EP3194545B1 - Bleichungszusammensetzung - Google Patents

Bleichungszusammensetzung Download PDF

Info

Publication number
EP3194545B1
EP3194545B1 EP15744901.8A EP15744901A EP3194545B1 EP 3194545 B1 EP3194545 B1 EP 3194545B1 EP 15744901 A EP15744901 A EP 15744901A EP 3194545 B1 EP3194545 B1 EP 3194545B1
Authority
EP
European Patent Office
Prior art keywords
liquid detergent
alkoxylated
detergent composition
composition according
aqueous liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15744901.8A
Other languages
English (en)
French (fr)
Other versions
EP3194545A1 (de
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP3194545A1 publication Critical patent/EP3194545A1/de
Application granted granted Critical
Publication of EP3194545B1 publication Critical patent/EP3194545B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D2111/12

Definitions

  • the present invention concerns the use of laundry liquid detergent compositions.
  • Dyes are widely used to colour liquid laundry detergents.
  • Shading dyes are blue or violet dyes which are substantive to fabrics during the wash process, and enhance whiteness by eliminating yellowness on white fabrics.
  • Liquid detergents may be used to directly treat stains on fabrics.
  • the dye may stain the fabric. Methods to ameliorate this problem are required.
  • WO 2012/159778 A1 discloses a liquid laundry detergent composition comprising a shading dye, surfactant and a modified lignin polymer for reduced staining properties in neat contact with a textile.
  • US 2005/107281 A1 discloses ether carboxylic acids based on alkoxylated styrylphenols and to their use as surface-active additives.
  • Alkoxylated polyaryl or alkoxylated polyalkyl phenol are disclosed in FR 1 313 944 A , GB 1 337 190 A and GB 2 007 692 A .
  • alkoxylated polyaryl and polyalkyl phenols reduce neat contact dye staining of coloured domestic liquid laundry products.
  • the present invention provides a laundry aqueous liquid detergent composition comprising:
  • laundry detergent composition comprises:
  • the present invention provides a domestic method of treating a textile, the method comprising the steps of:
  • liquid detergent will be applied to stains on the textile rather than to the entire textile, prior to washing.
  • the surfactant used is preferably as preferred for the embodiments of the invention which are described herein with reference to compositions.
  • the textile is preferably an item of clothing, bedding or table cloth.
  • Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.
  • alkoxylated polyarylphenol and alkoxylated polyalkylphenol is an uncharged (neutral) alkoxylated tristyrylphenol.
  • the alkoxylated tristyrylphenol is a polyethylene glycol mono(2,4,6-tris(1-phenylethyl)phenyl) ether.
  • the alkoxylated polyarylphenol contains an average of 2 to 70 alkoxy groups, most preferably 10 to 54 alkoxy groups.
  • the alkoxylationed is ethoxylation.
  • the aryl group in the alkoxylated polyarylphenol is preferably selected from, phenyl, tolyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, styryl, pyridyl, quinolinyl, and mixtures thereof.
  • alkoxylated polyarylphenol is a polyethylene glycol mono(2,4,6-tris(1-phenylethyl)phenyl) ether ( CAS-No: 70559-25-0 ) with the following structure:
  • n is the average numbers of moles of alkoxy units in the polyalkoxy chain.
  • Rhodia under the Soprophor trade name
  • Clariant under the Emulsogen trade name
  • Aoki Oil Industrial Co under the Blaunon trade name
  • Stepan under the Makon trade name
  • TOHO Chemical Industry Co under the Sorpol trade name.
  • alkoxylated polyarylphenol or the alkoxylated polyalkylphenol is not considered a surfactant and does not contribute numerically to the surfactant content as defined herein.
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Dyes are soluble in the medium of application, in this case a laundry detergent liquid.
  • Dyes for use in liquid laundry detergents preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred dye chromophores are azo, azine, anthraquinone, phthalocyanine and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine dyes preferably carry a net anionic or cationic charge.
  • Preferred non-shading dyes are selected are selected from blue dyes, most preferably anthraquinone dyes bearing sulphonate groups and triphenylmethane dye bearing sulphonate groups.
  • Preferred compounds are acid blue 80, acid blue 1, acid blue 3; acid blue 5, acid blue 7, acid blue 9, acid blue 11, acid blue 13, acid blue 15, acid blue 17, acid blue 24, acid blue 34, acid blue 38, acid blue 75, acid blue 83, acid blue 91, acid blue 97, acid blue 93, acid blue 93:1, acid blue 97, acid blue 100, acid blue 103, acid blue 104, acid blue 108, acid blue 109, acid blue 110, and acid blue 213.
  • Shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric.
  • the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 260 to 320, most preferably 270 to 300.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • the shading dye's fabric substantivity makes the neat contact staining worse.
  • Shading dyes are discussed in WO2005/003274 , WO2006/032327 (Unilever), WO2006/032397 (Unilever), WO2006/045275 (Unilever), WO 2006/027086 (Unilever), WO2008/017570 (Unilever), WO 2008/141880 (Unilever), WO2009/132870 (Unilever), WO 2009/141173 (Unilever), WO 2010/099997 (Unilever), WO 2010/102861 (Unilever), WO 2010/148624 (Unilever), WO2008/087497 (P&G), WO2011/011799 (P&G), WO2012/054820 (P&G), WO2013/142495 (P&G) and WO2013/151970 (P&G).
  • a mixture of shading dyes may be used.
  • the shading dye chromophore is most preferably selected from mono-azo, bis-azo and azine.
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, direct violet 66, direct violet 99 and alkoxylated versions thereof.
  • Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO/2010/151906 .
  • alkoxylated bis-azo dye is :
  • Azine dyes are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5 , acid blue 59, and the phenazine dye selected from: wherein:
  • the shading dye is present in the liquid composition in range from 0.0001 to 0.1wt %. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • the laundry composition comprises charged surfactant and it is most preferred that the charged surfactant is anionic surfactant (which includes a mixture of the same).
  • Suitable anionic detergent compounds which may be used are usually watersoluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • the level of anionic surfactant in the laundry composition is preferably from 4 to 50 wt%, more preferably 6 to 30 wt%, and most preferably 8 to 20 wt%.
  • two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl alkoxylated, preferably ethoxylated, non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the alkyl ethoxylated non-ionic surfactant is a C 8 to C 18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
  • surfactants used are saturated.
  • surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
  • the charged surfactant may be a cationic such that the formulation is a fabric conditioner.
  • the detergent compositions based on anionic or anionic/non-ionic surfactants is however the more preferred embodiment.
  • the present invention When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
  • the quaternary ammonium compound is a quaternary ammonium compound having at least one C 12 to C 22 alkyl chain.
  • the quaternary ammonium compound has the following formula: in which R 1 is a C 12 to C 22 alkyl or alkenyl chain; R 2 , R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • R 1 is a C 12 to C 22 alkyl or alkenyl chain; R 2 , R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from C 12 to C 22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from C 1 to C 4 alkyl chains and X - is a compatible anion.
  • the composition optionally comprises a silicone.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • zeolites are the well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders with carbonates being particularly preferred.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula: 0.8-1.5 M 2 O. Al 2 O 3 . 0.8-6 SiO 2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • powder laundry detergent formulations are predominantly carbonate built. Powders, should preferably give an in use pH of 9.5-11.
  • the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
  • mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-naphthol[1, 2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • Preferred fluorescers are fluorescers with CAS-No 3426-43-5 ; CAS-No 35632-99-6 ; CAS-No 24565-13-7 ; CAS-No 12224-16-7 ; CAS-No 13863-31-5 ; CAS-No 4193-55-9 ; CAS-No 16090-02-1 ; CAS-No 133-66-4 ; CAS-No 68444-86-0 ; CAS-No 27344-41-8 .
  • the composition preferably comprises a perfume.
  • perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low Log P (ie. those which will be partitioned into water), preferably with a Log P of less than 3.0.
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as clary sage, eucalyptus, geranium, lavender, mace extract, neroli, nutmeg, spearmint, sweet violet leaf and valerian.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition may comprise one or more further polymers.
  • suitable polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
  • One or more enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 .
  • LipolaseTM and Lipolase UltraTM LipexTM and LipocleanTM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • CelluzymeTM Commercially available cellulases include CelluzymeTM, CarezymeTM, CellucleanTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C . cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • the experiment was repeated with different levels of dye and level of uncharged alkoxylated polyarylphenol.
  • the polyarylphenol used was polyethylene glycol mono(2,4, 6-tris(1-phenylethyl)phenyl) ether with different levels of ethoxylation (16 and 54EO).
  • the dye used was a phenazine dye of structure:
  • the polyarylphenol reduced the neat contact staining of the dye, as seen by the reduction in ⁇ b stain value.
  • the 16EO compound was the more effective.
  • the formulation was used to pretreat 10x10cm woven cotton cloth pieces; 1 ml of the formulation was placed in the centre of the cotton and rubbed in a circular motion. The cotton was then left lying on a flat non-porous surface for 24 hours and washing at a liquor to cloth ratio of 100:1 in 26° French Hard water at 20°C, in a plastic bottle placed on an orbital shaker (150rpm) for 1 hour. The cotton was removed and the colour of the cotton measured using a reflectometer. The colour was measured at the centre of the cloth, where the detergent was applied and also at the edge of the cloth, where the neat applied detergent did not reach.
  • the blue colour due to the dye was measured as the Reflectance at 590nm, as this is the maximum absorbance of the dye in the visible spectrum and is unaffected by fluorescence.
  • the polyaryl/alkyl phenol reduced the neat contact staining of the dye, as seen by the reduction in ⁇ R(590) stain value. This occurs for all 3 compounds: the alkoxylated polyalkyl phenol with and without a sulphonates group and for the alkoxylated polyaryl phenol with the sullphonate group.
  • the polyaryl phenol has best performance.

Claims (17)

  1. Flüssige wässrige Waschmittelzusammensetzung, umfassend:
    (i) von 4 bis 50 Gew.-% eines geladenen Tensids,
    (ii) von 0,1 bis 20 Gew.-% eines alkoxylierten Polyaryl- oder alkoxylierten Polyalkylphenols der folgenden Struktur:
    Figure imgb0017
    wobei R1 aus linearen oder verzweigten C3-C15-Alkyl-Gruppen und ArylGruppen ausgewählt ist, X aus Ethoxy- oder Propoxy-Gruppen ausgewählt ist; n von 2 bis 70 beträgt, T aus H, SO3 -, COO- und PO3 2-, vorzugsweise aus H und SO3 --, ausgewählt ist, und
    (iii) Farbstoff,
    wobei das alkoxylierte Polyarylphenol oder das alkoxylierte Polyalkylphenol nicht als Tensid angesehen wird und zu dem Tensidgehalt zahlenmäßig nicht beiträgt.
  2. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 1, wobei R1 aus n-Butyl und Styryl ausgewählt ist.
  3. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 1, wobei T aus H und SO3 - ausgewählt ist.
  4. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 1, wobei das alkoxylierte Polyaryl- oder alkoxylierte Polyalkylphenol ein Polyethylenglykolmono(2,4,6-tris(1-phenylethyl)phenyl)ether ist.
  5. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der Ansprüche 1 bis 4, wobei das alkoxylierte Polyarylphenol oder alkoxylierte Polyalkylphenol durchschnittlich 2 bis 70 Alkoxy-Gruppen enthält.
  6. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 5, wobei das alkoxylierte Polyarylphenol oder alkoxylierte Polalkylphenol durchschnittlich 10 bis 54 Alkoxy-Gruppen enthält.
  7. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei das alkoxylierte Polyarylphenol oder alkoxylierte Polyalkylphenol in einer Konzentration von 0,5 bis 10 Gew.-%, höchst bevorzugt von 2 bis 9 Gew.-%, vorliegt.
  8. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei das geladene Tensid ein anionisches Tensid ist.
  9. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 8, wobei das anionische Tensid aus linearem Alkylbenzolsulfonat, Alkylsulfaten, Alkylethersulfaten, Seifen, Methylestersulfonaten und Mischungen davon ausgewählt ist.
  10. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 9, wobei das anionische Tensid aus linearem Alkylbenzolsulfonat, Alkylsulfaten, Alkylethersulfaten und Mischungen davon ausgewählt ist.
  11. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei der Farbstoff ein blauer oder violetter Nuancierfarbstoff ist, der in einer Konzentration von 0,0001 bis 0,1 Gew.-% vorliegt.
  12. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei die Zusammensetzung von 2 bis 8 Gew.-% alkylethoxyliertes nicht-ionisches Tensid umfasst.
  13. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei der Farbstoff aus Azo-, Anthrachinon-, Phthalocyanin- und Triphenylmethan-Farbstoffen ausgewählt ist, die eine anionische Nettoladung tragen, oder es sich um ungeladene und Azin-Farbstoffe handelt, die eine anionische oder kationische Nettoladung tragen.
  14. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 1, umfassend:
    (i) von 4 bis 50 Gew.-% anionisches Tensid, das aus linearem Alkylbenzolsulfonat, Alkylsulfat, Alkylethersulfat und Mischungen davon ausgewählt ist,
    (ii) von 0,5 bis 10 Gew.-% ungeladenes alkoxyliertes Polyarylphenol der folgenden Struktur:
    Figure imgb0018
    worin n ausgewählt ist aus: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 und 54, und
    (iii) von 0,0001 bis 0,5 Gew.-% blauen oder violetten Nuancierfarbstoff.
  15. Flüssige wässrige Waschmittelzusammensetzung nach irgendeinem der vorhergehenden Ansprüche, wobei der Farbstoff aus blauen oder violetten Nuancierfarbstoffen ausgewählt ist.
  16. Flüssige wässrige Waschmittelzusammensetzung nach Anspruch 15, wobei der Farbstoff ausgewählt ist aus sulfonierten Bis-Azo-Farbstoffen, alkoxylierten Mono-Azo-Farbstoffen, sulfonierten Phenazin-Farbstoffen, Acid Blue 98, Acid Violet 50, Farbstoff mit CAS-Nr. 72749-80-5, Acid Blue 59 und Phenazin-Farbstoff der Struktur:
    Figure imgb0019
    worin:
    X3 ausgewählt ist aus -H, -F, -CH3, -C2H5, -OCH3 und -OC2H5,
    X4 ausgewählt ist aus -H, -CH3, -C2H5, -OCH3 und -OC2H5 und
    Y2 ausgewählt ist aus -OH, -OCH2CH2OH, -CH(OH)CH2OH, -OC(O)CH3 und C(O)OCH3.
  17. Häusliches Verfahren zur Behandlung eines textilen Erzeugnisses, wobei das Verfahren die Schritte umfasst:
    (i) direktes Behandeln eines textilen Erzeugnisses mit der flüssigen Waschmittelzusammensetzung, wie in irgendeinem der Ansprüche 1 bis 16 definiert, und
    (ii) es dem flüssigen Reinigungsmittel ermöglichen, mit dem textilen Erzeugnis 30 Minuten bis zu 2 Tage in Kontakt zu bleiben, dann Waschen des textilen Erzeugnisses in Wasser, optional Spülen und Trocknen des textilen Erzeugnisses.
EP15744901.8A 2014-09-18 2015-07-29 Bleichungszusammensetzung Active EP3194545B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14185270 2014-09-18
PCT/EP2015/067350 WO2016041680A1 (en) 2014-09-18 2015-07-29 Whitening composition

Publications (2)

Publication Number Publication Date
EP3194545A1 EP3194545A1 (de) 2017-07-26
EP3194545B1 true EP3194545B1 (de) 2018-10-10

Family

ID=51564535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15744901.8A Active EP3194545B1 (de) 2014-09-18 2015-07-29 Bleichungszusammensetzung

Country Status (8)

Country Link
EP (1) EP3194545B1 (de)
CN (1) CN106661503B (de)
AR (1) AR101881A1 (de)
AU (1) AU2015317182A1 (de)
BR (1) BR112017004339B1 (de)
CL (1) CL2017000604A1 (de)
CO (1) CO2017001201A2 (de)
WO (1) WO2016041680A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313944A (fr) * 1960-11-22 1963-01-04 Gen Aniline & Film Corp Nouveaux produits tensio-actifs, et leur procédé de préparation
DE2029384A1 (de) * 1970-06-15 1971-12-23 Hoechst Ag Schaumarme Netz-, Wasch- und Reinigungsmittel
FR2407980A1 (fr) * 1977-11-02 1979-06-01 Rhone Poulenc Ind Nouvelles compositions anti-salissure et anti-redeposition utilisables en detergence
DE10353603B4 (de) * 2003-11-17 2006-01-19 Clariant Gmbh Verwendung von Ethercarbonsäuren auf Basis alkoxylierter Mono-, Di- und/oder Tri(1-phenylethyl)phenole in Kühlschmiermitteln
CA2649418C (en) * 2006-04-03 2012-07-03 Stepan Company Substituted alkoxylated phenols and branched sulfates for use in emulsion polymer latexes
ES2450393T3 (es) * 2008-09-23 2014-03-24 Unilever N.V. Tintes de piridina y piridazina catiónicos
WO2012159778A1 (en) * 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106661503A (zh) 2017-05-10
BR112017004339B1 (pt) 2022-05-03
BR112017004339A2 (pt) 2018-01-02
AR101881A1 (es) 2017-01-18
WO2016041680A1 (en) 2016-03-24
AU2015317182A1 (en) 2017-02-23
CL2017000604A1 (es) 2017-10-06
EP3194545A1 (de) 2017-07-26
CN106661503B (zh) 2019-01-29
CO2017001201A2 (es) 2017-05-19

Similar Documents

Publication Publication Date Title
EP3194543B1 (de) Bleichungszusammensetzung
EP3194546B1 (de) Bleichungszusammensetzung
EP3194547A1 (de) Bleichungszusammensetzung
EP3194542B1 (de) Bleichungszusammensetzung
EP3529342B1 (de) Optische aufhellerzusammensetzung
EP3194541B1 (de) Bleichungszusammensetzung
EP3194545B1 (de) Bleichungszusammensetzung
EP3417042B1 (de) Bleichungszusammensetzung
EP3417040B1 (de) Bleichungszusammensetzung
EP3417039B1 (de) Bleichungszusammensetzung
EP3402868B1 (de) Wäschebehandlungsmittel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015017900

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1051237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015017900

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190729

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150729

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015017900

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230728

Year of fee payment: 9

Ref country code: GB

Payment date: 20230721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 9

Ref country code: DE

Payment date: 20230719

Year of fee payment: 9