% of the total weight of anionic surfactant + non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the non-ionic surfactant is an alcohol ethoxylate, more preferably a C 10 -C 18 alcohol ethoxylate having an average of 3-10 moles of ethylene oxide, most preferably an C 12 -C 15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
  • surfactants used are saturated.
  • surfactants such as those described in EP-A-328 177 (Unilever ), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
  • the surfactant may comprise a cationic surfactant Most preferred are quaternary ammonium compounds.
  • the quaternary ammonium compound is a quaternary ammonium compound having at least one C 12 to C 22 alkyl chain.
  • the quaternary ammonium compound has the following formula: in which R 1 is a C 12 to C 22 alkyl or alkenyl chain; R 2 , R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • R 1 is a C 12 to C 22 alkyl or alkenyl chain; R 2 , R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from C 12 to C 22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • the composition optionally comprises a silicone.
  • One or more perfumes may be present as whole or part of the active ingredient of the laundry cleaning composition.
  • the composition preferably comprises a perfume.
  • the perfume is preferably present in the range from 0.001 to 3 wt.%, more preferably 0.05 to 0.5 wt.%, most preferably 0.1 to 1 wt.%.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; Pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
  • Perfume top note may be used to cue the benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (i.e., those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
  • perfume components it is commonplace for a plurality of perfume components to be present in a formulation. It is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • One or more fluorescent agents may be present as whole or part of the active ingredient of the laundry cleaning composition.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulophonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • the total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt.%, more preferably 0.005 to 2 wt.%, most preferably 0.05 to 0.25 wt.%.
  • the aqueous solution used in the method preferably has a fluorescer present.
  • the fluorescer is preferably present in the aqueous solution used in the method in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • Enzymes may be present as whole or part of the active ingredient of the laundry cleaning composition.
  • One or more enzymes are preferably present in the laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
  • Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
  • Contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • the enzyme is selected from: proteases, alpha-amylases; cellulases and lipases.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 .
  • Lipolase TM and Lipolase Ultra TM Lipex TM and Lipoclean TM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database ( http://merops.sanger.ac.uk/ ). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ).
  • proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 .
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
  • protease is a subtilisins (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Alcalase ® , Blaze ® ; DuralaseTm, DurazymTm, Relase ® , Relase ® Ultra, Savinase ® , Savinase ® Ultra, Primase ® , Polarzyme ® , Kannase ® , Liquanase ® , Liquanase ® Ultra, Ovozyme ® , Coronase ® , Coronase ® Ultra, Neutrase ® , Everlase ® and Esperase ® all could be sold as Ultra ® or Evity ® (Novozymes A/S).
  • the invention may be use cutinase, classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus , e.g. a special strain of B. licheniformis , described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • amylases are Duramyl TM , Termamyl TM , Termamyl Ultra TM , Natalase TM , Stainzyme TM , Fungamyl TM and BAN TM (Novozymes A/S), Rapidase TM and Purastar TM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus , Pseudomonas , Humicola , Fusarium , Thielavia , Acremonium , e.g.
  • Celluzyme TM Commercially available cellulases include Celluzyme TM , Carezyme TM , Celluclean TM , Endolase TM , Renozyme TM (Novozymes A/S), Clazinase TM and Puradax HA TM (Genencor International Inc.), and KAC-500(B) TM (Kao Corporation).
  • Celluclean TM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus , e.g. from C. cinereus , and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include Guardzyme TM and Novozym TM 51004 (Novozymes A/S).
  • the aqueous solution used in the method preferably has an enzyme present.
  • the enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Builder materials may be present. If present then they are generally selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • the laundry cleaning formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate.
  • the laundry cleaning formulation is most preferably an aqueous liquid laundry detergent.
  • mono propylene glycol is present at a level from 1 to 30 wt.%, most preferably 2 to 18 wt.%.
  • composition may preferably comprise one or more polymers.
  • Example polymers are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Switzerland, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • the composition comprises a shading dye.
  • the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charge or are uncharged.
  • Azine preferably carry a net anionic or cationic charge.
  • Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • Shading dyes are discussed in WO 2005/003274 , WO 2006/032327(Unilever ), WO 2006/032397(Unilever ), WO 2006/045275(Unilever ), WO 2006/027086(Unilever ), WO 2008/017570(Unilever ), WO 2008/141880 (Unilever ), WO 2009/132870(Unilever ), WO 2009/141173 (Unilever ), WO 2010/099997(Unilever ), WO 2010/102861(Unilever ), WO 2010/148624(Unilever ), WO 2008/087497 (P&G ), WO 2011/011799 (P&G ), WO 2012/054820 (P&G ), WO 2013/142495 (P&G ) and WO 2013/151970 (P&G ).
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
  • alkoxylated bis-azo dye is :
  • Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
  • Azine dyes are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5 , acid blue 59, and the phenazine dye selected from: wherein:
  • the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • a mixture of shading dyes may be used.
  • the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • Trimellitic acid, trimellitic anhydride, pyromellitic acid, phenoxyethanol, methanesulfonic acid, pTsOH, Titanium isopropoxide, 4-Dodecylbenzenesulfonic acid mixture of isomers and benzyl alcohol were used as purchased from Sigma Aldrich.
  • Lauryl myristyl alcohol and cetearyl alcohol were used in technical grade quality and their molecular masses were determined prior to use by measuring the hydroxyl value (OH-value) and subsequently calculating the molecular weight (per hydroxyl function, "Gebrauchsmol”).
  • the OH-value may be measured according to DIN 53240.
  • the acid number (acid value) may be measure according to DIN EN ISO 2114.
  • the degree of alkoxylation of the used amine alkoxylates may be checked using NMR spectroscopy, for example using 1 H-NMR spectroscopy in analogy to the method described in R. Stevanova, D. Rankoff, S. Panayotova, S.L. Spassov, J. Am. Oil Chem. Soc., 65, 1516-1518 (1988 ).
  • NMR spectroscopy for example using 1 H-NMR spectroscopy in analogy to the method described in R. Stevanova, D. Rankoff, S. Panayotova, S.L. Spassov, J. Am. Oil Chem. Soc., 65, 1516-1518 (1988 ).
  • the samples are derivatised by reacting them with trichloro acetyl isocyanate and measured as solutions in deuterated chloroform containing 1 weight-% (1 wt.-%) of tetramethyl silane as an internal standard.
  • esterification reactions were controlled by determining the residual content of alcohol (e.g. benzyl alcohol, phenoxyethanol, lauryl myristyl alcohol and cetearyl alcohol) by GC-FID. Calibration was performed with pure starting materials. Gas chromatography (GC) was performed using a Hewlett Packard GC 6890 with autosampler, coupled with a flame-ionisation detector (FID).
  • alcohol e.g. benzyl alcohol, phenoxyethanol, lauryl myristyl alcohol and cetearyl alcohol
  • samples were separated on a 50 m x 0.2 mm, 0.33 ⁇ m film column.
  • the column temperature was initially held at 50°C, then the temperature was raised to 175°C at a rate of 5°C per minute and from 175°C to 300°C at a rate of 25°C per minute.
  • the injector temperature was maintained at 250°C and the injection volume was 1.0 ⁇ L in the split mode.
  • Helium was used as a carrier gas with a constant pressure of 1.8 bar.
  • the samples were prepared by diluting 500 mg of sample (duplicate analysis) with 5 ml of methanol.
  • samples were separated on a 25 m x 0.32 mm, 0.52 ⁇ m film column.
  • the column temperature was initially held at 50°C, then the temperature was raised to 250°C at a rate of 10°C per minute and held for 6.5 minutes.
  • the injector temperature was maintained at 250°C and the injection volume was 1.0 ⁇ L in the split mode.
  • Helium was used as a carrier gas with a constant pressure of 0.9 bar.
  • the samples were prepared by diluting 500 mg of sample (duplicate analysis) with 5 ml of methanol.
  • TLC Thin layer chromatography
  • the amine alkoxylate of choice was heated to 80°C with stirring under nitrogen.
  • the polycarboxylic acid or acid anhydride of choice was then added in portions over 5 minutes.
  • the reaction mixture was then stirred for 2.5 hours at 80°C.
  • the product, henceforth termed precursor, was isolated and the acid number determined - these are listed in Table I in the column AN1.
  • sample C1 from Table I was isolated after the first synthesis step and no reaction with alcohol was performed.
  • the formulation was used to wash eight 5x5 cm knitted cotton cloth pieces in a Tergotometer set at 200 rpm (revolutions per minute). A one hour wash was conducted in 800 ml of water with 26° French hardness at 20°C, with 2.3 g/l of the formulation shown in Table II. To simulate particulate soil that could redeposit, 0.04 g/l of 100% compressed carbon black (ex Alfa Aesar) was added to the wash liquor. To simulate oily sebaceous soil, 7.2 g of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor.
  • the alkoxylated dispersants reduces deposition of the carbon black soil significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Wäschereinigungszusammensetzung, umfassend:
    (i) 0,2 bis 20 Gew.-%, vorzugsweise 0,5 bis 12 Gew.-%, bevorzugter 1 bis 10 Gew.-% eines alkoxylierten Dispergiermittels der folgenden Struktur:
    Figure imgb0014
    worin:
    X ausgewählt ist aus: Ethoxy- und Mischungen von Ethoxy- und
    Propoxygruppen, wobei die Zahl der Ethoxygruppen größer als die Zahl der Propoxygruppen ist und worin n 6 bis 70 ist;
    m 2 ist;
    R1 ausgewählt ist aus: verzweigten und linearen C8- bis C20-Alkylketten, ungeladenen Arylgruppen und ungeladenen Alkyl-Arylgruppen, wobei die Alkylgruppe der Alkyl-Aryl-Gruppen eine gesättigte lineare oder verzweigte C1- bis Cs-Gruppe ist;
    T CH3 ist;
    Y ausgewählt ist aus O;
    (ii) 0 bis 50 Gew.-% Tensid, mit Ausnahme des alkoxylierten Dispergiermittels, und
    (iii) einen aktiven Bestandteil, ausgewählt aus einem oder mehreren Bestandteilen von: 0,001 bis 3 Gew.-% Parfüm; 0,0001 bis 0,5 Gew.-% Fluoreszenzmittel und 0,0001 Gew.-% bis 0,1 Gew.-% eines Enzyms.
  2. Wäschereinigungszusammensetzung nach Anspruch 1, wobei R1 aus linearen C12- bis C18-Alkylketten, Benzyl und Phenylethyl ausgewählt ist.
  3. Wäschereinigungszusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei n 6 bis 40, vorzugsweise 9 bis 30, bevorzugter 10 bis 20 ist.
  4. Wäschereinigungszusammensetzung nach einem vorhergehenden Anspruch, wobei das alkoxylierte Dispergiermittel ausgewählt ist aus:
    Figure imgb0015
  5. Wäschereinigungszusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei das Tensid in einer Menge von 4 bis 40 Gew.-%, vorzugsweise von 4 bis 35 Gew.-%, bevorzugter von 6 bis 30 Gew.-%, vorliegt und das Tensid anionische und/oder nicht-ionische Tenside umfasst, wobei der Gewichtsanteil des nicht-ionischen Tensids zum anionischen Tensid vorzugsweise 0 bis 0,3 beträgt, wobei das alkoxylierte Dispergiermittel nicht als Tensid, wie hier definiert, gilt.
  6. Wäschereinigungszusammensetzung nach Anspruch 5, wobei das anionische Tensid aus linearen Alkylbenzolsulfonaten, Alkylsulfaten, Alkylethersulfaten, Alkylethercarboxylaten und Mischungen davon ausgewählt ist.
  7. Wäschereinigungszusammensetzung nach Anspruch 5 oder Anspruch 6, umfassend nicht-ionisches Tensid, wobei das nicht-ionische Tensid ein Alkoholethoxylat, vorzugsweise ein C10-C18-Alkoholethoxylat mit durchschnittlich 3-10 Mol Ethylenoxid, bevorzugter ein C12-C15-Alkoholethoxylat mit durchschnittlich 5-9 Mol Ethylenoxid ist.
  8. Wäschereinigungszusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei die Zusammensetzung eine flüssige wässrige Reinigungszusammensetzung mit einem pH-Wert von 6 bis 8,5, vorzugsweise von 6,5 bis 7,5, bevorzugter von 6,8 bis 7,2, höchst bevorzugt von 7,0 ist.
  9. Wäschereinigungszusammensetzung nach einem vorhergehenden Anspruch, wobei der aktive Bestandteil ein Enzym ist und ein oder mehrere der folgenden Enzyme umfasst: Proteasen, alpha-Amylasen, Cellulasen, Lipasen, Peroxidasen/Oxidasen, Pektatlyasen und Mannanasen oder Mischungen davon, wobei das Enzym vorzugsweise eine Protease, bevorzugter eine Serinprotease vom Subtilase-Typ ist.
  10. Häusliches Verfahren zur Behandlung eines Textils, wobei das Verfahren die Schritte umfasst:
    (i) Behandlung eines Textils mit einer wässrigen Lösung des alkoxylierten Dispergiermittels, wie in irgendeinem der Ansprüche 1 bis 4 definiert, wobei die wässrige Lösung 10 ppm bis 5000 ppm, vorzugsweise 100 ppm bis 1000 ppm des alkoxylierten Dispergiermittels und 0 bis 6 g/l, vorzugsweise 0,5 bis 6 g/l, bevorzugter 1 bis 5 g/l eines Tensids, mit Ausnahme des alkoxylierten Dispergiermittels, umfasst; und
    (ii) gegebenenfalls Spülen und Trocknen des Textils;
    wobei bei dem Verfahren ein oder mehrere aktive Bestandteile, ausgewählt aus Parfüm, Fluoreszenzmittel und Enzym, in der wässrigen Lösung des alkoxylierten Dispergiermittels vorliegen,
    wobei, wenn vorhanden, die Menge des Parfüms in der wässrigen Lösung 0,1 bis 100 ppm beträgt;
    wobei, wenn vorhanden, die Menge des Fluoreszenzmittels in der wässrigen Lösung 0,0001 g/l bis 0,1 g/l, vorzugsweise 0,001 bis 0,02 g/l beträgt und wobei, wenn vorhanden, die Menge des Enzyms in der wässrigen Lösung 0,01 bis 10 ppm, vorzugsweise 0,05 bis 1 ppm, beträgt.
EP18734830.5A 2017-07-07 2018-07-04 Wäschereinigungszusammensetzung Active EP3649221B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17180337 2017-07-07
PCT/EP2018/068089 WO2019008035A1 (en) 2017-07-07 2018-07-04 LAUNDRY COMPOSITION FOR LAUNDRY

Publications (3)

Publication Number Publication Date
EP3649221A1 EP3649221A1 (de) 2020-05-13
EP3649221B1 true EP3649221B1 (de) 2024-04-17
EP3649221B8 EP3649221B8 (de) 2024-05-29

Family

ID=59298395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18734830.5A Active EP3649221B8 (de) 2017-07-07 2018-07-04 Wäschereinigungszusammensetzung

Country Status (6)

Country Link
EP (1) EP3649221B8 (de)
CN (1) CN110892053A (de)
AR (1) AR112180A1 (de)
BR (1) BR112020000205B1 (de)
WO (1) WO2019008035A1 (de)
ZA (1) ZA202000068B (de)

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (de) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
SE8001698L (sv) * 1980-03-05 1981-09-06 Eka Ab Antiredepositionsmedel
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
AU556758B2 (en) 1981-07-13 1986-11-20 Procter & Gamble Company, The Foaming compositions based on alkylpolysaccharide
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
WO1987000859A1 (en) 1985-08-09 1987-02-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068B1 (de) 1986-08-29 1994-08-31 Novo Nordisk A/S Enzymhaltiger Reinigungsmittelzusatz
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
ATE125865T1 (de) 1987-08-28 1995-08-15 Novo Nordisk As Rekombinante humicola-lipase und verfahren zur herstellung von rekombinanten humicola-lipasen.
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
ATE129523T1 (de) 1988-01-07 1995-11-15 Novo Nordisk As Spezifische protease.
GB8803036D0 (en) 1988-02-10 1988-03-09 Unilever Plc Liquid detergents
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
JP2728531B2 (ja) 1988-03-24 1998-03-18 ノボ ノルディスク アクティーゼルスカブ セルラーゼ調製品
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
CA2001927C (en) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates and detergent compositions
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
DE4111321A1 (de) 1990-04-14 1991-10-17 Kali Chemie Ag Alkalische bacillus-lipasen, hierfuer codierende dna-sequenzen sowie bacilli, die diese lipasen produzieren
AU657278B2 (en) 1990-09-13 1995-03-09 Novo Nordisk A/S Lipase variants
DK58491D0 (da) 1991-04-03 1991-04-03 Novo Nordisk As Hidtil ukendte proteaser
HU213044B (en) 1991-04-30 1997-01-28 Procter & Gamble Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme with additives improving detergent effect
EP0511456A1 (de) 1991-04-30 1992-11-04 The Procter & Gamble Company Flüssiges Reinigungsmittel mit einem aromatischen Boratester zur Inhibierung des proteolytischen Enzyms
DK28792D0 (da) 1992-03-04 1992-03-04 Novo Nordisk As Nyt enzym
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
AU673078B2 (en) 1993-04-27 1996-10-24 Genencor International, Inc. New lipase variants for use in detergent applications
DK52393D0 (de) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
EP0723579B1 (de) 1993-10-14 2007-05-02 The Procter & Gamble Company Proteasehaltige reinigungsmittel
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
JP3553958B2 (ja) 1994-02-22 2004-08-11 ノボザイムス アクティーゼルスカブ 脂質分解酵素の変異体の製造方法
ES2250969T3 (es) 1994-03-29 2006-04-16 Novozymes A/S Amilasa alcalina de bacilo.
EP0755442B1 (de) 1994-05-04 2002-10-09 Genencor International, Inc. Lipasen mit verbesserten tensiostabilitaet
AU2884595A (en) 1994-06-20 1996-01-15 Unilever Plc Modified pseudomonas lipases and their use
AU2884695A (en) 1994-06-23 1996-01-19 Unilever Plc Modified pseudomonas lipases and their use
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
CA2203398A1 (en) 1994-10-26 1996-05-09 Thomas Sandal An enzyme with lipolytic activity
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
CN1182451A (zh) 1995-03-17 1998-05-20 诺沃挪第克公司 新的内切葡聚糖酶
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
ATE282087T1 (de) 1995-07-14 2004-11-15 Novozymes As Modifiziertes enzym mit lipolytischer aktivität
AU4200797A (en) 1996-09-17 1998-04-14 Novo Nordisk A/S Cellulase variants
DE69718351T2 (de) 1996-10-08 2003-11-20 Novozymes A/S, Bagsvaerd Diaminobenzoesäure derivate als farbstoffvorläufer
MA24811A1 (fr) 1997-10-23 1999-12-31 Procter & Gamble Compositions de lavage contenant des variantes de proteases multisubstituees
MXPA01009706A (es) 1999-03-31 2002-05-14 Novozymes As Polipeptidos que tienen actividad de alfa-amilasa alcalina y acidos nucleicos que codifican para los mismos.
JP4523178B2 (ja) 1999-03-31 2010-08-11 ノボザイムス アクティーゼルスカブ リパーゼ変異体
US20020160924A1 (en) * 1999-06-15 2002-10-31 The Procter & Gamble Company Cleaning compositions
WO2001016285A2 (en) 1999-08-31 2001-03-08 Novozymes A/S Novel proteases and variants thereof
CN1337553A (zh) 2000-08-05 2002-02-27 李海泉 地下观光游乐园
AR030462A1 (es) 2000-08-21 2003-08-20 Novozymes As Novedosas enzimas subtilasas que tienen una reducida tendencia hacia su inhibicion por las sustancias presentes en los huevos
DE10162728A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14393) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
CN102994486A (zh) 2003-10-23 2013-03-27 诺维信公司 在洗涤剂中具有改善稳定性的蛋白酶
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
GB0420203D0 (en) 2004-09-11 2004-10-13 Unilever Plc Laundry treatment compositions
EP2133409A3 (de) 2004-09-23 2010-03-03 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Zusammensetzungen zur Wäschebehandlung
GB0421145D0 (en) 2004-09-23 2004-10-27 Unilever Plc Laundry treatment compositions
DE102004052007B4 (de) 2004-10-25 2007-12-06 Müller Weingarten AG Antriebssystem einer Umformpresse
JP2009527618A (ja) 2006-08-10 2009-07-30 ユニリーバー・ナームローゼ・ベンノートシヤープ シェーディング組成物
EP2104729B1 (de) 2007-01-19 2010-11-03 The Procter & Gamble Company Wäschepflegemittel mit weisstöner für cellulosehaltige substrate
US20100197555A1 (en) 2007-05-18 2010-08-05 Stephen Norman Batchelor Triphenodioxazine dyes
DE102007038031A1 (de) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Mittel enthaltend Proteasen
BRPI0822220A2 (pt) 2008-01-04 2015-06-23 Procter & Gamble Composições contendo enzima e agente de matiz para tecidos
EP2085070A1 (de) 2008-01-11 2009-08-05 Procter & Gamble International Operations SA. Reinigungs- und/oder Behandlungszusammensetzungen
MX2010009457A (es) 2008-02-29 2010-09-24 Procter & Gamble Composicion detergente que comprende lipasa.
WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
WO2009132870A1 (en) 2008-05-02 2009-11-05 Unilever Plc Reduced spotting granules
MY155292A (en) 2008-05-20 2015-09-30 Unilever Plc Shading composition
PL2300588T3 (pl) 2008-06-06 2019-07-31 The Procter & Gamble Company Kompozycja detergentu zawierająca odmianę z grupy 44 ksyloglukanazy
MY159509A (en) 2009-03-05 2017-01-13 Unilever Plc Dye radical initiators
CN102348769A (zh) 2009-03-12 2012-02-08 荷兰联合利华有限公司 染料-聚合物配方
WO2010148624A1 (en) 2009-06-26 2010-12-29 Unilever Plc Dye polymers
WO2010151906A2 (en) 2010-10-22 2010-12-29 Milliken & Company Bis-azo colorants for use as bluing agents
US20120101018A1 (en) 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents
WO2012054058A1 (en) 2010-10-22 2012-04-26 The Procter & Gamble Company Bis-azo colorants for use as bluing agents
JP5833133B2 (ja) 2010-11-12 2015-12-16 ザ プロクター アンド ギャンブルカンパニー チオフェンアゾ染料及びそれを含有する洗濯ケア組成物
CA2867361C (en) 2012-03-19 2017-07-25 Milliken & Company Carboxylate dyes
EP2834340B1 (de) 2012-04-03 2016-06-29 The Procter and Gamble Company Waschmittelzusammensetzung mit wasserlöslicher phthalocyaninverbindung
DE102012016462A1 (de) * 2012-08-18 2014-02-20 Clariant International Ltd. Verwendung von Polyestern in Wasch- und Reinigungsmitteln
BR112017005154A2 (pt) * 2014-09-18 2018-04-24 Unilever Nv composição detergente para lavagem de roupas e método doméstico de tratamento de um tecido
AU2015317265A1 (en) * 2014-09-18 2017-02-16 Unilever Plc Whitening composition

Also Published As

Publication number Publication date
WO2019008035A1 (en) 2019-01-10
BR112020000205A2 (pt) 2020-07-07
EP3649221B8 (de) 2024-05-29
CN110892053A (zh) 2020-03-17
EP3649221A1 (de) 2020-05-13
BR112020000205B1 (pt) 2023-10-31
ZA202000068B (en) 2021-08-25
AR112180A1 (es) 2019-09-25

Similar Documents

Publication Publication Date Title
EP3649222B1 (de) Bleichungszusammensetzung
EP3440170B1 (de) Waschmittelzusammensetzung
EP3990604B1 (de) Reinigungsmittelzusammensetzung
EP3990603B1 (de) Reinigungsmittelzusammensetzung
EP3649221B1 (de) Wäschereinigungszusammensetzung
EP3555255B1 (de) Waschmittelzusammensetzung
US20220372400A1 (en) Detergent composition
EP3417040B1 (de) Bleichungszusammensetzung
EP3990599B1 (de) Reinigungsmittelzusammensetzung
EP3884023B1 (de) Reinigungsmittelzusammensetzung
EP3884022B1 (de) Reinigungsmittelzusammensetzung
EP3884024B1 (de) Reinigungsmittelzusammensetzung
EP3853330B1 (de) Reinigungsmittelzusammensetzung
EP3884026B1 (de) Reinigungsmittelzusammensetzung
EP3417039B1 (de) Bleichungszusammensetzung
EP3884025B1 (de) Reinigungsmittelzusammensetzung
EP3417042B1 (de) Bleichungszusammensetzung
BR112020000201B1 (pt) Composição de limpeza para lavagem de tecidos e método doméstico de tratamento de um tecido

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231009

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018068180

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240417

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1677266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240717