EP3417042B1 - Bleichungszusammensetzung - Google Patents

Bleichungszusammensetzung Download PDF

Info

Publication number
EP3417042B1
EP3417042B1 EP16805031.8A EP16805031A EP3417042B1 EP 3417042 B1 EP3417042 B1 EP 3417042B1 EP 16805031 A EP16805031 A EP 16805031A EP 3417042 B1 EP3417042 B1 EP 3417042B1
Authority
EP
European Patent Office
Prior art keywords
laundry detergent
detergent composition
composition according
surfactant
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16805031.8A
Other languages
English (en)
French (fr)
Other versions
EP3417042A1 (de
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Carsten Cohrs
Jan DIEDERICHS
Dirk Leinweber
Kevin James MUTCH
Steffen ROMANSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP3417042A1 publication Critical patent/EP3417042A1/de
Application granted granted Critical
Publication of EP3417042B1 publication Critical patent/EP3417042B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention concerns the use of whitening and brightening laundry compositions.
  • ASP alkoxylated substituted phenol
  • the present invention provides a laundry detergent composition comprising:
  • Interger (iii) the perfume, may be replaced or the composition additionally comprises from 0.0001 to 0.5 wt % of a fluorescent agent and/or from 0.0001 wt% to 0.1 wt% shading dye.
  • the laundry detergent composition is preferably selected from a granular detergent powder; and an aqueous laundry liquid detergent; most preferably the laundry detergent composition is an aqueous laundry liquid detergent composition.
  • the present invention provides a domestic method of treating a textile, the method comprising the steps of:
  • the surfactant is of the type as preferred herein.
  • the level of the perfume in the aqueous solution is preferably from 0.1 to 100 ppm, more preferably from 1 to 10 ppm.
  • the surfactant used is preferably as preferred for the composition aspects of the present invention.
  • domestic methods are preferably conducted in a domestic washing machine or by hand washing.
  • the temperature of the wash is preferably from 285 to 335K.
  • the textile is preferably an item of clothing, bedding or table cloth. Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.
  • alkoxylated substituted phenol is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.
  • aryl groups are phenyl and substituted phenyl.
  • C1 to C3 linear or branched alkyl aryl groups are C1 to C3 linear or branched alkyl groups substituted by an aromatic group, for example: styryl, cumyl, benzyl.
  • a styryl group is -CH(CH 3 )Ph; a cumyl group is -C(CH 3 ) 2 Ph; a benzyl group is CH 2 Ph, where Ph is phenyl.
  • n is the mole average number of alkoxyl groups.
  • the value of n may be measured using NMR.
  • Sulfoccinate has the structure, depicted as the Na salt:
  • Example of structures of the ASP of the invention are:
  • the most preferred ASP structure is
  • the laundry composition may comprises anionic and non-ionic surfactant (which includes a mixture of the same).
  • nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 or in Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1996 ) .
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; alkyl ether carboxylates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • the level of anionic surfactant in the laundry composition is preferably from 4 to 40 wt%, more preferably 6 to 30 wt%, and most preferably 8 to 20 wt%.
  • two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl ethoxylated non-ionic surfactant-.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the alkyl ethoxylated non-ionic surfactant is a C 8 to C 18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • surfactants used are saturated.
  • surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
  • the charged surfactant may be a cationic such that the formulation is a fabric conditioner.
  • the detergent compositions based on anionic or anionic/non-ionic surfactants is however the more preferred embodiment.
  • the present invention When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
  • the quaternary ammonium compound is a quaternary ammonium compound having at least one C 12 to C 22 alkyl chain.
  • the quaternary ammonium compound has the following formula: in which R 1 is a C 12 to C 22 alkyl or alkenyl chain; R 2 , R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • R 1 is a C 12 to C 22 alkyl or alkenyl chain; R 2 , R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from C 12 to C 22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • the composition optionally comprises a silicone.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • zeolites are well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders with carbonates being particularly preferred.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula: 0.8-1.5M 2 O. Al 2 O 3 . 0.8-6 SiO 2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • powder laundry detergent formulations are predominantly carbonate built. Powders, should preferably give an in use pH of 9.5 to 11.
  • the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
  • mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulophonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • the total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt %, more preferably 0.005 to 2 wt %, most preferably 0.05 to 0.25 wt %.
  • the aqueous solution used in the method has a fluorescer present.
  • the fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, more preferably 0.05 to 0.5 wt%, most preferably from 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; Pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition may comprise one or more further polymers.
  • suitable polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Shading Dyes for use in laundry detergents preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine preferably carry a net anionic or cationic charge.
  • Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • Shading dyes are discussed in WO2005/003274 , WO2006/032327 (Unilever), WO 2006/032397 (Unilever), WO2006/045275 (Unilever), WO 2006/027086 (Unilever), WO 2008/017570 (Unilever), WO 2008/141880 (Unilever), WO2009/132870 (Unilever), WO 2009/141173 (Unilever), WO 2010/099997 (Unilever), WO 2010/102861 (Unilever), WO 2010/148624 (Unilever), WO2008/087497 (P&G), WO2011/011799 (P&G), WO2012/054820 (P&G), WO2013/142495 (P&G) and WO2013/151970 (P&G).
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
  • alkoxylated bis-azo dye is :
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5 , acid blue 59, and the phenazine dye selected from: wherein:
  • the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • a mixture of shading dyes may be used.
  • the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
  • Preferred reactive anthraquinone dyes are: Reactive blue 1; Reactive blue 2; Reactive blue 4; Reactive blue 5; Reactive blue 6; Reactive blue 12; Reactive blue 16; reactive blue 19; Reactive blue 24 ; Reactive blue 27; Reactive blue 29; Reactive blue 36; Reactive blue 44; Reactive blue 46 ; Reactive blue 47; reactive blue 49; Reactive blue 50; Reactive blue 53; Reactive blue 55; Reactive blue 61; Reactive blue 66; Reactive blue 68; Reactive blue 69; Reactive blue 74; Reactive blue 86; Reactive blue 93; Reactive blue 94; Reactive blue101; Reactive blue103; Reactive blue114; Reactive blue117; Reactive blue125; Reactive blue141; Reactive blue142; Reactive blue 145; Reactive blue 149; Reactive blue 155; Reactive blue 164; Reactive blue 166; Reactive blue 177; Reactive blue 181; Reactive blue 185; Reactive blue 188; Reactive blue 189; Reactive
  • the dyes are listed according to Colour Index (Society of Dyers and Colourists/American Association of Textile Chemists and Colorists) classification.
  • One or more enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • the enzyme is selected from: proteases; lipases; and, cellulases, preferably a protease.
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 .
  • LipolaseTM and Lipolase UltraTM LipexTM and LipocleanTM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method of the invention may be carried out in the presence of cutinase, classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • CelluzymeTM Commercially available cellulases include CelluzymeTM, CarezymeTM, CellucleanTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • the formulation was used to wash eight 5x5cm knitted cotton cloth pieces in a tergotometer set at 200rpm. A one hour wash was conducted in 800ml of 26° French Hard water at 20°C, with 2.3g/L of the formulation. To simulate soil that could redeposit, 0.04g/L of 100% compressed carbon black (ex Alfa Aesur) was added to the wash liquor. To simulate oily sebaceous soil (7.2 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor.
  • the dispersant prevents deposition of the carbon black soil to the cotton cloth.
  • Example 1 The formulations of Example 1 was used to wash eight 5x5cm EMPA 117 stain monitor (blood/milk/ink stain on polycotton) in a tergotometer set at 200rpm. A 60 minute wash was conducted in 800ml of 26° French Hard water at 20°C, with 2.3g/L of the formulation. To simulate oily sebaceous soil (7.2 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor.
  • 5x5cm EMPA 117 stain monitor blood/milk/ink stain on polycotton
  • SBL2004 soil strip Ex Warwick Equest
  • the dispersants enhance stain removal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (15)

  1. Wäschewaschmittelzusammensetzung, umfassend:
    (i) von 0,5 bis 20 Gew.-% eines alkoxylierten substituierten Phenol-Dispergiermittels der folgenden Struktur
    Figure imgb0019
    worin
    X ausgewählt ist aus: Ethoxy- und Mischungen von Ethoxy- und Propoxy-Gruppen, wobei die Anzahl der Ethoxy-Gruppen größer als die Anzahl der Propoxy-Gruppen ist, und worin n von 6 bis 70 beträgt;
    Y ausgewählt ist aus: R1; OR1, COOR5; F; Cl; Br; I; CN; und NO2, worin R1 eine lineare oder verzweigte C1- bis C4-Alkylgruppe ist und R5 aus linearen oder verzweigten C1- bis C18-Alkyl-Gruppen ausgewählt ist;
    R2 und R3 ausgewählt sind aus: linearen oder verzweigten C1- bis C3-Alkylaryl-Gruppen und Aryl-Gruppen;
    T ausgewählt ist aus: H; CH3; SO3 -; CH2COO-; PO3 2-; C2H5; n-Propyl, i-Propyl; n-Butyl; t-Butyl; und Sulfosuccinat;
    (ii) von 0 bis 50 Gew.-% Tensid, ausgenommen das alkoxylierte substituierte Phenol; und
    (iii) ein aktives Mittel, ausgewählt aus einem oder mehreren von Folgenden: von 0,001 bis 3 Gew.-% Parfüm; von 0,0001 bis 0,5 Gew.-% eines Fluoreszenzmittels und/oder von 0,0001 Gew.-% bis 0,1 Gew.-% Nuancierfarbstoff.
  2. Wäschewaschmittelzusammensetzung nach Anspruch 1, wobei R2 und R3 aus Styryl und Cumyl ausgewählt sind.
  3. Wäschewaschmittelzusammensetzung nach Anspruch 1, wobei R2 und R3 Styryl sind und sich sowohl R2 als auch R3 in der Ortho-Stellung zu der -O-[X]n-T-Gruppe befinden.
  4. Wäschewaschmittelzusammensetzung nach Anspruch 1, 2 oder 3, wobei X Ethoxy ist.
  5. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei n von 8 bis 34 beträgt.
  6. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei das Tensid ausgewählt ist aus: anionischen und nicht-ionischen Tensiden und die Konzentration des Tensids von 4 bis 40 Gew.-% beträgt.
  7. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei die Gewichtsfraktion von nicht-ionischem Tensid/anionischem Tensid von 0 bis 0,3 beträgt.
  8. Wäschewaschmittelzusammensetzung nach Anspruch 6 oder 7, wobei das anionische Tensid ausgewählt ist aus: linearen Alkylbenzolsulfonaten; Alkylsulfaten; und Alkylethersulfaten und Mischungen davon.
  9. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei die Konzentration des alkoxylierten substituierten Phenol-Dispergiermittels von 1 bis 10 Gew.-% beträgt.
  10. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei T H ist.
  11. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei Y ausgewählt ist aus Methyl; Ethyl; Methoxy; und Ethoxy.
  12. Wäschewaschmittelzusammensetzung nach Anspruch 1, wobei das alkoxylierte substituierte Phenol-Dispergiermittel ist:
    Figure imgb0020
  13. Wäschewaschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei n ausgewählt ist aus: 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 und 32.
  14. Häusliches Verfahren zum Behandeln eines Textils, wobei das Verfahren die Schritte umfasst:
    (i) Behandeln eines Textils mit einer wässrigen Lösung des alkoxylierten substituierten Phenol-Dispergiermittels, wobei die wässrige Lösung von 10 ppm bis 5000 ppm des alkoxylierten substituierten Phenol-Dispergiermittels, wie in irgendeinem der vorhergehenden Ansprüche definiert, und 0 bis 6 g/l eines Tensids, ausgenommen das alkoxylierte substituierte Phenol-Dispergiermittel, umfasst; und
    (ii) optional Abspülen und Trocknen des Textils.
  15. Häusliches Verfahren zum Behandeln eines Textils nach Anspruch 14, wobei bei dem Verfahren die Konzentration des Parfüms in der wässrigen Lösung vorzugsweise von 0,1 bis 100 ppm beträgt.
EP16805031.8A 2016-02-17 2016-11-22 Bleichungszusammensetzung Active EP3417042B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16156029 2016-02-17
PCT/EP2016/078457 WO2017140390A1 (en) 2016-02-17 2016-11-22 Whitening composition

Publications (2)

Publication Number Publication Date
EP3417042A1 EP3417042A1 (de) 2018-12-26
EP3417042B1 true EP3417042B1 (de) 2019-08-07

Family

ID=55361406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16805031.8A Active EP3417042B1 (de) 2016-02-17 2016-11-22 Bleichungszusammensetzung

Country Status (6)

Country Link
EP (1) EP3417042B1 (de)
CN (1) CN108699490B (de)
AR (1) AR107624A1 (de)
BR (1) BR112018016675B1 (de)
WO (1) WO2017140390A1 (de)
ZA (1) ZA201804875B (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407980A1 (fr) * 1977-11-02 1979-06-01 Rhone Poulenc Ind Nouvelles compositions anti-salissure et anti-redeposition utilisables en detergence
US20120101018A1 (en) * 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR107624A1 (es) 2018-05-16
CN108699490B (zh) 2020-06-02
BR112018016675A2 (pt) 2018-12-26
WO2017140390A1 (en) 2017-08-24
EP3417042A1 (de) 2018-12-26
ZA201804875B (en) 2019-09-25
CN108699490A (zh) 2018-10-23
BR112018016675B1 (pt) 2022-06-07

Similar Documents

Publication Publication Date Title
EP3194543B1 (de) Bleichungszusammensetzung
EP3649222B1 (de) Bleichungszusammensetzung
EP3194546B1 (de) Bleichungszusammensetzung
EP3194547A1 (de) Bleichungszusammensetzung
EP3529342B1 (de) Optische aufhellerzusammensetzung
EP3194542B1 (de) Bleichungszusammensetzung
EP3194541B1 (de) Bleichungszusammensetzung
EP3417042B1 (de) Bleichungszusammensetzung
EP3417040B1 (de) Bleichungszusammensetzung
EP3417039B1 (de) Bleichungszusammensetzung
EP3194545B1 (de) Bleichungszusammensetzung
EP3649221B1 (de) Wäschereinigungszusammensetzung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20190408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1163883

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016018340

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1163883

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016018340

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191122

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161122

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016018340

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231120

Year of fee payment: 8

Ref country code: FR

Payment date: 20231120

Year of fee payment: 8

Ref country code: DE

Payment date: 20231121

Year of fee payment: 8